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2nd of December, 2005

Horia D. Cornean1, Pierre Duclos2, Benjamin Ricaud 3

Abstract

We consider three one dimensional quantum, charged and spinless par-

ticles interacting through delta potentials. We derive sufficient conditions

which guarantee the existence of at least one bound state.

1 Introduction

Denote by xi,mi, Zie, i = 1, 2, 3, the position, mass and charge of the i-th

particle. Our system is formally described by the Hamiltonian
∑3

i=1− ~
2

2mi
∂2

xi
+∑

1≤i<j≤3 ZiZje
2δ(xi − xj) acting in L2(R3) which is defined as the unique

self-adjoint operator associated to the quadratic form with domain H1(R3):

3∑

i=1

~
2

2mi
‖∂xi

ψ‖2 +
∑

1≤i<j≤3

ZiZje
2

∫

xi=xj

|ψ(σi,j)|2dσi,j , ψ ∈ H1(R3).

Here σi,j denotes a point in the plane xi = xj . We will consider the cases
m1 = m2 =: m > 0, m3 =: M > 0 Z1 = Z2 = −1, Z3 =: Z > 0 and
answer to the question: for what values of m/M and Z does this system possess

at least one bound state after removing the center of the mass?

There is a huge amount of literature on 1-d particles interacting through
delta potentials either all repulsive or all attractive, but rather few papers deal
with the mixed case. We mention the work of Rosenthal, [7], where he considered
M = ∞. The aim of this paper is to make a systematic mathematical study of
the Rosenthal results and extend them to the case M <∞. It has been shown
in [1] and [2] that these delta models serve as effective Hamiltonians for atoms
in intense magnetic fields or quasi-particles in carbon nanotubes. As one can
see in ([4], [5], [6],[3]), they also seem to be relevant for atomic wave guides,
nano and leaky wires.
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1 2π/3 2π/3 3/4 1

∞ 3π/4 π/2 1/4 1/
√
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Figure 1: Left: table with corresponding values of angles and masses, right:
support of the delta potentials with the unit vectors Ai’s.

2 The spectral problem

Removing the center of mass. Using the Jacobi coordinates: x := x2−x1,
y := x3−(m1x1+m2x2)/(m1+m2) and z :=

∑
imixi/

∑
imi we get the 2-d rel-

ative motion formal Hamiltonian H̃ = −~
2

m ∂2
x− 2m+M

4mM ~
2∂2

y + e2δ(x)−Ze2δ(y−
x
2 )− Ze2δ(y + x

2 ). Define α2 := (M + 2m)/4M and ν(α) :=
√

1/4 + α2. Let J
be the Jacobian of the coordinate change (x′, y′) = {2ν(α)~2/(mZe2)}(x, αy),
and define the unitary (U−1f)(x, y) =

√
Jf(x′, y′). Consider three unit vec-

tors of R
2 given by A1 := 1

ν(α)

(
α,− 1

2

)
, A2 := 1

ν(α)

(
−α,− 1

2

)
, and A3 :=

(0, 1). Define A⊥i as Ai rotated by π/2 in the positive sense. Then UH̃U−1 =
{mZ2e4}/{2~

2ν(α)2} H, where:

H := −1

2
∂2

x −
1

2
∂2

y − δ(A⊥1 .(x, y))− δ(A⊥2 .(x, y)) + λδ(A⊥3 .(x, y)), λ :=
ν(α)

Z
.

We denote by θi,j the angle between the vectors Ai and Aj . We give some
typical values of all these parameters (see fig. 1).

The skeleton Let A be unit vector in R
2. If one introduce the ”trace”

operator τA : H1(R2) → L2(R) defined as (τAψ)(s) := ψ(sA) and if we let

τ : H1(R2) →
⊕3

i=1 L
2(R) be defined as τ := (τA1

, τA2
, τA3

), we may rewrite the
HamiltonianH asH0+τ

?gτ where 2H0 stands for the free Laplacian and g is the
3×3 diagonal matrix with entries (−1,−1, λ). Denoting R0(z) := (H0−z)−1and
R(z) := (H − z)−1 the resolvents of H0 and H, one derives at once, with the
help of the second resolvent equation, the formula for any z in the resolvent sets
of H0 and H:

R(z) = R0(z)−R0(z)τ
∗(g−1 + τR0(z)τ

∗)−1τR0(z). (1)

Using the HVZ theorem (see [8] for the case with form-bounded interactions),
we can easily compute the essential spectrum: σess(H) = [− 1

2 ,∞). Its bottom
is given by the infimum of the spectrum of the subsystem made by the positive
charge and one negative charge.

¿From this and formula (1) it is standard to prove the following lemma:

Lemma 1. Let k > 1√
2
. Define S := k g−1 + τR0(−1)τ∗. Then E = −k2 <

− 1
2 is a discrete eigenvalue of H if and only if ker(g−1 + τR0(E)τ∗) 6= {0}.
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Note that up to a scaling this is the same as kerS 6= {0}. Moreover, mult(E) =
dim(kerS).

