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Abstract
Accurate ensemble forecasts of heavy precipitation in India are vital for many applica-
tions and essential for early warning of damaging flood events, especially during the
monsoon season. In this study we investigate to what extent Quantile Mapping (QM)
and Ensemble Model Output Statistics (EMOS) statistical postprocessing reduce errors
in precipitation ensemble forecasts over India, in particular for heavy precipitation.
Both methods are applied to day-1 forecasts at 12-km resolution from the 23-member
National Centre for Medium Range Weather Forecasting (NCMRWF) global ensem-
ble prediction system (NEPS-G). By construction, QM leads to distributions close to
the observed ones, while EMOS optimizes the ensemble spread, and it is not a pri-
ori clear which is better suited for practical applications. The methods are therefore
compared with respect to several key aspects of the forecasts: local distributions, ensem-
ble spread, and skill for forecasting precipitation amounts and the exceedance of
heavy-precipitation thresholds. The evaluation includes rank histograms, Continuous
Ranked Probability Skill Scores (CRPSS), Brier Skill Scores (BSS), reliability diagrams,
and receiver operating characteristic. EMOS performs best not only with respect to
correcting under- or overdispersive ensembles, but also in terms of forecast skill for
precipitation amounts and heavy precipitation events, with positive CRPSS and BSS in
most regions (both up to about 0.4 in some areas), while QM in many regions performs
worse than the raw forecast. QM performs best with respect to the overall local precip-
itation distributions. Which aspects of the forecasts are most relevant depends to some
extent on how the forecasts are used. If the main criteria are the correction of under- or
overdispersion, forecast reliability, match between the forecasted distribution for indi-
vidual days and observations (CRPSS), and the skill in forecasting heavy-precipitation
events (BSS), then EMOS is the better choice for postprocessing NEPS-G forecasts for
short lead times.
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EMOS, heavy precipitation, India, quantile mapping, statistical postprocessing, summer monsoon,
weather forecasts

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2024 The Authors. Quarterly Journal of the Royal Meteorological Society published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.

Q J R Meteorol Soc. 2024;1–19. wileyonlinelibrary.com/journal/qj 1

https://orcid.org/0000-0001-5447-5763
https://orcid.org/0000-0001-5111-8402
https://orcid.org/0000-0002-1983-8378
https://orcid.org/0000-0001-9242-7682
https://orcid.org/0000-0002-7882-5868
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/QJ


2 ANGUS et al.

1 INTRODUCTION

Millions of people across India are exposed to natu-
ral disasters such as floods and landslides triggered by
heavy-precipitation events, particularly during the sum-
mer monsoon season (Ali et al., 2019; Gupta & Nair, 2011;
UNDRR, 2020; van Oldenborgh et al., 2016; Variko-
den & Reji, 2022; Wallemacq et al., 2015). These events
are typically low-probability and isolated, and originate
from interactions between synoptic-scale disturbances on
scales of 1000 km or more with mesoscale convective
systems on scales of 5 to 100 km, with possible oro-
graphic enhancement (Francis & Gadgil, 2006; Mohandas
et al., 2020; Sillmann et al., 2017; Sreenath et al., 2022;
Srinivas et al., 2018; Varikoden & Reji, 2022; Viswanad-
hapalli et al., 2019). Disasters associated with extreme
precipitation can result in large number of deaths (Maha-
patra et al., 2018; Ray et al., 2021; UNDRR, 2020), as
well as extensive damage to property and infrastructure,
loss of livestock, and destruction of crops and agricul-
tural land (Revadekar & Preethi, 2012). Moreover, the fre-
quency, intensity and spatial variability of extreme precip-
itation events over India during the monsoon season have
shown significant increasing trends over recent decades,
which are predicted to continue to increase throughout
the 21st century (Ali et al., 2019; Ghosh et al., 2012;
Goswami et al., 2006; Mukherjee et al., 2018; Pattanaik &
Rajeevan, 2010; Roxy et al., 2017; Singh et al., 2019; Sooraj
et al., 2016). Timely, high-quality, and reliable predictions
of the likelihood of such extreme events and their distri-
bution over India is therefore essential to provide effective
early warnings for authorities to improve the response to
and preparedness for disasters (Basher, 2006; Mahanta &
Das, 2017; Uccellini & Ten Hoeve, 2019).

The National Centre for Medium Range Weather Fore-
casting (NCRMWF) in India produces numerical weather
forecasts using global and regional configurations of the
NCRMWF version of the UK Met Office Unified Model.
Because deterministic forecasting of precipitation, and
in particular of extreme events, is challenging due to the
chaotic nature of weather and the associated exponential
growth of forecast errors (caused, e.g., by model limitations
in the representation of moist convection and errors in the
initial conditions) ensemble forecasts are the preferred
approach. They provide estimates for the range of plausi-
ble future states and thus quantify uncertainties, as well as
yield probabilities for the occurrence of extreme weather
events (Ashrit et al., 2020; Mukhopadhyay et al., 2021).
The NCMRWF ensemble prediction system (NEPS) cur-
rently consists of (a) global forecasts (NCMRWF global
ensemble prediction system [NEPS-G]) with 23 members
(one control and 22 perturbed members) with lead times
of up to 10 days at 12-km resolution in which convection is

partially resolved as well as parametrized, and (b) regional
forecasts (NEPS-R) with 12 members (one control and
11 perturbed members) with lead times of up to 75 hr at
4-km resolution in which convection is explicitly resolved
instead of parametrized (Ashrit et al., 2020; Chakraborty
et al., 2021; Mamgain et al., 2020a, 2020b; Mukhopadhyay
et al., 2021; Sarkar et al., 2021).

The challenges of forecasting heavy precipitation asso-
ciated with the monsoon for the Indian region have been
pointed out in Mitra et al. (2011), who investigated multi-
model ensembles and found low skill for lead times longer
than three days for individual ensemble members as
well as for the ensemble mean. Chakraborty et al. (2021)
showed that the NEPS-G system had relatively good skill
at forecasting low to moderate daily precipitation but
had difficulty accurately representing higher amounts.
This is likely because the 12-km resolution NEPS-G sys-
tem is unable to properly capture regional convective
processes, which are highly relevant for heavy precipita-
tion (Dirmeyer et al., 2012; Konduru & Takahashi, 2020;
Sillmann et al., 2017; Willetts et al., 2017), and also does
not simulate critical interactions with small-scale oro-
graphic features (Baisya & Pattnaik, 2019; Rotunno &
Houze, 2007; Webster et al., 2008). Moreover, the model
needs a good representation of the link between the lower
and the upper troposphere in order to correctly forecast
convective instability and the associated bursts and breaks
in the monsoon (Befort et al., 2016).

