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Summary 

This study explores the use of Large Language Models (LLMs) in interpreting and predicting experimental 

outcomes based on given experimental variables, leveraging the human-like reasoning and inference 

capabilities of LLMs, using selective catalytic reduction of NOx with NH3 as a case study. We implement the 

Chain of Thought (CoT) concept to formulate logical steps for uncovering connections within the data, 

introducing an "Ordered-and-Structured" CoT (OSCoT) prompting strategy. We compare the OSCoT strategy 

with the more conventional "One-Pot" CoT (OPCoT) approach and with human experts. We demonstrate that 

GPT-4, equipped with this new OSCoT prompting strategy, outperforms the other two settings and accurately 

predicts experimental outcomes and provides intuitive reasoning for its predictions. 

 

Keywords: large language models, chain-of-thought, prompt engineering, human-LLM interaction, NH3-

SCR catalysis 

 

Introduction 

The emergence of the latest large language models (LLMs), notably GPT-3 and GPT-4,1,2 is transforming the 

landscape of human-computer interaction, revolutionizing a wide range of personal and professional tasks 

through advanced artificial intelligence (AI) capabilities.3,4 These LLMs, trained on vast amounts of text data, 

are capable of generating human-like text, answering common-sense questions, and even performing tasks 

that require understanding and reasoning.5,6 LLMs can provide textual content creation and offer personalized 

interactions and recommendations.7 Their proficiency extends to tasks that require inferential reasoning, such 

as answering questions, solving mathematical problems,8 and even passing bar examinations.9 Moreover, the 

impact of LLMs is evident in the realm of academic research. LLMs, like GPT-4, have the potential to 

streamline the literature review process by efficiently summarizing vast academic resources, extracting 

insights from the literature, and facilitating the generation of innovative research ideas.10 By enabling the 

analysis of extensive textual data, these models may uncover overlooked themes or patterns, offering fresh 

perspectives on existing research.11 
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LLMs have started showing the potential to revolutionize chemistry by accelerating research and discovery in 

collaboration with human chemists. For instance, GPT-4 has been used in the discovery of new metal–organic 

frameworks (MOFs) through a cooperative workflow with human experts. This synergy enabled the discovery 

of a series of MOFs, each synthesized using unique strategies and conditions.12 In the broader landscape, 

LLM-empowered AI tools and agents are making strides in organic synthesis, drug discovery, and materials 

design. ChemCrow,13 a GPT-4-based chemistry tool, exemplifies this. It streamlines reasoning for various 

chemical tasks, from drug design to synthesis. By sequentially prompting GPT-4, ChemCrow guides the 

model through the task, aligning actions with the end goal. This tool not only aids expert chemists but also 

simplifies access to chemical knowledge for novices. Moreover, task-specific fine-tuning of GPT-3 has been 

shown to yield highly effective and predictive models for a range of chemistry machine-learning (ML) tasks, 

often surpassing the performance of dedicated ML models specifically developed for these tasks.14  

 

In this study, we hypothesize that GPT-4's language understanding capabilities, when combined with its 

strengths in pattern recognition and inferential reasoning, might enable effective analysis and interpretation of 

knowledge specific to a research topic or scientific domain. Our focus is on structured data rather than texts 

directly presented in scientific publications; in essence, we are not evaluating GPT-4’s text mining capabilities. 

Instead, we aim to assess GPT-4's proficiency in recognizing patterns within structured data, which allows it 

to discern and capitalize on underlying trends. Such pattern recognition is invaluable when analysing 

experimental variables and their associated outcomes. Furthermore, we seek to determine if GPT-4’s ability 

for inferential reasoning enables it to make well-founded predictions based on the provided information and to 

assess the robustness of its rationale behind those predictions.  

