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ON THE INFIMUM OF THE ENERGY-MOMENTUM

SPECTRUM OF A HOMOGENEOUS BOSE GAS

H.D. CORNEAN, J. DEREZIŃSKI, AND P. ZIŃ

Abstract. We consider second quantized homogeneous Bose gas in a large
cubic box with periodic boundary conditions, at zero temperature, and in
the grand canonical setting (the chemical potential µ is fixed, the number of
particles can vary). We investigate upper bounds on the infimum of the energy
for a fixed total momentum k given by the expectation value at one-particle
excitations over a squeezed state. We show that the results of the Bogoliubov
approach (usually derived heuristically) coincide with the results of the first
iteration of our method (which leads to rigorous upper bounds).
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1. Introduction

One can distinguish two possible approaches to the Bose gas at density ρ: “canon-
ical” and “grand-canonical”. Further on in our paper we will concentrate on the
latter setting. Nevertheless, in the introduction, let us stick to the canonical ap-
proach.

Suppose that the 2-body potential of an interacting Bose gas is described by
a real function v defined on Rd, satisfying v(x) = v(−x). We assume that v(x)
decays at infinity sufficiently fast.

A typical assumption on the potentials that we have in mind in our paper is

v̂(k) > 0, k ∈ R
d, (1.1)

where the Fourier transform of v is given by

v̂(k) :=

∫

v(x) e−ikx dk. (1.2)
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Potentials satisfying (1.1) will be called repulsive. Note, however, that a large part
of our paper does not directly use any specific assumption on the potentials.

In order to define the quantities at nonzero density, we start with a system of n
bosonic particles in Λ = [0, L]d – the d-dimensional cubic box of side length L. We
assume that the number of particles equals n = ρV , where V = Ld is the volume
of the box. Following the accepted (although somewhat unphysical) tradition we
replace the potential by

vL(x) =
1

V

∑

k∈ 2π
L

Zd

eik·x v̂(k), (1.3)

where k ∈ 2π
L Z

d is the discrete momentum variable. Note that vL is periodic with

respect to the domain Λ, and vL(x) → v(x) as L → ∞. The system in a box is
described by the Hamiltonian

HL,n = −
∑

i=1

1

2
∆i +

∑

1≤i<j≤n

vL(xi − xj) (1.4)

acting on the space L2
s (Λ

n) (symmetric square integrable functions on Λn). We
assume that the Laplacian has periodic boundary conditions.

Let us denote by EL,n the ground state energy in the box:

EL,n := inf spHL,n,

where spK denotes the spectrum of an operator K.
The total momentum is given by the operator

PL,n :=

n
∑

i=1

−i∇xi
.

Its spectrum equals 2π
L Zd.

Note that HL,n and PL,n commute with each other. Therefore we can define
the joint spectrum of these operators

sp(HL,n, PL,n) ⊂ R× 2π

L
Z

d,

which will be called the energy-momentum spectrum in the box. For kL ∈ 2π
L Zd,

we define the infimum of the energy-momentum spectrum in the box to be

inf{s : (s,kL) ∈ sp(HL,n, PL,n)}. (1.5)

The main subject of our paper is studying upper bounds to (1.5).
We would also like to use this paper as an occasion to state precisely some

conjectures about the energy-momentum spectrum of Bose gas with repulsive in-
teractions in themodynamical limit. These conjectures are suggested by various
heuristic arguments, notably due to Bogoliubov. They go far beyond what we can
prove rigorously at the moment.

By the excitation spectrum in the box we will mean sp(HL,n − EL,n, PL,n). For
kL ∈ 2π

L Zd, we define the infimum of the excitation spectrum (IES) in the box as

εL,n(kL) := inf{s : (s,kL) ∈ sp(HL,n, PL,n)} − EL,n. (1.6)

Let L →∞ with ρ = n
Ld . The momentum lattice 2π

L Z
d converges in some sense

to the continuous space R
d. The Hamiltonians HL,n − EL,n do not have a limit

in any meaning known to us. Nevertheless, we would like to define the IES in this
limit as a function on Rd. It is not obvious how to do it. We propose the following
definition:
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For k ∈ Rd and ρ > 0, we take δ > 0 and set

ερ(k, δ) := lim inf
n→∞

(

inf

{

εL,n(k′L) : k′L ∈
2π

L
Z

d, |k− k′L| < δ, ρ =
n

Ld

})

.

This gives a lower bound on the IES for the momenta kL in the window in the
momentum space around k of diameter 2δ. The quantity ερ(k, δ) increases as δ
becomes smaller. The IES at the thermodynamic limit is defined as its supremum
(or, equivalently, its limit) as δ ↘ 0:

ερ(k) := sup
δ>0

ερ(k, δ).

Under Assumption (1.1) it is easy to prove that EL,n is finite and εL,n(0) =
ερ(0) = 0 (see Theorem 4.1 and Proposition 4.2).

Conjecture 1.1. We expect that for a large class of repulsive potentials the fol-
lowing statements hold true:

(1) The map Rd 3 k 7→ ερ(k) ∈ R+ is continuous.
(2) Let k ∈ Rd. If {Ls}s≥1 ⊂ R diverges to +∞, and ρ = ns/L

d
s , then for every

sequence ks ∈ 2π
Ls

Zd which obeys ks → k, we have that εLs,ns(ks) → ε(k).

(3) If d ≥ 2, then infk6=0
ε(k)
|k| =: ccr > 0.

(4) There exists cs > 0 such that limk→0
ε(k)
|k| = cs.

Statements (1) and (2) can be interpreted as some kind of a “spectral thermo-
dynamic limit in the canonical approach”. Note that if (1) and (2) are true around
k = 0, then we can say that there is “no gap in the excitation spectrum”.

The properties (3) and (4) of the Bose gas were predicted by Landau in the
40’s. Shortly thereafter, they were derived by a somewhat heuristic argument by
Bogoliubov [2]. They seem to have been confirmed experimentally (see e.g. [13]).

(3) is commonly believed to be responsible for the superfluidity of the Bose gas.
More precisely, it is argued that because of (3) a drop of Bose gas travelling at
speed less than ccr will experience no friction.

(4) implies that the sound has a well defined speed at low frequencies equal to
cs.

Note that in dimension d = 1 the condition (3) should be replaced by

(3)’ If d = 1, then ερ(k + 2πρ) = ερ.

The statement (3)’ has a simple rigorous proof, which we will give later on in
our paper. It implies that in dimension d = 1 the excitation spectrum is periodic
with the period 2πρ.

The original argument of Bogoliubov is based on the idea that in thermody-
namical limit homogeneous Bose gas with repulsive interactions can be effectively
described by a quadratic bosonic Hamiltonian. For quadratic Hamiltonians one can
easily find the infimum of the excitation spectrum. For instance, for the free Bose
gas the IES is not very interesting: it just equals zero for all momenta. However,
there exist quadratic Hamiltonians with the IES of the form described by (3) or
(3)’, and (4). One can argue that this fact indicates that Conjectures 1.1 and 4.3
are plausible. We describe some relevant facts about the energy-momentum spec-
tra of quadratic Hamiltonians in Appendix A. We could not find these facts in the
literature, although they probably belong to the folk knowledge.

