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Abstract

In this paper, we continue the study of paired-domination in graphs introduced by
Haynes and Slater (Networks 32 (1998) 199–206). A paired-dominating set of a graph
G with no isolated vertex is a dominating set of vertices whose induced subgraph has
a perfect matching. The paired-domination number of G is the minimum cardinality
of a paired-dominating set of G. For k ≥ 2, a k-packing in G is a set S of vertices of
G that are pairwise at distance greater than k apart. The k-packing number of G is
the maximum cardinality of a k-packing in G. Haynes and Slater observed that the
paired-domination number is bounded above by twice the domination number. We give
a constructive characterization of the trees attaining this bound that uses labelings of
the vertices. The key to our characterization is the observation that the trees with
paired-domination number twice their domination number are precisely the trees with
2-packing number equal to their 3-packing number.
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1 Introduction

In this paper, we continue the study of domination and paired-domination in graphs. For
a graph G = (V,E), a set S is a dominating set, denoted DS, if every vertex in V \ S has a
neighbor in S. The domination number γ(G) is the minimum cardinality of a dominating
set of G. We call a dominating set of cardinality γ(G) a γ(G)-set. Domination and its many
variations have been surveyed and detailed in the two books by Haynes, Hedetniemi, and
Slater [8, 9]. We are interested in a variation of domination called paired-domination.

A matching in a graph G is a set of independent edges in G. A perfect matching M
in G is a matching in G such that every vertex of G is incident to a vertex of M . A
paired-dominating set, denoted PDS, of a graph G is a set S of vertices of G such that
every vertex is adjacent to some vertex in S and the subgraph G[S] induced by S contains
a perfect matching M (not necessarily induced). Two vertices joined by an edge of M are
said to be paired in S. Every graph without isolated vertices has a PDS since the end-
vertices of any maximal matching form such a set. The paired-domination number of G,
denoted by γpr(G), is the minimum cardinality of a PDS. A PDS of cardinality γpr(G) we
call a γpr(G)-set. Paired-domination was introduced by Haynes and Slater in [10, 11] as a
model for assigning backups to guards for security purposes, and is studied, for example, in
[2, 3, 4, 6, 7, 13, 15, 16] and elsewhere.

In general we follow the notation and graph theory terminology in [8]. Specifically, let
G = (V,E) be a graph with vertex set V and edge set E. For any vertex v ∈ V , the open
neighborhood of v is the set N(v) = {u ∈ V | uv ∈ E}, and its closed neighborhood is the
set N [v] = N(v) ∪ {v}. If v ∈ S, then a vertex w ∈ V \ S is an external private neighbor
of v (with respect to S) if N(w) ∩ S = {v}; and the external private neighbor set of v with
respect to S, denoted epn(v, S), is the set of all external private neighbors of v. We denote
the degree of v in G by dG(v). We denote a path on n vertices by Pn.

For ease of presentation, we mostly consider rooted trees. For a vertex v in a (rooted)
tree T , we let C(v) and D(v) denote the set of children and descendants, respectively, of v,
and we define D[v] = D(v)∪ {v}. The maximal subtree at v is the subtree of T induced by
D[v], and is denoted by Tv. A vertex of degree one is called a leaf and its neighbor is called
a support vertex. A strong support vertex is adjacent to at least two leaves.

For k ≥ 2, Meir and Moon [14] defined a k-packing in a graph G as a set S of vertices of
G that are pairwise at distance greater than k apart, i.e., if u, v ∈ S, then dG(u, v) > k. A
1-packing is an independent set. The k-packing number of G, denote ρk(G), is the maximum
cardinality of a k-packing in G. We call a k-packing of cardinality ρk(G) a ρk(G)-set. By
definition, we have the following observation.

Observation 1 For k ≥ 1 and for any graph G, ρk(G) ≥ ρk+1(G).

A 2-packing is also called a packing and the 2-packing number is also called the packing
number denoted by ρ(G). Thus a ρ(G)-set is a packing of maximum cardinality ρ(G). By
Observation 1, ρ(G) ≥ ρ3(G).
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Definition 1 We define a graph G to be a (ρ = ρ3)-graph if ρ(G) = ρ3(G).