 

Results 

 

Binary CeM1 metal-oxide composites 

To prepare representative training data, rational selection by customed search (Table S2) from the dataset was 

conducted five runs, each generating a batch of 48 samples that covered six types of binary CeM1 metal-oxide 

catalysts (M1 = Ti, Mn, W, Sn, Mo, or Fe). The selected samples were then integrated into UM1 and UM2, 

respectively, to generate OP-and OS-CoT, using both GPT-3.5 and GPT-4. We evaluated the effectiveness of 

UM1 and UM2 in generating CoTs from GPT-3.5 and GPT-4 against three common metrics for assessing the 

performance of LLMs: ‘disobedience’, ‘helpfulness’, and ‘honesty’. Detailed analyses are shown in Figures 

S4 and S5. Notably, we observed that GPT-3.5 malfunctioned when using UM2 in trying to generate OPCoT, 

leading to its exclusion from comparison. We examined the optimal number of input tokens for GPT-3.5-

turbo-16k, as illustrated in Figure S6, revealing that it began to malfunction when burdened with more than 

3,000 tokens in the OP approach. Finally, three combinations—OPCoT-GPT4, OSCoT-GPT4, and OSCoT-

GPT3.5—were incorporated into UM3 to infer the experimental performance of CeM1 metal-oxide 

composites samples in five runs. 

 

OP-and OS-CoTs were used to guide GPT-3.5 and GPT-4 to infer the experimental performance of each of 

the CeM1 samples. As depicted in Figure 3a-f, the average prediction accuracies of OSCoT-GPT4 for the six 

different binary composites reached 71.6%, 74%, 64.2%, 60%, 67.6%, and 65.6%, respectively. The 

maximum prediction accuracies for them reached 82%, 85%, 69%, 67%, 71%, and 73%, respectively. 

OSCoT-GPT4 consistently outperformed both OPCoT-GPT4 and OSCoT-GPT3.5 with the only exceptions of 

the maximum and average accuracy values for CeFe, for which other two combinations were more effective. 

Notably, the minimum accuracy values of OSCoT-GPT4 were the higher than the other two CoT-GPT 

combinations for all six CeM1 samples.  
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Predicting catalysis outcomes poses a significant challenge due to the complexity and multi-step nature of the 

process. The reasoning route, generated by the OS prompting strategy (Figure 1), is particularly valuable in 

this context as it facilitates structured problem-solving. By breaking down the intricate task of catalysis 

prediction into smaller, logical steps, OSCoT mimics human reasoning, leading to improved understanding 

and interpretation of the problem. This structured reasoning not only makes the GPT-4’s thought process more 

transparent but also enhances trust in its outputs. Additionally, implementing OSCoT-GPT4 in predicting 

catalysis can serve as an enhanced form of training, encouraging models to develop a deeper level of 

understanding and process information in a more nuanced, human-like manner.  

 

Extrapolation to ternary CeM1M2 metal-oxide composites 

Next, we assessed the performance of the GPT-4, using OSCoT, in predicting outcomes for ternary 

composites of metal oxides by learning from experiments involving only binary composites.  Specifically, we 

trained a GPT-4 on experiments involving CeM1 and CeM2 (M1, M2 = Ti, Mn, W, Sn, Mo, or Fe; M1 ≠ M2), 

following the same OSCoT-GPT4 training procedure as described above. We then evaluated this GPT-4’s 

prediction performance for experiments involving the corresponding ternary CeM1M2 composites. This 

process was independently repeated five times, each instance yielding a unique OSCoT-GPT4. Each time was 

trained with a distinct batch of 48 experiments for CeM1 and another for CeM2, both batches being rationally 

selected.  

 

We can partially attribute the observed extrapolation performance of the GPT-4 Assistant to its use of 

associations between specific metals and experimental variables in making predictions. Specifically, the GPT-

4 Assistant appears to have constructed a knowledge graph from the binary training data, linking certain 

combinations of input variables to either high or low catalytic performances. When making predictions for 

ternary metal-oxide composites, it considered such associations. However, what remains unclear from the 

current data and results is the way the GPT-4 Assistant prioritizes these associations, particularly when they 

conflict. This uncertainty might partly account for the GPT-4 Assistant’s reduced predictive performance with 

ternary systems, where little is known about the interplay and interactions among various metals—other than 

individual metals each with Ce—as represented on the knowledge graph derived from binary systems. To gain 

some interpretability, one could consider methods related to information geometry, which offer a structured 

and mathematical framework to comprehend how information is processed and represented within AI models.  