To our experience, most physicists interested in this subject (but not all) would
agree that one should expect Conjecture 1.1 (as well as the analogous Conjecture
4.3 formulated in the grand-canonical setting) to be true. To our surprise, in
the literature devoted to this subject the authors seem to avoid making precise
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conjectures about these things. In particular, we have not seen a rigorous definition
of the IES similar to (1.7).

Since Bogoliubov, many theoreticians have worked on this subject. Nevertheless,
to our knowledge, no satisfactory rigorous analysis of the energy-momentum spec-
trum of the Bose gas exists. Only in the one-dimensional case, when the interaction
v is a repulsive delta-function, it can be described fairly explicitly (see [9, 8]) and
at least one can prove that there is no gap in it in the thermodynamical limit.

Almost all theoretical works on the energy-momentum spectrum of the Bose
gas instead of the correct Hamiltonian HL,n (or its second-quantized version HL

and the grand-canonical version HL
µ ) considered its modifications. They either

replaced the zero mode by a c-number or dropped some of the terms, or did both
modifications [1, 7, 5, 6, 15, 16]. These Hamiltonians have no independent physical
justification apart from being approximations to the correct Hamiltonian in some
uncontrolled way.

In our paper we are not interested in any such modified Hamiltonians: all our
statements will be related to the grand-canonical Hamiltonian HL

µ (the natural

second quantization of HL,n − µn). Note however, that some of the quantities we
study are not quite the ones we are interested in: instead of the bottom of the
spectrum, most of the time we consider its upper bounds given by the expectation
values between some restricted classes of vectors.

In many papers on the Bose gas one does not obtain a cusp at the bottom of
the excitation spectrum. One usually obtains a small gap between the ground
state energy and the lowest excitation. There is no such gap in the calculations
of Bogoliubov, as crude as they are. However, when one tries to “improve” on
Bogoliubov’s calculations, the gap usually appears. Yet, there are arguments that
this gap is an artifact of these approximations, and in the complete treatment
it should not appear, see Hugenholtz-Pines [7], Girardeau-Nozieres [5], and the
1
q2 Theorem of Bogoliubov [3]. To our understanding, these arguments are not

yet complete proofs of a statement similar to Conjectures 1.1 and 4.3. We believe
that to prove or disprove them would be an interesting subject for research in
mathematical physics.

One should remark that there exists a large rigorous literature on the Bose gas,
see e.g. [10] or the recent lecture notes of Lieb, Seiringer, Solovej and Yngvason [11]
and references therein. This literature, however, is devoted mostly to the study of
the ground state energy or the pressure, and not to the dependence of the infimum
of the excitation spectrum on momentum.

The main purpose of our paper is to describe two methods that can be used
to give upper bounds on the infimum of the energy-momentum spectrum. The
first, which we call the Squeezed States Approximation (SSA), uses squeezed states
and 1-particle excitations over squeezed states to obtain a variational estimate.
The second, which we call the Improved Bogoliubov Approximation (IBA) is a
modification of the SSA, and gives a less precise estimate. These methods leads to
functions Rd 3 k 7→ εssa,µ(k), εiba,µ(k), which can be viewed as the approximation
to the true IES Rd 3 k 7→ εµ(k) in SSA and IBA respectively.

By squeezed states we mean states obtained from the vacuum by a Bogoliubov
translation and rotation. Note that the requirement of the translation symmetry
restricts the choice of these transformations. In particular, only a translation of
the zero mode is allowed and only pairs of particles of opposite momenta can be
created.

To our knowledge, in the context of the Bose gas, the idea of using squeezed
states to bound the ground state energy first appeared in the paper of Robinson
[14]. Robinson considered a slightly more general class of states – quasi-free states.
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He noticed, however, that in the case he looked at it is sufficient to restrict to pure
quasi-free states – which coincide with squeezed states. One should mention also
[4], where a variational bound on the pressure of Bose gas in a positive temperature
is derived by using quasi-free states.

Only an upper bound to the ground state energy is considered in [14]. We go one
step further: we show how this method can be extended to obtain upper bounds on
the infimum of the energy-momentum spectrum by using one-particle excitations
over squeezed states.

The method IBA seems to be much more convenient computationally then SSA.
We show that it leads to a relatively simple fixed point equation, which can be
used to obtain the upper bounds. It seems that the quantities involved in IBA have
limits as L → ∞. This is at least suggested by formal arguments. It would be
interesting to rigorously prove that this is true.

Note that the method IBA seems also well suited as the first step to a systematic
perturbative treatment of the Bose gas. It leads to the construction of an effective
Hamiltonian, which can serve as the main part of the full Hamiltonian HL

µ , whereas
the reminder can be treated as a perturbation.

Clearly, the function εiba,µ(k) has a well defined physical meaning for a finite
volume: added to the ground state energy it gives an upper bound on the infimum
of the energy-momentum spectrum. In the thermodynamical limit this loses its va-
lidity, since the infimum of the energy-momentum spectrum in the grand-canonical
approach seems to go to −∞. However, following the experience of many similar
physical theories, we hope that the approximations we introduced are somehow
close to reality. In other words, we would not be surprised if εiba,µ(k) turned out
to be close to εµ(k). If under some conditions this is true, it would be interesting
to describe and justify this closeness rigorously.

There exists a natural iterative procedure that one can try to use in order to solve
the fixed point equation of IBA. The first iteration of this procedure gives a result
which coincides with the original Bogoliubov approximation in its grand-canonical
version. This explains why both approximations look so similarly. In particular, in
both IBA and Bogoliubov’s calculations, one has a step which amounts to replacing
the zero mode by a c-number, and one performs a Bogoliubov rotation. However,
whereas IBA has a clear rigorous meaning (it gives an upper bound), Bogoliubov’s
calculations are presentedpurely heuristic.

As we discussed above, the repulsive Bose gas in dimension d = 1 has a periodic
IES. Therefore, it is clear that the methods SSA and IBA give poor upper bounds
in d = 1 for large momenta.

Actually, our hope that the methods SSA and IBA give answers close to real-
ity has another weak point in any dimension d. Equation (10.11) indicates that
εiba,µ(k) has a nonzero gap, at least if IBA involves a nontrivial Bogoliubov rota-
tion and traslation, and if the infinite volume limit can be justified. Therefore, it
seems that IBA does not give the correct qualitative shape of the true IES.

Perhaps, this is the most important (even if negative) finding of our paper. It
implies that at the bottom of its spectrum, repulsive Bose gas should be approxi-
mated by a more complicated ansatz, than just what we propose. In the literature,
the existence of a gap in various approximation schemes, which try to improve on
the original Bogoliubov’s one, has been noticed by a number of authors [6, 15].
However, to our knowledge these authors did not consider the correct Hamiltonian,
but always used one of its distorted versions.

