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Summary
Background The malignant childhood brain tumour, medulloblastoma, is classified clinically into molecular groups
which guide therapy. DNA-methylation profiling is the current classification ‘gold-standard’, typically delivered 3–4
weeks post-surgery. Pre-surgery non-invasive diagnostics thus offer significant potential to improve early diagnosis
and clinical management. Here, we determine tumour metabolite profiles of the four medulloblastoma groups,
assess their diagnostic utility using tumour tissue and potential for non-invasive diagnosis using in vivo magnetic
resonance spectroscopy (MRS).

Methods Metabolite profiles were acquired by high-resolution magic-angle spinning NMR spectroscopy (MAS) from
86 medulloblastomas (from 59 male and 27 female patients), previously classified by DNA-methylation array (WNT
(n = 9), SHH (n = 22), Group3 (n = 21), Group4 (n = 34)); RNA-seq data was available for sixty. Unsupervised class-
discovery was performed and a support vector machine (SVM) constructed to assess diagnostic performance. The
SVM classifier was adapted to use only metabolites (n = 10) routinely quantified from in vivo MRS data, and
re-tested. Glutamate was assessed as a predictor of overall survival.

Findings Group-specific metabolite profiles were identified; tumours clustered with good concordance to their
reference molecular group (93%). GABA was only detected in WNT, taurine was low in SHH and lipids were high in
Group3. The tissue-based metabolite SVM classifier had a cross-validated accuracy of 89% (100% for WNT) and,
adapted to use metabolites routinely quantified in vivo, gave a combined classification accuracy of 90% for SHH,
Group3 and Group4. Glutamate predicted survival after incorporating known risk-factors (HR = 3.39, 95% CI
1.4–8.1, p = 0.025).

Interpretation Tissue metabolite profiles characterise medulloblastoma molecular groups. Their combination with
machine learning can aid rapid diagnosis from tissue and potentially in vivo. Specific metabolites provide important
information; GABA identifying WNT and glutamate conferring poor prognosis.

Funding Children with Cancer UK, Cancer Research UK, Children’s Cancer North and a Newcastle University PhD
studentship.
*Corresponding author.
**Corresponding author. Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
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Research in context

Evidence before this study
Medulloblastoma molecular groups have clinical and
prognostic significance and are increasingly used in disease
diagnostics and treatment stratification. Currently group
diagnosis is obtained from tissue histological and molecular
analyses and takes 3–4 weeks, risking tumour progression
prior to the initiation of a definitive management plan.
Metabolite profiles combined with machine learning provide a
diagnostic tool for common childhood brain tumours both
in vivo and ex vivo. A previous in vivo study has shown the
potential for metabolite profiles to detect differences between
medulloblastoma groups. Specific metabolites have been
shown to have potential prognostic value in children’s brain
tumours, with medulloblastoma glutamate levels identified as
a marker of poor prognosis in a small single centre study.

Added value of this study
We have determined metabolite profiles from a group of 86
clinically and molecularly well characterised medulloblastoma
tissue samples using high-resolution magic-angle spinning
nuclear magnetic resonance spectroscopy (MAS). Significant
differences in multiple metabolites exist between groups,

with GABA being a strong predictor of the WNT group.
A machine learning diagnostic classifier developed for the
medulloblastoma groups gives a high level of diagnostic
accuracy and could provide a rapid diagnostic tool. This
classifier was adapted to assess its potential for use on routine
in vivo MRS data giving a non-invasive diagnosis of group.
Tumour glutamate levels were confirmed prospectively as a
strong predictor of poor prognosis in medulloblastoma, with
other metabolites identified as having a potential prognostic
significance.

Implications of all the available evidence
Metabolite profiles are strong characteristics of tumour type
in childhood brain tumours and can identify medulloblastoma
molecular groups as well as providing prognostic information.
Metabolite profiles can be determined rapidly from ex vivo
tumour tissue and also non-invasively using an MRI scanner.
This has important clinical implications, enabling early
diagnosis, clinical planning and management. The principles
established will be applicable to other tumour types and age
groups.
Introduction
Medulloblastoma is the most common malignant
embryonal brain tumour of childhood. Disease-wide
five-year survival rates have improved to around 70%
with the introduction of treatments stratified by clinical,
imaging and histological criteria; age, metastatic stage,
histological subtype and extent of surgical resection
represent the major risk-factors.1 Importantly, distinct
molecular disease groups are recognised (WNT, SHH,
Group3 and Group4), each with characteristic clinical,
pathological and molecular features,2 which underpin
the current WHO disease classification.3