 

Figure 4 presents results for eight ternary CeM1M2 composites, divided into two groups: CeMnM2 (M2 = W, 

Ti, Sn, or Fe) and CeTiM2 (M2 = W, Sn, Mo, or Fe). We focused on these eight, out of the 15 possible 

permutations of CeM1M2, considering the prevalence of their corresponding binary counterparts in the dataset. 

For each specific CeM1M2 composite, 50 experiments involving it were used to evaluate the prediction 

performance of the GPT-4 trained on the corresponding binary systems. Stoichiometry, as the molar ratio 

between the metal oxides (binary or ternary), was a variable in all cases. 

 

Figure 4a shows the results of the five independent runs for each of the eight ternary systems. Notably, the 

GPT-4, all using the OSCoT prompting strategy, exhibited significantly different levels of prediction 

performance for the various ternary systems. For CeMnFe, CeMnTi, and CeTiFe, the OSCoT-GPT4 

consistently yielded high prediction accuracies for the 50 ternary systems, after analysing only the 

corresponding binary counterparts (48 CeM1 + 48 CeM2). In contrast, the OSCoTs-GPT4 intended for 

predicting CeTiSn and CeTiMo demonstrated poor performance. For CeMnW, they generated in the five 

independent runs showed markedly varied prediction performances. Figure 4b provides a statistical summary 

of the run-specific accuracies for each ternary system. Upon detailed analysis of the various OSCoTs-GPT4 

with respect to the systems in Figure 4a, we could attribute the differing levels of prediction performance for 

the ternary systems to the varying prediction performances of the OSCoTs-GPT4 for the binary systems they 
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were trained to analyse. For instance, the OSCoTs-GPT4 intended for CeMnFe exhibited high prediction 

performances for CeMn and CeFe, while the ones for CeTiMo demonstrated poor performance for CeTi and 

CeMo.  

 

Comparison with human experts 

To gauge the performance of the various combinations of CoTs-GPT, as described in the preceding sections, 

we conducted a survey involving four human experts to assess their performance on the same prediction tasks. 

All four experts were postgraduate research students specializing in NH3-SCR catalysis and had experience in 

synthesizing metal-oxide composites and measuring their performances for NH3-SCR catalysis. First, we 

asked Experts 1–3 to predict experimental outcomes—i.e., whether the NOx conversion would be above 

(Positive) or below (Negative) 95%—for 50 experiments involving binary metal-oxide composites; in Figure 

5a, these results are designated as ‘Without Training’. In these 50 experiments, the type of CeM1, its 

stoichiometry, synthesis conditions, and catalysis reaction conditions were all variables, though certain 

experiments shared the same values for certain variables. Expert 1 performed the best, attaining a prediction 

accuracy of 66%, while Experts 2 and 3 attained prediction accuracies of 51% and 56%, respectively, only 

marginally better than random guess.  

 

Subsequently, after providing Experts 1–3 with the correct answers for these 50 experiments, they were given 

another set of 50 different experiments to predict. Their performances, denoted as ‘After Training’ in Figure 

5a, interestingly showed no gains; in fact, Expert 1's performance appreciably worsened. Post-prediction, 

Experts 1–3 were interviewed and asked to summarize their rationales. As shown in Figure 5c, all three 

Experts applied relatively simple rules, considering no more than a couple of experimental variables. Their 

strategies were as follows: (i) focusing on a small set of experiments to identify correlations between the 

experimental variables and the outcomes, or (ii) trying to identify a few key experimental variables that 

significantly influenced the outcomes when altered. While both strategies appear sensible and intuitive, they 

highlight the challenges humans encounter when analysing multi-variable problems in sizable datasets. 