The structure of our paper is as follows:
In Section 2 we recall the original Bogoliubov calculations. They use the canon-

ical approach.
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In Section 3 we discuss the case of dimension d = 1.
In Section 4 we introduce the notation in the grand-canonical setting. We state

a conjecture analogous to Conecture 1.1 in this setting. The grand-canonical ap-
proach is used throughout the later part of the paper as well.

In Section 5 we describe the original Bogoliubov calculations adapted to the
grand-canonical approach.

Sections 2, 3 and 5 should be viewed as an extension of the introduction, included
for a historical perspective and for comparison with the results obtained in later
sections.

The main part of our paper starts with Section 6 where we describe the Squeezed
States Approximation. In Section 7 we describe the Improved Bogoliubov Approx-
imation.

In Sections 8 and 9 we derive the basic fixed point equation for the Improved
Bogoliubov Approximation. It is described in Theorem 10.1.

Acknowledgments. The research of all authors was partly supported by the EU
Postdoctoral Training Program HPRN-CT-2002-0277. The research of J.D. was
also supported by the Polish grants SPUB127 and 2 P03A 027 25 and was partly
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The Danish National Research Foundation: Network in Mathematical Physics and
Stochastics. H.C. and J.D. also acknowledge support from the Statens Naturvi-
denskabelige Forskningsr̊ad grant Topics in Rigorous Mathematical Physics. The
research of P.Z. was also supported by the grant 2P03B4325.

2. Original Bogoliubov approach

As realized by Bogoliubov, even if one is interested in properties of the Bose gas
with a fixed but large number of particles, it is convenient to pass to the second
quantized description of the system, allowing an arbitrary number of particles. To
this end one introduces the second quantized form of (1.4), that is

HL = −
∫

a∗x
1

2
∆xaxdx

+
1

2

∫ ∫

a∗xa∗yvL(x− y)ayaxdxdy, (2.1)

acting on the symmetric Fock space Γs(L
2(Λ)). It is convenient to pass to the

momentum representation:

HL =
∑

k

1

2
k2a∗kak (2.2)

+
1

2V

∑

k1,k2,k3,k4

δ(k1 + k2 − k3 − k4)v̂(k2 − k3)a
∗
k1

a∗k2
ak3

ak4
,

where we used (1.3) to replace vL(x) with the Fourier coefficients v̂(k). Note that
v̂(k) = v̂(−k), and ax = V −1/2

∑

k eikx ak.
Recall that the number and momentum operator are defined as

NL :=
∑

k

a∗kak, PL :=
∑

k

ka∗kak. (2.3)

HL,n and PL,n coincide with the operators HL and PL restricted to the eigenspace
of NL with the eigenvalue n.
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Let us proceed following the original method of Bogoliubov. We make an ansatz
consisting in replacing the operators a∗0, a0 with c-numbers:

a∗0a0 ≈ |α|2, a0 ≈ α, a∗0 ≈ α. (2.4)

We drop higher order terms. We will write
∑′

k for
∑

k6=0.

HL ≈
∑

k

′
(

1

2
k2 +

v̂(0) + v̂(k)

V
|α|2

)

a∗kak

+
∑

k

′
(

v̂(k)α2

2V
a∗ka∗−k +

v̂(k)α2

2V
aka−k

)

+
v̂(0)

2V
|α|4. (2.5)

Then we replace α with ρ, setting

|α|2 +
∑

k

′
a∗kak = ρV,

and again we drop the higher order terms. Thus for n ≈ ρV we obtain

HL,n ≈ HL,ρ
bg :=

∑

k

′
(

1

2
k2 + v̂(k)ρ

)

a∗kak

+
∑

k

′ v̂(k)ρ

2
(

α2

|α|2 a∗ka∗−k +
α2

|α|2 aka−k) +
v̂(0)

2
V ρ2.

We perform the Bogoliubov rotation to separate the Hamiltonian into normal
modes:

a∗k = ckb∗k − skb−k, ak = ckbk − skb∗−k,

where

sk =
α√
2|α|





(

1−
(

ρv̂(k)
1
2k

2 + ρv̂(k)

)2
)−1/2

− 1





1/2

. (2.6)

and ck =
√

1 + |sk|2. We obtain

HL,ρ
bg =

∑

k

′
ωρ

bg(k)b∗kbk + EL,ρ
bg , (2.7)

where the elementary excitation spectrum of Hρ
bg is

ωρ
bg(k) =

√

1

2
k2(

1

2
k2 + 2v̂(k)ρ), (2.8)

and its ground state energy equals

EL,ρ
bg =

v̂(0)

2
V ρ2

+
∑

k

′ 1

2

(

ωbg(k)−
(1

2
k2 + ρv̂(k)

)

)

. (2.9)

Now, as discussed in Appendix A, the IES of HL,ρ
bg is given by

ερ
bg(k) = inf{ωρ

bg(k1) + · · ·+ ωρ
bg(kn) : k1 + · · ·+ kn = k, n = 1, 2, . . . }.

Note that (in any dimension)

(1) infk6=0
ωρ

bg
(k)

|k| = ccr > 0;

(2) limk→0
ωρ

bg
(k)

|k| = cs.

with ccr := inf
√

1
2 ( 1

2k
2 + 2v̂(k)ρ) and cs :=

√

ρv̂(0). Therefore, by Theorem A.4

(1) and (2) we have
7



(1) infk6=0
ερ

bg
(k)

|k| = ccr;

(2) limk→0
ερ

bg
(k)

|k| = cs.

Thus, the IES of HL,ρ
bg has all the properties described in Conjecture 1.1.

We can also compute that for small |k|

sk ≈
α√
2|α|

(ρv̂(0))1/4 |k|−1/2. (2.10)

Therefore, if Ψ denotes the ground state of (2.9), then

(Ψ|a∗kakΨ) = |sk|2 ≈
(ρv̂(0))1/2

2|k| .

The density of particles ρ equals

|α|2
V

+
1

V

∑

k

′
|sk|2. (2.11)

We expect that for large L, (2.11) converges to

ρ0 +
1

(2π)d

∫

|sk|2dk. (2.12)

3. Bose gas in dimension d = 1

Bosonic gas in dimension d = 1 seems to have different properties than in higher
dimensions. In particular, statement (3) of Conjecture 1.1 should be replaced by
(3)’.

Let us prove the statement (3)’. Consider first the system of n bosons in an
interval of size L, with ρ = n

L . For any m ∈ Z, define the operator

U := exp

(

i2π

L

n
∑

i=1

xi

)

.

Clearly, U is a unitary operator on Ls(R
n) satisfying

U∗PL,nU = PL,n + 2πρ,

U∗HL,nU = HL,n − 2π

L
PL,n +

(2π)2

2L
ρ.

