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ABSTRACT
In wireless communications, local scattering in the vicin-
ity of the mobile station results in angular spreading. A
few estimators (of direction of arrival (DoA) and angu-
lar spread) have already been developed, but they suffer
from high computational load or are developed in very
specific contexts. In this paper, we present a new simple
low-complexity decoupled estimator of DoA and angu-
lar spread for a spatially dispersed source. The proposed
MDS (Music for Dispersed Sources) algorithm does not
assume any particular sensor array geometry nor tempo-
ral independence hypothesis. Moreover, the estimation
of DoA and angular spread does not require knowledge
of the angular and temporal distribution shapes of the
sources. In addition, the low computational cost of this
method makes it attractive.

1. INTRODUCTION

The problem of estimating the Direction of Arrival
(DoA) of multiple sources impinging on an antenna ar-
ray has been intensively studied these last decades. The
subspace-based algorithm, MUSIC [1] is one of the al-
gorithms developed for the DoA estimation.

These algorithms all rely on the “point scatterer”
hypothesis. This hypothesis is usually not satisfied in
real conditions [2]. Indeed, distributed sources arise
in many different domains such as wireless communi-
cations, radar, radio astronomy, etc.. The source is thus
no longer viewed by the array as a point source but as a
spatially distributed source with mean DoA and angu-
lar spread. Due to the mismatch between the true effect
of a distributed source and the effect of the underlying
point-scatterer model, the conventional DoA estimators
may result in poor performance (see for example [3]).
Furthermore, these techniques do not provide any es-
timate of the angular spread. As a consequence, the
problem of estimating the DoA and angular spread of
spatially dispersed sources has experienced a growing
development in the last few years.

Numerous models have been developed (see for ex-
ample [4]). The signal received at the array is gener-
ally described as the sum of numerous angularly spread
signals that are phase-delayed and amplitude weighted.
The signal can then be seen as a continuous distribu-
tion of DoA, described by its probability density func-
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tion. Different probability distributions of the angular
deviation have been proposed, the most used being the
von-Mises distribution [5].

There have been numerous studies on estimation of
distributed sources. Since a direct application of conven-
tional subspace-based algorithms may lead to inaccurate
estimators, some algorithms such as DSPE [6] and DIS-
PARE [7] have been introduced that are based on an
augmentation of the signal subspace dimension. Nev-
ertheless, these two methods require a 2D-optimization
and are not consistent (see [8]). Bengtsson proposed in
[8] a generalization of the WSF algorithm for distributed
sources and developed a consistent WPSF algorithm.
Unfortunately, these algorithms suffer from a very high
computational load. Other proposed methods exhibit
a very low computational cost but are developed in a
single source model for particular sensor array geome-
try [9] or do not provide an estimator of the angular
spread [10]. Furthermore, based on the generalized ar-
ray manifold (GAM) model proposed in [10], different
techniques are proposed for the estimation of nominal
azimuth of arrival and azimuth spread of the spatially
dispersed source [11]. However, since the Taylor-series
expansion on which the GAM model relies is fixed to be
the first-order, these techniques are applicable only in
the case of slightly distributed sources.

In this paper, we present a new simple low-cost de-
coupled estimator of DoA and angular spread for spa-
tially dispersed sources. The proposed MDS (MUSIC
for Dispersed Sources) algorithm does not assume any
particular sensor array geometry nor temporal indepen-
dence hypothesis. Moreover, the estimation of DoA and
angular spread does not require knowledge of the shape
of the angular distribution of the sources. The low com-
putational cost of this method makes it very attractive.

This paper is organized as follows: Section 2 de-
scribes the signal model and assumptions. In Section
3, we present the MDS algorithm. The MDS algorithm
is validated by Monte Carlo simulations in Section 4 and
we conclude in Section 5.

