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Towards Modelling of Hybrid Systems

Rafał Wísniewski

Abstract— The article is an attempt to use methods of
category theory and topology for analysis of hybrid systems.
We use the notion of a directed topological space, c.f. [1]; it
is a topological space together with a set of privileged paths.
Dynamical systems are examples of directed topological spaces.
A hybrid system consists of a number of dynamical systems
that are glued together according to information encoded in
the discrete part of the system. Motivated by [2] we develop a
definition of a hybrid system as a functor from the category
generated by a transition system to the category of directed
topological spaces. Its directed homotopy colimit (geometric
realization) is a single directed topological space. The behavior
of hybrid systems can be then understood in terms of the
behavior of dynamical systems through the directed homotopy
colimit.

I. I NTRODUCTION

We consider a transition system - two tuple(V,E), where
V is the set of discrete states andE ⊆ V × V is the set of
edges. The classical definition of a hybrid system associates
to each statev ∈ V a dynamical system, whereas the edges
describe how the system “switches” between these dynamical
systems.

By a model of a system we understand a mathematical
tool for predicting, with certain accuracy, its future behavior.
The models of hybrid systems, see an overview article [3],
depend to a great extend on a type of enquiry we wish
to undertake. There are models with very little structure,
c.f. [2], who take merely the underlying topological spaces
into account. They can be applied for majority of hybrid
systems. However, answers they provide are of very general
nature, e.g. Is the given system Zeno? Adding the structure
of continuous dynamics can help answering more specific
questions of reachability and safety, c.f. [4]. Finally, for
control synthesis it might be advantageous to consider the
continuous dynamics restricted to piecewise affine dynamical
systems, c.f. [5] and [6].

This article is an extension of studies of topology of
hybrid systems in [7] and [2]. We want to represent a hybrid
system as a single space, then to study a space of trajectories
(execution paths).

We define a hybrid system in the following construction.
In Section II we associate to a discrete system a directed
graphG and corresponding diagram category

∫

G. To work
with the space of trajectories we use the notion of a directed
topological space of [8]. This is the matter of Sections III
- the definition and basic properties, and VI - abstractions.
A directed topological space(X, dX) is a topological space
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X equipped with a directed structuredX, that is a set of
continuous mapsα : I → X, defined on the standard interval
I = [0, 1]. Directed topological spaces with maps preserving
the directed structures form a categorydTop. Dynamical
systems, Section IV, and section cones, Section V, are
examples of the directed topological spaces.

A topological hybrid system is a functorT :
∫

G→ dTop

taking each objectg of
∫

G to a directed topological space.
The category

∫

G describes the discrete transitions, whereas
H(g), g ∈

∫

G plays the role of continuous dynamics.
Any directed homotopy colimit exists indTop. The result,
c.f. Section VII, is a single directed topological space. We
conclude that the behaviour of a hybrid system can be
understood in terms of the behaviour of dynamical systems
through the directed homotopy colimit.

All maps in the article are continuous. Paths are maps
from the standard intervalI to a topological space.

II. CATEGORICAL TRANSITION SYSTEMS

We adopt the definition of a directed graph from [9].
Definition 1: A directed graph (d-graph)G is a pair of

setsG = {G0, G1}, whereG0 is a set of vertices andG1 is
the set of edges, along with two functions

G1

δ1

//

δ0

// G0.

The mapsδ0, δ1 in the definition are used to distinguish
the direction in a d-graph.

Definition 1 is equivalent to the standard definition of
the transition system(V,E), where V is the set of ver-
tices andE ⊂ V × V is the set of edges. We make
the standard assumption thatV = π0(E) ∪ π1(E). The
transition system(V,E) defines the directed graph{V,E}
with ∀e ∈ E, δα(e) = πα(e), whereπ0 is the projection
on the first andπ1 on the second factor. Conversely, the
directed graph{G0, G1} with two face mapsδα : G1 →
G0, α = 0, 1 defines the transition system(G0, E) with
E = {(δ0e, δ1e)| e ∈ G1}.

Example 1:We consider the following transition system

a //b bb . (1)

It corresponds to the directed graph

G1

δ1

��
δ0

��

p

δ0

����
��

��
��

δ1

��<
<<

<<
<<

< q
δ0

����
��

��
��

δ1

����
��

��
��

G0 a b.

