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Effective models for excitons in carbon nanotubes

2nd of February, 2006

Horia D. Cornean', Pierre Duclos?, Benjamin Ricaud 3

Abstract

We analyse the low lying spectrum of a model of excitons in carbon
nanotubes. Consider two particles with a Coulomb self-interaction, placed
on an infinitely long cylinder. If the cylinder radius becomes small, the low
lying spectrum is well described by a one-dimensional effective Hamiltonian
which is exactly solvable.
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1 Introduction

In order to understand the quantum mechanics of carbon nanotubes, one has to
reconsider many classical problems in which the systems are restricted to low di-
mensional configuration spaces. The effects induced by these special shapes are sig-
nificant. For example, optical properties and electrical conductivity in nanotubes
and nanowires are highly influenced by their geometry.

In a periodic structure, bands of allowed and forbidden energies are char-
acteristic for non-interacting electrons. When applying an external perturbation,
such as light, electrons can only absorb the amount of energy which allows them
to jump from an occupied level of energy to a free one. In the particular case of a
semi-conductor, at low temperatures, the band of energies are either full (valence
bands) or empty (conduction bands). So the electron must absorb a fairly large
amount of energy to jump to the conduction band.

When the self-interaction is also considered, the mathematical problem of the
optical response becomes very difficult, and there are not many rigorous results
in this direction. Here is a sketchy description of what physicists generally do (see
for example the book of Fetter and Walecka [FW]:

1. Work in the grand-canonical ensemble, at zero temperature, and the Fermi
energy FEr is in the middle of an energy gap;

2. Switch to an electron-hole representation, via a Bogoliubov unitary transfor-
mation. The new non-interacting ground state is the tensor product of two
vacua. If before an excited state meant that an electron was promoted from
an occupied energy state from below Er to an empty state above E, in the
electron-hole representation it simply means that an electron-hole pair was
created;

3. Try to diagonalize in a way or the other the true, self-interacting many-body
Hamiltonian by restricting it to a certain subspace of ”physically relevant”
excited states; this usually amounts to formulate a Hartree-Fock problem;

4. Try to obtain an effective one-body Hamiltonian, whose spectrum approxi-
mates in some way the original problem in a neighborhood of Fp;

5. The bound states of this effective one-body operator are called excitons.
They describe virtual, not real particles;

6. Use the exciton energies to correct the optical response formulas derived in
the non-interacting case.

Now this one-body effective Hamiltonian is a complicated object in general. If one
makes a number of further assumptions like:

1. There is only one conduction band above Ep and only one valence band
below Ep;



2. The dispersion law of these two energy bands is replaced with paraboloids
(effective mass approximation),

then this one body effective Hamiltonian is nothing but the one describing the
relative motion of a positively charged particle (a hole) and a negatively charged
particle (electron), interacting through an eventually screened Coulomb potential.
Let us stress that this procedure is generally accepted as physically sound in the
case when the crystal is periodic in all three dimensions.

If a special geometry is imposed (i.e. the electrons are confined on long and
thin cylinders made out of carbon atoms) then the above procedure has to be
completely reconsidered. The problem is even more complicated, because two di-
mensions are on a torus and the band structure only arises from the longitudinal
variable. Even the position of the Fermi level moves when the radius of the cylinder
varies.

It has been argued by physicists [Pedl, Ped2] that one can still write down
a Hartree-Fock type eigenvalue problem which describes the excited states near
the Fermi level. This operator is a two-body one, which does not in general allow
a complete reduction of its mass center. A mathematically sound formulation of
this Hartree-Fock problem would be of certain interest, but it is not what we do
in this paper. We rather perform the spectral analysis of an operator which has
been conjectured by physicists as being the relevant one.

The main point in investigating these low dimensional structures, is that the
interaction between electrons is enhanced and gives much stronger exciton effects
than in three dimensions. This means that some new energy states appear deep
inside the forbidden energy band. The smaller the radius, the more important
these new energies are. That is because they allow photons with much smaller
energy that the band gap to be absorbed into the material.

We will therefore consider two charged particles living on a cylinder and in-
teracting through a Coulomb potential. As we have already pointed out above, this
operator models an effective Hamiltonian for excitons in carbon nanotubes, accord-
ing to [Pedl] and [Ped2]. Remember that it has nothing to do with real particles
living on the nanotube, the exciton being just a mathematical artifact describing
virtual particles. We also hope that our current results could also describe excitons
living in nanowires [Aki], or two particles in a strong magnetic field as in [BD].
Let us mention that our paper is an improvement and a continuation of a previous
work done in [CDP].

2 The mathematical model

Our configuration space is a cylinder of radius r and infinite length, space denoted
by Cr = R x rS*, S! being the unit circle. The coordinates on the cylinder are
(z,y) € (RxrS!) where x is the variable along the tube axis and y is the transverse
coordinate.



The two virtual particles live in the Hilbert space L?(C, x C,). We formally
consider the Hamiltonian

- A A A A
H" = —h2 1 T2 Y1 Y2
<2m1 + 2m2 + 2m1 + 2m2

) — V' (x1 — 22,91 — ¥2), (2.1)

where
—€1€2

E\/.Z‘z + 4r2 gin? (L)

r

Vilz,y) = (2.2)

(z4,y;) are the coordinates on the cylinder of the two charged particles, m; their
masses, and e; their charges. Here ¢ is the electric permittivity of the material. The
potential V" is the three dimensional Coulomb potential simply restricted to the
cylinder. We justify the expression of V" by Pythagora’s theorem. The cylinder is
embedded in R3. The distance p from one particle to the other in R? is:

p? = (z1 — x2)? + 472 sin® (y12;y2>
r

where |27 sin ('1“27”) | is the length of the chord joining two points of coordinate
y1 and yo on the circle.

Now consider the space
DO = {f S COC(CT X CT) : va172,/81y2,'—y1)2 eN (23)
|20 252 D D22 DI D)2 f (21,41, 22, 42)| < Ca gy }

of ”Schwartz functions along ” and smooth and 27r-periodic along y. Clearly D,
is dense in the Sobolev space H!(C?). Let us define on Dy the kinetic quadratic
form

1 2 2 1 2 2
t = A — - 2.4
olt] = 5o (19 012 + 10, 1) + 5 (10012 +19,17) (24)
and the quadratic form associated with the Coulomb potential on the cylinder:
tv[y] = [VVepll?, (2.5)

Do C {zp e L2(C?),
/2 V(w1 — 22,91 — y2) | (21, 22, Y1, y2) | dordradyidrs < 0o }
c2

Finally, define the form
tg :=tg —ty on the domain Dy. (2.6)

The sesquilinear form induced by t( is densely defined, closable, symmetric, non-
negative, and its corresponding selfadjoint operator Hy is —A with periodic bound-
ary conditions in the y variables. Its form domain is H'(C2), and is essentially
self-adjoint on Dy.