Specifically, correlations significant for a small dataset may not apply to a larger dataset. Similarly, factors 

that seem significant across the entire dataset may not aid in individual predictions, as the combination and 

balance of different factors can play an equally, or even more, important role.  

 

Similar observations and conclusions were drawn when Experts 1–3 were asked to make predictions for 

experiments involving ternary metal-oxide composites (Figure 5b). The variation in prediction performances 

among the different Experts, as well as the differences in their performance across the various tasks, seem to 

suggest a strong element of guessing. This is not entirely unexpected, considering the challenge of retaining 

and processing information from tens of experiments and then applying any discerned rules and correlations to 

an entirely new set of experiments. An additional expert, Expert 4, who possessed similar experience in the 

research topic as Experts 1–3, was explicitly instructed to consider multiple experimental variables when 

approaching the prediction tasks (Figure 5c). Expert 4 was provided with the same sets of experiments for 

training, as well as the same sets for prediction, as were given to Experts 1–3. Among the four experts, Expert 

4 performed the most poorly for both binary and ternary systems.  

 

All four experts' performances were inferior to those of the GPT-4 using OSCoT, as discussed above (Figures 

3 and 4). There are several factors that could have contributed to this. The sampling of just four human 

experts is far from adequate for establishing a comprehensive baseline of human performance on the 

prediction tasks. Nonetheless, LLMs like GPT-4 may outperform humans in predicting outcomes for complex, 

multi-variable chemistry experiments for several reasons. First, LLMs possess remarkable data processing 

capacity, allowing them to analyse and utilize information from lots of experiments simultaneously, a task that 
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is challenging for humans. Second, LLMs consistently apply rules and patterns across datasets without 

experiencing cognitive fatigue or bias, in contrast to humans who might get overwhelmed by the volume or 

complexity of the data. Furthermore, LLMs are not susceptible to cognitive biases that can affect human 

analysis and conclusions. Their ability to detect subtle patterns in diverse and extensive datasets enables them 

to make more accurate predictions in intricate scenarios. Finally, LLMs benefit from rapid iterative learning, 

adapting and improving at a pace faster than the typical learning curve of human experts. Overall, the 

immense data processing capabilities, consistent and objective analysis, and rapid learning and pattern 

detection of LLMs make them well-equipped for complex tasks such as predicting outcomes in NH3-SCR 

catalysis experiments.  

 

Discussion 

This study reveals that, by employing an effective OSCoT prompting strategy, GPT-4 achieved notable 

prediction accuracies regarding the performance of binary CeM1 metal-oxide composite samples. The average 

prediction accuracies ranged from 60% to 74%, with peaks reaching up to 85%, outperforming human experts. 

These results were made possible by the OSCoT strategy’s ability to break down intricate problems into 

sequential, manageable steps, enhancing the model's understanding and interpretation of complex tabular data. 

Extending the generated OSCoT by the binary CeM1 samples to reason the performance of ternary CeM1M2 

samples, we observed a varied predictive performance, with some composites like CeMnFe and CeTiFe 

showing high accuracy, illustrating GPT-4’s ability to extrapolate from binary to ternary systems. These 

findings demonstrate the intricate relationship between variables and causal outcomes in our curated dataset, 

solidifying the deductive connections implied by our table data through the application of a reasoning CoT. 

 

The comparative analysis with human experts has further highlighted the advantages of employing LLMs in 

chemistry research. In contrast to human capabilities, LLMs like GPT-4, despite facing context length 

limitations, are significantly less affected by cognitive biases and are not easily overwhelmed by the immense 

volume and intricacy of tabular data. They demonstrate exceptional data processing prowess, reflecting some 

level of reasoning ability, a task that poses a considerable challenge for human experts. Moreover, their 

uniform application of rules and identification of patterns within table data, combined with their rapid learning 

and adaptability, equip them to discern subtle correlations amidst varied datasets. This leads to more precise 

predictions in complex research scenarios. 