2. SIGNAL MODEL, ASSUMPTIONS AND
PROBLEM FORMULATION

Consider a single narrowband, far-field, spatially dis-
persed source with wave-fields that impinge on a uni-
form linear array of M sensors. We consider horizontal-
only propagation. The received signal at the output of
the array can be seen as the contribution of multiple sub-



sources within a spatially distributed source [12] with
nominal azimuth of arrival θ0 and angular spread σ0.

In this paper, we propose a new approximation
model which characterizes the impinging wavefront orig-
inating from a spatially dispersed source as the superpo-
sition of L discrete delayed, attenuated, eventually cor-
related wavefronts that are regularly spaced out within
the cone of arrival.

The M × 1 vector x(t) of sensors’ outputs is given
by the following equation

x(t) =
L∑

k=1

a
(
θ0 + θ̃k

)
sk (t) + n(t)

with

sk (t) = ρk (t) s (t− τk) , ρk (t) = ρkej2πfk(t−τk). (1)

In the above expression,
• s (t) is the stochastic signal emitted by the source at

time t,
• sk (t) is the stochastic signal which interacts with the

kth sub-source in the spatially dispersed source,
• a(θ) is the M × 1 point source steering vector,
• θ0 is the nominal azimuth of arrival of the spatially

dispersed source,
• θ0 + θ̃k is the azimuth of arrival of the kth wave-

front with attenuation ρk, delay τk = τ(θ0 + θ̃k) and
Doppler frequency fk,

• n(t) is the M×1 additive Gaussian noise vector with
component variance σ2

n.
The correlation between the ith and jth scatterers is

r(τ i − τ j) = E
[
s (t− τ i) s (t− τ j)

∗]
,

where r(u) = E
[
s (t) s (t− u)∗

]
is the correlation func-

tion of s (t), E [.] denotes expectation and (·)∗ is the
complex conjugate of the given argument.

In this paper, we do not assume any prior informa-
tion about the shape of the distribution of the angular
spread. The angular spread σ0 is directly obtained from
the underlying model of (1) according to

σ0 =

√√√√
L∑

k=1

γk

γ
θ̃
2

k (2)

with γk = E[|sk (t)|2] and γ =
L∑

k=1

γk. The term γk

γ

appears since the sub-path might have different power.
Assuming that the individual sources are equally

spaced and the distance between two adjacent individ-
ual sources is ε, we have

θ̃k = (k − 1) ε−
(

L− 1
2

)
ε = ξ (k, L) ε. (3)

In the following, we use Rx = E
[
x(t)x(t)H

]
with

(·)H representing the Hermitian transpose to denote the
covariance matrix of x(t), K the rank of Rx and (λi, ei)

0

Figure 1: Characterization of a spatially dispersed
source by three sub-sources

the ith eigenvalue and eigenvector of Rx respectively,
with λ1 ≥ ... ≥ λK ≥ ..... ≥ λM . The matrices
Es = [e1, ...eK ] and En = [eK+1, ...eM ] are respectively
associated with the signal and noise subspaces of Rx

and the diagonal matrices Λs = diag(λ1, ..., λK) and
Λn = diag(λK+1, ..., λM ) (see [13] for more details).
Here diag(·) is the diagonal matrix with diagonal ele-
ments equal to the components listed as an argument.

Note that the rank K of Rx satisfies: 1 ≤ K ≤
min(M, L) with min(·) denoting the minimum of the
given argument. The case K = 1 corresponds to co-
herently distributed scatterers satisfying r(τ i − τ j) =
E[|s (t)|2], ∀ (i, j) ∈ [1, L]. The case K = min(M, L) is
holding for distributed scatterers satisfying r(τ i− τ j) 6=
E[|s (t)|2], ∀ (i, j) ∈ [1, L]. Notice that the special case
where distributed scatterers are totally incoherent, i.e.
r(τ i−τ j) = 0, ∀ (i, j) ∈ [1, L], results in K = min(M, L).