Hence if Φ is a common eigenvector of the Hamiltonian and the momentum with

(HL,n − E)Φ = 0,

(PL,n − k)Φ = 0,

then

(HL,n − E)UΦ =
1

L
(−2πk + 2π2ρ)UΦ,

(PL,n − k− 2πρ)UΦ = 0,

Considering L → ∞, we see that the IES in thermodynamical limit is periodic in
k with the period equal to 2πρ.

Another peculiarity of dimension d = 1 is related to the formula (2.12). We
note that |k|−1 is integrable only in dimension d > 1. Therefore, for d = 1 (2.12)
diverges. Thus, the Bogoliubov approximation is problematic for d = 1 if we keep
the density ρ fixed as L → ∞. To our knowledge, (2.10) and the above described
problem of the Bogoliubov approximation in d = 1 was first noticed in [5].

Nevertheless, in spite of the breakdown of the Bogoliubov approximation, many
authors believe that the IES in d = 1 exhibits the behavior ερ(k) ≈ cs(k) for low
momenta, see e.g. [12], Chapter 6.
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4. Grand-canonical approach to the Bose gas

It was noted already by Beliaev [1], Hugenholz - Pines [7] and others that in-
stead of studying the Bose gas in the canonical formalism, fixing the density, it is
more mathematically convenient to use the grand-canonical formalism and fix the
chemical potential. Then one can pass from the chemical potential to the density
by the Legendre transformation.

More precisely, for a given chemical potential µ > 0, we define the grand-
canonical Hamiltonian

HL
µ := HL − µNL (4.1)

=
∑

k

(
1

2
k2 − µ)a∗kak

+
1

2V

∑

k1,k2,k3,k4

δ(k1 + k2 − k3 − k4)v̂(k2 − k3)a
∗
k1

a∗k2
ak3

ak4
.

The ground state energy in the grand-canonical approach is defined as

EL
µ = inf spHL

µ = inf
n≥1

(EL,n − µn). (4.2)

Note that the corresponding density ρ is given by

∂µEL
µ = −V ρ. (4.3)

Both EL,n and EL
µ are finite for a large class of potentials, which follows from a

simple rigorous result, which we state below.

Theorem 4.1. Suppose that v̂(k) ≥ 0, v̂(0) > 0 and v(0) < ∞. Then HL,n and
HL

µ are bounded from below and

EL,n ≥ v̂(0)

2V
n2 − v(0)

2
n, (4.4)

EL
µ ≥ −V

( 1
2v(0) + µ)2

2v̂(0)
. (4.5)

For kL ∈ 2π
L Z

d we define the IES in the box

εL
µ(kL) := inf{s : (s,kL) ∈ sp(HL

µ , PL)} − EL. (4.6)

For k ∈ Rd we define the IES at the thermodynamic limit

εµ(k) := sup
δ>0

(

lim inf
L→∞

(

inf
k′

L
∈ 2π

L
Zd, |k−k′

L
|<δ

εL
µ(k′L)

))

. (4.7)

Another natural definition would be:

ε̃µ(k) := inf
δ>0

(

lim sup
L→∞

(

sup
k′

L
∈ 2π

L
Zd, |k−k′

L
|<δ

εL
µ(k′L)

))

. (4.8)

This bounds from above the IES in the box in every window of diameter 2δ. Clearly,
εµ(k) ≤ ε̃(k). Although it is not obvious that ε̃µ and εµ are actually equal, we only
consider εµ(k) in this paper.

Now let us formulate some results and conjectures on the behavior of the IES.

Proposition 4.2. At zero total momentum, the excitation spectrum has a global
minimum where it equals zero: εL,n(0) = ερ(0) = 0 and εL

µ(0) = εµ(0) = 0.
9



Proof. Each EL,n is a non-degenerate eigenvalue of HL,n, and HL,n commutes
with the total momentum and space inversion. Thus each EL,n corresponds to zero
total momentum, and hence by (4.2) so does EL

µ . Hence εL,n(0) = εL
µ(0) = 0. �

Let us now formulate the conjectures about εµ(k) (analogous to the Conjecture
4.3 about ερ(k)):

Conjecture 4.3. We expect the following statements to hold true:

(1) The map Rd 3 k 7→ εµ(k) ∈ R+ is continuous.
(2) Let k ∈ R

d. If {Ls}s≥1 ⊂ R diverges to +∞, then for every sequence
ks ∈ 2π

Ls
Z

d which obeys ks → k, we have that εLs
µ (ks) → ε(k).

(3) If d ≥ 2, then infk6=0
ε(k)
|k| =: ccr > 0.

(4) There exists cs > 0 such that limk→0
εµ(k)
|k| = cs.

Throughout most of our paper, the chemical potential µ is considered to be the
natural parameter of our problem. If we want to pass to canonical conditions (fixed
density), then we need to prove that

eµ := lim
L→∞

EL
µ

Ld

exists and defines a differentiable, concave function of µ. Denote by µ(ρ) the unique
solution to the equation −∂µeµ(ρ) = ρ. Then ερ(k) = εµ(ρ)(k).

5. Grand-canonical version of the original Bogoliubov approach

Let us describe the version of the original Bogoliubov approximation adapted to
the grand-canonical approach. We follow e.g. Zagrebnov-Bru [16].

We make the replacement (2.4) and drop higher order terms:

HL
µ ≈ HL

bg,µ :=
∑

k

′
(

1

2
k2 − µ +

v̂(0) + v̂(k)

V
|α|2

)

a∗kak

+
∑

k

′( v̂(k)α2

2V
a∗ka∗−k +

v̂(k)α2

2V
aka−k

)

+
v̂(0)

2V
|α|4 − µV |α|2.

We perform the Bogoliubov rotation and obtain

HL
bg,µ =

∑

k

′
ωbg,µ(k)b∗kbk + EL

bg,µ, (5.1)

where the excitation spectrum is

ωbg,µ(k) =

√

(1

2
k2 − µ + |α|2 v̂(0)

V

)(1

2
k2 − µ + |α|2 v̂(0) + 2v̂(k)

V

)

(5.2)

and the ground state energy equals

EL
bg,µ =

v̂(0)

2

|α|4
V

− µ|α|2

+
∑

k

′ 1

2

(

ω(k)−
(1

2
k2 − µ + |α|2 v̂(0) + v̂(k)

V

)

)

. (5.3)
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Note that

ωbg,µ(k)−
(1

2
k2 − µ + |α|2 v̂(0) + v̂(k)

V

)

≈ −1

2

(

1

2
k2 − µ + |α|2 v̂(0) + v̂(k)

V

)−1

|α|4 v̂(k)2

V 2
.

Hence the term with
∑′ in (5.3) is second order in the interaction. Therefore,

keeping only first order terms we obtain

EL
bg,µ ≈

v̂(0)

2V
|α|4 − µ|α|2.

