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Towards Modelling of Hybrid Systems

Rafat Wisniewski

Abstract—The article is an attempt to use methods of X equipped with a directed structureX, that is a set of
category theory and topology for analysis of hybrid systems. continuous mapa : I — X, defined on the standard interval
We use the notion of a directed topological space, c.f. [1]; it I = [0, 1]. Directed topological spaces with maps preserving
is a topological space together with a set of privileged paths. J -
Dynamical systems are examples of directed topological spaces.the directed stlructures form a gategatg[‘op. Dyn_amlcal
A hybrid system consists of a number of dynamical systems Systems, Section IV, and section cones, Section V, are
that are glued together according to information encoded in examples of the directed topological spaces.
the discrete part of the system. Motivated by [2] we develop a A topological hybrid system is a functat : [ G — dTop
definition of a hybrid system as a functor from the category taking each objecy of fG to a directed topological space.

generated by a transition system to the category of directed : . .
topological spaces. Its directed homotopy colimit (geometric The category| G describes the discrete transitions, whereas

realization) is a single directed topological space. The behavior H(g), g € J G plays the role of continuous dynamics.
of hybrid systems can be then understood in terms of the Any directed homotopy colimit exists idTop. The result,

behavior of dynamical systems through the directed homotopy ¢.f. Section VII, is a single directed topological space. We
colimit. conclude that the behaviour of a hybrid system can be
understood in terms of the behaviour of dynamical systems

) N through the directed homotopy colimit.
We consider a transition system - two tuiglé ), where Al maps in the article are continuous. Paths are maps
V' is the set of discrete states ahdC V' x V' is the set of .o the standard interval to a topological space.

edges. The classical definition of a hybrid system assaciate

to each state € V' a dynamical system, whereas the edges Il. CATEGORICAL TRANSITION SYSTEMS

describe how the system “switches” between these dynamicalye adopt the definition of a directed graph from [9].

systems. Definition 1: A directed graph (d-graph) is a pair of
By a model of a system we understand a mathematicgbts; = {G,, G}, whereG, is a set of vertices and; is

tool for predicting, with certain accuracy, its future beios.  he set of edges, along with two functions

The models of hybrid systems, see an overview article [3],

I. INTRODUCTION

depend to a great extend on a type of enquiry we wish a L G
to undertake. There are models with very little structure, L=~

c.f. [2], who take merely the underlying topological spaces
into account. They can be applied for majority of hybrid The mapss®, 6' in the definition are used to distinguish
systems. However, answers they provide are of very genetak direction in a d-graph.

nature, e.g. Is the given system Zeno? Adding the structureDefinition 1 is equivalent to the standard definition of
of continuous dynamics can help answering more speciftbe transition systen{V, F), where V is the set of ver-
questions of reachability and safety, c.f. [4]. Finallyr fotices andE c V x V is the set of edges. We make
control synthesis it might be advantageous to consider thke standard assumption thét = 7g(E) U 71(E). The
continuous dynamics restricted to piecewise affine dynamictransition systemV, £') defines the directed grapfV/, E'}
systems, c.f. [5] and [6]. with Ve € E,0%(e) = m.(e), wherem, is the projection

This article is an extension of studies of topology ofon the first andr; on the second factor. Conversely, the
hybrid systems in [7] and [2]. We want to represent a hybridiirected graph{Gy,G1} with two face maps® : G; —
system as a single space, then to study a space of trajectoii®, o = 0,1 defines the transition systelfGy, E) with
(execution paths). E = {(8%,6%e)| e € G1}.

We define a hybrid system in the following construction. Example 1:We consider the following transition system
In Section Il we associate to a discrete system a directed L
graphG and corresponding diagram categgfys. To work aﬂb\) : @)
with the space of trajectories we use the notion of a directgfl corresponds to the directed graph
topological space of [8]. This is the matter of Sections IlI
- the definition and basic properties, and VI - abstractions.