2.1 Center of mass separation in the longitudinal direction

mi1meo

We introduce the total mass M := mj + mo and the reduced mass p := P

Denote as usual with

mi1+ma

{ X = 7n111+nl2x27 T =1 — Ta,
Y=y, y=v1 — 12

then,
r1 =X+ 2z, 20 =X — Ftuo,
n=y+Y yp=Y

Unfortunately, for the y;, yo variables we cannot use Jacobi coordinates because
the transformation does not leave invariant the domain of the Laplacian, because
of the periodic boundary conditions. That is why we use atomic coordinates ¥y
and Y instead. In these new coordinates, the total Hilbert space splits in a tensor
product L?(R) ® L?[R x (rS')?]. More precisely, if we denote by

Uil : L2(R) ® LZ[R X (T‘Sl)ﬂ = Lz(cf)a [Uﬁlf}(whylyaj%yZ) = f(XaxaKy)

then it is quite standard to show that after this variable change we can separate
away the X variable and for f,g € U[Dg] we get:

(U U1 g) = ﬁ(é?xf, xg) + —— (O [, dvg) (2.7)

1
2m2

1 1

- (0,1 0v9) — (VT Vi),

Note that the subset U[Dp] has the same properties as Dy but in the new variables.
Therefore we can concentrate on the reduced form

0(F.9) = 5 (O £.0v9) (2.8)

1 1

1
densely defined on smooth enough functions in L?[R x (rS1)?], decaying along

the x variable. Consider the decomposition L?[R x (rS1)?] = @, o, L*(R x rSt)
implemented by the Fourier series

we
f(5U7Z/7Y) = Z \e/ﬁfkﬂ’(xay)

kEZ



where

R 1 27r ok
oz, y) = —— z,y,Y)e Y rdy
fk, ( y) \/% 0 f( Yy )

Then for our form t; we get:

th = D thy, (2.9)

kEZ

where tj, is

1 1 k2
th,(f,9) = ﬂ(ava 0z9) + ﬁ(ayf, dyg) + W<f’ 9) (2.10)

ik
— ——(f,8y9) = (VV(2,9) . VV(2,9)9).
mor
defined on a domain &,
Ee={f€C®RxrT) [a*DID] f(2,y)| < Capy, Yo, 3,7 € N}.

Now remember that we are only interested in the low lying spectrum of our original
operator. We will now show that for small r, only ¢, contributes to the bottom
of the spectrum. Indeed, let us concentrate on the operator

182 k> k

,ﬂ . 611

L S
2mor?2 mar?

defined on rS* with periodic boundary conditions. Via the discrete Fourier trans-
formation it is unitarily equivalent to:

2 2
PEL
where
1p? K kp_ 1 i ) (P
R LN U O | () BCRD

A simple calculation shows that both eigenvalues of the above matrix are positive;
denote with A_ the smaller one. Then the operator in (2.11) obeys:

1p2 k2 kp Ay A_K?
EB(— +— > -0+ S (2.13)

et 2ur2 " 2mor?  mor?

Using this in (2.10) we obtain the inequality



o (f, £) > min {1, A} i[@f, Baf) + (0yf.0,1)]
k2

r2

— (VVile, ) fo vV Vel y) f) + [hils
A_k?

r2

=tn, (f, f) +

17117 (2.14)

where £, is obviously defined by the previous line. Now one of the results obtained
in this paper will be that the specrum of the self-adjoint operator associated to
a form like #3,, is bounded from below by a numerical constant times —(In(r))2.
Hence if k£ # 0 and r is small enough, all ¢, will be positive and only t5, will
contribute to the negative part of the spectrum.

2.2 The self-adjointness problem

Due to (2.7), (2.8), (2.9) and (2.14), it is clear that it is enough to concentrate
on tp,. If we can prove that it is bounded from below, then all other forms with
k # 0 will also have this property, and the total Hamiltonian will be a direct sum
of Friederichs’ extensions. Because we can anyway scale the masses and charges
away, and in order to simplify the notation, let us consider the sesquilinear form:

T1(£,0) = 51(0.1,0:9) + (0,F.0,9)] ~ (Vo 9) ./ Vo))

=:to(f,9) —tv(f,9) (2.15)
on
&= {f € COC(R X TT) |an£D;jf(x7y)| < Caﬁa 04757’)’ € N} )
now where V,. is as in (2.2) but with ejeq = —1.

We will now construct a self-adjoint operator out of this form.

Proposition 2.1. The form ty is a relatively compact perturbation of to, with
relative bound 0. Thus the formAt:; is bounded from below, closable, and the closure
defines a self adjoint operator H™ whose form domain is the Sobolev space H(C,.).
Moreover, oess(H") = [0,00).

Proof. We identify the cylinder C, with R x [—rm, r7]. For every o > 0 we define
H(C,) to be the set of all functions which (at least formally) can be expressed as:

1 / ikx+imy/r ¢
T,Y) = 5—F= e m(p) dp,
fe =gz S [ o)

> R(1 + [l + [m*)| fn(p)*dp < o0 (2.16)
meZ



Let x be the characteristic function of the interval [—r/2,r/2]. Since near
the boundary of the strip V;.(z,y) - (1 — x(y)) is bounded, we only have to look at
V(z,y) := V(z,y) - x(y). Then we can find a constant C' such that everywhere in

C, to have
~ C

Viz,y)| < ——nu.
Vel s

Denote with p := /22 + y2. Choose a function x; € C§°(R) with support in
(—3r/2,3r/2), such that xx1 = x. Then the operator of multiplication by x1 is
bounded from H%(C,) to H*(R?) and vice versa, because it does not touch the
boundary (the proof of this fact is more or less standard). Moreover, if —A is the
operator associated to ¢y, then we have

HoC,) = (A +1)"/2L2(C, ).
Note that £ is dense in any H*(C,.). Moreover, for every ¥ € £ we have

N 1
(¥, Vi) p2(c| < Clxae, ;X1¢>L2(R2)~ (2.17)

We have that x1% € S(R?). Then we can write

(s (1 p)xad) @) = /O ’ /0 B (psin(0)(0.0) - ¥ (p. 0)dpdd

and after integration by parts in the radial integral we obtain

X1, (1/p)x19) L2 (r2)

T /0 ﬁ /ooo{a”[X1(pSin(9)W(Pv 0) - x1(psin(9))v(p, 0)]}pdpdf.  (2.18)

Then using the estimate |9,(x1%)| < |V(x1%)|, and with the Cauchy-Schwarz
inequality:

v, (1/p)x1v) 22y < Cllxa¥llLz@2) IV (x19)|| L2 r2)
< const||y|[rz2(c,) 1Pl (c,)- (2.19)

Now for an arbitrarily small € > 0 we have

(0, Vi) r2e| < (Cr/)|¢l[72(c,) + Cr e to(e, ),

where C; is just a numerical constant. The density of £ in H!(C,) finishes the
proof of relative boundedness, and we can define H” as the Frederichs extension.