The spectral analysis is thus reduced to the study of S, a 3 × 3 matrix of
integral operators each acting in L2(R). We call S the skeleton of H. Let us
denote by TA,B := τAR0(−1)τ?

B, T0 := TA,A, by θA,B the angle between two

unit vectors A and B, and by T̂A,B the Fourier image of TA,B . Then the kernel

of T̂A,B when θA,B 6∈ {0, π}, and of T̂0 read as:

T̂A,B(p, q) =
1

2π| sin(θA,B)|
1(

p2−2 cos(θA,B)pq+q2

2 sin2(θA,B)
+ 1

) , T̂0(p, q) =
δ(p− q)√
p2 + 2

.

(2)

Then T̂0 is a bounded multiplication operator, and T̂A,B only depends on |θA,B |.
Consequently we denote in the sequel TAi,Aj

by Tθi,j
or Ti,j .

Reduction by symmetry. H and S enjoy various symmetry properties
which follow from the fact that two particles are identical. Let π : L2(R) →
L2(R) be the parity operator, i.e. {πϕ}(p) = ϕ(−p) and denote by π1 := π ⊗ 1
and π2 := 1⊗ π the unitary symmetries with respect to the x and y axis. One
verifies that for all i, j ∈ {1, 2}, we have [πi, H] = 0 and [πi, πj ] = 0. Thus if we
denote by πα

i , α = +,− the eigenprojectors of πi on the even, respectively odd
functions we may decompose H into the direct sum

H =
⊕

α∈{±}, β∈{±}
Hα,β , Hα,β := πα

1 π
β
2H.

Similarly let Π, σ : L2(R3) → L2(R3) defined by (Πψ)(−p) := ψ(−p) and σψ =
σ(ψ1, ψ2, ψ3) := (ψ2, ψ1, ψ3). They both commute with S, and also [Π, σ] = 0.

Let Πα and σα, α = +,−, denote the eigenprojectors of Π and σ symmetric
and antisymmetric resp.. Then we can write S =

⊕
α∈{±}, β∈{±} Sα,β , Sα,β :=

ΠασβS.
From the expression of T̂θ(p, q) one also sees that [π, Tθ] = 0 so that Tθ

decomposes into T+
θ ⊕ T−θ where T±θ := π±Tθ. As usual we shall consider

T±θ as operators acting in L2(R+). Due to these symmetry properties we have
kerS =

⊕
α,β kerSα,β , and each individual null-space can be expressed as the

null-space of a single operator acting in L2(R+) that we call effective skeleton.
We gather in the following table the four effective skeletons we have to consider
with their corresponding subspaces in L2(R2):

Sα,β effective skeleton subspace in L2(R2)

++ k − T0 − T+
1,2 + 2T+

2,3(T0 + kλ−1)−1T+
2,3 Ran π+

1 π
+
2

−+ k − T0 − T−1,2 + 2T−2,3(T0 + kλ−1)−1T−2,3 Ranπ+
1 π

−
2

+− k − T0 + T+
1,2 Ranπ−1 π

−
2

−− k − T0 + T−1,2 Ranπ−1 π
+
2

Table 1.

3 Sectors without bound states

Properties of the Tθ operators. From (2) we get 0 ≤ T0 ≤ 1/
√

2. Then Tθ

is self-adjoint and has a finite Hilbert-Schmidt norm. The proof of the following

3



lemma in not at all obvious, but will be omitted due to the lack of space.

Lemma 2. For all θ ∈ [π/2, π) one has ±T±θ ≥ 0 and the mapping [π/2, π) 3
θ 7→ ± inf T±θ is strictly increasing.

Absence of bound state in the odd sector with respect to y. We have
the following result:

Theorem 3. For all Z > 0 and all 0 < M/m ≤ ∞, H has no bound state in

the symmetry sector Ranπ−2 .

Proof. The symmetry sector Ranπ−2 corresponds to the second and third lines
in Table 1. For the third line one uses that T+

1,2 ≥ 0 by Lemma 2, and that

k > 1/
√

2 since we are looking for eigenvalues below σess(H) = [− 1
2 ,∞). Hence

k − T0 + T+
1,2 ≥ k − 1√

2
> 0

thus ker(k − T0 + T+
1,2) = {0}, and by Lemma 1 this shows that H has no

eigenvalues in Ran π−1 π
−
2 . By the same type of arguments one has: k − T0 −

T−1,2 + 2T−2,3(T0 + kλ−1)−1T−2,3 ≥ k − 1√
2
> 0.

Remark 4. The above theorem has a simple physical interpretation. Wave
functions which are antisymmetric in the y variable are those for which the
positive charge has a zero probability to be in the middle of the segment joining
the negative charges. A situation which is obviously not favorable for having a
bound state.