Molecular disease groups increasingly form the basis
of treatment stratification in contemporary clinical trials
of risk-adapted and targeted therapies (e.g. therapy
reduction for favourable-risk WNT tumours4; SMO in-
hibitors for SHH tumours5; SHH trials6). Molecular
genetic methods applied to surgical material represent
the current diagnostic ‘gold-standard’ for molecular
group detection.3 However, these approaches have sig-
nificant limitations, with their dependence on surgical
material and typically long turnaround times combining
to give 3–4 weeks from presentation to full diagnosis7;
and consequent incompatibility with early planning of
treatment and/or surgical strategy, or non-invasive dis-
ease management.
The development of robust non-invasive methods for
timely medulloblastoma grouping offers the potential to
support improved disease management, through adap-
tations such as rapid diagnosis and prognostication,
early planning and refinement of treatment, as well as
informing discussions with the family in the crucial
early stages of their clinical management. Tumour
metabolite profiles8 may be detected through routine
diagnostic imaging, such as magnetic resonance spec-
troscopy (MRS).9,10 We and others have previously
demonstrated metabolite profiles can distinguish me-
dulloblastomas from other major childhood brain
tumour types arising in the cerebellum with high ac-
curacy, using in vivo MRS and classification by machine
learning.11,12 Moreover, initial evidence has indicated
medulloblastoma disease groups have distinct spectral
features,13 and we have identified tumour metabolites
with prognostic potential in medulloblastoma (e.g. high
glutamate; poor prognosis).14 These studies provide first
proof-of-principle of the clinical potential of metabolite
profiling in medulloblastoma, however any wider utility
for disease grouping remains to be established.

Developing a non-invasive test directly from in vivo
MRS presents several challenges, particularly around
collection of sufficient numbers of cases and associated
imaging data representative of the different molecular
www.thelancet.com Vol 100 February, 2024
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groups, from across multiple centres. To circumvent
these, we have developed methods for metabolite
profiling in ex vivo tissue samples, termed high-
resolution magic angle spinning NMR (MAS), which
allow the selection of representative snap-frozen sam-
ples for analysis from tumour banks, followed by use of
this information to develop in vivo MRS methods.15

Notably, tissue MAS measures a greater range of me-
tabolites than detected by standard in vivo MRS – thus
allowing greater potential for discovery and characteri-
sation, while closely mirroring those metabolite con-
centrations detected in common between the two
techniques.16,17 Importantly, we have demonstrated that
ex vivo metabolite profiles can distinguish between
closely related tumour groups16,18

Here, we applied these techniques to characterise the
metabolite profiles of the medulloblastoma molecular
disease groups. Using machine learning, we con-
structed discriminatory classifiers which can be devel-
oped into diagnostic tests, applicable in both ex vivo
tissue and in vivo spectroscopy analysis, as a basis for
rapid and/or non-invasive testing. Further, we prospec-
tively validated glutamate as a biomarker of poor prog-
nosis, for use alongside diagnostic classifiers. Together,
these findings establish metabolite profiles as a strong
characteristic of medulloblastoma groups forming the
basis of rapid and non-invasive tests to support
improved disease management.
Methods
Molecular profiling was undertaken on 86 clinically
annotated medulloblastomas, collected from UK Chil-
dren’s Cancer and Leukaemia Group (CCLG) and
collaborating centres (Supplementary Table S1). ‘Gold-
standard’ molecular group status (WNT (n = 8), SHH
(n = 22), Group3 (n = 21), Group4 (n = 34)) was deter-
mined by 450K DNA methylation profiling (Illumina) of
formalin-fixed paraffin-embedded (FFPE) or frozen tis-
sue samples, and our established validated classifiers, as
previously described19; one further case did not have
methylation profiling but was WNT on local immuno-
histochemistry and was included only in unsupervised
analyses. In addition, validated immunohistochemical,
mutational and copy number correlates of specific
groups (e.g. CTNNB1 mutation and chromosome 6 loss
in WNT tumours) were assessed where possible,19 RNA-
seq analysis and subsequent group assignment was
undertaken on a subset of 60 tumours as previously
described.20 No preliminary data was available to deter-
mine sample size, but studies of a similar nature have
successfully used cohorts with about 20 cases per dis-
ease group to discriminate between classes, with fewer
being reasonable in tumour types which are expected to
have very different characteristics.15