Statistical postprocessing can provide for the foresee-
able future an important tool to reduce errors in ensemble
forecasts because it is computationally cheap and therefore
can be applied to a large number of forecasts consisting of
all ensemble members and lead times. Statistical postpro-
cessing attempts to reduce simulation errors by adjusting
model output based on observations and has been widely
used in climate research (Maraun & Widmann, 2018)
and also in weather forecasting (Vannitsem et al., 2021).
However, until now no statistical postprocessing meth-
ods for precipitation have been applied to NCRMWF
ensemble forecasts. Developing and applying such meth-
ods is thus a timely contribution to improve heavy pre-
cipitation forecasts over India, and to provide the basis
for further integration of meteorological and hydrological
predictions (Nanditha & Mishra, 2021; Widmann, Blake,
et al., 2019).

In atmospheric science two types of postprocessing
methods are used, and often include downscaling. The
first are Perfect Prog methods, where statistical links are
established between observed predictors and observed pre-
dictands, which are then applied to model output. The
second are Model Output Statistics (MOS) methods, where
links are established between simulated predictors and
observed predictands. The former methods often link
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large-scale atmospheric states to local or regional meteoro-
logical variables, while the latter are mostly used to link the
same physical variables on similar spatial scales, although
a moderate downscaling step is still often part of the
approach. In the context of weather forecasting MOS is the
preferred approach. Quantile Mapping (QM) is the most
commonly used MOS method for climate simulations (e.g.,
Maraun & Widmann, 2018; Piani et al., 2010; Themeßl
et al., 2011) and has also been applied to weather forecasts
(Scheuerer & Hamill, 2015), including for improving fore-
casts for heavy precipitation in mid-latitudes (Javanshiri
et al., 2021; Jha et al., 2018). It maps the forecasted, uncon-
ditional distribution derived from all forecasts at a given
location onto the observed distributions. This also affects
the conditional distributions given by the ensemble fore-
casts at a given time, but not in an optimized way. It can-
not meaningfully compensate for errors in the simulated
large-scale meteorological states (e.g., Eden et al., 2012;
Maraun et al., 2017; Maraun & Widmann, 2018), but as
NEPS-G forecasts up to day 5 represent the large-scale
atmospheric circulation well (Chakraborty et al., 2021), it
is in principle suitable for being applied to these forecasts.
In contrast, the MOS method Ensemble Model Output
Statistics (EMOS) has been specifically developed to trans-
form the distributions of the ensemble members for a given
forecast such that the postprocessed forecasts perform
better. There are different versions of EMOS depending
on the assumptions for the conditional distributions, the
transformations, and the optimization criteria (Javanshiri
et al., 2021; Schefzik, 2017; Scheuerer, 2014; Scheuerer &
Hamill, 2015; Wilks & Hamill, 2007), and the details of our
choice are explained in Section 2. Data and methods.

In this pilot study, we examine the suitability of QM
and EMOS postprocessing for improving NEPS-G fore-
casts over India for the monsoon seasons 2018–2022 with
respect to the whole range of values and with respect to
heavy-precipitation events.

2 DATA AND METHODS

2.1 Ensemble forecast and observed
precipitation data

We apply QM and EMOS to postprocess daily precipita-
tion forecasts for all 23 NEPS-G ensemble members for the
2018–2022 monsoon seasons (June–September). Forecasts
prior to 2018 could not be used because postprocessing
is model-specific and the version of NEPS-G used in this
study was only implemented in 2018.

For fitting and validating the QM and EMOS post-
processing models, daily precipitation observations
for the monsoon season (June–September) are taken

from the 0.25◦ × 0.25◦ Indian Meteorological Divi-
sion (IMD) gridded dataset V6.9 for 1980–2022 (Pai
et al., 2014). This is based on distance-weighted inter-
polation of quality-controlled gauge measurements
from a high-density network of rain gauge stations (Pai
et al., 2014), and is considered to be the best available
dataset to accurately capture the frequency, distribution,
and intensity of rainfall extremes over India (Falga &
Wang, 2022; Gupta & Takahashi, 2022).

2.2 Setups

The QM and EMOS postprocessing models are used to
correct day-1 forecasts only as this ensures that the meth-
ods and their evaluation are not adversely affected by
either potential spin-up problems in the day-0 analysis or
decreased skill in predicting the synoptic- and mesoscale
circulation for longer lead times (Chakraborty et al., 2021).
We thus follow a conceptually conservative approach in
which the postprocessing models are used to correct pre-
cipitation biases that mainly stem from unresolved and
parametrized local (at each grid cell) processes such as
convection and orographic effects, but not from biases
in the atmospheric states on larger spatial scales (Eden
et al., 2012). We note that the performance of QM and
EMOS is likely to depend in different ways on the skill of
the raw forecast, and additional analysis would be needed
to assess the suitability of both methods for longer forecast
lead times.

To avoid conflating bias correction with addressing
spatial-scale differences between the forecasts and obser-
vations (Maraun & Widmann, 2018; Volosciuk et al., 2017),
the 12-km resolution NEPS-G forecasts were re-gridded
to the coarser 0.25◦ × 0.25◦ resolution IMD grid for the
postprocessing. The original forecast resolution can be
recovered in a straightforward way through spatial dis-
aggregation of the postprocessed values using the ratios
of the full-resolution forecast and the uncorrected spatial
mean on the coarser grid. Postprocessing is then applied
individually for each grid cell, with the QM distribu-
tions and EMOS parameters calculated separately at each
location. For both QM and EMOS we apply a five-fold
cross-validation. We use four monsoon seasons to fit the
EMOS model or to calculate the forecast distribution for
QM, and apply the EMOS or QM transformations to the
fifth year of independent data. This is repeated using dif-
ferent independent years and the evaluation is then based
on the concatenated five independently postprocessed
forecasts.