Until now we have shown in an ellementary way that /V,(—A + 1)~/2 is
bounded, but one can do much better than that. In [Bo] it has been proven a two
dimensional version of an inequality of Kato, which states the following:

I(1/4)*
4m2

(¥, [x| ') f2re) < (W, V=AY 2 (r2). (2.20)
This inequality immediately implies that /V, : H'/%(C,) — L*(C,) is bounded.
Now let us show that the operator /V; H'/2(C,) — L?(C,) is compact. We will
in fact prove the sufficient condition that the operator T':= |x|~*/2(=A +1)~1/2
defined on L?(R?) is compact.

Indeed, let us denote by x, the characteristic function of the ball of radius
n > 0, centred at the origin in R2. Then we can write:

T = xn(x)Txn(=A) + [(1 = xn) R)IT + xn (X)T[(1 = xn) (=A)]-

First, the operator x,(x)Txn(—A) is Hilbert-Schmidt (its integral kernel is an
L?(R*) function), thus compact. Second, the sequence of operators [(1 — x,,)(x)]T
converges in norm to zero. Third, the sequence x,(x)T[(1 — xn)(—A)] can be
expressed in the following way:

Xn ()T = xn(=A)] = {xa () x| 72 (A +1) 7V (A + 1) V41— x0) (- A)],

where the first factor is uniformly bounded in n, while the second one converges
in norm to zero. Thus 7" can be approximated in operator norm with a sequence
of compact operators, hence it is compact.

Therefore V. is a relatively compact form perturbation to —A, hence the
essential spectrum is stable, and the proof is over. O

2.3 An effective operator for the low lying spectrum

We will show in this section that at small r, the negative spectrum of Hr can be
determined by studying a one dimensional effective operator HJ;. It is natural to
expect that the high transverse modes do not contribute much to the low region
of the spectrum. .

First, we separate H" into different parts taking advantage of the cylindrical
geometry, that is to say, we represent H” as a sum of orthogonal transverse modes
using the periodic boundary conditions along the circumference of the cylinder.
Second, we analyse which part is relevant when the radius tends to zero.

We recall that H” is formally given by H" = f% — AQ” — V.. in the space
L?(C,) ~ L*(R) ® L?(rS'). The domain contains all 1) € H*(C,.) with the property
that in distribution sense we have

A, A,
(7 - w) ¢ e L*(C,). (2.21)



This does not mean that the domain is H?(C,.) because V. is too singular at the
origin.

Our problem has two degrees of freedom. We consider the orthonormal basis
of eigenvectors of —% with domain H2,.((0,27r)) ~ H?(rS!). Here, the Sobolev
space H2,.((—mr,7r)) denote functions which are 27r-periodic with first and sec-

per
ond derivatives in the distribution sense in L2. We can write

_%: i B,

n=—oo

where the one dimensional projectors II], are defined by

1 .
T = (G e () = o=e™F and By = o5 ne 2,

We now introduce a family of orthogonal projectors

I =1xII

no’

(2.22)

which project from L?(C,.) into what we call the n** transverse mode. The operator
HT™ can be split as follows:

H = S I HL, = ST H @ () (al) + 32 B © () (), (2:23)

n,m n#EmM

where the sum is a direct sum, since the projectors are orthogonal. By a natural
unitary identification, we can work in a new Hilbert space:

H = 1?Z; L*(R)], H 2P = {tntnez, ¥n € LA(R). (2.24)

Therefore our original operator is an infinite matrix now, {Hy, m }n,mez Wwhose
elements are operators in L?(R).

If n # m, the only contribution comes from V,., and the corresponding oper-
ator is a multiplication operator given by (x # 0):

1 T

Vom (@) = o Vi(z,y)e ™ wdy 2z #0. (2.25)

—T7r

If n = m, then the corresponding diagonal element is given by the operator:

T Aw T L2
Hn = 2 ‘/eﬂ" 27,,27 (2.26)
where Vg is deduced from V7, when m = n and is given by
Vo ( )——1 /W V(z,y)d (2.27)
x) = x . .
eff o ). yy)ay

10



Finally, let us introduce a last notation for what will be our effective one-dimensional

comparison operator:
1 d?

off 1= Sy ke Ve (2) (2.28)
and note that )
n

H' = H’. —. 2.29

n eff + 22 ( )

One can see that for n # 0, the diagonal entries of our infinite operator valued
matrix are pushed up by a term proportional with 1/r2. Thus a natural candidate

for a comparison operator for the negative spectrum of Hr is HZ. In the next
section we will perform a careful study of this operator.

3 Spectral analysis of H;

We now want to study the spectrum of the operator H; when r becomes small.
We recall that:

1 d?
Hiy = Ry Vo ()
where .
Virla) = 5o [ —uy
€
2mr ) 22 + 4r2? sin® 2%

with form domain Q(H';) = H'(R). We are going to use perturbation theory
around r = 0, which will turn out to be quite a singular limit. The strategy is to
approximate the form associated to the potential V;(z) around r = 0 by another
quadratic form which provides a solvable approximation.

Let us define the sesquilinear form on S(R) (later on we will show that it is
bounded on H!(R)):

Co(f,9) =~ /ooo In(2z) - [f'(2)g(x) + f(2)g (z)|do (3.1)

0 [ —_
i / In(=22) - [f'(x)g(x) + f(2)g (z)]de. (3.2)

— 00

Note that up to an integration by parts, and for functions supported away from
zero, we have Cy(f,g) = (f, ﬁg> But this is of course not true for functions which
are not zero at the origin.

The main result os this subsection is contained in the following proposition:

Proposition 3.1. Forr < 1 and for every f € H'(R) we have the estimate

(FVih) = =2() |FO)2 +Col£, )+ 0 (7)) Il (33)

11



Proof. The argument is a bit long, and we split it in several lemmas. Let us start
by listing some of the properties of Vj;. First note that it scales like a ”delta
function”, i.e. it is homogeneous of order —1:

~Ver (=), (34)

The next observation is that due to the integral with respect to y it is much less
singular than V.

Lemma 3.2. The behaviour of V)i (x) is logarithmic at 0.

Proof. There exists a constant ¢ > 0 large enough such that for every |y| < 7 and
x € R we have
Lo o 2 z? 2 2 2
S@+y7) < - Hsin®(y) < e(@” +y7).
Therefore, at small |z|, V.j; behaves like:
3 1 - [ 72
Vi (z N/ —————dy=In| - +\/—+22| —In(z
720 —In(|z|) + O(1). (3.5)
O

We now define on R a comparison function Y, (z) := and we also

1
Va244ar?®
denote by Y, the associated quadratic form defined on H*(R).

For the following, let us recall an important Sobolev estimate in one dimen-
sion,

£l o m) < comst - || fll31(w) (3.6)

which comes from the fact that

1@< = [ 10+ 10+ 07y < conse(11+ 1) G

Lemma 3.3. We have the following properties:
(i) Ve = Y1, V() = Yi(@) = O(|2|°) for |z| > 10, and

Vit — Yl ) = In(4); (3.8)

(i) (f, (Vi = Vo) f) = (@) [F(0) + O fl3p ) ¥r < 1.