3. THE MDS ALGORITHM

3.1 Estimation of DoA θ0

The K eigenvectors ei, i = 1, . . . ,K, of the signal sub-
space can be written as a linear combination of vectors
a(θ0 + θ̃k), i.e.

ei '
L∑

k=1

αi
ka(θ0 + θ̃k)

= A(θ0, θ̃, L)αi

= e
(
ηi

0

)
, i ∈ [1, K] (4)

with

θ̃ =
[

θ̃1 ... θ̃L

]T
(5)

αi =
[

αi
1 ... αi

L

]T (6)

A(θ0, θ̃, L) =
[

a(θ0 + θ̃1) ... a(θ0 + θ̃L)
]

(7)

ηi
0 =

[
θ0, θ̃

T
,
(
αi

)T
, L

]T

. (8)

Here, (·)T denotes the transpose of the given argument.
The parameter estimation can be conducted in the

framework of subspace-based methods. In this contribu-
tion, we propose a novel MDS algorithm which is based



on a minimization of the following function

J (η) =
eH (η)Πne (η)
eH (η) e (η)

with η =
[
θ, θ̃

T
, αT, L

]
, (9)

which gives the K estimates η̂i
0, i = 1 . . . K.

The minimization of the function in (9) requires a
highly non-linear multidimensional optimization, which
is of high computational load. In order to reduce the
computional load, in the MDS algorithm the parameters
θ0 and σ0 are estimated in two successive steps. In the
first step, the only parameter to be estimated is the DoA
θ0, the other parameters being considered as nuisance
parameters. This is obtained by reformulating J (η) to
a function of θ0. For this, the steering vector a(θ0+ θ̃) is
factorized using a P th-order Taylor expansion according
to

a(θ0 + θ̃) ≈ a (θ0) +
P∑

p=1

∂pa (θ0)
∂θp

(
θ̃
)p

p!

= D (θ0)∆
(
θ̃
)

(10)

with

D (θ0) =
[

a (θ0)
∂a(θ0)

∂θ ... ∂P a(θ0)

∂θP

]
, (11)

∆
(
θ̃
)

=
[

1 θ̃ ...
(eθ)P

P !

]T

. (12)

It is worth mentioning that inserting (10) with P = 1
in (1) yields the GAM model proposed in [10].

Inserting the approximation (10) into (7)
yields A(θ, θ̃, L) =D(θ)∆(θ̃) with ∆(θ̃) =
[ ∆(θ̃1) ... ∆(θ̃L) ] and

J (η) =
βH

(
θ̃, α,L

)
Q1 (θ) β

(
θ̃, α,L

)

βH
(
θ̃, α,L

)
Q2 (θ) β

(
θ̃, α,L

) , (13)

with

β(θ̃, α,L) = ∆(θ̃)α,

Q1 (θ) = DH(θ)ΠnD(θ), (14)

Q2(θ) = DH(θ)D(θ).

Using the classical results on quadratic forms [14],
Criterion (13) can be reformulated as a function with
respect to the parameter θ

JDoA (θ) = λmin

{
Q2 (θ)−1 Q1 (θ)

}
, (15)

where λmin{·} is the smallest eigenvalue of the matrix
given as an argument. Note that (15) is well defined
only in the case where Q2 (θ)−1 exists. This condition
can be satisfied in real applications by adjusting P in
such a way that Q2 (θ) is non-singular.

Note that the estimation of DoA using (15) does not
require the estimation of L.

Remark 1 According to [15], since JDoA (θ0) = 0 then
J ′c (θ0) = det

{
Q2 (θ0)

−1 Q1 (θ0)
}

= 0 and from (14),
the function in (15) can also be replaced by

J ′DoA (θ) =
det (Q1 (θ))
det (Q2 (θ))

. (16)

Minimization of (16) with respect to θ requires lower
computational cost than the minimization of (15).