We train QM and EMOS only on observed wet days
at a given grid cell (defined as daily precipitation greater
than 0 mm⋅day−1). The reason is that we aim at improving
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the forecasts specifically for heavy rainfall and excluding
observed dry days from EMOS fitting avoids that the EMOS
transformations are affected by potential systematic defi-
ciencies of the NEPS-G model in forecasting dry days.
Because observed dry days are excluded from training, the
postprocessing is designed to improve the forecasts when
precipitation is observed but cannot correct the probabil-
ities for precipitation occurrence. The size of the training
dataset varies between locations and between different
four-year training periods. There are large regional differ-
ences with an average of 258 wet days per grid cell within
the 488 days of the four-year fitting periods (58%).

2.3 Postprocessing methods

2.3.1 Quantile mapping

In the QM approach (e.g., Hay & Clark, 2003; Maraun &
Widmann, 2018; Piani et al., 2010), for each forecast value
of precipitation xsim the quantile in the forecast proba-
bility distribution function (PDF) is determined and the
forecast value is replaced with the value for this quantile
in the observed PDF, that is, the corrected values xcorr

sim are
given by:

xcorr
sim = Fobs

(
F−1

sim(xsim)
)

(1)

where Fobs denotes the cumulative density function
(CDF) of the observations and F−1

sim the inverse CDF of the
ensemble forecast values. By construction, this approach
removes biases in the ensemble forecast distributions.

Given our focus on heavy precipitation we do not
use empirical PDFs, because these are derived directly
from the observed or simulated data, and the low number
of heavy precipitation events in the 2018 to 2022 mon-
soon seasons leads to high sampling variability of the
empirical PDFs. Instead, we use a parametric approach
by fitting suitable distributions to the ensemble fore-
cast members and observed local precipitation values.
The former is calculated for all wet days in all 23 day-1
forecast members during the four-year June–September
training periods, while the latter is calculated from IMD
observations for all wet days during all monsoon sea-
sons (June–September) from 1980 to 2022. Although the
distributions depend to some extent on the reference
period due to internal variability, we decided to use all
available observations to obtain a more robust estimate
for the distributions. We tested different types of distri-
butions including Gamma, Generalized Extreme Value,
and mixed distributions, where different distributions
are fitted to precipitation below and above the local 90th
percentile (e.g., Pastén-Zapata et al., 2020). Distributions
that include the Generalized Extreme Value distribution

are dominated by the heaviest precipitation, resulting in
unrealistic distributions (not shown). Consistent with
Pastén-Zapata et al. (2020), the best fits are obtained with
separate Gamma distributions for values below and above
the 90th percentile threshold (not shown), and therefore
we use the Double Gamma distribution for QM.

2.3.2 Ensemble Model Output Statistics
(EMOS)

EMOS considers the conditional PDFs of the forecast
ensemble members at a given time and determines a trans-
formation of these PDFs such that the postprocessed PDFs
optimally fit the observations. It is applied locally, and
in our implementation the means and variances of the
transformed PDFs are linear functions of the ensemble
forecast means and variances, using the same regression
coefficients for every timestep (e.g., Gneiting et al., 2005;
Schefzik, 2017; Wilks, 2006). More general transforma-
tions, for instance based on non-homogeneous regression
(Scheuerer & Hamill, 2015), are in principle possible. In
contrast to the QM approach, EMOS does not guarantee
that the marginal distribution of all postprocessed values
at a given location matches an observed target PDF.

The type of PDF that is used to model the postprocessed
conditional PDFs can be adapted to the modelled vari-
able. For temperature a Gaussian PDF is suitable, while
we represent the precipitation PDF at each forecast time
by a shifted Gamma distribution left-censored at zero,
following Scheuerer and Hamill (2015) and Baran and
Nemoda (2016). The Gamma distribution has shape (k)
and scale (𝜃) parameters:

k = 𝜇
2

𝜎2 and 𝜃 = 𝜎
2

𝜇
, (2)

where 𝜇 and 𝜎 are the mean and standard deviation of the
distribution. In the most general linear version of EMOS
the forecast values fi of the ith ensemble members for a
given location and time (where M is the ensemble size)
are linked to the mean and variance of the postprocessed
Gamma distribution through:

𝜇 = a + b1f1 + b2f2 + … + bMfM and 𝜎2 = c + ds2
, (3)

where a, b1, b2, … , bM , c and d are the regression coeffi-
cients that have to be estimated and s2 is the variance of
the raw forecast ensemble. However, following common
practice we treat the members of an ensemble forecast as
statistically indistinguishable, and therefore add the con-
straint that all regression coefficients b1, b2, … , bM are
identical, which simplifies the equation for the mean of the
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postprocessed PDF to:

𝜇 = a + bf , (4)

where f is the ensemble mean for a given time:

f = 1
M

M∑

i=1
fi, (5)

and b∕M = b1 = b2 … = bM . Baran and Nemoda (2016)
find in practical tests that this model performs best from
a range of possible relations between the original ensem-
ble and the postprocessed PDF. Following Schefzik (2017),
the coefficients are estimated by optimizing the Continu-
ous Ranked Probability Score (CRPS, see Equation 7) using
the Broyden–Fletcher–Goldfarb–Shannon algorithm.

If the sampling from the postprocessed PDF is done
such that realizations are taken at the same quantiles that
are associated with the ensemble forecast members in the
raw distribution, the following relation between an origi-
nal ensemble member (fi) and the postprocessed ensemble
member (f̂i) holds:

f̂i = a + bf +
√

c + ds2

s

(
fi − f

)
− q, (6)

where q is the shift parameter from the left-censored
Gamma distribution. For further details on this, please see
Baran and Nemoda (2016) and Schefzik (2017).

EMOS is implemented here in the R package ensem-
ble MOS (Yuen et al., 2013). As mentioned in Section 2.2.
Setups only observed wet days at a given grid cell and
the corresponding ensemble forecasts are used for model
fitting and cross-validation is applied.