 

In this study, we investigated the application of GPT-4, coupled with our proposed OSCoT prompting strategy, 

to analyse experimental data concerning the variables and outcomes of a specific catalysis. We illustrated 

GPT-4's adeptness at unravelling intricate, multi-variable correlations within the catalysis. Broadly speaking, 

an experimental workflow may include several stages: synthesis, characterization, testing, data analysis, 

iteration of these processes, and/or others. Recent literature examples of human-LLM collaboration in 

chemical research have underscored the potential of AI to assist and enhance various facets of experimental 

chemistry research12,15-19. 

 

Looking ahead, advanced LLM techniques like Retrieval Augmented Generation (RAG)20 will continue to 

enhance human-LLM collaboration on user-defined tasks. For instance, RAG facilitates the seamless 

incorporation of user-specified datasets, allowing for efficient access to knowledge relevant to the user’s 

queries. LLM implementation frameworks, such as LangChain, simplify the development of RAG-based 

chatbots.21 These enabling techniques and their ongoing improvements will promote broader, more effective, 

and deeper integration of LLMs into chemistry research. They hold the promise of transforming various 

research tasks, including, but not limited to, the automation of labour-intensive activities like literature mining, 

interpretation of experimental results, and directing robotic operations. 
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Limitations of the study 

This study investigated the capabilities of large language models in analyzing experimental data and making 

predictions on related experiments, in comparison with human chemists during the post-analysis phase of 

chemical research. Specifically, it introduced an efficient prompt engineering technique named OSCoT for 

tabular data. Despite its contributions, the study has certain limitations. The method was evaluated using the 

state-of-the-art GPT-series models and has not been extended to other less advanced models. Furthermore, the 

concept of Chain of Thought was utilized to aid in the interpretation of tabular data. However, there remains 

scope for development in this area, as tabular data is inherently more complex to understand than plain text. 
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Figure titles and legends 

Figure 1. Illustration of CoT generation using the "One-Pot" and "Ordered-and-Structured" 

approaches. In the OP method, all data points from the table are simultaneously processed to form a single 

CoT (termed OPCoT). Conversely, in the OS method, table data points are batched according to feature rank 

hierarchy, with each batch sequentially giving rise to intermediate CoTs. Each CoT incrementally builds upon 

the logic of the preceding one, representing a progressive development of understanding. The OSCoT 

materializes through iterative processing of all data point batches. The small chain icon represents the 

integration of messages, indicating, for example, that a connection between user_message and data points, 

along with the intermediate OSCoT, integrates these elements into the corresponding user message, thereby 

solidifying the foundation for subsequent OSCoT iterations. Table S1 details the full names of the 

abbreviations. 

 

Figure 2. Illustration of structured prompting tactics used to direct the reasoning process for OSCoT 

generation within user message 1 (UM1). I: Establishing the persona of the expert expected to analyse the 

data; II: Providing detailed instructions for input data, including the format and specific observations to note; 

III: Emphasizing the importance of focusing on relevant details; IV: Dictating the desired output, its structure, 

and word limit. a and b: Decomposing the complex task into general, manageable tasks, and splitting and 

reinforcing them to ensure thorough analysis; c: Putting the analysed datapoints in the rear of the messages. In 

Python, the f-string format employs curly braces {} to insert the content within variables into the string. Here, 

we use angle brackets <> as separators for generated sentences or paragraphs. Additionally, the variable 

delimiter adopted here is “##”.  

 

Figure 3. Comparison of the three CoT-GPT combinations in predicting experimental NOx conversion 

outcomes for the six binary CeM1 composites samples. For each composite type, five independent runs 

were conducted, each using one of the five batches of 48 samples for training. Prediction accuracies were 

evaluated using 50 samples randomly selected from the dataset, which were distinct from the training samples. 