12



Proof. (i). To show that V}, > Y7, one uses [sin(-)| < 1. The second estimate for
|z] > 10 follows from:

_1 1
1|1 [ 4sin? ¥\ ° 4\ "2
Vi (z) — Y1 (x) = Tl %/_ <1+ > 2) dy—(l-i-ﬁ)

2sin2 ¥
—i<1_i/ S;n Liy+ O™~ 1+ 5+ O -4)>,

|| 27

= O(le| ), |l > 10. (3.9)

Before computing the L* norm of (3.8), let us notice that none of the terms is in
L'. We first integrate over x and get:

1
YY1 // — dydx
Ve =¥ lr = . f Qﬁm o T
:—7/ In(sin y)dy, (3.10)
T Jo

then we do the integral with respect to y:

1112+/2 lm(simy)der/2 ln(cosg)dy
0 2 0 2

/2 In(siny)dy =

0

In(2) +2 /0Z In[sin y|dy + 2 /0Z In[sin(7/2 — y)]dy

In( +2/ ln[smy]derZ/2 In[sin y]dy

1

=-3 " 1n(2), (3.11)

so (3.8) is proved.
Let us now prove (ii). We have due to the scaling properties:

Ve =¥00) = 1 [ (Gl =Yola/ml(@)Pda
= [0k =¥ @) ) P (3.12)

Then, we substract the term ||V, — Y1||r: - |£(0)]? = In(4) - | £(0)|? which gives

(F, (Vi = Yo) ) = n(4) - | (O) =
- /R (Ve = Y1) (@) { [£(r2) = FOIFra) + [FGra) = FO)F(0) fd. (313)

13



Let o € (0,1) a real number. We split the above integral in two regions: |z| < r~¢
and |z| > r~. We have, using (3.6):

[, V=@ e) = 1) (3.14)
<2||fl3a / |(VE — Y1) (z)|da
|| >r—o
1
< Hfll%a /x|>ra wdm if r=>10
<O ) - |If 113, (3.15)

For the region 0 < 2 < r~ (and similarly for the other one), we can write:

[ k=@l — 0 ) (3.16)
= /OT (Ve = Y1)() - ‘/Om f'(t)dt‘ | f(rz)|dz

11—«

< IV = Vil - 1]l - /O (1)t

and the Cauchy-Schwarz inequality yields:

Tl—a

| (@)]dt <773 fllzer.
0

Then we set « as the solution of (1 — «)/2 = 4« which gives o = O

1
5

We now concentrate ourselves on Y,. when r is small. For the next two lemmas,
we need to introduce the the following caracteristic function:

1 ifjrl <1
x(@) { 0 otherwise - (3.17)

Then we have the following lemma:

Lemma 3.4. Consider the self-adjoint operator of multiplication by In(] - |)x
defined on its natural domain in L*(R). This operator is relatively bounded to
P := —id/dx, with relative bound zero.

Proof. Indeed, In(|z|)x(|z|) (pz +iA)~1, A > 1 is Hilbert-Schmidt since we have,
from [RS3, XI.3]:

(] - Nx (pe + i)~ s < const - [[In(] - x|z (- +iA) 7|2
const

<5 (3.18)
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Note that by a similar argument as the one in (3.6) we get the estimate:
const
VA

Then a standard argument finishes the proof. O

[(pe + i) "l 2mpe <

(3.19)

We can now characterize the form Cy introduced in (3.1):

Lemma 3.5. The quadratic form induced by Cy admits a continuous extension
to HY(R). Moreover, Cy is infinitesimally form bounded with respect to the form
associated to p2 = —d?/dx?.

Proof. Fix some € € (0,1). Then for every f € S(R) we can write:

0

Co(f. f) = —/Oooln(%)~(dz|f|2)(~’v)dw+/ In(=22) - (do| f|*)()da

—0oQ

:/ In(—22) - (dg| f|*) (x)dz — /0 In(22) - (do| f[*) () dw

—&

1
+1n(2e) (If ()] + |f(—e)*) + /R\[ el |f () dz. (3.20)
First we have
1 1
— | f(x)Pdz < =||f]2.
L @< 2
Then using (3.19) we have
const
sup |£(t)] < . NS, 3.21
te]g'f( )| iy lI(p. )/l (3.21)

which takes care of the terms containing f(+e).
The remaining two integrals can be treated with the following argument:

/06 In(2z) - (do| f|?) (2)d

<2[x 2 [ DAl <

<2 / @) 1f(@)] - |f(@)lde
const

VA

where in the second inequality we used the Cauchy inequality, while in the third
inequality we used (3.18).

These estimates allow us to find two constants A and B (growing when A
grows, such that:

const

VA

[Co(f Pl < 111+ AN+ BIAPE.
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But we use the inequality ||f|| ||| < s I[f/|* + AAl| f]|?, which finally allows us
to say that for any 0 < a < 1 we can find b > 0 such that

Co(f, /)l < allpafIP + b1 £, (3.23)

and the proof is over. O

The final ingredient in proving Proposition 3.1 is contained in the following
lemma:

Lemma 3.6. Recall that Y,(x) = (2% + 4r2)~Y/2. Then for every r < 1, and for
every f € S(R), we have the estimate:

(Vo) = =210(2r) - [FO) 2+ Co(£, 1)+ O (rF) - 1 f s sy
Proof. Integrating by parts we obtain:
(f.Ynf) = —2In(2r)|F(O)?
— [ e V) @@ + )@l

0

" / In(—z + Va2 +4r2) - [f'(2) f(2) + f(2) f'(2)]dz (3.24)

—0o0

and:

(£,Yof) = Co(f, [) +2In(2r) - |[£(0)] = (3.25)
_ /0 In(z + Va2 + 42) — n(22)] (da] f(2)[2)da

+/ (=2 + /22 + 4r%) — In(—22)] (da|f(z)[2)dz.

(3.26)

The idea is to show that the last two integrals are small when r is small. We only
consider the first integral, since the argument is completely analoguous for the
second one.