2.4 Validation methods

Our evaluation is done for the entire Indian region as well
as for nine grid-point test locations representing western
(Mumbai and Rajasthan), southern peninsula (Kerala),
northwest (Shimla and Delhi), central (Hyderabad) and
northeastern (Patna, Bhubaneswar, and Meghalaya)
regions (Figure 1). It involves (a) comparing the raw, post-
processed, and observed precipitation distributions and
ensemble spread at the nine test locations, and (b) using
standard forecast validation metrics to assess local forecast
quality for both the whole range of precipitation values,
as well as for heavy precipitation. The standard valida-
tion metrics used are the Continuous Ranked Probability
Skill Score (CRPSS) for the whole range of precipitation
values, and the Brier Skill Score (BSS), reliability dia-
grams, Receiver Operating Characteristic (ROC) curves,
and ROC Skill Score (RSS) for heavy-precipitation events,
which we define as either the 90th or 75th percentile of
the local observed daily precipitation. The skill scores use
the raw ensemble as the reference forecast. In order to
assess the quality of a climatological forecast relative to

F I G U R E 1 Locations of the nine test sites
within India. Red squares represent chosen Indian
Meteorological Division (IMD) grid cells, with labels
providing nearest major city or region for reference.
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the raw forecast we also calculate the CRPSS and BSS for
a climatological forecast given by the distribution of daily
precipitation on wet days during the 1980–2022 monsoon
seasons at a given grid cell. The climatological probability
of exceeding the 90th percentile of the precipitation dis-
tribution on wet days is then given by 0.1 scaled with the
fraction of wet days in all days.

We calculate the raw and postprocessed distributions
and quantile–quantile plots, show the ensemble spread as
a function of the raw ensemble mean forecast, and pro-
vide rank histograms (Hamill, 2001) in which the obser-
vations are ranked relative to the ensemble members. If
the ensemble has too little spread to be consistent with the
forecast errors (underdispersive, overconfident ensemble),
the observations will frequently fall outside of the ensem-
ble range and have the lowest or highest rank, resulting
in a U-shaped rank histogram. If the ensemble has too
much spread (overdispersive, underconfident ensemble),
the observations will frequently be ranked near the cen-
tre of the range resulting in a dome-shaped (or inverse
U-shaped) histogram.

The CRPS quantifies the mean across all forecasts
of the integral of the squared difference between the
forecasted cumulative distributions and the step func-
tion distributions associated with the observations (Hers-
bach, 2000). This is defined as:

CRPS = 1
N

N∑

i=1
∫

+∞

−∞

{
Fi(y) − Iy≥xi

}2dy, (7)

where N is the total number of forecast days available,
Fi are the ensemble forecast CDFs for days i, xi are the
observations for days i, and Iy≥xi is the Heaviside step
function that changes from 0 to 1 when the integra-
tion variable y equals the observation xi. Smaller CRPS
values indicate better performance, with a perfect fore-
cast where all ensemble members predict the observed
value having a CRPS of 0. Using this, the CRPSS is then
calculated as:

CRPSS = 1 − CRPS
CRPSref

, (8)

where CRPSref is the CRPS of a reference forecast, which
in our case is the raw forecast. Positive (negative) CRPSS
values therefore indicate better (worse) performance than
the raw forecast, with a value of 1 indicating a perfect
forecast.

The Brier Score (BS) measures how well a proba-
bilistic forecast predicts binary events by calculating the
average squared difference between the forecast prob-
abilities for the event occurring and the observations
(Brier, 1950; Javanshiri et al., 2021; Wilks, 2011). This is

defined as:

BS = 1
N

N∑

i=1
(yi − oi)2, (9)

where yi is the forecasted probability of occurrence of an
event for day i (with values ranging from 0 to 1), oi is the
observation for day i with binary values (0 for event not
observed, 1 for observed). The lower the BS the better the
forecast performance, with a value of 0 being associated
with a perfect forecast where all ensemble members cor-
rectly predict the outcome. For the BS we use the local
90th percentile of observed precipitation as the event
threshold. Using this, the BSS is then defined as:

BSS = 1 − BS
BSref

, (10)

where BSref is the BS of the reference (raw) forecast. Posi-
tive (negative) BSS values therefore indicate better (worse)
performance than the reference forecast, with a value of 1
obtained for a perfect forecast.

The ROC curves assess the ability of probabilistic fore-
casts to discriminate an event from a non-event by plotting
the hit rate (number of correctly forecasted events/total
number of events) against the false alarm rate (number
of wrongly forecasted events/total number of non-events)
for different thresholds of the forecasted probability that
are used to transform the probability into a binary deci-
sion on the event occurrence (Javanshiri et al., 2021;
Wilks, 2011). Consistent with the BSS calculations we use
the local 90th percentile of observed precipitation as the
event threshold. In good discrimination forecasts, the ROC
curve approaches the top-left corner (high hit rate and low
false alarm rate for most probability thresholds), while in
poor discrimination forecasts these curves are close to the
diagonal line (Mason & Graham, 1999). Using this, the RSS
is defined as:

RSS = A − Aref

1 − Aref
, (11)

where A is the area under the ROC curve of the postpro-
cessed forecast, and Aref is the area under the curve of
the reference (raw) forecast. Positive (negative) RSS values
indicate better (worse) discrimination than the reference
forecast, with a value of 1 obtained for perfect discrimina-
tion for all probability thresholds.

Finally, an important criterion for the quality of prob-
abilistic binary forecasts is how close the observed relative
frequency of an event is to the forecast probability. This
is analyzed with reliability diagrams (Hamill, 1997; Wilks
2011), which plot the observed event frequency against
the forecast probability for a particular threshold value. A
perfectly reliable forecast for which the frequency of occur-
rence is equal to the forecast probability leads to a diagonal
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F I G U R E 2 Relative frequency of observed (Indian Meteorological Division [IMD]) daily precipitation, and of raw, Quantile Mapping
(QM)-postprocessed, and Ensemble Model Output Statistics (EMOS)-postprocessed forecasts for observed wet days (precipitation>
0 mm⋅day−1) in the 2018–2022 monsoon seasons (June–September) at the nine test locations.

line in the reliability diagram. It would be preferable to
use again an event threshold defined as the observed local
90th percentile but there are too few cases to robustly esti-
mate the observed relative frequencies for a given forecast
probability, resulting in noisy and non-informative relia-
bility diagrams. We therefore use the local 75th percentile
as the event threshold for reliability diagrams.

3 RESULTS: DISTRIBUTIONS
AND ENSEMBLE SPREAD

Figures 2–5 compare the raw, postprocessed, and observed
precipitation distributions and ensemble spread at the
nine test locations. The figures are based on only
the observed wet days (precipitation >0 mm⋅day−1) dur-
ing the 2018–2022 monsoon seasons and the corre-
sponding raw and postprocessed forecasts. We take
this approach to be consistent with the model-fitting
setup, and because assessing the performance of the
postprocessing on observed dry days is not an objective of
this study.