Ex vivo tissue was snap frozen after surgery and
stored at −80 ◦C. Metabolite profiles were generated for
www.thelancet.com Vol 100 February, 2024
the 86 medulloblastoma cases using MAS and, as a
comparator, post-mortem cerebellar tissue (n = 7),
ependymoma (n = 18) and pilocytic astrocytoma
(n = 24).15 TMSP was added to the samples as a ppm
reference. Data was acquired using a 500 MHz Bruker
Avance spectrometer (Bruker, Coventry, UK) fitted with
a MAS probe. The rotor was spun at 4.8 KHz at a
temperate of 278 K. A NOESY pulse sequence was used
with 2s water pre-saturation. Fourier transformed data
was imported into MestReNova 9.0.1 software suite
(Mestrelab Research, Spain) for metabolite assignment
and quantification, with 26 metabolite and 5 lipid
macromolecule values being quantified (Supplementary
Table S2). The concentrations for all the metabolites
excluding lipids determined from the MestReNova
analysis in arbitrary units were summed to provide a
normalization factor. All metabolite and lipid values are
then reported as the arbitrary value divided by this
normalization factor. We refer to these values as
normalized metabolite concentrations. Mean centering
and scaling by standard deviation of these normalized
metabolite concentrations was undertaken prior to use
in machine learning. Absolute concentrations were not
determined.

Ethics
This study has Research Ethics Committee approval
(Trent Multi-Centre Research Ethics Committee East
Midlands-Derby, 04/MRE04/41, 25 August 2004) and
CCLG Biological Studies Committee approval
(2015BS05)). Informed consent was obtained from the
patient or parent/legal guardian.

Statistics
Class discovery was undertaken by unsupervised anal-
ysis of the MAS profiles using the R statistical package
(R3.61, R Core Team, www.R-project.org), initially by
principal component analysis, selection of the principal
components accounting for 90% of the variance and
then divisive hierarchical Cluster analysis. Univariate
analysis of differences between groups was undertaken
using Kruskal–Wallis tests with a Bonferroni correction
and post-hoc Mann–Whitney U tests and post-hoc Dunn
Tests. A ROC analysis was used to assess diagnostic
potential of the individual metabolites with confidence
intervals determined by 2000 bootstraps. A Gene Set
Enrichment Analysis (GSEA) was undertaken to deter-
mine gene sets mapped to the KEGG dataset. Individual
gene expression to metabolite correlations for specific
metabolites were evaluated using Spearman’s correla-
tion. Machine learning classifiers were built using a
support vector machine (SVM) with metabolite con-
centrations as the input and 10-fold cross validation
undertaken. Survival analysis was undertaken using
univariate and multivariable Cox regression on nor-
malised metabolite concentrations and known risk fac-
tors to determine the association of metabolites with
3
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survival. The Cox regression assumptions were tested,
proportionality was tested by log–log survival curves and
the Schoenfeld global test, linearity was tested using
penalised spline regression. Log-rank tests were used to
determine significance of Cox models. The start time
was taken as the date of diagnosis and the end time as
either date of death or date of last recorded follow-up if
patient was alive, death was taken as the event and those
alive were censored with the date being final follow-up
prior to study end. The origin was taken as the start
time. The variables for the multi-variate Cox regression
were selected on prior knowledge to be those currently
used in clinical practice as this is more relevant than
selecting variables using a data based variable selection
algorithm. Only one metabolite, glutamate, was
selected, since this was reported to have prognostic
value in a previously published study.