Fix some 0 < ae < 1 (its optimal value will be chosen later), and assume that
r is small enough such that r'=% < 1/10. We split the domain of integration into
two regions: one in which x > r“, and the other one where x < r*. For the first
region we have:

1+4/1+42%
22 4 47r2) —In(2z) = In —Y—— = O(r?/2?). (3.27)

In(z + 5
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Then by integration, and using (3.6) together with the Cauchy inequality, we get:

/ OO In(z + Va2 + 42) — n(22)]f (2)F(@)da

< £ [l

/Oc[ln(x + Va2 +472) — In(2x)]f'(z)dx

a

o

1
0o 2
< (/ In(z 4+ Va2 + 4r2) — ln(2x)]2dx> | £ 117,
T
< O3 f 1. (3.28)
For the region where x < r®, we use the monotonicity of the logarithm and write:

|In(z + Va2 +4r2) — In(22)| < |In(z + Va2 + 4r2)| + | In(22)|

< |In(27r)| + | In(2x)|. (3.29)

Then we can write

/07" [In(z + Va2 + 4r2) — In(22)]f' (z) f (x)dz

< const - || f[34 </
0

Compairing (3.28) and (3.30), we see that we can take « arbitrarily close to 1. In
particular, we can find some « such that 2 — 3a/2 > 4/9 and /2 > 4/9 and we
are done. O

1
2

[In(2z) + 1n(27")]2dx> =0(r?

o

nrl) [ flFa-  (3:30)

We can now conclude the proof of Proposition 3.1 by putting together the
estimates from Lemma 3.3 and Lemma 3.6.
O

3.1 A solvable comparison operator Hg

Remember that we are interested in the negative spectrum of Hlg, operator given
in (2.28). Lemmas 3.2 and 3.4 tell us that its operator domain is H?(R), while the
form domain is H!(R). Proposition 3.1 indicates that a good approximation for
H7; at small r would be the operator formally defined as

1
=]

1
He = —p2 +2In(r)s —

5 (3.31)
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Of course, as it is written above Hc makes no sense. It has to be understood in
the following way: consider the sesquilinear form on S(R) given by

to(f,9) = 5{"9") +21n(r) F(0)9(0) - Co(f.9) (332)

A standard consequence of (3.21) and (3.23) is that the quadratic form associated
with t¢ is closable, bounded from below, and the domain of its closure is H!(R).
Then H¢ is the self-adjoint operator generated by t¢, and its operator domain
D¢ is characterised by:

D¢ :={¢ € H'(R) : |tc(p, )| < const ||¢]|, Vo € HY(R)}. (3.33)
Moreover, if ¢ € D¢, then we have the equality:

to(o,9) = (¢, Hey), Vo€ H'(R)}. (3.34)

Another representation for 1) € D¢ is that there exists fy, = Hoy € L?(R) such
that the distribution v” is a regular distribution on R\ {0} and is given by:

élw(z) —2fy(a). (3.35)

One important consequence is that ¢’ € H!(R\ {0}), and %’ is continuous on

R\ {0}.

Let us now introduce the parity operators Py and P_

fw) % f(=2)
2

¥'(a) = -2

Pr:H'(R) = H'(R), f(z)— (Pef)(z) =

We have that P, + P_ = 1. We will call RanP, the even sector and RanP_ the
odd sector. The following lemma is an easy application of definitions, and we give
it without proof:

Lemma 3.7. We have that tc(Pyf,Prg) = 0 for all f,g € H*(R). Then the
domain D¢ of He is left invariant by Py; moreover, Ho commutes with Py.

(3.36)

|
A standard consequence of the elliptic regularity (see also (3.35)) is the fol-
lowing lemma, given again without proof:

Lemma 3.8. The eigenvectors of He belong to C*°(R\{0}).

|
A less obvious result is the following characterisation of D¢:
Lemma 3.9. Every i in Do obeys the following boundary condition at 0:
1(__ _ /
lim w +21In(r)e(0) — 2In(2e)w(0) | = 0. (3.37)
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Proof. Now remember that ¢’ is continuous outside the origin if ¢ € D¢, so ¢'(+e)
makes sense. Moreover, for every ¢ € H!(R) we have:

% /R &' (2)y (x)dz + 21n(r)@(0)(0) — Co(¢, ¥) = (¢, Hoh). (3.38)

We can write for > 0 (see (3.35)):

v =+ [y =vw -2 [ (M4 g0 ay

and then for x close to 0 we have:
[¢' (x)] < const + 2| In x| |[1)]]s0- (3.39)

The same estimate is true for negative x near 0, and together with the estimate
(3.6) it follows that ¢’ diverges at 0 not faster than a logarithm.
Now we can integrate by parts outside the origin and write:

/ P ()d (3.40)

— S (~e) - %qb(zw“(x)dx—qb(em / O (@

[ Ty @

where the last integral will converge to zero with e.
After a similar integration by parts we obtain:

0 5
co<¢,w)=/ 1n(—2$)-(dm($1/)))(m)dw—/0 In(22) - (dz(¢0))(2)dx

—&

+n(2e) (A +S) + [ S @4

||

Following the reasoning in (3.22), one can prove that :

/0 In(22) - [do (G0 (x)d “=" O3 | Ine]) ||l lpa ][] e

and thus:

Col0.4) "= (22) () + FAw(-2)) + [ o Fw(e)ds

R\[—¢,¢] |$|
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Putting (3.42) and (3.40) in (3.38), and using (3.35), we eventually get:

tig |3 (FCT0/(-2) - 5V + 20)070(0

—In(2¢) (8= (e) + d(—e)v(—2) )| =0, (3.43)

The last ingredient is the embedding H'(R) € C*/27%(R), and the estimate (3.39)
which allows us to simplify the limit:

— [1#’(8) —¥'(e)

lim 6(0) 5 +21In(r)(0) — 21n(25)¢(0)} =0 (3.44)

for all ¢ € H'(R). The lemma is proved. O

3.2 The eigenvalues and eigenvectors of H

In this subsection we give analytic expressions for eigenvalues and eigenvectors of
H¢ corresponding to the negative, discrete spectrum; much of the information we
need about special functions is borrowed from [L]. We want to have the same formal
expression for our eigenvalue problem outside z = 0 as in that paper, namely

d? 1 a
—Y — -+ —U = 0
szw 41/J |z|¢
where 1) will be an eigenfunction with an associated eigenvalue F = —ﬁ. Let us
now do this in a rigorous manner.
We want to implement the change of variables x = %az, a > 0, which

amounts to defining a unitary operator on L?(R):

2
U =[5 vz, W0 =2 vz a9
Now assume ¢ is a normalized eigenvector for Ho satisfying
Hep=FE¢, E<O. (3.46)

Instead of solving the above equation, we will reformulate it in terms of ¥ = Uy ¢,
and ¢ = Uﬁ/ld). To do that, we need to fulfill two conditions. The first one is:

2 «

Uw HU ' )(2) = —[=¢"(2) = =0 ()] = BY(2), 2#0, or

B
9(2) — 19(2) + fue =0, z#0, B s (347)

The second thing is to see what condition at z = 0 should ¥ obey in order to be
sure that Uy ) is in the domain of He. If we replace ¢ in (3.37) by ¢ = Uy ¢,
then we get the modified condition:
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lim E 1/’/(78)2* YGEE) L o m(ry(0) 21n(25)1/1(0)} —0 (3.48)
lim [w +a(lnr — ln(as))w(())] = 0. (3.49)

Therefore we reduced the problem of finding the eigenfunctions and eigenvalues
of He to solving the ordinary differential equations in (3.47), with the boundary
condition given in (3.49). We will see that L? solutions can be constructed only if
« obeys some conditions.