Prior to evaluation we have calculated maps for the
coefficients in Equation (6) that specify the EMOS trans-
formation (not shown). All coefficients are constrained
to be non-negative. The overall shift in the mean (coeffi-
cient a) is over most of India between zero and about 50%
of the mean. Over dry areas it can reach up to 200% but
this is still only a small absolute shift. The proportionality
factors between the mean of the postprocessed distribu-
tion and the simulated ensemble mean (coefficient b) lie
mainly between 0.4 and 0.8 but there are also lower val-
ues and high values reaching up to about 1.5. The scaling
of the ensemble spread is more difficult to assess because
the combined effect of the two coefficients c and d depends
on the standard deviation of the ensemble spread. For the
average standard deviation there are a few locations with
a reduction in the ensemble spread and large areas with a
small or moderate (up to a factor of 3) and also areas with a
large (up to a factor of 5) increase in the ensemble spread.
In a few isolated locations the increase is even higher.
However, it will be shown later that in heavy precipitation
situations EMOS reduces the spread at the majority of the
test locations.



8 ANGUS et al.

F I G U R E 3 Quantile-quantile
plots for raw, Quantile Mapping
(QM)-postprocessed, and Ensemble
Model Output Statistics
(EMOS)-postprocessed forecasts of
daily precipitation against
observations for observed wet days
(precipitation> 0 mm⋅day−1) during
the 2018–2022 monsoon seasons
(June–September) at the nine test
locations. Quantiles shown from 1st
to 90th are at intervals of 5 percentile
points, and 0.1 percentile points
from 90th to 100th.

Frequency histograms of the raw forecast, QM- and
EMOS-postprocessed forecasts, and observed daily pre-
cipitation at the test locations for observed wet days
during the 2018–2022 monsoon seasons are shown in
Figure 2. It is noteworthy that based on the observations
the 0–20 mm⋅day−1 bin makes up the largest fraction of
daily precipitation for most of the locations (Rajasthan,
Shimla, Delhi, Hyderabad, Patna, Bhubaneswar, Megha-
laya), with frequency values of around 0.8 and over, that
is, the occurrence of relatively low rainfall amounts is high
and the precipitation distributions are severely skewed.
At these locations the raw forecast overestimates the frac-
tion of precipitation in this bin. Exceptions are the wetter
locations of Mumbai and Kerala, which have reduced fre-
quency values for the 0–20 mm⋅day−1 bin (around 60%)
but higher frequency values for the higher rainfall bins,
e.g., 20% for the 20–40 mm⋅day−1 bin and 10% for the
40–60 mm⋅day−1 bin. At these two locations the raw fore-
cast underestimates the fraction of precipitation in the
0–20 mm⋅day−1 bin but overestimates the fraction for the
higher rainfall bins.

As expected, Figure 2 shows that the QM-
postprocessed distributions are generally close to the
observed ones regardless of whether the raw forecast

overestimates or underestimates the number of days in
a given precipitation bin. For example, for Kerala QM
corrects the underestimation of the frequency of precip-
itation values in the 0–20 mm⋅day−1 bin, as well as the
overestimation of the frequencies in the 20–40, 40–60, and
60–80 mm⋅day−1 bins. Although the purpose of QM is to
bring the postprocessed distribution close to the observed
one, the QM and observed distributions are not identical
because of the cross-validation and because the target
distribution in QM is the Double Gamma distribution
fitted to the IMD observations for 1980–2022 rather than
the empirical distribution for the 2018–2022 monsoon
seasons. It is also noteworthy that at some locations the
raw forecasts are in relatively good agreement with the
observations (e.g., Shimla and Patna).

By contrast, as EMOS optimizes the ensemble spread
it does not guarantee that the postprocessed local distri-
butions are close to the observed ones. In many locations
the QM distributions are therefore closer to the observed
ones than the EMOS distributions. This is especially appar-
ent for the 0–20 mm⋅day−1 bins, which dominate the
distribution. At some locations the EMOS distributions
are similar to the raw forecast but substantially differ-
ent from the observed (e.g., Rajasthan and Hyderabad).
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F I G U R E 4 Observations and
ensemble mean and spread of daily
precipitation forecasts against the
ensemble mean of the raw forecast for
the raw forecast (green), Quantile
Mapping (QM)-postprocessed (pink),
Ensemble Model Output Statistics
(EMOS)-postprocessed (blue), and
Indian Meteorological Division
(IMD) observations (gold) at the nine
test locations. Only values with a raw
forecast mean over the 90th
percentile of observed wet days
during the 2018–2022 monsoon
seasons (June–September) are shown.
The ensemble mean is shown by the
respective symbol and the spread by
the bars which show ±2 standard
deviations.

However, EMOS outperforms QM in Kerala, especially in
the 20–40 mm⋅day−1 bin where the raw forecast is wetter
than the observations.

A comparison of the raw and postprocessed forecast
precipitation distributions and the observed distributions
is also shown as quantile–quantile plots in Figure 3. They
show that for the lower quantiles at some locations the
raw forecasts tend to agree relatively well with the obser-
vations (Shimla, Rajasthan, Delhi, Bhubaneswar), while at
other locations the raw forecast distributions can be either
skewed to the left (Mumbai, Kerala, Patna) or to the right
(Meghalaya) compared to the observation distribution. At
the majority of locations, the QM distributions are closer
than the EMOS distributions to the observed distributions,
while at some locations the QM and EMOS distributions
are very similar (Kerala, Patna, Bhubaneswar). The EMOS
distributions are sometimes closer to the observed ones
than those from the raw forecasts (especially at Mumbai,
Kerala, Meghalaya). At all locations the largest disagree-
ments between the raw forecast and observed values occur
for the upper quantiles, which are corrected much better
using the QM method compared to the EMOS method
(especially at Delhi and Meghalaya). Note that by con-
struction, the upper quantiles in the QM method are

always shifted towards the observed values, while in some
cases (Mumbai, Shimla, Delhi) the EMOS method results
in even larger differences to the observations.