The average, maximum, and minimum prediction accuracy values for each composite type were determined 

across the five runs. 
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Figure 4. Prediction accuracies for different ternary CeM1M2 composites by GPT Assistants after 

analyzing only the corresponding binary counterparts. (a) Run-specific accuracy results from five 

independent runs for each ternary case. (b) Statistical summaries of the corresponding results in (a), with bars 

indicating the average of the accuracy values from the five runs and error bars representing the standard 

deviation of these accuracy values.  

 

Figure 5. Prediction performances of human experts. (a,b) Prediction of experimental outcomes—

specifically, NOx conversion rates above (positive) or below (negative) 95%—of experiments involving 

binary (a) or ternary (b) metal-oxide composites. (c) Summary of the experts’ rationales for making their 

predictions.  

 

STAR★Methods 

Resource availability 

Key resources table 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Deposited data 

Raw MS data This paper https://github.com/M

UYU-LU/OSCoT 

Software and algorithms 

Python (version 3.9.7) Python Software 

Foundation 

https://www.python.

org/ 

Pandas (version 1.3.4) Python package https://pandas.pydata

.org/ 

Openai (version 0.0.27.8) Python package https://openai.com/ 

 

Lead contact 

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, 

Linjiang Chen (l.j.chen@bham.ac.uk). 

 

Materials availability 

This study did not generate new unique reagents. 

 

Data and code availability 

The authors declare that data supporting the findings of this study are available if requested. All python codes 

used in this study are available at https://github.com/MUYU-LU/OSCoT. 

 

Methods details 

 

The chemistry context and a case study of NH3-SCR catalysis 

Specifically, we assess the effectiveness of prompting GPT-4 to analyse and interpret experimental tabular 

data pertaining to a clearly defined chemistry problem. This knowledge involves variables from 

experiments—such as conditions and parameters—and their corresponding outcomes, all derived from the 

existing body of literature. The structured experimental data, akin to a JSON format, characterised by keys 

with corresponding values in either text or numerical form, is rendered to GPT-4. GPT-4 is then prompted to 

interpret this data, predict the expected experimental outcome based on specified features sets, and explain its 

prediction. This is informed by our recent success in discovering Ce-based metal-oxide composites for 

selective catalytic reduction of nitrogen oxides with ammonia22, facilitated by interpretable machine learning 

(ML). In that investigation, utilizing SHapley Additive exPlanations (SHAP) methods to interpret the Extreme 
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Gradient Boosting (XGB) ensemble model trained by 5654 samples detailed various aspects and 

corresponding NOx conversion collected from literature brings underscoring influence of variables like 

reaction temperature and metal elements. The feature importance of these features can be seen as orders of 

analysis on features, thus embodying deductive relationship in the reasonings paths. 

 

For this purpose, we curated a dataset from existing literature, comprising 1838 unique experiments on NH3-

SCR using Ce-based metal-oxide composites. This dataset encompasses experimental variables such as the 

catalyst composition (binary and ternary Ce-based metal-oxide composites, CeM1 and CeM1M2 (M1, M2 = 

metal element; M1 ≠ M2), synthesis parameters, reaction conditions, and experimental NOx conversion 

outcomes. We adopted a threshold of 95% NOx conversion to categorize outcomes as “Positive” or 

“Negative”. We designed to evolve variables in the tabular data within the dataset curated here in the 

reasoning chain to verify whether the GPT-4 can better interpret data and make predictions. In specific, we 

engaged GPT-4 with the tabular data using Chain-of-Thought (CoT) in an ordered and batchwise and at-once 

manner. The context length of memory of GPT-4 is much longer than human and therefore we evaluated CoT 

prompting strategies against the performances of human chemists in predicting for the same experiments. 

These were critically assessed against our domain expertise and the prevailing consensus in the subject field, 

offering a comprehensive evaluation of GPT-4’s and the chemists’ predictive and reasoning capabilities.  