To find the lowest ground state energy for a given µ we compute

0 = ∂|α|2E
L
bg,µ ≈

v̂(0)

V
|α|2 − µ,

which gives µ ≈ v̂(0)
V |α|2. Thus

EL
bg,µ ≈ −

v̂(0)|α|4
2V

= − µ2V

2v̂(0)
.

Applying (4.3) we obtain µ = ρv̂(0). If we insert this into (5.3) and (5.2), we obtain
expressions identical to (2.9) and (2.8).

6. Infimum of the excitation spectrum in the squeezed states

approximation

In what follows we will always use the grand-canonical approach. We will drop
µ from HL

µ , εµ(k), etc.
In this section we describe an approximate method, which will give a rigorous

upper bound on EL and EL +εL(k). The main idea of this method is the use of the
so-called squeezed states. (See Appendix B for a brief summary of basic properties
of squeezed states).

Let α ∈ C and 2π
L Z

d 3 k 7→ θk ∈ C be a square summable sequence with
θk = θ−k. Set

Wα := e−αa∗0+αa0 , Uθ :=
∏

k

e−
1
2
θka∗

k
a∗−k

+ 1
2
θkaka−k

Then Uα,θ := WαUθ is the general form of a Bogoliubov transformation commuting
with PL. Let Ω denote the vacuum vector. Note that

Ψα,θ := U∗
α,θΩ

is the general form of a squeezed vector of zero momentum. Vectors of the form

Ψα,θ,k := U∗
α,θa

∗
kΩ

are normalized and have momentum k, that means

(PL − k)Ψα,θ,k = 0.

By the Squeezed States Approximation (SSA) we will mean applying the varia-
tional method using only vectors like Ψα,θ and Ψα,θ,k.

We define the SSA ground state energy in the box

EL
ssa := inf

α,θ
(Ψα,θ|HLΨα,θ).

For kL ∈ 2π
L Zd we define the SSA IES in the box

εL
ssa(kL) := inf

α,θ
(Ψα,θ,kL

|HLΨα,θ,kL
)− EL

ssa

11



and for k ∈ Rd we define the SSA IES in the thermodynamic limit

εssa(k) := sup
δ>0

(

lim inf
L→∞

(

inf
k′

L
∈ 2π

L
Zd, |k−k′

L
|<δ

εL
ssa(k

′
L)

))

.

Clearly, from the mini-max principle we obtain:

EL ≤ EL
ssa, EL + εL(kL) ≤ EL

ssa + εL
ssa(kL).

Conjecture 6.1. We believe the following statements to hold true:

(1) εL
ssa(kL) > 0 for all kL ∈ 2π

L Zd.

(2) εssa(k) > 0, for all k ∈ Rd.
(3) The map Rd 3 k 7→ εssa(k) ∈ R+ is continuous.
(4) Let k ∈ R

d. If {Ls}s≥1 ⊂ R diverges to +∞, then for every sequence
ks ∈ 2π

Ls
Z

d which obeys ks → k, we have that εLs
ssa(ks) → εssa(k).

Thus we conjecture that the Squeezed States Approximation does not capture the
behavior at the bottom of the IES predicted by Landau, in particular εssa(0) > 0.

7. A rigorous version of the Bogoliubov approximation

The method of SSA is still not very convenient computationally. In this section
we describe a less precise method of finding an upper bound to EL + εL(k), which
seems, however, more convenient in practical calculations. This method resembles
closely the original Bogoliubov method. It consists of similar steps: it introduces
a c-number α for the zero mode, it involves a “Bogoliubov rotation” and drop-
ping terms of higher order in creation and annihilation operators. In contrast to
the original Bogoliubov approach, our approach leads to a rigorous upper bound.
Therefore, we call it the Improved Bogoliubov Approximation (IBA).

For any L large enough we assume that the infimum of (Ψα,θ|HLΨα,θ) is attained.
Therefore, for any large enough L we can fix (αL, θL), where αL ∈ C and 2π

L Zd 3
k 7→ θL

k ∈ C, such that

EL
ssa = (ΨαL,θL |HLΨαL,θL).

We define for kL ∈ 2π
L Zd

εL
iba(kL) := (ΨαL,θL,kL

|HLΨαL,θL,kL
)− EL

ssa.

For k ∈ Rd we set

εiba(k) := sup
δ>0

(

lim inf
L→∞

(

inf
k′

L
∈ 2π

L
Zd, |k−k′

L
|<δ

εL
iba(k

′
L)

))

.

Clearly,

εL
ssa(k) ≤ εL

iba(k), εssa(k) ≤ εiba(k).

Again, we have a conjecture similar to the conjecture about the Squeezed States
Approximation:

Conjecture 7.1. We believe the following statements to hold true:

(1) εL
iba(kL) > 0 for all kL ∈ 2π

L Zd.

(2) εiba(k) > 0 for all k ∈ R
d.

(3) The map Rd 3 k 7→ εiba(k) ∈ R+ is continuous.
(4) Let k ∈ Rd. If {Ls}s≥1 ⊂ R diverges to +∞, then for every sequence

ks ∈ 2π
Ls

Z
d which obeys ks → k, we have that εLs

iba(ks) → εiba(k).
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In order to implement the above method, let us see that

(Ψα,θ|HLΨα,θ) = (Ω|Uα,θH
LU∗

α,θΩ),

(Ψα,θ,kL
|HLΨα,θ,kL

) = (a∗kL
Ω|Uα,θH

LU∗
α,θa

∗
kL

Ω).

The Hamiltonian after the Bogoliubov transformation can be Wick ordered:

Uα,θH
LU∗

α,θ = BL + CLa∗0 + C
L
a0

+
1

2

∑

k

OL(k)a∗ka∗−k +
1

2

∑

k

O
L
(k)aka−k +

∑

k

DL(k)a∗kak

+ terms higher order in a’s. (7.1)

Then we easily see that

(Ψα,θ|HLΨα,θ) = BL, (Ψα,θ,k|HLΨα,θ,k) = BL + DL(k).

If we require that BL attains its minimum, then we will later on show that au-
tomatically CL and OL(k) vanish for all k. Besides, we get that BL = EL

ssa and
DL(k) = εL

iba(k).
Note that it is natural to introduce the effective Hamiltonian

HL
iba := EL

ssa +
∑

k

εL
iba(k)b∗kbk, (7.2)

where bk = Uα,θakU∗
α,θ. The elementary excitation spectrum of HL

iba coincides with

the IES of the full Hamiltonian HL in the Improved Bogoliubov Approximation.
The method IBA seems especially convenient, not only as a means of obtaining

an upper bound, but also as the first step to a systematic perturbative treatment
of the Bose gas. We can use the effective Hamiltonian (7.2) as the main part of the
full Hamiltonian HL, treating the higher order terms dropped when defining (7.2)
as a perturbation.