A directed topological spacgX,dX) is a topological space
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Let G and K be two d-graphs, then a morphismin a
categoryGraph of d-graphs is a paifu, : G, — Ku| « €
{0,1}} of functions for which the diagram

G1L>K1

\Llsa liga
Ho

GO I KOa

for « = 0,1 commutes.
A labelled discrete systemver a finite set: of labels is
a directed graplt; along with a morphism

f:G— L,

where L = {{x},X}.
For every d-graphG € Graph we associate aiagram
category [ G. The objects of [ G are pairs (o, z) with

xz € G, for « € {0,1}. The morphisms are identity

morphisms and morphismg; (I,p) — (0,a) if
§%(p) = a. If the d-graphG is as in diagram (2) therf G

IS )
) )
50 (Lp) 51 59 (17(])

P P

(0.4f
@)

®)

Fig. 1. The circleS! with two d-structures] S (left) and T O! (right).

We shall study maps between d-spaces that preserve the
directed paths. We say that a map X — Y preserves the
directed paths itv € dX implies thatf o o € dY.

Definition 3: A directed mapord-mapf: X — Y is a
map between d-spacéX,dX) and (Y,dY) that preserves
the directed paths. Their category will be denotedifpp.

Example 2: The directed real ling R is the Euclidean
line R with directed paths given by increasing maps- R.
Then the standard directed interval I has the subspace
structure of the directed line.

The n-dimensional directed real spacge R™ is R”
equipped with paths increasing in each coordinate, siyilar
1 I™ has a subspace structure oR™. On a circleT S* we
define directed paths in anticlockwise direction. This ceme
from the quotient] 7/01 that identifies the endpoints dt
Since the concatenation of d-paths is a d-path we see that
directed paths irf S* and{ I/01 agree. This is not the only

When it is clear from the context that the domain ofg-structure onS'. We can consider the circle embedded in

6y, a = 0,1 is p, we suppress the notion and writ¢
instead.

Rx T R, then all d-paths move upwards. The circle with this
d-structure is denoted by O!, c.f. Fig. 1.

Remark 1:The categorical discrete system can be gener- The classical definition of a hybrid system associates to
alized to the category of (pre-) cubical sets; that is a famileach discrete state a dynamical system. In the next sections

of sets{D,,| n > 0} with face maps¢* : D,, — D,,_1 (1 <

we show that a dynamical system and its robust version, a

i <n, a=0,1). This observation can be used to extend &ection cone, give rise to d-spaces.
definition of hybrid systems of this paper to one including

concurrency in discrete transitions. For more information

concurrency and cubical complexes see [10] and [11].

Ill. DIRECTED TOPOLOGICAL SPACES

We bring in a notion of a directed topological space as

introduced in [1].

Definition 2 (1.1 in [1]): A directed topological space, or
d — space X = (X,dX) is a topological space equipped

with a setdX of pathsa : I — X, calleddirected pathsor
d-paths satisfying axioms
1) (constant pathevery constant path — X is directed,

IV. DYNAMICAL SYSTEMS

We consider a compact smooth manifolt, and a set
of smooth vector fieldst(M) defined onM (X(M) has a
structure of a complete metric space, c.f. Theorem 4.4, Ch.
» [12]).
An integral curveof a vector field¢ € X(M) through a
point x € M is a smooth mapys : (—v,¢) — M, with
real numbers, ¥ > 0, such thatp$ (0) = p and £¢5(t) =
E(#5(t)) for all t € (=1, ¢€). The image of an integral curve
is an orbit. The set of singularities of a vector fig{dis
denoted byCr(¢) = {p € M| {(p) = 0}. The theorems

2) (reparametrisatioh dX is closed under composition on existence, uniqueness and differentiability of sohgiof

with weakly increasing maps — 1,

ordinary differential equations iR™ extend to vector fields

3) _(concatenatio)le is closed under concatenation,_ i..0n M. Since in our setup/ is compact each integral curve
if o, € dX anda(1) = $(0) then the concatenation js defined for allt € R and we have a smooth map - the

Y
a(2t) if 0
1
2

() = {5(215 1y f
is also a d-path.
The setd X will be called thed-structureof X.

flow, c.f. Theorem 5.2.1, [13]

6:Rx M — M, ¢(t,x) = ¢,(1).