(2)



Let G andK be two d-graphs, then a morphismµ in a
categoryGraph of d-graphs is a pair{µα : Gα → Kα| α ∈
{0, 1}} of functions for which the diagram

G1

µ1 //

δα

��

K1

δα

��
G0

µ0 // K0,

for α = 0, 1 commutes.
A labelled discrete systemover a finite setΣ of labels is

a directed graphG along with a morphism

f : G→ L,

whereL = {{∗},Σ}.
For every d-graphG ∈ Graph we associate adiagram

category
∫

G. The objects of
∫

G are pairs(α, x) with
x ∈ Gα for α ∈ {0, 1}. The morphisms are identity
morphisms and morphismsδα

p : (1, p) → (0, a) if
δα(p) = a. If the d-graphG is as in diagram (2) then

∫

G
is

(1, p)
δ0

p

zzuuu
uu

u δ1

p

$$II
II

II

��
(1, q)δ0

q

zzuuu
uu

u

δ1

q

zzuuu
uu

u

��

(0, a)YY (0, b)YY

(3)

When it is clear from the context that the domain of
δα
p , α = 0, 1 is p, we suppress the notion and writeδα

instead.
Remark 1:The categorical discrete system can be gener-

alized to the category of (pre-) cubical sets; that is a family
of sets{Dn| n ≥ 0} with face mapsδα

i : Dn → Dn−1 (1 ≤
i ≤ n, α = 0, 1). This observation can be used to extend a
definition of hybrid systems of this paper to one including
concurrency in discrete transitions. For more informationon
concurrency and cubical complexes see [10] and [11].

III. D IRECTED TOPOLOGICAL SPACES

We bring in a notion of a directed topological space as
introduced in [1].

Definition 2 (1.1 in [1]): A directed topological space, or
d − space X = (X, dX) is a topological space equipped
with a setdX of pathsα : I → X, calleddirected pathsor
d-paths, satisfying axioms

1) (constant path) every constant pathI → X is directed,
2) (reparametrisation) dX is closed under composition

with weakly increasing mapsI → I,
3) (concatenation) dX is closed under concatenation, i.e.

if α, β ∈ dX andα(1) = β(0) then the concatenation
γ

γ(t) =

{

α(2t) if 0 ≥ t ≥ 1

2

β(2t− 1) if 1

2
≥ t ≥ 1

is also a d-path.

The setdX will be called thed-structureof X.

Fig. 1. The circleS1 with two d-structures:↑ S1 (left) and↑ O1 (right).

We shall study maps between d-spaces that preserve the
directed paths. We say that a mapf : X → Y preserves the
directed paths ifα ∈ dX implies thatf ◦ α ∈ dY .

Definition 3: A directed map, or d-mapf : X → Y is a
map between d-spaces(X, dX) and (Y, dY ) that preserves
the directed paths. Their category will be denoted bydTop.

Example 2:The directed real line↑ R is the Euclidean
line R with directed paths given by increasing mapsI → R.
Then the standard directed interval↑ I has the subspace
structure of the directed line.

The n-dimensional directed real space↑ R
n is R

n

equipped with paths increasing in each coordinate, similarly
↑ In has a subspace structure of↑ R

n. On a circle↑ S1 we
define directed paths in anticlockwise direction. This comes
from the quotient↑ I/∂I that identifies the endpoints ofI.
Since the concatenation of d-paths is a d-path we see that
directed paths in↑ S1 and↑ I/∂I agree. This is not the only
d-structure onS1. We can consider the circle embedded in
R× ↑ R, then all d-paths move upwards. The circle with this
d-structure is denoted by↑ O1, c.f. Fig. 1.

The classical definition of a hybrid system associates to
each discrete state a dynamical system. In the next sections
we show that a dynamical system and its robust version, a
section cone, give rise to d-spaces.

IV. DYNAMICAL SYSTEMS

We consider a compact smooth manifold,M and a set
of smooth vector fieldsX(M) defined onM (X(M) has a
structure of a complete metric space, c.f. Theorem 4.4, Ch.
2, [12]).

An integral curveof a vector fieldξ ∈ X(M) through a
point x ∈ M is a smooth mapφξ

x : (−ϑ, ǫ) → M , with
real numbersǫ, ϑ > 0, such thatφξ

x(0) = p and d
dt
φξ

x(t) =
ξ(φξ

x(t)) for all t ∈ (−ϑ, ǫ). The image of an integral curve
is an orbit. The set of singularities of a vector fieldξ is
denoted byCr(ξ) = {p ∈ M | ξ(p) = 0}. The theorems
on existence, uniqueness and differentiability of solutions of
ordinary differential equations inRn extend to vector fields
onM . Since in our setupM is compact each integral curve
is defined for allt ∈ R and we have a smooth map - the
flow, c.f. Theorem 5.2.1, [13]

φ : R ×M →M, φ(t, x) = φx(t).