8. Bogoliubov translation of the Hamiltonian

In the sequel we drop the superscript L.
We apply the Bogoliubov transformation in two steps. First we apply Wα :=

e−αa∗0+αa0 . We have Wαa0W
∗
α = a0 +α. Hence it suffices to displace the zero mode

and our Hamiltonian takes the form:

WαHW ∗
α = −µ|α|2 +

v̂(0)

2V
|α|4 (8.1)

+

(

v̂(0)

V
|α|2 − µ

)

(αa0 + αa∗0)

+
∑

k

(

1

2
k2 − µ +

(v̂(0) + v̂(k))

V
|α|2

)

a∗kak

+
∑

k

v̂(k)

2V

(

α2aka−k + a∗ka∗−kα2
)

+
∑

k,k′

v̂(k)

V
(αa∗k+k′akak′ + αa∗ka∗k′ak+k′)

+
∑

k1,k2,k3,k4

δ(k1 + k2 − k3 − k4)
v̂(k2 − k3)

2V
a∗k1

a∗k2
ak3

ak4
.

Before the displacement of the zero mode the Hamiltonian possessed global phase
symmetry. After the displacement, the Hamiltonian will still have it if we also rotate
the c-number α with the same phase as each operator ak.
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9. Bogoliubov rotation of the Hamiltonian

Next we perform the Bogoliubov rotation by Uθ. We set

ck := cosh |θk|, sk := − θk

|θk|
sinh |θk|.

Note that

UθakU∗
θ = ckak − ska∗−k, Uθa

∗
kU∗

θ = cka∗k − ska−k (9.1)

We have sk = s−k and ck = c−k =
√

1 + sksk.
The result of the rotation is:

B = −µ|α|2 +
v̂(0)

2V
|α|4

+
∑

k

(

k2

2
− µ +

(v̂(k) + v̂(0))

V
|α|2

)

|sk|2

−
∑

k

v̂(k)

2V
(α2skck + α2skck)

+
∑

k,k′

v̂(k− k′)

2V
ckskck′sk′

+
∑

k,k′

v̂(0) + v̂(k− k′)

2V
|sk|2|sk′ |2;

C =

(

v̂(0)

V
|α|2 − µ +

∑

k

(v̂(0) + v̂(k))

V
|sk|2

)

(αc0 − αs0)

+
∑

k

v̂(k)

V
(αs0cksk − αc0cksk) ;

O(k) = −
(

k2

2
− µ +

(v̂(0) + v̂(k))

V
|α|2 +

∑

k′

(v̂(k− k′) + v̂(0))

V
|sk′ |2

)

2cksk

+

(

v̂(k)

V
α2 −

∑

k′

v̂(k′ − k)

V
sk′ck′

)

c2
k

+

(

v̂(k)

V
α2 −

∑

k′

v̂(k′ − k)

V
sk′ck′

)

s2
k;

D(k) =

(

k2

2
− µ +

(v̂(0) + v̂(k))

V
|α|2 +

∑

k′

v̂(0) + v̂(k′ − k)

V
|sk′ |2

)

(c2
k + |sk|2)

−
(

v̂(k)

V
α2 −

∑

k′

v̂(k′ − k)

V
sk′ck′

)

cksk

−
(

v̂(k)

V
α2 −

∑

k′

v̂(k′ − k)

V
sk′ck′

)

skck.

The main intermediate step of the calculations leading to the above result is
described in Appendix C.
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10. Conditions arising from minimization of B

We demand that B attains a minimum. To this end we first compute the deriva-
tives with respect to α and α: The first derivatives with respect to α and α are:

∂αB =

(

−µ +
v̂(0)

V
|α|2 +

∑

k

(v̂(0) + v̂(k))

V
|sk|2

)

α

−
∑

k

v̂(k)

V
skckα,

∂αB =

(

−µ +
v̂(0)

V
|α|2 +

∑

k

(v̂(0) + v̂(k))

V
|sk|2

)

α

−
∑

k

v̂(k)

V
skckα.

Note that

C = c0∂αB − s0∂αB,

so that the condition

∂αB = ∂αB = 0 (10.1)

entails C = 0.
Computing the derivative with respect to sk, sk we can use

∂skck =
sk

2ck
, ∂skck =

sk

2ck
.

∂skB =

(

k2

2
− µ +

(v̂(0) + v̂(k))

V
|α|2 +

∑

k′

(v̂(0) + v̂(k′ − k))

V
|sk′ |2

)

sk

+

(

− v̂(k)

2V
α2 +

∑

k′

v̂(k′ − k)

2V
ck′sk′

)

(

ck +
|sk|2
2ck

)

+

(

− v̂(k)

2V
α2 +

∑

k′

v̂(k′ − k)

2V
ck′sk′

)

s2
k

2ck
;

∂skB =

(

k2

2
− µ +

(v̂(0) + v̂(k))

V
|α|2 +

∑

k′

(v̂(0) + v̂(k′ − k))

V
|sk′ |2

)

sk

+

(

− v̂(k)

2V
α2 +

∑

k′

v̂(k′ − k)

2V
ck′sk′

)

(

ck +
|sk|2
2ck

)

+

(

− v̂(k)

2V
α2 +

∑

k′

v̂(k′ − k)

2V
ck′sk′

)

s2
k

2ck
.

One can calculate that

O(k) =

(

−2ck +
|sk|2
ck

)

∂skB − s2
k

ck
∂skB.

Thus ∂skB = ∂sk
B = 0 entails O(k) = 0.
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All the above conditions can be rewritten using

fk : =
k2

2
− µ

+|α|2 v̂(0) + v̂(k)

V
+
∑

k′

v̂(k′ − k) + v̂(0)

V
|sk′ |2,

gk : = α2 v̂(k)

V
−
∑

k′

v̂(k′ − k)

V
sk′ck′ . (10.2)

Note that fk is real. Then:

∂skB = fksk −
gk

2

(

ck +
|sk|2
2ck

)

− gk

s2
k

4ck
,

∂skB = fksk −
gk

2

(

ck +
|sk|2
2ck

)

− gk

s2
k

4ck
.

and

sk∂skB − sk∂skB =
ck
2

(gksk − gksk).

This implies that

gksk = gksk. (10.3)

Note also that we can use fk and gk to write (without minimizing)

D(k) = fk(c2
k + |sk|2)− ck(skgk + skgk), (10.4)

O(k) = −2ckskfk + s2
kgk + c2

kgk. (10.5)

The condition (10.1) yields

µ =
v̂(0)

V
|α|2 +

∑

k′

v̂(0) + v̂(k′)

V
|sk′ |2 −

α2

|α|2
∑

k′

v̂(k′)

V
sk′ck′ . (10.6)

This allows to eliminate µ from the expression for fk:

fk : =
k2

2
+ |α|2 v̂(k)

V

+
∑

k′

v̂(k′ − k)− v̂(k′)

V
|sk′ |2 +

α2

|α|2
∑

k′

v̂(k′)

V
sk′ck′ . (10.7)

We will keep α2 instead of µ as the parameter of the theory, hoping that one can
later on express µ in terms of α2.