Definition 4: v : I — M is anintegral arc of a vector 2) Kn(—K)={0}.
field ¢ if there exists an injective, increasing map: I —
R U {#oc} and anz € M such thatg§ o a(t) = ~(t) for At every pointp € M, a section cone localizes to a cone in
tel. the tangent space, (M).

Proposition 1 (c.f. [14]): Let K be a section cone. If
We define the d-structuré)/ as the smallest d-structure ¢ 5 ¢ K andé¢(p) = —n(p) for somep € M thenp € Cr(¢).

on M containing all integral arcs on/. This shows that a As a consequence, for eache M, the setkC(z) U {0} is a
dynamical system can be treated as a d-space. cone in the vector spacg,(M).

V. SECTION CONES

determinacy we introduce a section cone. concatenation of finite number of integral arcs correspaodi

o ) to the vector fields belonging to this cone.
Definition 5 (Section Cone, c.f. [14)Let M be a

smooth manifold. Asection coneXC on M is a subset of Definition 8: Supposek is a section cone. We call a
X(M) satisfying the following two conditions: piecewise smooth path : I — M a d-path of K if it is
1) For every paig,n € K, Cr(§) =Cr(n). a constant path or there exists a finite set of integral arcs
2) If ¢ andn are inK anda, 3 > 0thenal+8nc K. {v,..,}, fori = 1,....k where~; is an integral arc of
the vector field¢; satisfying
1) {&,...&} C K and
The first condition says that all vector fields in a section 2) o = ~y; * ... x vy, in particulary; (1) = v;.1(0).
cone have the same singularities. Also if the zero section
Oas is in K thenC = {0,s}. The second condition imposes
convexity on the subsét. Particularly, if¢ € K thenaé € K The totality of all d-paths defines a d-structure oh
for a > 0. (generated by the section cofg.
Condition 1. allows to speak about singular points of a

section cone. VI. ABSTRACTIONS INdTop

The forgetful functorU : dTop — Top, c.f. [1], has
Definition 6 (c.f. [14]): A point p is asingular pointof a  the left adjointc, taking X € Top to ¢o(X) = (X, |X])
section conek if p € Cr(¢) for some, thus for all¢ € K.  With |X] the d-structure of constant paths of Its right
We denote the set of singular points 6fby Cr(K). adjoint is C°, which takesX to Co(X) = (X, Top(I, X)).
Since all left adjoint functors preserve all colimits, wehil
right adjoints preserve limits, it is concluded th#Top is
Example 3:Let ¢ be a Riemannian metric oft/, i.e. a complete and cocomplete. The limits and colimitsdifop
pointwise inner product off,(M) varying smoothly inp. ~ are constructed as itop and equipped with the initial or

We pickn € X(M) and define the se€(n) c X(M) by final d-structure for the structural maps. For instance, th pa
I — []X; is directed if and only if all its componenfs—
K@) ={an+§) € X"(M)| £ € X" (M),a > 0, X; are directed. Also a path — 3" X; is directed if and
9(&,n) =0,9(n,n) > g(&, &)} only if it is directed for somex;.

With this in mind we are able to adapt the notion of

Note that fory + ¢ € (1) we haven(p) = 0 for SOme s iation for the directed spaces.

p € M if and only if (n + £)(p) = 0. Furthermore, ifJ; =
ai(n+&) € K(n) for a; > 0 andi € {1,2} then A. Bisimulation
Definition 9: A d-map f : Y — X is abisimulation map
provided f has a path lifting property:
Henced; + ¥s = (o1 + a2)n + a1é1 + €2 € K(n), and  For eachy € Y and eachr € dX with f(y) = o(0) there
K(n) is a section cone. is there isf € dY such thato = f o and#(0) = y that is
the following diagram

arér + a2bal® < (o1 + a2)?(nll*, where]| - [|* = g(-, ).