Role of funders
The funders of the study had no role in study design,
data collection, data analysis, data interpretation, or
writing of the report. The corresponding authors had
full access to all of the data and had the final re-
sponsibility to submit for publication.
Results
Unsupervised classification of medulloblastoma
groups using MAS profiles
A principal component analysis (PCA) of MAS tissue
metabolite profiles from post-mortem cerebellar tissue,
medulloblastoma, ependymoma and pilocytic astrocy-
toma showed cerebellar tissue is clearly distinguished
from the tumours and medulloblastomas form a cluster
largely separate from the other tumour types (Fig. 1a). A
further PCA performed on the tissue metabolite profiles
from WNT, SHH, Group3 and Group4 medulloblas-
tomas shows clustering by molecular group (Fig. 1b).
Supporting the PCA data, unsupervised hierarchical
clustering identifies four clusters which map closely to
the four medulloblastoma molecular groups, and allows
the identification of key metabolites that vary between
them (Fig. 1c). In particular, GABA is high in WNT
tumours and absent in the other three groups. Total
lipid concentration is highest in the cluster corre-
sponding to Group3. Glutamate is highest in the clus-
ters associated with SHH and Group3. Some of these
features can be appreciated visually in the MAS spectra;
representative spectra labelled with the key metabolites
are shown in Fig. 1d.

Of the 86 samples present in the MAS cohort, 60
were also profiled using RNA-seq. Using a reference
classification for molecular groups derived from hun-
dreds of DNA methylation arrayed samples,19 we
compared the accuracy of unsupervised MAS classifi-
cation to that from RNA-seq for this cohort (Fig. 1e).
When the RNA-seq and metabolomic group calls were
aligned and compared to the gold standard DNA
methylation array group assignments, the outcome was
remarkably similar in terms of accuracy between the two
datasets (Fig. 1e). Despite the limitation that MAS
quantifies only 30 metabolite and lipid macromolecule
values compared to the 1000s of genes sampled by RNA-
seq, the proportion of discordant cases is similar be-
tween the methods, with 9 out of 60 (15%) for RNA-seq
compared with 5 out of 60 (8%) for metabolite profiles,
and MAS improving the assignment between Group3
and Group4. The same samples switch between SHH
and Group3/4 on RNA-seq and metabolomic
classification.

Metabolite levels differ between medulloblastoma
disease groups and can discriminate between them
Differences in normalised metabolite concentrations
and lipid quantities were observed between groups
(Fig. 2, Supplementary Table S3). Notably, GABA,
glutamate, total lipids and taurine have an FDR cor-
rected p value < 0.0001. A univariate ROC analysis
identified 11 individual metabolites with high (>0.8)
group-specific discriminative potential (Fig. 2b,
Supplementary Table S4). Importantly, GABA was
found to be a perfect discriminator of WNT medullo-
blastoma with a ROC AUC of 1. In addition, the ROC
analysis shows WNT tumours were also characterised
by high normalised concentrations of phosphocholine
and ascorbate and low normalised concentrations of
glycine and lipids. SHH tumours were characterised by
high levels of glutamate and low levels of taurine and
creatine. Group3 tumours were characterised by high
levels of lipids. Group4 tumours were characterised by
high glutamine and myo-inositol and low glutamate. A
summary of differences between groups in a pairwise
manner is given in Fig. 2c.

Correlating metabolite profiles with gene
expression patterns
The relationship between gene expression and metabo-
lite concentrations, and how this varies across groups,
was next explored. A gene set enrichment analysis
identified a number of KEGG pathways probed by MAS
which were significantly enriched in the MB groups
(Fig. 3a and b). These included valine, leucine, isoleu-
cine degradation in WNT and the TCA cycle in Group3
and WNT tumours. Associations were therefore
assessed between metabolite concentration and the
expression of key biosynthetic enzymes and transporters
(Fig. 3c). GABA concentration correlated significantly
with expression of glutamate decarboxylase 1 (GAD1),
an enzyme key to its synthesis, with both being partic-
ularly high in WNT tumours. The glutamine metabo-
lising enzyme, glutaminase (GLS), and the main
glutamine transporter, SLC1A5, were significantly
positively correlated with each other whilst being
significantly negatively correlated with glutamine (data
www.thelancet.com Vol 100 February, 2024
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Fig. 1: Tissue metabolite profiles distinguish cerebellar tumour types and medulloblastoma groups. a) PCA scatterplot shows tissue type-
specific metabolite profiles capable of separating medulloblastoma tumours (n = 86) from other posterior fossa tumours (pilocytic astrocytoma
(n = 24), ependymoma (n = 18)) and normal cerebellar tissue samples (n = 7). b) Metabolite profiles are capable of separating the four main
molecular groups of medulloblastoma through unsupervised PCA analysis. c) Unsupervised hierarchical clustering further validates and illustrates
clustering of metabolite profiles by group, sub-structures of the data, and variations in metabolite concentrations between groups. Black boxes
show tumours positive for the feature of interest, grey boxes indicate desmoplastic/nodular pathology (LCA histology track) or data not
available (all other tracks). d) Annotated representative spectra show visual differences between the 4 groups. e) Alignment of unsupervised
MRS classification and RNA-seq-based classification with ‘gold standard’ DNA methylation array-based classification shows tissue metabolite
profiles perform equivalently to RNA-seq. Colour code for molecular groups applies to all part of the figure. G3, Group3; G4, Group4; LCA, large-
cell/anaplastic.