In Figure 4 we investigate how the postprocessing
affects the ensemble mean and spread. For QM the change
in spread is strongly related to how the method affects indi-
vidual values and the ensemble mean. When the raw fore-
cast underestimates (overestimates) the observed rainfall,
the increase (decrease) in values through QM is similar to
a scaling with a factor larger (smaller) than 1, and thus
an increase (decrease) in the ensemble mean is associated
with an increase (decrease) in the ensemble spread. An
example for underestimation is Meghalaya (cf. Figures 2
and 3), where QM has a larger ensemble spread than the
raw forecast, while Kerala is an example for overestima-
tion which leads to a reduction of ensemble spread by QM.
For other locations the link is less clear because over- and
underestimation vary between quantiles and QM is based
on fitting separate distributions for the lower and higher
values.

In EMOS the postprocessed ensemble mean and spread
are determined through optimizing the CRPS. The change
in the ensemble spread is independent of the change of the
ensemble mean, and the spread is therefore not directly
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F I G U R E 5 Rank histogram of observed daily precipitation at the nine test locations with respect to the 23 ensemble members of the
raw, Quantile Mapping (QM)-postprocessed, and Ensemble Model Output Statistics (EMOS)-postprocessed forecasts for observed wet days
(precipitation>0 mm⋅day−1) for the 2018–2022 monsoon seasons (June–September). A rank of 1 (24) means the observed precipitation is
higher (lower) than all 23 ensemble members.

related to over- or underestimation. For example, in Ker-
ala the EMOS ensemble mean decreases and the spread
is similar to the raw forecast, while in other locations
with a decrease in the mean there is a reduction of the
spread (Mumbai, Shimla, Delhi, Patna). In Bhubaneswar
EMOS reduces the ensemble spread while there is no sub-
stantial change in the mean. At the majority of the test
locations the ensemble spread is reduced by EMOS, while
in Meghalaya there is a tendency for increased spread.

The rank histograms (Figure 5) for the raw forecast are
at some test locations U-shaped, which indicates an under-
dispersive ensemble, and in other locations only show a
high fraction of observations in the lowest rank but not in
the high ranks, which means all forecast ensemble mem-
bers are often too wet while not also often being too dry.
The EMOS approach leads at all test locations to some
extent to more even, but not in all cases flat, distribu-
tions of the observation ranks. In contrast, QM does not
improve the rank histograms and in several cases exac-
erbates the problems. For example, the raw forecasts for
Rajasthan are too dry for most quantiles with the exception
of very high ones (Figure 3) but there are also too many
individual forecasts that are wetter than the observations

(high number of rank 24 in Figure 5). As QM increases
most of the values to correct the low bias, the fraction of
individual forecasts that are wetter than the observations
increases even more.

The link between how EMOS affects the ensemble
spread in Figure 4 and how it modifies the rank histograms
is not straightforward because Figure 4 only shows days
when the ensemble mean forecast was above the local 90th
percentile. Nevertheless, the results are consistent because
the locations with a strong reduction of ensemble spread
in Figure 4 (Mumbai, Shimla, Delhi, Patna, Bhubaneswar),
which indicates an overdispersive ensemble, are differ-
ent from the locations for which the rank histograms in
Figure 5 indicate an underdispersive ensemble (Rajasthan,
Hyderabad, Meghalaya).

4 RESULTS: VALIDATION
METRICS

As in Section 3 the evaluation in this section is also based
on only the observed wet days during the 2018–2022
monsoon periods and the corresponding raw and
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F I G U R E 6 (a) Observed (Indian Meteorological Division [IMD]) mean daily precipitation for the 1980–2022 monsoon seasons
(June–September); (b) difference between precipitation means for the 2018–2022 monsoon seasons in the raw forecast and in the IMD
observations divided by the observed mean (relative bias); (c) method that yields the best Continuous Ranked Probability Skill Scores
(CRPSS) at each location. The CRPSS for forecasts for daily precipitation on observed wet days for the monsoon seasons 2018–2022 are
shown in (d–f) with (d) for the climatological forecast, (e) for the Quantile Mapping (QM)-postprocessed forecasts and (f) for the Ensemble
Model Output Statistics (EMOS)-postprocessed forecasts. Positive (negative) CRPSS indicates better (worse) performance than the raw
forecast. NEPS-G, National Centre for Medium Range Weather Forecasting (NCMRWF) global ensemble prediction system.

postprocessed forecasts. For most parts of India, the
CRPSS for daily precipitation amounts for the climato-
logical forecast (Figure 6d) and for the QM-postprocessed
forecast (Figure 6e) is negative, with values for QM lower
than −0.8 over the northwest region. This means these
forecasts are considerably worse than the raw forecasts.
Exceptions with positive CRPSS for the climatological and
QM-postprocessed forecasts include the western coast of
India and some localized central, northern, and north-
eastern regions, which generally have a higher average
precipitation (Figure 6a) and are influenced by moun-
tain ranges such as the Western Ghats along the western
coast and the Himalayas to the north. The CRPSS for the
climatological forecast is also positive in the dry, mostly
northern areas, which are also strongly influenced by
topography. There is no systematic relationship between

the bias of the raw forecast (Figure 1b) and the CRPSS of
the climatological or QM-postprocessed forecast.

The CRPSS for EMOS is positive in most regions across
India, with values reaching 0.4 and in a few locations up
to 0.8 over the western coast and some central and eastern
regions (Figure 6f). The exceptions to this are the rela-
tively dry areas in the northwest (Figure 6a) where the
CRPSS is slightly negative, but not as negative as for QM.
Figure 6c shows for each location the forecast type with
the highest CRPSS and EMOS performs best over most of
India. Over the regions where the EMOS CRPSS is neg-
ative the raw forecast is slightly better, while there are
only a few isolated areas where QM would be the best
choice. In the dry northern and northwestern regions the
climatological forecast outperforms both the raw and post-
processed forecasts, which indicates that in these regions
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F I G U R E 7 (a) Observed (Indian Meteorological Division [IMD]) 90th percentile of daily precipitation on wet days for the 1980–2022
monsoon seasons (June–September); (b) difference between precipitation means for the 2018–2022 monsoon seasons in the raw forecast and
in the IMD observations divided by the observed mean (relative bias); (c) method that yields the best Brier Skill Scores (BSS) at each location.
The BSS for forecasts for the probability of exceeding the 90th percentile (defined as in panel a) on observed wet days for the monsoon
seasons 2018–2022 is shown in (d–f) with (d) for the climatological forecast, (e) for the Quantile Mapping (QM)-postprocessed forecasts and
(f) for the Ensemble Model Output Statistics (EMOS)-postprocessed forecasts. Positive (negative) BSS indicates better (worse) performance
than the raw forecast. NEPS-G, National Centre for Medium Range Weather Forecasting (NCMRWF) global ensemble prediction system.

the raw forecast contains not much information about the
daily precipitation variability that can be exploited through
postprocessing.