We shall use the notatioiC(p) = {s(p)| s € K} C {0} g Y
T,(M). In particular,p € Cr(K) if and only if K(p) = {0}. i 0y

Let us make precise the notion of a cone in a vector space. P /U
I——X

Definition 7 ([15]): Let V be a real vector space. @one commutes.
K in V is a subset ol satisfying

1) fa,6>0andz, y € K, thenaz + By € K; We adapt the definition of a bisimulation from [16] and [4].



Two d-spacesX andY are bisimilar if there exists a third  2) if f,f':a — b have fR,;f’, then for allg : a’ — a

d-spaceZ and a span bisimulation maps: Z — X and and allh : b — b/ we have(ho fog)R, (ko f og).
g:7Z =Y
; Z o, (4)  We conclude that is a congruence odTop. It means
Z O\ that there exist a categorylTop/ ~ and a functor
X Y. Q : dTop — dTop/ ~ (a bijection on objects), such that

if f~ gin dTop then = Qg.
The bisimulation relation is reflexive and symmetric. The f=g op @f=Qy

transitivity follows from the existence of the pullback in Definition 13 (c.f. [1]): A d-homotopy equivalends a d-
dTop. . _ . _mapf: X — Y having a d-homotopy inversg: ¥ — X,

The next proposition shows that the notion of b|S|muIat|orghat isgo f ~Idy and f o g ~ Idy. We write X ~ Y,
does not work for d-spaces. It shows that any d-sp#ce
bisimilar to a space consisting of a singletpn}. Hence by
transitivity of the bisimulation relation any two d-spacee

and say thatX andY are d-homotopy equivalendr have
the samed-homotopy type

bisimilar. . i L A d-space is d-contractible if it is d-homotopy equivalemt t
I_Droposmon 2: Any directed spac« is bisimilar to a one a point. A d-subspace : X C Y is a directed deformation

point space. i i retract of Y if there is a d-mapp : ¥ — X such that
Proof 1: Let the d-space” in the diagram (4) be

pou=Idx anduop ~ Idy.
Z =X x {x}.
o . o Example 4:The half line 1] — oo,0] is a “past” defor-

Let f be the projection on the first factor, andhe projection mation retract of the directed line R by the d-homotopy
on the second factor. Notice that the projections are d—ma%x’t) = min(z, tz). Also the half linef] — oo, 0] is “future”
with the path lifting property, since for_ any€ dX,0:1—  d-contractible to0 by the d-homotopy(z,t) = (1 — t)z.
X x {+} defined byf(t) = (o(t),*) is in dZ. O Thus, we conclude that the d-lifeR is d-contractible.

In Section VIl we show that the geometric realization of On the other hand S' and] O' ¢ Rx 1 R are not d-
a hybrid system is a directed space. In order to analyze Hbmotopy equivalent. A directed map:T S —1 O! must
we still need an appropriate notion of an abstraction. stay on the right or left side of O. This implies thatf is
d-homotopic to a trivial magf’ :1 St — {x} CT O!, but

B. Directed Homotopy Equivalence . )
1 81 is not contractible.

We introduce another equivalence relationdifiop. First
we formulate a definition of a directed homotopy.

The geometric realization of a hybrid system studied in
Subsection VII-B is a single directed topological space. A
notion of Zeno behavior has been introduced in the liteeatur
on hybrid systems. It describes a situation where a hybrid
system undergoes an infinite number of discrete transitions
in a finite interval of time. At this stage we shall remark that
if the examined hybrid system - a d-space - is d-contractible
there will be no Zeno behavior.

Definition 10 (c.f. [1]): Let f,g : X — Y be d-maps.
A directed homotopyp : f — g : X — Y is a d-map
¢: Xx 11 —=Y with ¢(z,0) = f(z) and¢(z,1) = g(x)
for z € X.