A priori, @ can be any positive real number. First assume that « is not a
positive integer. Then if we solve (3.47) for z > 0, we see that the only square
integrable solution at +oo is the one given by a Whittaker function:

Wa1 (z2) = zeféZU(l —,2,z), (3.50)

where U is the confluent hypergeometric function or Kummer function, see [AS].
If a is a positive integer, the solution is obtained as the limit of W, 1(z) when a
tends to a positive integer N and get:

. a1
algljlv Woi(z)=e"2 ZNL}VA(Z) (3.51)

where LY, , is an associated Laguerre polynomial.
We denote with I'(z) and 9(z) = I''(2)/T'(2) the usual gamma and digamma

functions. We have the following first result:

Proposition 3.10. (i). All negative eigenvalues of Ho are nondegenerate. The
eigenfunctions of Ho are also eigenfunctions of P..

(ii). There exists an infinite number of odd eigenfunctions ¢oqak, k € Zy,
corresponding to every o € {1,2,...}.

(iii). There also ezists an infinite number of even eigenfunctions Geyen k,
k € Zy, each corresponding to a certain oy, € (k — 1, k) for every k € Z .

Proof. (i). Choose any eigenfunction ¢ of He corresponding to E < 0. Make the
change ¢ = U‘;,lqb, and then look at the associated differential equation:

¥(2) ~ 1(2) + L) =0, = #0. 1= 1 (3.52)
lim w +a(lnr — In(ae))(0)| = 0. (3.53)

First assume aw = N € Zy. The theory of ordinary differential equations insure
the existence of two constants C; and C5 such that

1, 1
P(z) = Cle_EZZNL}V_l(z), z >0,

1
P(z) = CQG%ZZNLJIV_I(—Z), z < 0. (3.54)
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By inspection (and by continuity) we get that ¢¥(0) = 0. If we put ¢ in (3.53),
and using the explicit form of the Laguerre polynomials, we get that the boundary
condition is fulfilled only if Cy = C which amounts to ¢ (z) = —1(—=z), i.e. there
is one and only one solution which is also odd.

Now assume « ¢ Z . The theory of ordinary differential equations insure the
existence of two constants C'3 and Cy4 such that

U(z) = CsW, 1(2), 2>0,
Y(z) = CaW, 1 (—2), =<0 (3.55)

By inspection we see that Wa,% (0) = ﬁ = 0, hence by continuity at zero we
must have C5 = C4y, hence ¢(z) = 9(—z) and the eigenfunction must be even.

(ii). The proof is already contained in (i), since the boundary condition is
trivially fulfilled for odd functions. There is exactly one eigenfunction, an odd one,
coresponding to every a € Z.

(iii). We saw in (i) that if there are eigenfunctions corresponding to o & Z .,
then they must be even. In order to get all possible a’s which are compatible with
the boundary condition (3.53), we compute (note that ¢’ is odd):

1
and using the explicit expression of these special functions we obtain the condition
on a:

flayr) ::¢(1—a)+2y+%—lna+lnr20. (3.57)

where 1 here means the digamma function and v is Euler’s constant. Since the
digamma function is stricly increasing from —oo to 400 on each interval of the
form (—m,—m + 1), m € Z,, one can easily see that f(-,r) is stricly decreasing
from 400 to —oo when « varies in an interval of the form (k — 1,k) for every
k € Z.. Therefore we have a unique solution ay € (k — 1,k) of the equation
f(ag,r) for every k € Z,. The proposition is proved.

O

The previous proposition stated that only the eigenvalues from the even sector
can vary with r. Let us now further investigate this dependence.

Corollary 3.11. (i). The ezcited states with even parity tend to those with odd
parity when r is small. More precisely, for k > 2, we have that lim,_goap =k —1;
(ii). For k = 1, we have the following asymptotic behavior of the ground state:

1

*m{l +o,(1)}, Ei(r) = —2[In(r)2{1 + o.(1)}. (3.58)

ay(r) =
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Proof. (i). The limit follows easily from the properties of the digamma function.
(ii). We apply the implicit function theorem. Define the function

2

Fla,y) := 1+ 202y + v(1—a) —In(a)] 7

for (o, ) in a small disk around the origin in R2. This function is C! near (0,0),
(0oF)(0,0) =2, and F(0,0) = 0. Then for every y > 0 small enough there exists
a(y) > 0 such that F(a(y),y) = 0. Now put y = —1/In(r) and we are done
because (3.57) is also satisfied with this a. O

3.3 Approximation of H]; by H¢

We will now show that the negative spectrum of Hg converges in a certain sense
to the one of He. This is made precise in the next proposition, but before we need
a definition. For a given subset S of R, and for any € > 0 we define

Se = | J Be(). (3.59)

z€S

If S is a discrete, finite set, then S, is a finite union of intervals of length 2e,
centered at the points of S.

Proposition 3.12. The following three statements hold true:

(). Fiz a < 0, and denote by A := o(Hg) N (—o00,a] and B = o(H ;) N
(—o00,a]. Then for every e > 0, there exists r. > 0 such that for every r < r. we
have

ACB., BCA. (3.60)

(ii). The groundstate of Hlg is nondegenerate, has even parity, and diverges
to —oo when r — 0. Moreover:

lir% |inf o(He) —inf o(Hlg)| = 0. (3.61)

(ili). Fiz a compact interval [a,b] C (—o0,0) and suppose that He has exactly
one eigenvalue of a giwen parity Ec in [a,b], for all v < rg. Then Hly has exactly
one eigenvalue of the same parity E.g in this interval and

hII%) ‘Eeff — Ec‘ = 0.

Proof. Let us introduce the resolvents Reg(z) = (Hlg — 2)~* for all 2 € p(HZs)
and Rco(z) = (Ho — 2)7! for all z € p(Hg). The first ingredient in the proof is
contained by the following lemma:
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Lemma 3.13. There exists a constant K > 1 sufficiently large, and ro small
enough, such that for every r < ro we have that the form defined on L?(R) x L%(R)
(see also (3.32))

Volf,0) = te (I02/2+ M 7V2 1,2 /2 + A7)

+ >\r<f7 [pi/z + )‘T]_lg> - <f7 g>
P =T/2 4 AT He + AP /2 4+ ATV -1, A = KIn?(r).
(3.62)

generates a bounded operator on L*(R) denoted in the same way. Moreover, SUPg<rp || Vel <
1/2. And we have

{Ho + M3 =272 4+ N )7 YV2{1d + Ve } M p2 /2 + A\ Y2 (3.63)

Proof. The key estimate is contained in

_ 1
1(2/2 +A) 72| 121 < comst S (3.64)

obtained with an argument as in (3.19). Then if we have | In(r)|/v/A, small enough,
then the ”delta function” part of t- will be small uniformly in r < ry. Using also
(3.23), and the definition (3.32), then one can show that (3.62) is a bounded
sesquilinear form on L2(R), with a norm which can be made arbitrarily small if K
is chosen large enough. Now the equality (3.63) is easy, and note that this is also
compatible with (3.58) . O

Introduce the notation:
Verr = (p2/2 + Ar) 72V (02 /2 + Ar) 712, (3.65)

The second ingredient in the proof of the above proposition is the following esti-
mate, which is an easy consequence of Proposition 3.1:

Vo — Veg]] = O(*®), r <. (3.66)

We also have that ||[Vig|| < 2/3 if 7 is small enough, uniformly in r < 7o, and
then

{H s + X = [02/24+ M V2 {Id + Veg Y Y [p2 /2 + A\ ]V (3.67)

It is clear that a similar identity would hold for any other A > A,., and this already
tells us that the spectrum of H; is contained in an interval of the type (=, 00),
thus justifying the discussion after (2.14).