Articles
not shown). In addition, glutamate was significantly
positively correlated with GLS, which implies that
glutamine to glutamate interconversion is an important
regulator of the concentration of these metabolites in
medulloblastoma. Group3 and SHH in particular show
high glutamate and low glutamine associated with high
GLS and SLC1A5 expression. The expression of BCAT1
(data not shown), the branched chain amino acid
transaminase, correlated significantly with leucine and
isoleucine concentration and was significantly higher in
the SHH tumours. In addition, MYC expression was
significantly correlated with total lipid across all groups.
www.thelancet.com Vol 100 February, 2024
To further investigate gene expression in glutamate
associated metabolic pathways, a heatmap representing
clustered gene expression from genes included in
‘alanine, aspartate and glutamate metabolism’ from the
KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathway database was undertaken and shows clustering
by group (Fig. 3d).

Constructing classifiers based on medulloblastoma
tissue metabolite profiles
We next sought to develop diagnostic classifiers based
on supervised machine learning of MAS profiles and
5
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Fig. 2: Differences in metabolite profiles between molecular groups. a) Box and whisker plots show differences in metabolite concentrations
with a univariate ROC > 0.8; whiskers represent 1.5 times the inter-quartile range (IQR). b) Many metabolites show significant differences in
concentration between the groups. Univariate ROC analysis identifies metabolites which act as discriminators for groups. False Discovery Rate
adjusted p value < 0.05 one arrow; <0.005 two arrows; <0.0005 three arrows, c) Summary of differences between groups shown in a pairwise
manner. Shaded metabolites are significantly higher in concentration in that group. G3, Group3; G4, Group4.
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assess their potential to classify using in vivo MRS data
(Fig. 4). The strategy was first to develop a classifier
based on all the MAS data available. The metabolites
and lipid macromolecules quantified from the tissue
samples were used to construct a support vector
machine (SVM) classifier. A 10-fold cross validation was
used to assess the performance of the tissue classifier,
achieving a balanced accuracy rate of 89%. GABA is
included in this model and all WNT tumours were
classified correctly (Fig. 4).
www.thelancet.com Vol 100 February, 2024
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Fig. 3: Metabolic signatures in medulloblastoma RNA expression profiles. a,b) GSEA analysis of pathways enriched in each medulloblastoma
group using the KEGG pathway database (WNT: n = 6, SHH: n = 14, Group3: n = 17, Group4: n = 17). a) KEGG pathways significantly enriched in
each group using gene set enrichment analysis (GSEA). There were no significantly enriched KEGG pathways in Group4. b). Enrichment plots for
enriched metabolic pathways in each group. c) Differences in mRNA expression of metabolic enzymes are associated with alterations in
concentration of their associated metabolites. d) Heatmap representing clustered mRNA expression levels of genes constituting the ‘Alanine,
aspartate and glutamate metabolism’ KEGG pathway.

Articles
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Fig. 4: Medulloblastoma disease group classification scheme and accuracy. The HR-MAS classifier accuracy is obtained using 10-fold cross
validation.
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Assessing potential for non-invasive diagnosis
using in vivo magnetic resonance spectroscopy
We then sought to adapt this classifier to make it
appropriate for use with in vivo MRS data, and assess its
potential to classify disease group using such datasets.
Some metabolites quantified in tissue samples using
MAS are not reliably quantifiable at clinical MRI scan-
ner field strengths using conventional acquisition tech-
niques. Therefore, a reduced input of 10 metabolite
values corresponding to those commonly measured
in vivo (alanine, creatine, glutamate, glutamine, glycine,
myoinositol, N-acetyl aspartate, taurine, total choline,
total lipid) was used to construct and test a second
classifier for ex vivo MAS data in order to determine the
potential impact of the reduced metabolite detection.
The list of metabolites was determined from experience
of in vivo MRS of children’s brain tumours including
medulloblastoma with one exception, lactate was
omitted since values in ex vivo tissue are prone to vary
depending on tissue handing. Due to GABA acting as a
marker for WNT tumours, neither GABA nor WNT
tumours were included in this model. A 10-fold cross
validation of this model achieved a balanced accuracy
rate of 90% which, when combined with 100% accuracy
for diagnosing WNT tumours, gives an overall com-
bined balanced accuracy rate for the four groups of 93%
(Fig. 4). For an in vivoMRS approach, the strategy would
be for GABA to be used to identify WNT tumours and if
not present then the classifier used to discriminate be-
tween the other three molecular groups.