The comparison of the BSS for the exceedance of
the local 90th percentile of precipitation (Figure 7)
yields results that are broadly similar to those for the
CRPSS (Figure 6). The BSS for the climatological fore-
cast (Figure 7d) and for QM (Figure 7e) is negative almost
everywhere with values lower than −0.8 in the same
regions in which the CRPSS has the lowest values. The
exception are slightly positive BSS values in the same west-
ern, central, northern and northeastern regions for which
the CRPSS for the climatological and QM-postprocessed
forecasts is positive. This means both forecasts are consid-
erably worse than the raw forecast for both the daily mean
and the exceedance probability of the 90th percentile. The

BSS for EMOS (Figure 7f) is positive almost everywhere,
with values reaching 0.4 and in a few locations up to 0.8.
Again, EMOS generally performs best over most of India
(Figure 7c), but in comparison with the CRPSS results the
BSS maps show more small-scale variability, characterized
by randomly scattered locations where the raw forecast
performs best, and there are also a few more locations
where QM or the climatological forecast performs best.
These characteristics may partly reflect the small spatial
scales of heavy-precipitation events, and also their smaller
sample size and associated higher sampling variability of
performance measures.

The reliability diagrams for exceedance of the 75th
percentile of precipitation (Figure 8) are in general quite
noisy, which is likely because of the relatively limited
sample sizes. Nevertheless, they are still informative, and



ANGUS et al. 13

F I G U R E 8 Reliability diagram
for the exceedance of the 75th
percentile of daily precipitation for
observed wet days during the
2018–2022 monsoon seasons
(June–September) for raw, Quantile
Mapping (QM)-postprocessed, and
Ensemble Model Output Statistics
(EMOS)-postprocessed forecasts at
the nine test locations. The horizontal
axis shows the forecasted event
probability, and the vertical axis the
observed relative frequency.

show that for the majority of locations the slope for
the raw forecasts is shallower than the diagonal, which
means that the forecast probability of an event is greater
than the observed relative frequency. For example, when
the raw forecast probability at Shimla is 80% the actual
chance of observing the event is about 50%. The excep-
tions are Rajasthan, Bhubaneswar, and Meghalaya, where
the slope is closer to the diagonal for most of the prob-
ability range. In some cases, QM improves the reliabil-
ity (Mumbai, Kerala), while in others it makes it worse
(Rajasthan, Delhi, Bhubaneswar, Meghalaya). By contrast,
EMOS either considerably improves the reliability at the
locations where the raw forecasts overestimate the event
probability, especially for relatively high forecast probabil-
ities (Mumbai, Kerala, Shimla, Delhi, Hyderabad, Patna),
or does not reduce the already good reliability of the raw
forecasts (Rajasthan, Bhubaneswar, Meghalaya). Overall,
the reliability after applying EMOS is higher than that of
both the raw forecasts and QM postprocessing.

The ROC curves (Figure 9) for the exceedance
of the local 90th percentile of observed precipita-
tion show small to moderate differences between
the raw and postprocessed forecasts for the majority

of locations (Mumbai, Rajasthan, Kerala, Shimla,
Patna, Bhubaneswar, Meghalaya), with only Delhi and
Hyderabad showing larger differences in the area under
the curves. Raw and postprocessed forecasts have the
largest area under the ROC curves (i.e., highest hit rates
and lowest false alarm rates for all probability thresh-
olds) at Mumbai and to a lesser extent Kerala, which are
both characterized by relatively high average precipitation
(Figure 3). At these locations the raw and postprocessed
forecasts perform similarly. The difference between the
curves for the raw and postprocessed forecasts increases at
locations such as Delhi and Hyderabad, which are charac-
terized by drier conditions, and in Delhi QM outperforms
both EMOS and the raw forecast.

The RSS values for the exceedance of the local 90th
percentile of observed wet-day precipitation for QM
(Figure 10a) are positive in the southern, western, and
northern regions, indicating improved event discrimina-
tion compared to the raw forecast, while in central and
eastern regions the RSS is close to zero or negative. The RSS
values for EMOS (Figure 10b) are mainly positive in the
western region and mostly negative in central, northern,
and eastern regions. The method with the highest RSS at
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F I G U R E 9 Receiver Operating
Characteristic (ROC) curves for the
exceedance of the 90th percentile of
daily precipitation for observed wet
days (precipitation >0 mm⋅day−1)
during the 2018–2022 monsoon seasons
(June–September) for raw, Quantile
Mapping (QM)-postprocessed, and
Ensemble Model Output Statistics
(EMOS)-postprocessed forecasts at the
nine test locations.

a given location is shown in Figure 10c. For most of India,
QM is better than EMOS (although EMOS performs best
in the wet regions of the Western Ghats), with scattered
locations where the raw forecasts perform best.

5 DISCUSSION AND
CONCLUSIONS

In our pilot study we have evaluated QM and EMOS post-
processing of ensemble precipitation forecasts with a lead
time of one day over India during five summer monsoon
periods, with respect to all precipitation amounts as well
as with respect to heavy precipitation events. The com-
parison of the raw forecasts with observations revealed
substantial errors for all precipitation values and for heavy
precipitation, despite the short lead time (Figures 2, 3, 5,
and 8). This is likely due to limitations in the represen-
tation of multiscale interactions in the 12-km resolution
NEPS-G model, ranging from synoptic-scale to local-scale
processes, with the latter highly dependent on model res-
olution. Important small-scale processes for precipitation,
and especially heavy precipitation, include the represen-
tation of convective events (Konduru & Takahashi, 2020;

Sillmann et al., 2017; Willetts et al., 2017), whose locations
are quasi-random, and the effects of complex orography
(Baisya & Pattnaik, 2019; Rotunno & Houze, 2007; Webster
et al., 2008).