We define thed-homotopy preorder.

Definition 11: We say thatf =< g if the exists a d-
homotopy¢ : f — g. C. Fundamental Category

In this section we bring in still another abstraction: the
The d-homotopy preorder is reflexive and transitive bufundamental category II(X) of the d-spaceX, c.f. [1].
non-symmetric. It is consistent with composition, since fo
f,g: X = Yandf,g :Y — Z we havef = gand  |ets, 0 c dX be paths froms to 2/, i.e.o(0) = 6(0) = =
=g imply ffof =g og. ando(1) = 6(1) = «'. If there is a d-homotopy : 0 — 6
such that¢(0,t) = « and ¢(1,t) = ' for 0 < ¢ < 1 we
Definition 12 (Cf [1]) The relation~ is the equivalence write o <5 0. A 2-h0m0t0py class of patﬁs—] is a class of
relation generated by. In other words we say that ~ g  the equivalence relatior, spanned by the preordets.
if there exists a finite sequendge= f1 = fo < f3 = ...g of The fundamental category II(X) of a d-spaceX
d-maps between the same objects. has the objects the points of and morphisms[o] the
2-homotopy classes of paths formto z’. It is worthwhile
Recall that for a given categoty a functionR which assigns  mentioning that Grandis in [1] has formulated and proved
to each pair of objects, b of C' a binary relation®,, on  the Seifert-Van Kampen theorem for fundamental categories
the hom-set C(a,b) is eongruenceon C' (c.f. [9]) if
1) for each paira,b of objects, R, is a reflexive, The fundamental category is a huge gadget, however in
symmetric, and transitive relation afi(a, b); many instances, e.g. reachability or safety analysis, we ar



d-maph : A — A’ such thatu’ = howu, v = howv and
XN =ho.

H(0,a) H(0,b)

We show the existence. Consider the following diagram

X
2
X

Fig. 2. The arrows depict direction of the directed paths.

only interested in the paths of the hybrid system from a point

7
z (the initial position) to a point’ (the destination), then X K %
our abstraction is the 2-homotopy classes of paths fraim % A
x'. 11X,
VIl. TOPOLOGICALHYBRID SYSTEMS where d, (z) = (z,a), a = 0,1. The homotopyy : 9y —
We are in position to define a topological hybrid systemd1 : X =1 IX = Xx T I is defined by
n(z,t) = (x,t).

Definition 14: A topological hybrid systeris a pairH = _ ) )
(G, H), whereG € Graph andH : [G — dTop is a The diagram (7) is the directed homotopy pushout fr@m
functor. 0o o '

We shall study a geometric realization (d-homotopy Con5|de_zr the_ colimit (recall thatTop is cocomplete) of
colimit) of a topological hybrid system, in which the the following diagram

transitions of the d-graph define a scheme of gluing the f o o g

“continuous systems” together. The idea comes from [2]. Y X TIX X Z

In Subsection VII-B we provide a formal definition of this “m ihy“

construction. For the time being we consider an example,

which illustrates how the discrete systems can be seen as a A.

topological space with d-structure. The map h 7 IX — A defines homotopy

hon:hy — hy: X — A, whereh, = hod,, a =0,1.
Example 5:Construct a functof from the categoryf G From the diagramu o f = hog andv o g = hy, and we
in the diagram (3) talTop which takes an object of G 10  conclude that the desired d-homotopyin the diagram 6
a smgleton, d—spage consisting of a single point. We Mise js the composition\ = h o 1. The uniquenes up to
to define the following d-space: isomorphisms now also follows.