One can express the minimizing conditions in the following theorem.

Theorem 10.1. Suppose that µ > 0. Let the first derivative of B with respect to
α, α, (sk), (sk) vanish. Let fk and gk be given by (10.7) and (10.2) and let µ be
expressed by (10.6). Let k ∈ 2π

L Z
d.

(1) f2
k ≥ |gk|2.

(2) D(k) = 0 iff fk = 0.
(3) D(k) 6= 0 iff f2

k > |gk|2. Then sk solves the equation

sk = signfk
gk

|gk|

(

|fk|−
√

f2
k
−|gk|2

2
√

f2
k
−|gk|2

)1/2

, gk 6= 0

sk = 0, gk = 0.

(10.8)

We have then

D(k) = signfk

√

f2
k − |gk|2. (10.9)
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(4) We have
[

∂α∂αB ∂2
αB

∂2
αB ∂α∂αB

]

=

[

f0 g0

g0 f0

]

. (10.10)

(10.10) is positive/negative definite iff D(0) is positive/negative. Besides,

D(0) = 2signf0

√

v̂(0)

V
α2
∑

k

v̂(k)

V
skck

Proof. We can use (10.3) to rewrite (10.4) and (10.5) as

D(k) = fk(c2
k + |sk|2)− 2ckskgk,

O(k) = −2ckskfk + (|sk|2 + c2
k)gk.

The condition O(k) = 0 implies

2
√

1 + |sk|2skfk = (1 + 2|sk|2)gk. (10.11)

Hence

4(|sk|4 + |sk|2)(f2
k − |gk|2) = |gk|2. (10.12)

Therefore f2
k ≥ |gk|2.

If fk = 0, then gk = 0, and hence D(k) = 0.
By (10.12), f2

k = |gk|2 implies gk = 0. Hence fk = 0 and D(k) = 0.
If f2

k > |gk|2, then we easily derive (10.9), which shows that D(k) 6= 0 and the
sign of fk and D(k) coincide. �

Note that if we have D(k) < 0 for some k, then our method gives no useful
results. This is equivalent to fk < 0. Therefore, physically the only interesting case
of the above theorem corresponds to fk ≥ 0.

The positivity of (10.10) is a necessary condition for the existence of minimum
of B. Note that it implies that D(0) > 0.

Theorem 10.1 suggests the following iterative procedure for finding α, (sk) sat-
isfying the minimization condition. We start form sk = 0. Then, by (10.6),

µ =
v̂(0)

V
|α|2.

Inserting α and sk = 0 in (10.7) and (10.2) gives

fk =
k2

2
+ |α|2 v̂(k)

V
, (10.13)

gk = α2 v̂(k)

V
. (10.14)

Note that v̂(k) ≥ 0 implies that fk ≥ 0. Inserting (10.13) and (10.14) into (10.8)
we obtain

sk =
α√
2|α|









1−
(

v̂(k) µ
v̂(0)

1
2k

2 + v̂(k) µ
v̂(0)

)2




−1/2

− 1







1/2

.

D(k) =

√

k2

2

(

k2

2
+ 2v̂(k)

µ

v̂(0)

)

,

which coincide with the formulas for sk and ωbg,µ(k) obtained in the grand-canonical
version of the original Bogoliubov approximation (replace ρ in (2.10) and (2.6) with

µ
v̂(0) ).
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Let us compute the ground state energy in the Squeezed States Approximation.
Inserting (10.6) to the expression for B we obtain

B = − v̂(0)

2V

(

|α|2 +
∑

k

|sk|2
)2

+
∑

k

k2

2
|sk|2

+
∑

k

v̂(k− k′)− v̂(k′)− v(k)

2V
|sk′ |2|sk|2

+
∑

k

v̂(k′)

V

α2

|α|2 sk′ck′ |sk|2

+
∑

k

v̂(k− k′)

2V
ck′sk′cksk.

Using (10.6) again to eliminate |α|2 in favor of µ, and then computing the derivative
with respect to µ we obtain

−∂µB = |α|2 +
∑

k

|sk|2.

Therefore, the grand-canonical density is given by

ρ =
|α|2 +

∑

k |sk|2
V

. (10.15)

Note that it seems that in the thermodynamic limit one should take α =
√

V ρ0 eiφ0 ,
for some fixed parameter ρ0 having the interpretation of the density of the conden-
sate and a fixed phase φ0. Then one could expect that sk will converge to a function
depending on k ∈ Rd in a reasonable class and we can replace 1

V

∑

k

by 1
(2π)d

∫

dk.

In particular, we obtain (in the physical case of positive D)

D(0) = 2

√

v̂(0)ρ0
1

(2π)d

∫

dkv̂(k)skck.

Appendix A. Energy-momentum spectrum of quadratic Hamiltonians

Suppose that we consider a quantum system described by the Hamiltonian

H =

∫

Rd

ω(k)a∗kakdk, (A.1)

with the the total momentum

P =

∫

Rd

ka∗kakdk,

both acting on the Fock space Γs(L
2(Rd)). We will call the function ω appearing in

H the elementary excitation spectrum of our quantum system and we will assume
it to be nonnegative.

Clearly, the ground state energy of H is 0. In this appendix we will discuss
a possible shape of the energy-momentum spectrum, which in this case coincides
with the excitation spectrum. First note that the excitation spectrum of (A.1) is
not arbitrary. We will show that there is a large class of quadratic Hamiltonians
for which the excitation spectrum has the properties described by Conjecture 4.3
(3) or (3)’, and (4).

The results of this appendix strictly speaking do not apply to the Hamiltonian of
Bose gas, since it is not purely quadratic. Nevertheless, it applies to its Bogoliubov
approximation, which is quadratic, and which is believed to capture some features
of the full Hamiltonian in the thermodynamic limit. They are very simple and
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probably they mostly belong to the folk wisdom. However, we have never seen
them explicitly described in the literature.

Let Rd 3 k 7→ ε(k) ∈ R be a nonnegative function. We say that it is subadditive
iff

ε(k1 + k2) ≤ ε(k1) + ε(k2), k1,k2 ∈ R
d.

Let Rd 3 k 7→ ω(k) ∈ R be another nonnegative function. We define the
subbadditive envelope of ω to be

ε(k) := inf{ω(k1) + · · ·+ ω(kn) : k1 + · · ·+ kn = k, n = 1, 2, . . . }.
Clearly, ε(k) is subadditive and satisfies ε(k) ≤ ω(k).

Clearly, if ω(k) is the elementary excitation spectrum of a quadratic Hamiltonian,
and ε its subadditive envelope, then ε(k) is the infimum of its excitation spectrum.

Let us state and prove some facts about subadditive functions and subadditive
envelopes, which seem to be relevant for the homogeneous Bose gas.