In practise, we only get an estimate Π̂n = ÊnÊH
n of

Πn, where Ên is estimated from the eigen decomposition
of the sample covariance matrix

R̂x =
1

T/Te

T/Te∑

k=1

x (kTe)x (kTe)
H = ÊsΛ̂sÊH

s +ÊnΛ̂nÊH
n ,

(17)
where Te is the sampling period, Ês and Ên are the
estimate of the signal Es and noise En subpsace respec-
tively and Λ̂s and Λ̂n are the estimates of the diagonal
matrices Λs and Λn.

3.2 Estimation of angular spread σ0

The purpose of this section is to provide an estimation
σ̂0 of the angular spread σ0 without knowledge of the
shape of the angular distribution, under the hypothesis
that P ≥ 2. In the following, we fix the value of L to
L = 2. Consequently, from (2) and (3), the estimation
of σ0 requires estimating ε with σ0 = ε√

2
. Inserting (3)

respectively in (4) and (10) yields

e (θ0, ε, α) = α1a
(
θ0 − ε

2

)
+ α2a

(
θ0 +

ε

2

)
,

where

a (θ + ξ (k, L) ε) = D (θ)∆k (ε) , k = 1, 2 (18)

with

∆k (ε) =
[

1 (−1)k ε
2 ... (−1)Pk εP

2.P !

]T

. (19)

Thus, (18) can be written

e (θ, ε, α) = D (θ) β (ε, α) (20)

with

β (ε, α) =
2∑

k=1

αk∆k (ε) = U2 (ε)α. (21)

Here, U2 (ε) = [ ∆1(ε) ∆2(ε) ].
Using the estimate θ̂0 of the source, the estimate β̂ of

β can be calculated to be proportional to the eigenvector
vmin of Q2(θ̂0)−1Q1(θ̂0) associated with the smallest
eigenvalue [15]. Assuming that P ≥ 2, the parameters
(ε, α) are given by the minimum of

Jσ (ε, α) =
β (ε, α)H Π

(
β̂

)
β (ε, α)

β (ε, α)H β (ε, α)
, (22)



with respect to σ. Here, Π
(
β̂

)
= I − β̂β̂

†
=

I − vminvH
min with β̂

†
representing the Moore Penrose

pseudo-inverse of β̂. According to (21) and using the
results of [15], (22) can finally be concentrated with re-
spect to the parameters ε

Jσ (ε) = λmin

{
Q′

2 (ε)−1 Q′
1 (ε)

}
, (23)

with

Q′
1 (ε) = U2 (ε)H Π

(
β̂

)
U2 (ε) ,

Q′
2 (ε) = U2 (ε)H U2 (ε) .

3.3 Selection of P

In Subsections 3.1 and 3.2, the estimation of θ0 and
σ0 relies on a P th-order Taylor expansion of a(θ0 + θ̃),
whose order P has to be estimated. Because of lack of
space, we only present in this subsection the idea used
for obtaining the estimate P̂ of P . The derivation of the
method will be reported in a forth-coming paper. We
first determine a threshold value ξ satisfying

J (N) =
aHΠ̂n(N)a

aHa
> ξ

with a false alarm probability Pfa. Here, N is the num-
ber of snapshots.

Under the hypothesis of Gaussian noise n(t) and
stochastic source s (t), we can demonstrate that
Nγ
σn

2 J(N) follows a central chi-square distribution with
2(M − 1) degrees of freedom provided the order P is
correctly selected. Consequently, the threshold value ξ
corresponding to the false alarm probability Pfa is given
by

ξ =
σn

2

2MNγ
χ2 (2(M − 1), Pfa) .

Given a false alarm probability Pfa, we may test
different values of P in ascending order.The estimate P̂
corresponds to the first value of P for which the mini-
mum of J(N) is below the threshold value ξ.