H UH(0,b)UH(1 TUH(1 1)/ ~, (5
(H(0,a)LH(0,5)UH(L,p)>x T (La)x 1D/~ ) Remark 2: The d-spaced is the quotient of the sum
where the relation ~ identifies (H(1,p),0) ~

H(0,a), (H(1,p),1) ~ H(0,b), (H(1,q),0) ~ (TIXuYuz)/~,

H(0,b),(H(1,q),1) ~ H(0,b). The result of this geometric where ~ is the equivalence relation identifying:, 0) with

realization is given in Fig. 2. Notice the similarity witheh f(z) and (x,1) with g(z). The construction is illustrated

diagram (1). in Fig. 3. You may think ofY” and Z as two “continuous”
subsystems of a hybrid system. The d-subspaceX C Y

A. D-homotopy Pushout is the guard and is the reset function, c.f. [4].

Homotopy pushouts of d-spaces can be constructed fr

0, . o .
the directed cylinder. §1 Geometric Realization of Hybrid Systems

We follow the lines of [2] and define a geometric
Let f: X — Y andg : X — Z be two d-maps. The realization of a topological hybrid systeté-, H : /G —
directed homotopy pushout froffito g, c.f. [8], is a four- dTop) as a directed homotopy colimit df .
tuple (4; u, v; A),
Proposition 3:Let G € Graph and letH : [G —
dTop be a functor. The d-homotopy colimit off exists

X
;V X and it is unique up to isomorphism.
Proof 2: It is enough to show that there is the d-homotopy

Y A Z (6)  colimit of the diagram
X
u v 0 1 0 1
A H(0,a) < H(1,p) “> H(0,b) <= H(1,q) *> H(1,c)
’ A 0
wherel :uo f - vog: X — Ais a homotopy satisfying < ™ T

the following universal property: For everyd’; u’,v’; \)
with M : v/ o f — v og: X — A’ there is precisely one C



Xx{1}

o
Y\\S‘P

f

~

-

\

H(0,b)
Y
/ /
H(0,a) "
Fig. 4. lllustration of the d-homotopy colimit in Example 6.

G and a functorH : [ G — dTop. Geometric realization

Fig. 3. lllustration of the d-homotopy pushout. You may thiilandZ are
two “continuous” systems of a hybrid system. The d-subspaceX C Y
is the guard ang is the reset function.

of the hybrid system{G, H)
a single d-space. Now the behavior of a hybrid system can

- d-homotopy colimit ofH -

be studied in terms of the behavior od dynamical systems
through its d-homotopy colimit.

We see that the d-homotopy colimit follows from the
diagram below

H(0,a) <—H(1p ‘>H(0b<—H(1q‘>H00) N
\ / \ / [2]
\ / (3]

c,

where the left and the right squares are d-homotopy pushouts
whereas the central square is the d-pushout. [

(5]
Definition 15: Let (G, H : [ G — dTop) be a topolog-
ical hybrid system. Ageometric realizatiorof (G, H) is a
d-homotopy colimit ofH. [6]

From Proposition 3 we conclude that the geometric real-
ization of a topological hybrid system is sangle d-space. [7]
Therefore the behavior of hybrid systems can be studied
through its geometric realization.

Example 6:Consider Example 1, the category depicted in

the diagram (3) gives rise to the hybrid system (8]
(1 TH(1,p) LW H(0,a) UH(0,b)U 1 TH(1,q))/ ~, Bl
where ~ is the equivalence relation identifying:,0) with [0

Ho)(x), (x,1) with Ho(x), (y,0) with H6)(y) and
(y,1) with H6,(y), for any (z,0),(z,1) €l IH(1,p), [11
(.0). (y. 1) €1 TH(L,q), Fig. 4. [12]
[13]

VIII. CONCLUSIONS

The *“discrete part” part of a hybrid system is a di-[14]
rected graphG, to which we associates the diagram cater
gory [ G. The “continuous parts” of a hybrid system are
modelled as d-spaces, that is topological spaces equipdéél
with the d-structure - a set of continuous paths closeﬂ]
under reparametrization, concatenation and which ingude
all constant paths. The d-spaces with maps preserving the d-
structures form the categor/Top. We define a topological
hybrid system as a paf(7, H) consisting of a directed graph

4] E. Haghverdi, P. Tabuada, and G. J. Pappas,

15] G.P. Barker,
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