Prospective validation of tissue glutamate
concentration as a prognostic marker in
medulloblastoma
As expected, analysis of 78 cases with survival infor-
mation (Supplementary Table S1) showed molecular
group to be a significant predictor of overall survival.
The median follow-up time for all cases was 4.6 years
(IQR 1.8–6.6, censoring: 63% survived to study end of
which 63% were followed up for at least 5 years), WNT
tumours had the best prognosis with no events up to 5
years. Group4 had an intermediate prognosis whilst
Group3 and SHH had the worst prognosis (Fig. 5a).
Excluding cases from a previous study14 gave a cohort of
63 (median follow-up time 4.2 years (IQR 0.7–6.7,
censoring: 65% survived to study end of which 51%
were followed up for at least 5 years) which showed that
glutamate is a significant predictor of survival in cohort-
wide analysis with a hazard ratio of 2.92 (95%CI 1.8–6.3,
log rank 6.8, p = 0.009 Fig. 5b)). Testing of the Cox as-
sumptions showed Global Schoenfeld Test p = 0.26,
penalised splines regression non-linear term Chi
squared 3.88, p = 0.27. Glutamate remained a signifi-
cant predictor of survival after incorporating established
clinical risk-factors (patient age at diagnosis, M stage,
presence of large-cell/anaplastic pathology and MYC/
MYCN amplification), with HR = 3.39 (95% CI 1.4–8.1,
p = 0.025), thus independently validating and extending
our previous observations (Fig. 5c). Exploratory survival
analysis of the cohort of 78 cases identified further po-
tential metabolite markers of prognosis (Supplementary
Table S5).
Discussion
We have shown metabolite profiles are a discriminating
characteristic of the medulloblastoma disease groups.
Combined with machine learning, these provide a
powerful diagnostic tool exploitable for either rapid tis-
sue diagnosis (MAS) or potentially as a non-invasive
diagnostic aid (in vivo MRS). MAS can be acquired
from small amounts of fresh tissue (10–50 mg) in
<10 min, with potential use in intraoperative diagnosis.
In vivo MRS is readily available and can provide a pu-
tative non-invasive diagnosis at the point of first clinical
MRI scan.

Early diagnosis prior to analysis of tumour surgical
material is highly pertinent to medulloblastoma. Early
knowledge of tumour type and disease group gives op-
portunities for improved surgical planning and
www.thelancet.com Vol 100 February, 2024
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Fig. 5: Prognostic significance of glutamate in medulloblastoma. a) Group-specific survival curves for all 78 patients with available data show
WNT tumours have an excellent prognosis, whilst Group3 and SHH have poorer prognoses. b) Higher glutamate levels predict worse survival in
63 cases, following exclusion of those involved in the previous retrospective analysis which generated the hypothesis. p value derived using log-
rank test. Life tables show the number at risk at each time point. c) Multi-variable analysis for whole group of 78 patients. LCA, large-cell/
anaplastic histology.
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prognostication. This may be particularly useful in
guiding surgical strategy for good prognosis tumours
which are responsive to adjuvant therapies (e.g. WNT
where there is invasion of the brain stem or infant SHH
tumours).6 Early diagnosis further allows timely plan-
ning of adjuvant treatment, of particular importance to
radiotherapy scheduling and, increasingly, logistical
planning of proton therapies delivered away from the
local centre. Critically, early informed discussions with
patients and their families are possible, with benefits
including reducing the initial period of clinical uncer-
tainty and enabling the rapid instigation of genetic
counselling in appropriate disease groups (i.e. around
40% of SHH patients have a germline involvement).21,22