4. SIMULATIONS

4.1 Signal generation

The purpose of the simulations is to estimate the param-
eters (θ0, σ0) of a uniform law without prior informa-
tion about the shape of the distribution of the angular
spread. An 8-element uniform linear array is used with
inter-element spacing d satisfying d/λ = 1

2 . Sources are
NRZ BPSK of symbol duration Ts = 10Te. This implies
that the signals s (t− τ i) and s (t− τ j) are incoherent
when |τ j − τ i| > Ts. In the simulations, the signal is
generated according to

x(t) =
ρ0√
200

200∑

k=1

a
(
θ0 + θ̃

k

)
s (t− τk) + n(t),

where θ̃k is uniformly distributed between −∆θ/2 and
∆θ/2. The relation between the angular spread σ0 and

∆θ is calculated to be σ0 = ∆θ/
√

12. The signal-to-
noise ratio (SNR) is 20 log 10(ρ0/σn). The covariance
matrix of the noise n(t) reads E[n(t)n(t)H] = σn

2IM .
Ray tracing considerations lead us to the following ap-
proximate linear relation between the angular and tem-
poral spread

τk = τ(θ0 + θ̃k) = θ̃k
∆τ

∆θ
.

In all the simulations, the temporal spread is fixed at
∆τ = Ts/10 leading to |τ i − τ j | < Ts/20. In this condi-
tion, for NRZ modulation, it is easy to verify that the
correlation rij = E[s (t− τ i) s (t− τ j)

∗]/E[|sm (t)|2] is
19/20 < |rij | < 1. Note that this is an intermediate
case between the coherent and incoherent distributed
case that corresponds to the severe scenario in urban
propagation context.

4.2 Simulation results

In order to demonstrate the importance of a good esti-
mation of the parameter P , we first study the behavior
of the MDS algorithm when P is fixed at different val-
ues P ∈ {1, 2, 3, 4}. Secondly we compare these perfor-
mance with the MDS algorithm including the automatic
determination of P described in Subsection 3.3.

Fig. 2 is devoted to the performance of the estima-
tion of θ0, whereas Fig. 3 presents that of the angular
spread σ0. The nominal azimuth of arrival of the source
is θ0 = 0◦. The SNR at the input of the antenna array
equals 20 dB.
• For a given value of P , the accuracy of the estimation

of θ0 and ∆θ depends on the value of angular spread
σ0. For instance, for P = 2, the performance is
optimal around σ0 = 15◦. Indeed, in the region of
σ0 ≤ 10◦, due to the model mismatch the impact of
the noise becomes significant and consequently the
performance of the estimators degrade. For high σ0,
the value of P is too small to match correctly the
true effect of the spatially dispersed scatterer, which
explains the increase of the curves in this area.

• As σ0 increases the optimal value Popt, for which
the RMS (root mean square) error is minimal, in-
creases. This observation highlights the important
role of parameter P in the accuracy of the estima-
tions. We can observe that the MDS curve provides
a quite perfect fit to the optimal performance of the
estimators with fixed P . This demonstrates the good
behavior of this algorithm and the quasi-optimality
of the determination of P .

5. CONCLUSION

We have introduced a new simple low-cost decoupled
MUSIC-based approach for estimation of DoA and an-
gular spread of spatially dispersed sources. This tech-
nique is derived using a generalized array manifold
model based on Taylor-series expansion of the steering
vector. We also propose a novel method that allows au-
tomatic determination of the expansion order. The pro-
posed MDS (MUSIC for Dispersed Sources) algorithm
does not assume any particular sensor array geometry
nor temporal independence hypothesis. Moreover, the
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estimation of DoA and angular spread does not require
knowledge of the shape of the angular distribution of
sources. Simulations showed that this algorithm pro-
vides accurate estimates even in the case where the sig-
nal of the distributed source is highly correlated. In ad-
dition, significant performance improvement is observed
for the MDS algorithm when it is applied in combina-
tion with a scheme performing automatic determination
of the Taylor-series expansion order.
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