Definition 4: γ : I → M is an integral arc of a vector
field ξ if there exists an injective, increasing mapα : I →
R ∪ {±∞} and anx ∈ M such thatφξ

x ◦ α(t) = γ(t) for
t ∈ I.

We define the d-structuredM as the smallest d-structure
on M containing all integral arcs onM . This shows that a
dynamical system can be treated as a d-space.

V. SECTION CONES

To allow more flexibility corresponding to non-
determinacy we introduce a section cone.

Definition 5 (Section Cone, c.f. [14]):Let M be a
smooth manifold. Asection coneK on M is a subset of
X(M) satisfying the following two conditions:

1) For every pairξ, η ∈ K, Cr(ξ) = Cr(η).
2) If ξ andη are inK andα, β > 0 thenαξ + βη ∈ K.

The first condition says that all vector fields in a section
cone have the same singularities. Also if the zero section
0M is in K thenK = {0M}. The second condition imposes
convexity on the subsetK. Particularly, ifξ ∈ K thenαξ ∈ K
for α > 0.

Condition 1. allows to speak about singular points of a
section cone.

Definition 6 (c.f. [14]): A point p is a singular pointof a
section coneK if p ∈ Cr(ξ) for some, thus for all,ξ ∈ K.
We denote the set of singular points ofK by Cr(K).

Example 3:Let g be a Riemannian metric onM , i.e. a
pointwise inner product onTp(M) varying smoothly inp.
We pick η ∈ X(M) and define the setK(η) ⊂ X(M) by

K(η) = {α(η + ξ) ∈ X
r(M)| ξ ∈ X

r(M), α > 0,

g(ξ, η) = 0, g(η, η) ≥ g(ξ, ξ)}.

Note that forη + ξ ∈ K(η) we haveη(p) = 0 for some
p ∈ M if and only if (η + ξ)(p) = 0. Furthermore, ifϑi =
αi(η + ξi) ∈ K(η) for αi > 0 and i ∈ {1, 2} then

‖α1ξ1 + α2ξ2‖
2 ≤ (α1 + α2)

2‖η‖2, where‖ · ‖2 ≡ g(·, ·).

Henceϑ1 + ϑ2 = (α1 + α2)η + α1ξ1 + α2ξ2 ∈ K(η), and
K(η) is a section cone.

We shall use the notationK(p) ≡ {s(p)| s ∈ K} ⊂
Tp(M). In particular,p ∈ Cr(K) if and only if K(p) = {0}.

Let us make precise the notion of a cone in a vector space.

Definition 7 ([15]): Let V be a real vector space. Acone
K in V is a subset ofV satisfying

1) If α, β ≥ 0 andx, y ∈ K, thenαx+ βy ∈ K;

2) K ∩ (−K) = {0}.

At every pointp ∈M , a section cone localizes to a cone in
the tangent spaceTp(M).

Proposition 1 (c.f. [14]): Let K be a section cone. If
ξ, η ∈ K andξ(p) = −η(p) for somep ∈M thenp ∈ Cr(ξ).
As a consequence, for eachx ∈M , the setK(x) ∪ {0} is a
cone in the vector spaceTx(M).

Given a section cone, we define a di-path as a
concatenation of finite number of integral arcs corresponding
to the vector fields belonging to this cone.

Definition 8: SupposeK is a section cone. We call a
piecewise smooth pathσ : I → M a d-path of K if it is
a constant path or there exists a finite set of integral arcs
{γ1, ..., γk}, for i = 1, ..., k whereγi is an integral arc of
the vector fieldξi satisfying

1) {ξ1,...,ξk} ⊂ K and
2) σ = γ1 ∗ ... ∗ γk, in particularγi(1) = γi+1(0).

The totality of all d-paths defines a d-structure onM
(generated by the section coneK).

VI. A BSTRACTIONS INdTop

The forgetful functorU : dTop → Top, c.f. [1], has
the left adjointc0 taking X ∈ Top to c0(X) = (X, |X|)
with |X| the d-structure of constant paths onX. Its right
adjoint isC0, which takesX to C0(X) = (X,Top(I,X)).
Since all left adjoint functors preserve all colimits, while
right adjoints preserve limits, it is concluded thatdTop is
complete and cocomplete. The limits and colimits indTop

are constructed as inTop and equipped with the initial or
final d-structure for the structural maps. For instance, a path
I →

∏

Xi is directed if and only if all its componentsI →
Xi are directed. Also a pathI →

∑

Xi is directed if and
only if it is directed for someXi.