 

Background knowledge of Chain-of-Thought (CoT) prompting  

LLMs are adept at conducting "zero-shot" learning, leveraging knowledge from their extensive training 

datasets to respond to queries without needing specific prior examples. However, these models often 

encounter challenges in complex tasks that require advanced reasoning and planning. To overcome these 

hurdles, various strategies such as "few-shot" prompting and other advanced techniques have been introduced 

to bolster their capabilities.23 The "Chain of Thought" (CoT) strategy,5 in particular, has demonstrated 

potential in enabling LLMs to process complex tasks through rational and logical reasoning. It breaks down 

intricate tasks into manageable, sequential steps. Few-shot CoTs can be used to assist LLMs in tasks that 

demand a consistent and logical progression, such as common-sense reasoning. In the realm of zero-shot 

learning, heuristic prompts like "Let's think step by step" have been shown to effectively encourage LLMs to 

'think aloud', thereby enhancing their problem-solving capabilities.23 Further advancements include Automatic 

CoT (Auto-CoT)24 and self-consistency.25 Auto-CoT simplifies the process of generating question sampling or 

reasoning paths, while self-consistency aims to improve the reliability and coherence of LLM outputs. These 

advancements mark significant progress in enhancing the performance and practicality of LLMs. 

 

The application of CoT lies in the interpreted feature importance in the tabular data that embodies clear 

deductive relationships between experimental parameters and causal catalytic performance. GPT-4-powered 

analysis is expected to reveal patterns that signify the varying levels of influence of different experimental 

factors in NH3-SCR catalysis. In this analysis, each inference step within the CoT reasoning paths is 

analogized to the evaluation of a specific experimental variable in catalysis, providing a structured approach 

to understanding the data. The results of this analysis are presented as CoTs, making the reasoning process 

and conclusions transparent. Our aim is to develop targeted prompting strategies for GPT-4 to enhance its 

ability to recognize patterns in structured data and produce outputs formatted as CoTs. These strategies are 

designed to guide GPT-4 in systematically identifying and interpreting the statistical relationship in the tabular 

data. 
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One-pot vs. ordered-and-structured CoT prompting 

LLMs often struggle with processing excessive context, necessitating careful planning in the provision of 

context for enhanced performance.26 Additionally, systematic review or self-reflection can significantly 

contribute to overall effectiveness.27 Bearing these considerations in mind, the full features of experiments in 

tabular form was divided into batches. In this study, the categorization process is determined by feature 

importance derived from machine learning interpretation. Indeed, the sequence of batch input can also be 

influenced by feature importance, as identified through heuristic knowledge or statistical techniques such as 

correlation analysis. The goal was to ensure that, within each batch, only one experimental parameter varied 

significantly, while all other parameters remained nearly constant across the samples. For example, in batch X, 

all data points (i.e., experiments) featured almost identical synthesis and catalysis conditions but varied in the 

compositions of the catalysts. These batches, each emphasizing a single varying experimental parameter, were 

then sequentially presented to GPT-4. This approach augmented GPT-4’s analysis depth for individual 

experimental parameters, ultimately facilitating the generation of more optimal CoTs.  

 

The batchwise, sequential approach is hereafter termed the “Ordered-and-Structured” (OS)-CoT prompting 

strategy. It was compared with a “One-Pot” (OP) prompting strategy, where all data points were inputted 

simultaneously. The implementation of both CoT prompting strategies is depicted in Figure 1. The OPCoT 

approach creates a single CoT in at once by using all available data points. In contrast, the OSCoT approach 

sequentially generates multiple CoTs. As each new batch of data points is introduced, a fresh CoT is created, 

incorporating the reasoning from the preceding CoT developed in the previous batch. Consequently, the CoTs 

formed by the OSCoT approach, each building upon the insights of the last.  