Theorem A.1. Let f be an increasing concave function on [0,∞[ with f(0) ≥ 0.
Then f(|k|) is subadditive.

Proof.

f(|k1 + k2|) ≤ f(|k1|+ |k2|)

≤ |k1|
|k1|+ |k2|

f(|k1|+ |k2|) +
|k2|

|k1|+ |k2|
f(0)

+
|k2|

|k1|+ |k2|
f(|k1|+ |k2|) +

|k1|
|k1|+ |k2|

f(0)

≤ f(|k1|) + f(|k2|).
�

We can generalize Theorem A.1 to periodic functions.

Theorem A.2. Let f be an increasing concave function on [0,
√

d
2 ] with f(0) ≥ 0.

Define ε to be the function on Rd periodic with respect to the lattice Zd such that if
k ∈ [− 1

2 , 1
2 ]d, then ε(k) = f(|k|) (which defines ε uniquely). Then ε is subadditive.

Proof. We can extend f to a concave increasing function defined on [0,∞[, e.g. by

putting f(t) = f(
√

d
2 ) for t ≥

√
d

2 .

Let k1,k2 ∈ Rd. Let p1,p2 ∈ [− 1
2 , 1

2 ]d such that ki − pi ∈ Zd. Let p ∈ [− 1
2 , 1

2 ]d

such that ki + k2 − p ∈ Zd. Note that |p| ≤ |p1 + p2|. Now

ε(k1 + k2) = f(|p|) ≤ f(|p1 + p2|)
≤ · · ·
≤ f(|p1|) + f(|p2|) = ε(k1) + ε(k2),

where in . . . we repeat the estimate of the proof of Theorem A.1. �

Obviously, we have

Theorem A.3. Let ε0 be subadditive and ε0 ≤ ω. Let ε be the subadditive envelope
of ω. Then ε0 ≤ ε.

In the case of the Bose gas with repulsive interactions we expect that the ex-
citation spectrum may have resemble that of a quadratic Hamiltonian with the
properties described by the following theorem, which easily follows from Theorems
A.1, A.2 and A.3:

Theorem A.4. Suppose that ω ≥ 0 and ε is its subadditive envelope.

(1) If infk6=0
ω(k)
|k| = c, then infk6=0

ε(k)
|k| = c.
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(2) If lim infk→0
ω(k)
|k| = c, then ε(k) ≤ c|k|.

(3) Suppose that for some c > 0, we have ω(k) ≥ c min (|k|, 1). Then

lim inf
k→0

ω(k)

|k| = cs implies lim
k→0

ε(k)

|k| = cs.

(4) If ω(k) is periodic with respect to Z
d, then so is ε(k).

(5) Let ω(k) be periodic with respect to Zd, and, for some c > 0, we have
ω(k) ≥ c min

(

dist(k, Zd), 1
)

. Then

lim inf
k→0

ω(k)

|k| = cs implies lim
k→0

ε(k)

|k| = cs.

Appendix B. Bogoliubov transformations

In this appendix we recall the well-known properties of Bogoliubov transforma-
tions and squeezed vectors. For simplicity we restrict ourselves to one degree of
freedom.

Let a∗, a are creation and annihilation operators and Ω the vacuum vector.
Recall that [a, a∗] = 1 and aΩ = 0.

Here are the basic identities for Bogoliubov translations and coherent vectors.
Let

W := e−αa∗+αa .

Then
WaW ∗ = a + α,

Wa∗W ∗ = a∗ + α,

W ∗Ω = e−
|α|2

2 eαa∗ Ω.

Here are the basic identities for Bogoliubov rotations and squeezed vectors. Let

U := e−
θ
2

a∗a∗+ θ
2

aa .

Then
UaU∗ = cosh |θ|a + θ

|θ| sinh |θ|a∗,

Ua∗U∗ = cosh |θ|a∗ + θ
|θ| sinh |θ|a,

U∗Ω = (1 + tanh2 |θ|) 1
4 e−

θ
2|θ| tanh |θ|a∗a∗ Ω.

Vectors obtained by acting with both Bogoliubov translation and rotation will
be also called squeezed vectors.

Appendix C. Computations of the Bogoliubov rotation

In this appendix we give the computations of the rotated terms in the Hamil-
tonian used in Section 9.

Uθa
∗
kakU∗

θ = |sk|2

+c2
ka∗kak − ckska∗ka∗−k − ckskaka−k + |sk|2a∗−ka−k,

Uθa
∗
ka∗−kU∗

θ = −skck

+c2
ka∗ka∗−k − ckska∗kak − ckska∗−ka−k + s2

ka−kak;

Uθaka−kU∗
θ = −skck

+c2
kaka−k − ckska∗kak − ckska∗−ka−k + s2

ka∗−ka∗k;
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Uθa
∗
k+k′akak′U

∗
θ =

(

c0(|sk|2δ(k′) + |sk′ |2δ(k)) + s0ckskδ(k + k′)
)

a0

−
(

s0(|sk|2δ(k′) + |sk′ |2δ(k)) + c0ckskδ(k + k′)
)

a∗0
+higher order terms;

Uθak+k′a
∗
ka∗k′U

∗
θ =

(

c0(|sk|2δ(k′) + |sk′ |2δ(k)) + s0ckskδ(k + k′)
)

a∗0

−
(

s0(|sk|2δ(k′) + |sk′ |2δ(k)) + c0ckskδ(k + k′)
)

a0

+higher order terms;

δ(k1 + k2 − k3 − k4)Uθa
∗
k1

a∗k2
ak3

ak4
U∗

θ

= ck1
sk1

ck3
sk3

δ(k1 + k2)δ(k3 + k4)

+ |sk1
|2|sk2

|2 (δ(k1 − k3)δ(k2 − k4) + δ(k1 − k4)δ(k2 − k3))

+
(

sk1
ck1

(sk3
ck3

a∗−k3
a−k3

− s2
k3

a∗k3
a∗−k3

− c2
k3

ak3
a−k3

+ sk3
ck3

a∗k3
ak3

)

+sk3
ck3

(sk1
ck1

a∗k1
ak1

− s2
k1

ak1
a−k1

− c2
k1

a∗k1
a∗−k1

+ sk1
ck1

a∗−k1
a−k1

)
)

×δ(k1 + k2)δ(k3 + k4)

+
(

|sk2
|2(|ck1

|2a∗k1
ak1

− ck1
sk1

a∗k1
a∗−k1

− ck1
sk1

ak1
a−k1

+ |sk1
|2a∗−k1

a−k1
)

+|sk1
|2(|ck2

|2a∗k2
ak2

− ck2
sk2

a∗k2
a∗−k2

− ck2
sk2

ak2
a−k2

+ |sk2
|2a∗−k2

a−k2
)
)

×
(

δ(k1 − k3)δ(k2 − k4) + δ(k1 − k4)δ(k2 − k3)
)

+higher order terms.
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