Absence of bound state in the odd-even sector with respect to x and

y. Looking at the fourth line of Table 1 we have to consider

S−,−(k) := k − T0 + T−1,2 =:
√
k − T0

(
1 + T̃−1,2(k)

)√
k − T0 (3)

where T̃−1,2(k) := (k−T0)
− 1

2T−1,2(k−T0)
− 1

2 . Here we will only consider the case

M ≥ m, i.e. π/2 ≤ θ1,2 ≤ 2π/3. Assume that we can prove that T̃−1,2(2
− 1

2 ) ≥ −1

for θ1,2 = 2π/3, this will imply that S−,−(2−
1
2 ) ≥ 0 first for θ1,2 = 2π/3 and

then for all π/2 ≤ θ1,2 ≤ 2π/3 by the monotonicity of inf T−1,2 with respect to θ
as stated in Lemma 2; finally looking at (3) this will show that S−,−(k) > 0 for

all k > 1/
√

2 and therefore that kerS−,−(k) = {0}. But T̃−1,2 := T−1,2(2
− 1

2 ) ( for
θ1,2 = 2π/3) is Hilbert-Schmidt since its kernel decay at infinity faster than the

one of T−1,2 and it has the following behavior at the origin: T̃−1,2(p, q) ∼ − 16
√

2
3
√

3π
+

O
(
(p2 + q2)

)
. It turns out that −1 is an eigenvalue of T̃−1,2 with eigenvector

R+ 3 p 7→

[
1√
2
− 1√

p2+2

]1/2

p (2p2 + 3)

p→0∼ 1

3 2
5
4

+O(p2)

and since the Hilbert-Schmidt norm of T̃1,2 can be evaluated numerically to

‖T̃−1,2‖HS ≤ 1.02, all the other eigenvalues of T̃−1,2 are above −1. Thus we have
proved the

Theorem 5. For all Z > 0 and all 1 ≤ M/m ≤ ∞, H has no bound state in

the symmetry sector Ranπ−1 π
−
2 .
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4 The fully symmetric sector

According to Table 1, we need to find under which conditions one has kerS+,+(k) 6=
{0} where

S+,+(k) := k − T0 −K(k), with K(k) := T+
1,2 − 2T+

2,3(T0 + kλ−1)−1T+
2,3.

The proof of the following lemma is an easy application of Fredholm and analytic
perturbation theory:

Lemma 6.(i) {Re k2 > 0} 3 k 7→ S+,+(k) is a bounded analytic self-adjoint

family of operators.

(ii) If inf σ
(
S+,+(2−

1
2 )

)
< 0, then there exists k > 1/

√
2 so that kerS+,+(k) 6=

{0}.
Denote by K(p, q) the integral kernel of K(2−

1
2 ). Our last result is:

Theorem 7. For all 0 < M/m ≤ ∞, H has at least one bound state in the

symmetry sector Ran π+
1 π

+
2 if Z is such that K(0, 0) > 0.

Proof. We will now look for an upper bound on inf S+,+(2−
1
2 ) by the variational

method. Let j ∈ C∞0 (R+,R+) so that
∫

R+
j(x)dx = 1 and define two families of

functions: ∀ε > 0, ψε(p) := ε−1j(pε−1), φε :=
√

ε
||j||ψε, ‖φε‖ = 1. We know that

ψε converges as ε→ 0 to the Dirac distribution. First one has

((2−
1
2 − T0)φε, φε) =

1

ε
√

2‖j‖2
∫

R+

[1− (1 + p2/2)−1/2]j2(p/ε)dp

≤ ε2

2
√

2‖j‖2
∫

R+

p2j(p)2dp. (4)

Then one has (K(2−
1
2 )φε, φε) = ε

‖j‖2 (K(2−
1
2 )ψε, ψε) = ε

‖j‖2 (K(0, 0) +O(ε)) so

that (S+,+(2−
1
2 )φε, φε) = 2−

1
2 − (T0φε, φε)− (K(2−

1
2 )φε, φε) will be negative for

ε > 0 small enough, provided K(0, 0) > 0.

It is possible to compute K(0, 0) analytically. It can be shown that there
exists Zub

c (M/m) such that for any Z larger than this value, we have K(0, 0) > 0.
If we now define the critical Z as

Zc(M/m) := inf{Z > 0, H = H(Z,M/m) has at least one bound state},

it follows from our last theorem that Zc(M/m) ≤ Zub
c (M/m).

The curve Zub
c (M/m) is plotted on figure 2, where we used θ1,2 instead of

the ratio M/m.

Remarks 8. (a) Rosenthal found numerically Zub
c (π

2 ), i.e. Zub
c for M = ∞ to

be 0.374903. With our analytical expression of K(0, 0) we know this value to
any arbitrary accuracy: Zub

c (π
2 ) = 0.37490347747000593278...

(b) The above curve shows that an arbitrarily small positive charge of mass
M < 0.48m can bind two electrons. However we believe that the exact critical
curve will show that M < m and Z > 0 is sufficient to bind these two electrons.
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