 

Prompts for the generation and application of CoTs  

In the web-based ChatGPT user interface, chat sessions are facilitated through user-initiated messages. In this 

study, we focused not on the ChatGPT interface but rather on using OpenAI’s application programming 

interface (API). In the context of the API, it is necessary to format messages as dialogues involving typically 

two participant roles: the User (or the API Client) and the Assistant (the AI Model). The User is the entity, 

either a person or another system, that sends requests to the API. These requests, or user inputs, are what the 

AI model responds to. The Assistant, on the other hand, is the role played by the AI, such as GPT-4, 

generating responses based on the User's input. Here, we evaluate and compare the performances of both 

GPT-4 and GPT-3.5 (GPT-3.5-turbo-16k). Notably, we have set the ''temperature'' hyperparameter, which 

influences the model's prediction randomness, to zero to ensure the most consistent output as possible for the 

same input. 

 

The effectiveness of LLM-generated responses heavily relies on the quality of task-directive prompts within 

in-context learning across multiple conversations. Our approach involves integrating various tactics to 

generate querying prompts. Figure 2 illustrates the user messages designated as UM1, which were used for 

OSCoT generation. Figure S1 depicts the user messages for OPCoT generation, designated as UM2. Figures 

S2 and S3 demonstrate the utilization of CoTs to predict the experimental performance of CeM1 and CeM1M2 

samples, respectively, with user messages designated as UM3 and UM4. Additionally, given the token 

limitations inherent in GPT models, where both assistant (i.e., GPT) and user messages contribute to the token 

input capacity, careful selection of data samples is crucial. The protocol for the rational selection process and 

the computation of token utilization are detailed in the Supporting Information.  

 

Before eliciting CoTs, careful configuration of in-context content is necessary to guide the cognitive processes 

of LLMs. The initial interaction with UM1, as shown in Figure 2, demonstrates the use of distinct tactics for 

establishing this setup, identical to those employed for OPCoT generation using UM2, as presented in Figure 
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S1. Tactics I-IV were utilized for the prompts providing “Clear Instructions.” GPT-4, initially agnostic to 

roles, can adopt a specific role when prompted. Consequently, we assigned the role of an NH3-SCR catalysis 

expert to GPT-4 for target-oriented tasks using the 'persona' tactic (Ⅰ). This was followed by clarifying the 

input content to enhance GPT-4's focus on data points (Ⅱ). Subsequently, we emphasized generating CoTs 

with consistent, generalized, and quantitative characteristics to establish a foundation for subsequent 

inferences (Ⅲ). Next, we eliminated unnecessary information and requested reformatted output to streamline 

the process and enhance output quality (Ⅳ).  

 

Tactics a-c serve the role of “Decomposing Complex Tasks.” In particular, we outlined the overall task (a) 

and then broke it down into several simpler component parts to facilitate the generation of CoTs (b). The 

subsequent user message implemented the 'head-tail' tactic (c), placing the most crucial prompts at the 

beginning and end of the message. This tactic was employed to append data points at the end during each 

iteration of CoT generation, as LLMs tend to 'lose focus in the middle' with lengthy contextual input.28  

 

For using CoTs to infer experimental performance, the initial interaction of UM3 or UM4 (as depicted in 

Figures S2 and S3, respectively) in the front-user message for context-aware adaptation employed tactics Ⅰ, 

II, IV, and a. These tactics were used to establish the role of the NH3-SCR expert, specify input material, 

define output’s structure and format, and outline the general objective. Data points and CoTs were placed at 

the end of messages as part of tactic c. Additionally, we employed a cautious tactic termed “allocating 

thinking” (d), crucial for conducting comprehensive analysis prior to making decisions. This tactic enhances 

the use of “loud thinking,” considering all reasoning paths of CoTs. It also moderates the pace of text 

completion and prevents exceeding the rate limits, which could lead to execution errors if the server is queried 

too quickly.  
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Highlights 

 

• Application of a Large Language Model (LLM) in chemistry tasks  

• A new Chain-of-Thought prompting strategy focusing on formulating logical steps  

• An LLM-powered assistant that interprets, predicts, and rationalizes experimental data  
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