With this in mind we are able to adapt the notion of
bisimulation for the directed spaces.

A. Bisimulation

Definition 9: A d-mapf : Y → X is a bisimulation map
providedf has a path lifting property:
For eachy ∈ Y and eachσ ∈ dX with f(y) = σ(0) there
is there isθ ∈ dY such thatσ = f ◦ θ andθ(0) = y that is
the following diagram

{0}

��

// Y

f

��
I

σ //

θ

>>|
|

|
|

X

commutes.

We adapt the definition of a bisimulation from [16] and [4].



Two d-spacesX andY are bisimilar if there exists a third
d-spaceZ and a span bisimulation mapsf : Z → X and
g : Z → Y

Z
f

~~}}
} g

  A
AA

X Y.

(4)

The bisimulation relation is reflexive and symmetric. The
transitivity follows from the existence of the pullback in
dTop.

The next proposition shows that the notion of bisimulation
does not work for d-spaces. It shows that any d-spaceX is
bisimilar to a space consisting of a singleton{∗}. Hence by
transitivity of the bisimulation relation any two d-spacesare
bisimilar.

Proposition 2: Any directed spaceX is bisimilar to a one
point space.

Proof 1: Let the d-spaceZ in the diagram (4) be

Z = X × {∗}.

Let f be the projection on the first factor, andg the projection
on the second factor. Notice that the projections are d-maps
with the path lifting property, since for anyσ ∈ dX, θ : I →
X × {∗} defined byθ(t) = (σ(t), ∗) is in dZ. 2

In Section VII we show that the geometric realization of
a hybrid system is a directed space. In order to analyze it
we still need an appropriate notion of an abstraction.

B. Directed Homotopy Equivalence

We introduce another equivalence relation indTop. First
we formulate a definition of a directed homotopy.

Definition 10 (c.f. [1]): Let f, g : X → Y be d-maps.
A directed homotopyφ : f → g : X → Y is a d-map
φ : X× ↑ I → Y with φ(x, 0) = f(x) andφ(x, 1) = g(x)
for x ∈ X.

We define thed-homotopy preorder�.

Definition 11: We say thatf � g if the exists a d-
homotopyφ : f → g.

The d-homotopy preorder is reflexive and transitive but
non-symmetric. It is consistent with composition, since for
f, g : X → Y and f ′, g′ : Y → Z, we havef � g and
f ′ � g′ imply f ′ ◦ f � g′ ◦ g.

Definition 12 (c.f. [1]): The relation≃ is the equivalence
relation generated by�. In other words we say thatf ≃ g
if there exists a finite sequencef � f1 � f2 � f3 � ...g of
d-maps between the same objects.

Recall that for a given categoryC a functionR which assigns
to each pair of objectsa, b of C a binary relationRa,b on
the hom-set C(a,b) is acongruenceon C (c.f. [9]) if

1) for each paira, b of objects, Ra,b is a reflexive,
symmetric, and transitive relation onC(a, b);

2) if f, f ′ : a → b havefRa,bf
′, then for allg : a′ → a

and allh : b→ b′ we have(h◦ f ◦ g)Ra′,b′(h◦ f
′ ◦ g).

We conclude that≃ is a congruence ondTop. It means
that there exist a categorydTop/ ≃ and a functor
Q : dTop → dTop/ ≃ (a bijection on objects), such that
if f ≃ g in dTop thenQf = Qg.

Definition 13 (c.f. [1]): A d-homotopy equivalenceis a d-
mapf : X → Y having a d-homotopy inverseg : Y → X,
that is g ◦ f ≃ IdX and f ◦ g ≃ IdY . We writeX ≃ Y ,
and say thatX and Y are d-homotopy equivalentor have
the samed-homotopy type.

A d-space is d-contractible if it is d-homotopy equivalent to
a point. A d-subspaceu : X ⊂ Y is a directed deformation
retract of Y if there is a d-mapp : Y → X such that
p ◦ u = IdX andu ◦ p ≃ IdY .

Example 4:The half line ↑] − ∞, 0] is a “past” defor-
mation retract of the directed line↑ R by the d-homotopy
φ(x, t) = min(x, tx). Also the half line↑]−∞, 0] is “future”
d-contractible to0 by the d-homotopyψ(x, t) = (1 − t)x.
Thus, we conclude that the d-line↑ R is d-contractible.