From (3.67), (3.66) and (3.63), we get the crucial estimate:

4/9

| Rett (= Ar) — Re(=Ap)|| < const —

TS (3.68)
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This estimate allows us to prove (i). Introduce the notation
de(z) = dist(z,0(H¢)). (3.69)
Choose z € p(H¢) (thus do(z) > 0). From the identity:
(He = z)Re(=Ar) =1d = (2 + Ar)Re(=Ar) (3.70)
we get that the right hand side is invertible and:
{Id = (z+ AMRo(=A)} ' = (He + A)Ro(2) = Id+ (2 4+ A\)Ro(z).  (3.71)
The first equality implies that
Re(2) = Re(=A) {Id — (z + A )Re(—A) )}, (3.72)
while the second one gives the norm estimate:

118 = 2+ A Ro(=A0} | < [+ (2] + An) o (=) (3.73)

Note the important fact that (3.72) is just another form of the resolvent identity,
valid for any self-adjoint operator. If we could replace Ro(—A,) by Regt(—A), then
the right hand side would immediately imply that z € p(Heg).

We can restrict ourselves to those z’s which obey |z| < A,.. Then using (3.68)
and (3.73), we get that for r < ro and do(2) > /3, the operator

— (24 Ar)Rest (= Ar)

is invertible and we get the estimate:

H{Id (2 + Ar)Regt(— [1— const A, r%/%/dc(2)] ™. (3.74)

H const
~ do (Z

Therefore we have proved that for every z which obeys |z| < A, and d¢(z) > 7'/3,
the operator

Rep(=Ar) {1d = (2 + ) Regr (= A)} (3.75)

exists and defines Req(z). It means that the spectrum of H'; is ”close” to that of
He, and the distance between them is going to zero at least like r1/3.

Let us now prove (ii). We know that the groundstate of Hc diverges like
—1In?(r) for small 7, and it is isolated from the rest of the spectrum. Choose a
circular contour I of radius 1 around this groundstate. It means that dc(z) = 1
for z € T'. Then (3.75), (3.74) and (3.68) imply the estimate

sup ||Rest (2) — Ro(2)]| < const - 749 < 1. (3.76)
zel
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Now we can employ the regular perturbation theory, see [K|, by using Riesz pro-
jections defined as complex integrals of the resolvents on contours like I'. Then the
estimate (3.61) is straightforward.

Finally, let us prove (iii). We know that for small r, the excited states of Ho
tend to cluster in pairs. The eigenvalues from the odd parity sector are independent
of r, while those from the even parity sector will converge from above to the odd
ones (see Proposition 3.10). Consider such a pair of eigenvalues, which will always
remain separated from the rest of the spectrum if » < ry and r; is small enough.
Then we can find a contour I" which contains them and inf,cr de(z) is bounded
from below uniformly in 7 < r1. Then we can again write an estimate like (3.76),
and then apply the regular perturbation theory. The proof is over.

O

4 Reduction of H" to Hlg

We are now ready to go back to (2.24), and argue why only the diagonal entries of
the infinite operator-valued matrix {H, n }m nez are important for the low lying

spectrum of Hr. .
Let us formally write H” as:

H™ = Hdiag + Voffdiagy

where Hyjag = @nez( o+ %), and Vi gaiag contains all the non-diagonal entries
of the form V7 ., m # n, (see (2.25)), and zero on the diagonal. We will prove
in this section that Vigdiag is relatively form bounded with respect to Hgjag, and
moreover, it is a ”"small” perturbation when r is small.

The main result is very similar to Proposition 3.12, where we only have to
change Hc by Hgiae and HJ; by H7. Parity here only refers to the x variable.
Therefore we will start comparing the two operators. Before that, let us note that
the negative spectrum of Hygj,e is given by HZg if r is small enough.

4.1  Vigdiag i Hgiag-form bounded

Let \, = K 1n2(r) with K large enough and r < rg, as in the previous section. We
know that —\, € p(Hdiag), and denote by Raiag(—Ay) the resolvent (Haiag +Ay) 1.
Then the main technical result of this subsection will be the following estimate:
there exists § > 0 and r¢(d) such that

1/2 1/2
H Rdi/ag(_)\r)%ﬁdiang{ag(_)\r)

= O \71/? <rg. (4.1
@@y ~ 00 A7) <o (41)

Let us first notice that we can replace Réi/jg by a simpler operator, namely @nez(epﬁ—i-

2 . .o, . .
1+ 2”7)_1/2, where € is a small enough positive number. Indeed, we can write

(fs[Hig + A+ 02/ 2r)]f) > (f, [eps + A /2+ 02/ (2] f),
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where we used that for € small enough we can show that:
(1/2 = )p2 =V +X./2>0, r<ro.
This means that

2 2 2\11/27 177 2 2\1—1/2
160 + 00724 02 @02 G e 2 @A <1 (42)

Define the bounded operators in L?(R) (see (2.25)):

Vi = 603 + A /24 m? [ (20)] V2V lepl + A /2 4+ 0/ (20)] 72 m #
Vi om=0, meLZ. (4.3)

Then (4.1) would be implied by the following, stronger estimate:

H{V&,n} =O0(r'A2), <. (4.4)
mnER B (12(Z: L2 (R)))
By an easy application of the Schur-Holmgren lemma, one can prove the estimate:
H{Ww} < sup Y Vil 2 w))- (4.5)
R B (12(L2 () MEL ey

We now concentrate on the norms ||V7Im || B (£>(r)) and study their behavior
in r, m, and n. Remember that only the case m # n is of interest, since the
diagonal terms are zero.