DNA methylation-based classification derived from
large independent cohorts represents the benchmark for
group classifier accuracy,6 MAS and RNA-seq classifi-
cation of our modestly-sized cohort showed good and
equivalent concordance to this ‘gold-standard’ classifi-
cation, with accuracy likely to improve further as the
dataset increases and the MAS classifier is refined. The
finding from tissue MAS data that GABA is WNT-
specific provides a potential in vivo biomarker for this
www.thelancet.com Vol 100 February, 2024
tumour type since GABA can be measured in vivo using
specific MRS acquisition techniques (e.g. MEGA-
PRESS).23,24 WNT could potentially be diagnosed by
in vivo MRS with 100% accuracy. Reducing the number
of metabolite quantities in the classifier to those readily
determined clinically by in vivo MRS showed high ac-
curacy of 90% in discrimination between the other 3
groups (SHH, Group3, Group4) indicating that non-
invasive determination of medulloblastoma molecular
groups by their metabolite profile is a realistic goal. A
previous study of MRS in medulloblastoma showed
more modest accuracy in determining molecular sub-
type than indicated by our data, but the study suffered
from being based on a small dataset acquired histori-
cally and likely underestimates the potential accuracy of
the technique.13 In terms of routine application, in vivo
MRS is readily available in major centres with a field
strength of 3 T becoming common and the acquisition
techniques are commercially available. For GABA
detection (WNT), MEGA-PRESS has recently become
commercially available for use on clinical scanners.

Conventional MRI such as T1w and T2w, as well as
more advanced MRI techniques such as diffusion
9
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weighted imaging, have been combined with machine
learning to successfully discriminate between posterior
fossa tumour types, notably medulloblastoma, pilocytic
astrocytoma and ependymoma.25,26 Perfusion imaging
has also been successful in grading of children’s brain
tumours.27 Integration of metabolite-based disease
grouping with conventional MRI and other advanced
MR methods, offers opportunities to further secure and
refine early diagnosis. Most notably, certain medullo-
blastoma disease groups are also associated with specific
anatomical locations (e.g. SHH in the cerebellar hemi-
spheres, WNT in the brainstem)6 and morphological
appearances/enhancement characteristics (e.g. SHH
tumours with DN pathology),28 which are readily dis-
cerned by conventional MRI. Radiomic features of
conventional MRI have also been shown to be powerful
characteristics of medulloblastoma molecular group.29

In addition to their diagnostic potential, metabolites
show significant promise as prognostic biomarkers for
medulloblastoma; we prospectively validated high
glutamate, determined using in vivo MRS, as a marker
of poor survival, and found GABA (WNT-associated),
scylloinositol and valine to be associated with survival in
a retrospective analysis of the metabolites. All now
require further investigation in larger, clinically-
controlled studies.

The acquisition of RNA-seq data together with MAS
data allowed an initial exploration of putative mecha-
nistic connections between the expression of enzymes
related to metabolism and associated metabolite con-
centrations. The relatively small number of metabolites
quantified here precluded an extensive integrated
pathways analysis, and GSEA analysis of disease
groups did not identify specific metabolic pathway
correlates. Instead, we took the approach of investi-
gating specific enzymes that have key relationships to
metabolites found to be characteristic for specific
groups, on a candidate basis. Notably, glutamate
decarboxylase 1, which is involved in GABA synthesis,
was strongly correlated with high GABA levels and a
strong characteristic of WNT tumours, suggesting a
mechanistic connection. Similarly, the significant cor-
relation of glutamate to GLS levels, coupled with its
association with a poor prognosis, indicates an
important role for this enzyme The observation that
glutamate is highest in clusters associated with SHH
and Group3 corresponds with data in a study sug-
gesting that TAp73 is a marker of glutamine addic-
tion.30 Strong correlation between lipid levels and MYC
expression confirm previous studies where MYC has
been found to be involved in lipid metabolism.31 These
initial findings underline the need to establish a more
complete picture of medulloblastoma metabolism,
encompassing more extensive metabolite profiles,
larger cohorts and, as candidate pathways are identi-
fied, experimental investigations in vitro and in vivo
disease models.
Caveats and limitations
There are various aspects to the study design which
should be understood when interpreting the results. In
terms of the MAS technique and its processing, absolute
concentrations are not calculated due to the lack of a
reliable standard. When normalizing the concentra-
tions, lipids were excluded for two reasons - whilst water
soluble metabolites are in general easily attributable to a
single molecule in MAS, lipid resonances are the result
of many different molecules all with varying numbers of
H atoms. From a practical point of view, lipids also have
a large value which varies greatly between the samples.
This combination of problems makes them a poor
choice for use in normalization. The method of
normalization used in this study is an approach taken in
previous publications also allowing some consistency
for comparison and reproducibility.15 There will be some
quantitative differences between lipids measured by
MAS and in vivo; this has not been addressed in the
current study, but it would require further investigation
when considering applying the classifier built on ex vivo
MAS data to in vivo MRS data.