On the other hand↑ S1 and ↑ O1 ⊂ R× ↑ R are not d-
homotopy equivalent. A directed mapf :↑ S1 →↑ O1 must
stay on the right or left side of↑ O1. This implies thatf is
d-homotopic to a trivial mapf ′ :↑ S1 → {∗} ⊂↑ O1, but
↑ S1 is not contractible.

The geometric realization of a hybrid system studied in
Subsection VII-B is a single directed topological space. A
notion of Zeno behavior has been introduced in the literature
on hybrid systems. It describes a situation where a hybrid
system undergoes an infinite number of discrete transitions
in a finite interval of time. At this stage we shall remark that
if the examined hybrid system - a d-space - is d-contractible
there will be no Zeno behavior.

C. Fundamental Category

In this section we bring in still another abstraction: the
fundamental category↑ Π(X) of the d-spaceX, c.f. [1].

Let σ, θ ∈ dX be paths fromx to x′, i.e.σ(0) = θ(0) = x
andσ(1) = θ(1) = x′. If there is a d-homotopyφ : σ → θ
such thatφ(0, t) = x and φ(1, t) = x′ for 0 ≤ t ≤ 1 we
write σ �2 θ. A 2-homotopy class of paths[σ] is a class of
the equivalence relation≃2 spanned by the preorder�2.

The fundamental category↑ Π(X) of a d-spaceX
has the objects the points ofX and morphisms[σ] the
2-homotopy classes of paths formx to x′. It is worthwhile
mentioning that Grandis in [1] has formulated and proved
the Seifert-Van Kampen theorem for fundamental categories.

The fundamental category is a huge gadget, however in
many instances, e.g. reachability or safety analysis, we are



Fig. 2. The arrows depict direction of the directed paths.

only interested in the paths of the hybrid system from a point
x (the initial position) to a pointx′ (the destination), then
our abstraction is the 2-homotopy classes of paths fromx to
x′.

VII. T OPOLOGICAL HYBRID SYSTEMS

We are in position to define a topological hybrid system.

Definition 14: A topological hybrid systemis a pairH ≡
(G,H), whereG ∈ Graph andH :

∫

G → dTop is a
functor.

We shall study a geometric realization (d-homotopy
colimit) of a topological hybrid system, in which the
transitions of the d-graph define a scheme of gluing the
“continuous systems” together. The idea comes from [2].
In Subsection VII-B we provide a formal definition of this
construction. For the time being we consider an example,
which illustrates how the discrete systems can be seen as a
topological space with d-structure.

Example 5:Construct a functorH from the category
∫

G
in the diagram (3) todTop which takes an object of

∫

G to
a singleton, d-space consisting of a single point. We useH
to define the following d-space:

(H(0, a)⊔H(0, b)⊔H(1, p)× ↑ I⊔H(1, q)× ↑ I)/ ∼, (5)

where the relation ∼ identifies (H(1, p), 0) ∼
H(0, a), (H(1, p), 1) ∼ H(0, b), (H(1, q), 0) ∼
H(0, b), (H(1, q), 1) ∼ H(0, b). The result of this geometric
realization is given in Fig. 2. Notice the similarity with the
diagram (1).

A. D-homotopy Pushout

Homotopy pushouts of d-spaces can be constructed from
the directed cylinder.

Let f : X → Y and g : X → Z be two d-maps. The
directed homotopy pushout fromf to g, c.f. [8], is a four-
tuple (A;u, v;λ),

Y

u ��?
??

??
?

X
g

��?
??

??
?

f

����
��

��
�

λ
&&

A,

Z

v����
��

��
(6)

whereλ : u ◦ f → v ◦ g : X → A is a homotopy satisfying
the following universal property: For every(A′;u′, v′;λ′)
with λ′ : u′ ◦ f → v′ ◦ g : X → A′ there is precisely one

d-maph : A → A′ such thatu′ = h ◦ u, v′ = h ◦ v and
λ′ = h ◦ λ.

We show the existence. Consider the following diagram

X

∂0 ��?
??

??
?

X
Id

��?
??

??
?

Id

����
��

��
�

η

&&

↑ IX,

X

∂1����
��

��
(7)

where∂α(x) = (x, α), α = 0, 1. The homotopyη : ∂0 →
∂1 : X →↑ IX = X× ↑ I is defined by

η(x, t) = (x, t).