Before anything else, let us do a unitary rescaling of L?(R) by (Uf)(z) :=
r1/2 f(rx) and (U*f)(z) := r~*/2f(x/r). Then due to various homogeneity prop-
erties we get:

UV U =71 [ep2 + 120 /2 +m? /2] 72V, lep? + 12X /2 +n2/2] 712 (4.6)

We first give an important estimate for V! | stated in the next lemma:

m,n’

Lemma 4.1. Let 0 < a < 1 and |[m —n| > 1. Fiz any 0 < € < 1. Then there
exists a constant C = C(a, €) such that we have the following estimate:

1 1 1
V! < —mM8M — 4+ —— <r e 4.7
Vol < C{tim oo b s )
and 5
?,.E
v < const——— > 4.8
Vhalle) < const 2 o] 2 v (1.9
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Proof. Due to symmetry properties we can write

_ 17 cos[(n — m)y]
anL,n(x) - 2 /;ﬂ' [:132 +4Sin2(y/2)]1/2 dy (49)

Integrating by parts we get:

1 " sin[(n —m)y] sin(y)
m(n—m) J_, [22 + 4sin®(y/2)]3/2 7

Von(@) = 5 (4.10)

This equality immediately proves (4.8). So we now focus on |z| < r~¢. We can
split the integral in two: one in which |y| > 7/2, and where the integrand has no
singularities when « is small, and the second where |y| < 7/2. In that region we
can use the same idea as in Lemma 3.2 of replacing sinQ(y/2) by y?. We hence get:

In —m| a9

‘Vrib,nKx) < const (1 +/Tr/2 | sin[(n — m)y] sin(y)|dy> ’ (411)

Now we employ the inequalities (here 0 < o < 1 is arbitrary):
[sin[(n —m)y]| < [n —m|'""[y['7, |sin(y)| < |yl,

then we make the change of variables s = y/|z| and write:

1 const |n —mi=a [ g2«

Thus the lemma is proved.

O

Now let us go back to (4.6), and estimate the various norms. If we write
Vi =VoouX( -1 <77+ VL x(|- | > 77¢), then we have two different types of
estimates. When we keep V,1 . x(|-| > r™¢), which is bounded, then for the two
resolvents we can use the usual Bo(L?) norm, which together with (4.8) gives a
contribution:

const 3¢
V2 4+ 02 Vr2h, +m2 jm —nl|’

When we keep V), ,x(| - | < 77¢), the estimate from (4.7) gives us that
[IVih alx( -] < 1)]*/2 is an L? function, hence the operator

VIVEal X1 < 779 ep? + 720 /2 + n? /2] 712

n # m. (4.13)
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is Hilbert-Schmidt. Thus we have a product of two Hilbert-Schmidt operators, and
we can give an upper bound for the B, norm of their product of the form:

const(a) r—¢

(T2A7-+n2)1/4 (T2A7-+m2)1/4 |m_n|a7

n#m. (4.14)

Therefore we obtained an upper bound for the norm of the operator in (4.6)
of the form:

| < r - const r3¢
T VI + 2 VN +m2 m—

€

1V

n r-const - r—
(rz/\r +n2)1/4 (1"2)\,» +m2)1/4 Im — n|‘1’

m #n. (4.15)

Remember that one is interested in the right hand side of (4.5). Now choose
1/2 < a < 1. We have to investigate several cases:

1. When m = 0 and |n| > 1. Then the first term in (4.15) will behave like
)\;1/2 T3e‘n|72.

The second term will behave like r1/2_€)\;1/4|n\_1/2_°‘. Both contributions

are summable with respect to n. Note that if € is small enough, both expo-
nents of r are positive. Denote by § the smaller one.

2. Fix m # 0, and consider all n # m. When n = 0, we get similar terms as
above. If n # 0, then we remain with the problem of summing up something
like

1
sup |m|~1/2 g — 1/2 < a.
m#0 n#£0,n#£m |n|1/2|n - m‘a

We can either use Holder’s inequality, or we can split the above sum in the
following way:

D —
/2|0 — ml

n#0,n#m

1
RSP DR N7 e

n#£0,n#m,|n|<|n—m| n#0,n#m,|n|>|n—m|

1 1
< Z <|n|°‘+1/2 + |n—m|1/2+a) < const(a). (4.16)
n#0,n#m

We therefore consider (4.1) as proved.
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4.2 Comparison between H" and H ging

If r is small enough, we have the identity:

=~ _ 1/2 1/2 1/2 -1 12
(H™ 4+ A) 7" = B (A {1+ B2 (M) Vottaias R (M) b R (A0,

Moreover, this implies:

const  _1/2 1/2
S Bl (=) Vottdiog B ()

5)\—1/2

< const r)\; . (4.17)

I(HT +X) ™" = Raiag(—A)| <

This is the same as what we had in (3.68), but with Ay /% 7% instead of r4/9.
Therefore we can repeat the arguments of Proposition 3.12 and prove a similar
kind of spectrum stability for H" and Hgjag-

5 The main theorem and some conclusions

It is particularly hard to state a concentrated main result of our paper. Let us now
go back to the very first Hamiltonian which was declared to be relevant for the
exciton problem. This is H”, written in (2.1). Because of the Coulomb singularity,
the best way to look at the spectral problem is to consider its form ¢z, given by
(2.4), (2.5) and (2.6). We then managed to separate the mass center motion in
the longitudinal direction, and we got a simpler form ¢, in (2.8). The center of
the mass cannot be separated in the transverse direction because of the cylindrical
geometry, but at least we can write ) as a direct sum of @, tn,. A crucial
observation has been stated in (2.14), which says that only ¢5, is responsible for
the lowest lying spectrum of the original form.

This gave us the possibility of renaming t5, with ty in (2.15), and declare
it as the central object of study. Then in Proposition 2.1 we constructed its asso-
ciated self-adjoint operator H", where we had to take care of the Coulomb-type
singularity in two dimensions.

Then after a unitary transformation induced by the discrete Fourier transform
with respect to the y variable, we can see H" as an infinite operator valued matrix
acting on the Hilbert space 12(Z; L?(R)). We then decomposed H" as the sum of
a diagonal operator Hgi,e and an off-diagonal part Viggiag. Eventually we proved
in Section 4 that the low lying spectrum of Hris only slightly influenced by the
off-diagonal part for small r, and therefore the relevant object remains Hgjqg-

But this diagonal part has the nice feature that each of its entry is of the
form Hlg; + 2”722, n € Z, where Hl; is given in (2.28) and (2.27). Then in Section 3,
more precisely in Proposition 3.12 we prove that the low lying spectrum of Hj; is
well approximated by the spectrum of a solvable operator, Hc, which we discussed
in Proposition 3.10.
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We are now ready to collect all these results in the main theorem of our
paper:

Theorem 5.1. The following three statements hold true: .
(i). Fiz a < 0, and denote by A := o(Hg) N (—o00,a] and B := o(H™) N
(—o00,a]. Then for every e > 0, there exists r. > 0 such that for every r < r. we
have
ACB., BCA.. (5.1)

(ii). The groundstate oflffv’" is nondegenerate, and diverges to —oo when r —
0. The corresponding eigenfunction has even parity with respect to both variables.
Moreover:

lim | inf o (He) — inf o(H")| = 0. (5.2)

(iii). Fiz a compact interval [a,b] C (—00,0) and suppose that Ho has exactly
one eigenvalue Ec in [a,b], of parity p = £, for all r < ro. Then if r is small
enough, H™ has exactly one eigenvalue E in this interval and

lim |E — E¢| = 0.
r—0

Moreover, the corresponding eigenfunction has even parity with respect to y and
parity p with respect to x.

Another important aspect of this problem is to determine how fast these
limits are assumed. We have not touched this issue here, but we will study the
numerical and physical implications of our results in a consequent paper.
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