Although, absolute metabolite concentrations are not
determined in this study, GABA concentrations can be
estimated in relation to other metabolites, for example
creatine which is readily determined in medulloblas-
toma spectra in vivo. The GABA concentrations in the
WNT cases are approximately half those of the creatine
concentrations. Allowing for the differences in proton
number, the GABA resonances should be approximately
a third the area of the creatine peak near 3 ppm, which
should be readily identifiable.

In analyzing the MAS data, all peaks which were
readily discernible were assigned to the appropriate
metabolite and quantified. However, many other me-
tabolites will be present at a concentration below that
which can be detected by MAS. Additional metabolites
could be measured using mass spectrometry which has
greater sensitivity, but this technique is not so closely
associated with in vivo MRS. MAS cannot be used to
accurately quantify specific macromolecules of meta-
bolic importance such a starch since they form broad
peaks which merge into the baseline.

Whilst MAS offers the potential to provide an intra-
operative diagnosis, there are various barriers to the
application of this in routine clinical practice. MAS
spectrometers are not readily available in hospitals at
present, automated software for analysis including MAS
data processing and machine learning would need to be
developed, optimised and made available in an appro-
priate regulatory environment. However, prospective
validation of the findings could provide the impetus to
overcome these largely logistical barriers and are start-
ing to be addressed in other clinical fields.32

This study does not present any in vivoMRS data and
an application of the MAS findings to such data should
be undertaken in the future. The main challenge of
www.thelancet.com Vol 100 February, 2024
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translating the findings of this study to in vivo MRS data
is the lower accuracy to which the metabolites are
determined by in vivo MRS than MAS of ex vivo sam-
ples. For example, challenges exist in discriminating
glutamate and glutamine. However, there is already
some evidence that this can be achieved in clinically
acquired in vivo MRS11 and improved methods for MRS
acquisition including higher field strength, better coil
design and improved pulse sequences should further
enhance accuracy. It is encouraging that an in vivo MRS
study has already shown the potential to achieve
discrimination between the medulloblastoma groups
albeit at a lower accuracy than we report.13 Information
from the ex vivo MAS data presented here should enable
further improvement in the in vivo MRS classification
accuracy. In this study, classifier accuracy was assessed
using cross validation within the cohort and results
should be further validated prospectively with these
classifiers. Whilst in vivo MRS is available in most major
centres, there is a need to develop and implement
diagnostic classifiers which can be robustly tested across
multiple centres taking into account variation in acqui-
sition protocol and field strength.

The survival analysis suffers from the limited sample
size which has precluded the testing of potential con-
founding variables in the multi-variable Cox model. In
particular, the effect of subgroup should be tested with a
larger cohort. The variables used in the multi-variable
Cox analysis were selected to test the prior published
observation of tumour glutamate being a marker of poor
prognosis against the variables currently used in clinical
practice to stratify treatment. This is a pragmatic
approach, which we note could be prone to selection
bias when determining hazard ratios. There is also a
selection bias inherent to the hazard ratios since the
hazard is calculated conditional on those who have
survived. Metabolite concentrations differ greatly be-
tween the different groups and some metabolites are
undetectable using MAS in some subgroups. This leads
to an instability in the calculation of hazard ratios and
their confidence intervals reported in Supplementary
Table S5.

Conclusion
Our work clearly demonstrates the power and potential
of tissue metabolite profiles to aid in clinical manage-
ment of medulloblastoma, through improved early
diagnosis and prognostication, and intraoperative diag-
nostic testing. Moreover, our work provides important
first insights into the importance of metabolism in the
tumour biology and pathogenesis of medulloblastoma
disease groups.
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