The diagram (7) is the directed homotopy pushout from∂0

to ∂1.
Consider the colimit (recall thatdTop is cocomplete) of

the following diagram

Y
u

((QQQQQQQQQQQQQQQQ X
foo ∂0 //

h0

""D
DDDDDDD ↑ IX

h

��

X
∂1oo g //

h1

||zzzzzzzz
Z

v

vvmmmmmmmmmmmmmmmm

A.

The map h :↑ IX → A defines homotopy
h ◦ η : h0 → h1 : X → A, wherehα = h ◦ ∂α, α = 0, 1.
From the diagramu ◦ f = h0 and v ◦ g = h1, and we
conclude that the desired d-homotopyλ in the diagram 6
is the compositionλ = h ◦ η. The uniquenes up to
isomorphisms now also follows.

Remark 2:The d-spaceA is the quotient of the sum

(↑ IX ⊔ Y ⊔ Z)/ ∼,

where∼ is the equivalence relation identifying(x, 0) with
f(x) and (x, 1) with g(x). The construction is illustrated
in Fig. 3. You may think ofY andZ as two “continuous”
subsystems of a hybrid system. The d-subspacef : X ⊂ Y
is the guard andg is the reset function, c.f. [4].

B. Geometric Realization of Hybrid Systems

We follow the lines of [2] and define a geometric
realization of a topological hybrid system(G,H :

∫

G →
dTop) as a directed homotopy colimit ofH.

Proposition 3: Let G ∈ Graph and let H :
∫

G →
dTop be a functor. The d-homotopy colimit ofH exists
and it is unique up to isomorphism.

Proof 2: It is enough to show that there is the d-homotopy
colimit of the diagram

H(0, a)

''PPPPPPPPPPPPPPPPPP
H(1, p)

Hδ0

oo Hδ1

// H(0, b)

��

H(1, q)
Hδ0

oo Hδ1

// H(1, c)

wwnnnnnnnnnnnnnnnnnn
λ

((
θ

((

C



f

g

Y

Z

X {1}x

Fig. 3. Illustration of the d-homotopy pushout. You may thinkY andZ are
two “continuous” systems of a hybrid system. The d-subspacef : X ⊂ Y
is the guard andg is the reset function.

We see that the d-homotopy colimit follows from the
diagram below

H(0, a)

&&MMMMMMMM
H(1, p)

Hδ0

oo Hδ1

// H(0, b)

��

xxqqqqqqqq

&&MMMMMMMM
H(1, q)

Hδ0

oo Hδ1

// H(0, c)

xxqqqqqqqq
λ′ ))

θ′ ((

A

&&MMMMMMMMM B

xxqqqqqqqqq

C,

where the left and the right squares are d-homotopy pushouts,
whereas the central square is the d-pushout.2

Definition 15: Let (G,H :
∫

G → dTop) be a topolog-
ical hybrid system. Ageometric realizationof (G,H) is a
d-homotopy colimit ofH.

From Proposition 3 we conclude that the geometric real-
ization of a topological hybrid system is asingle d-space.
Therefore the behavior of hybrid systems can be studied
through its geometric realization.

Example 6:Consider Example 1, the category depicted in
the diagram (3) gives rise to the hybrid system

(↑ IH(1, p) ⊔H(0, a) ⊔H(0, b)⊔ ↑ IH(1, q))/ ∼,

where∼ is the equivalence relation identifying(x, 0) with
Hδ0p(x), (x, 1) with Hδ1p(x), (y, 0) with Hδ0q (y) and
(y, 1) with Hδ1q (y), for any (x, 0), (x, 1) ∈↑ IH(1, p),
(y, 0), (y, 1) ∈↑ IH(1, q), Fig. 4.

VIII. C ONCLUSIONS

The “discrete part” part of a hybrid system is a di-
rected graphG, to which we associates the diagram cate-
gory

∫

G. The “continuous parts” of a hybrid system are
modelled as d-spaces, that is topological spaces equipped
with the d-structure - a set of continuous paths closed
under reparametrization, concatenation and which includes
all constant paths. The d-spaces with maps preserving the d-
structures form the categorydTop. We define a topological
hybrid system as a pair(G,H) consisting of a directed graph

Fig. 4. Illustration of the d-homotopy colimit in Example 6.

G and a functorH :
∫

G → dTop. Geometric realization
of the hybrid system(G,H) - d-homotopy colimit ofH - is
a single d-space. Now the behavior of a hybrid system can
be studied in terms of the behavior od dynamical systems
through its d-homotopy colimit.
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