Overall, we find that EMOS is the best method for cor-
recting the ensemble spread (Figure 5), and also has the
best skill for forecasting the values on a given day with
respect to all values, quantified by the CRPS (Figure 6),
and with respect to heavy precipitation, quantified by BS
(Figure 7). It also leads to the best forecast reliability
(Figure 8). By contrast, QM is the best method for cor-
recting the forecast precipitation PDF in most locations
(Figures 2 and 3). With respect to the ability of the ensem-
ble to discriminate whether heavy precipitation thresh-
olds are exceeded, the ROC curves (Figure 9) and RSS
(Figure 10) show at most locations a slight improvement
by QM relative to the raw forecast and a slight reduction
by EMOS.

The reason EMOS outperforms QM at most locations
with respect to ensemble spread, CRPS, BS and relia-
bility is that although QM leads by construction to a
realistic overall distribution of daily precipitation values,
it changes the ensemble spread in a way that at many
locations reduces the forecast skill. In contrast, EMOS
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F I G U R E 10 Receiver
Operating Characteristic (ROC)
skill score (RSS) for the
exceedance of the 90th percentile
of daily precipitation for
observed wet days
(precipitation>0 mm⋅day−1)
during the 2018–2022 monsoon
seasons (June–September) for (a)
Quantile Mapping
(QM)-postprocessing, and (b)
Ensemble Model Output
Statistics (EMOS) postprocessing.
Positive (negative) RSS indicates
better (worse) performance than
the raw forecast. (c) Method that
yields the best Receiver
Operating Characteristic Score at
a given location. (d) 90th
percentile of daily precipitation
for wet days for the 1980–2022
monsoon seasons. NEPS-G,
National Centre for Medium
Range Weather Forecasting
(NCMRWF) global ensemble
prediction system.

optimizes the postprocessed ensembles to fit the obser-
vations with respect to CRPS, and our results show that
this also leads to good skill for forecasting heavy precipi-
tation events (Figure 9). Which aspects of the forecasts are
considered most relevant depends to some extent on how
the forecasts are used. If the main criteria are the correc-
tion of under- or overdispersion, forecast reliability, match
between the forecasted distribution for individual days and
observations (CRPS), and the skill in forecasting heavy
precipitation events (BS), EMOS is the better choice for
postprocessing NEPS-G precipitation forecasts over India
with one day lead time.

Both QM and EMOS allow for lead-time-dependent
corrections. For QM the dependency captures poten-
tial differences in the systematic biases of the simulated
marginal distribution for different lead times, and for
EMOS it captures potential differences in the system-
atic biases of the ensemble forecasts for different lead
times. While QM is only based on the simulated and
observed marginal distributions, EMOS exploits the pair-
wise correspondence of observations and ensemble fore-
casts, which gives it a potential advantage and which is

likely to be a main reason for the better performance
of EMOS in the day-1 forecasts in this study. However,
predictability decreases with increased lead time, and
EMOS may have less of an advantage. In the case of
completely non-informative forecasts both QM and EMOS
yield the climatological marginal distribution. A system-
atic comparison of QM and EMOS for longer lead times is
needed to fully explore this topic.

The implementation of EMOS in an operational fore-
casting context is straightforward because after the fitting
of the statistical postprocessing models their application
for each forecast requires only minor additional compu-
tations. The postprocessing can be easily updated when
new versions of forecast models or improved observations
become available. As demonstrated in this study, five mon-
soon seasons simulated as hindcast with a new model
version would allow to fit and evaluate the updated EMOS
postprocessing.

As mentioned in Section 2.2. Setups the EMOS method
presented in this study can only correct the precipitation
intensity on wet days but not the precipitation probability
because the fitting is based on observations and ensemble
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forecasts on observed wet days. For operational imple-
mentation it needs to be decided how to determine the
precipitation probability and how to avoid potential biases.
If there is no systematic difference between the observed
wet-day precipitation distributions during the fitting and
forecasting periods there is no systematic bias of the post-
processed forecast distribution for observed wet days. If
the postprocessed forecasts for the observed dry days were
set to zero the distribution for all days would also not
have a systematic bias. If, however, the EMOS model fit-
ted on observed wet days was also applied to forecasts for
observed dry days the output for observed dry days would
include non-zero precipitation, and the overall distribu-
tion would therefore have a positive bias. In an operational
context it is not possible to set the output of the postpro-
cessing to zero when the observation is zero, because the
observation for the forecast time is not known. It would be
possible to mitigate against a positive bias by setting the
postprocessed output for days with a substantial fraction of
dry ensemble members, and thus with a high probability of
an observed dry day, to zero. However, this approach lacks
a sound theoretical foundation and it would be preferable
to use the observed wet and dry days to fit an additional
postprocessing model for precipitation probabilities, set
the number of ensemble members to zero proportional
to the dry-day probability, and postprocess the remaining
ensemble members as described in this study.

Given the need for integrating ensemble precipitation
forecasts for India with hydrological and hydrodynamic
modelling (Chandra & Mujumdar, 2019; Ghosh et al., 2019;
Mohanty et al., 2020; Nanditha & Mishra, 2021; Rupa &
Mujumdar, 2019; Widmann, Blake, et al., 2019), it would
be important to assess to which extent the precipitation
postprocessing can improve hydrological forecasting (cf.
Pastén-Zapata et al. (2020) for a UK example). In this con-
text the spatial structure of heavy precipitation is highly
relevant, for instance the probability for joint exceedance
of heavy precipitation thresholds. QM and EMOS are local
postprocessing methods, which do not explicitly change
the spatial structure of precipitation events. Widmann,
Bedia, et al. (2019) have shown that the spatial structure of
QM-postprocessed precipitation is mainly inherited from
the raw forecast, and it can be expected that this is also
the case for EMOS.

While this pilot study is limited by the relatively few
monsoon seasons currently available from the NEPS-G
forecast and by focussing on a lead time of one day, we
demonstrated that EMOS can improve ensemble forecasts
for precipitation amounts and for probabilities for exceed-
ing the local 90th percentile over most of India with respect
to multiple skill measures. Applying EMOS operationally
for short lead times of a few days would thus provide
an opportunity to improve precipitation forecasts at low

computational costs, while the potential benefit for longer
lead times needs to be explored further.
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