The following bound was first observed by Haynes and Slater [10]. The proof follows from
the fact that every graph without isolated vertices has a minimum DS in which each vertex
has an external private neighbor.

Observation 2 ([10]) For every graph G without isolated vertices, γpr(G) ≤ 2γ(G).

We call the graphs obtaining the upper bound in Observation 2, (γpr = 2γ)-graphs. It
is our goal in this paper to characterize (γpr = 2γ)-trees. Recently, a characterization of
(γpr = 2γ)-trees was given in [12]. The characterization we present here is a constructive
characterization using labelings that is simpler than that presented in [12]. The key to our
characterization is the observation that the family of (γpr = 2γ)-trees is precisely the family
of (ρ = ρ3)-trees.

Observation 3 Let T be a tree of order at least 2. Then, T is a (γpr = 2γ)-tree if and only
if T is a (ρ = ρ3)-tree.

Observation 3 is an immediate consequence of the following two results.1

Theorem 1 (Moon and Meir [14]) For every tree T , γ(T ) = ρ(T ).

Theorem 2 (Bresar et. al. [1]) For every tree T of order at least 2, γpr(T ) = 2ρ3(T ).

Hence, by Observation 3, to characterize the (γpr = 2γ)-trees it suffices to characterize
the (ρ = ρ3)-trees.

2 (ρ = ρ3)-Trees

Our aim in this section is to give a constructive characterization of (ρ = ρ3)-trees (and hence,
by Observation 3, of (γpr = 2γ)-trees). The main idea to our constructive characterization
is to find a labeling of the vertices that indicates the roles each vertex plays in the sets
associated with both parameters. This idea of labeling the vertices is introduced in [5],
where trees with equal domination and independent domination numbers as well as trees
with equal domination and total domination numbers are characterized.

1Since the result of Bresar et. al. [1] may not be readily available to the referees, we provide a proof–for
refereeing purposes only–of Theorem 2 in the appendix.
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2.1 Main Result

By a weak partition of a set we mean a partition of the set in which some of the subsets
may be empty. We define a labeling of a tree T as a weak partition S = (SA, SB , SC , SD)
of V (T ). The label or status of a vertex v, denoted sta(v), is the letter x ∈ {A,B,C,D}
such that v ∈ Sx. Our aim it to describe a procedure to build (ρ = ρ3)-trees in terms of
labelings.

We begin by defining three labeled trees T1, T2 and T3 as follows. Let T1 be a P2 with
one vertex labeled A and the other vertex C. Let T2 be a P2 with one vertex labeled B
and the other vertex D. Let T3 be a P3 with the central vertex labeled B and with one leaf
labeled A and the other leaf C.

Definition 2 Let T be the family of labeled trees that: (i) contains the labeled trees T1,
T2 and T3; and (ii) is closed under the eleven operations Oj (j = 1, 2, · · · , 11) listed below,
which extend the tree T by attaching a tree to the vertex v ∈ V (T ).

• Operation O1. Assume v is a support vertex of T . Add a new vertex u of status B
and the edge uv. (Note that v can have any status.)

• Operation O2. Assume v and all its neighbors have status B, except possibly for
one neighbor of v which has status A. Add a path u1, u2 and the edge vu1. Let
sta(u1) = B and sta(u2) = D.

• Operation O3. Assume v and all its neighbors have status B. Add a path u1, u2

and the edge vu1. Let sta(u1) = A and sta(u2) = C.

• Operation O4. Assume v and all its neighbors have status B, except possibly for
one neighbor of v which has status A. Add a path u1, u2, u3 and the edge vu2. Let
sta(u1) = A, sta(u2) = B, and sta(u3) = C.

• Operation O5. Assume v has status A or B. Add a path u1, u2, u3 and the edge
vu1. Let sta(u1) = sta(u2) = B and sta(u3) = D.

• Operation O6. Assume v and all its neighbors have status B, except possibly for
one neighbor of v which has status A. Add a path u1, u2, u3 and the edge vu1. Let
sta(u1) = B, sta(u2) = D and sta(u3) = B.

• Operation O7. Assume v has status B. Add a path u1, u2, u3 and the edge vu1. Let
sta(u1) = B, sta(u2) = A and sta(u3) = C.

• Operation O8. Assume v has status A and all its neighbors have status B or assume
v and all its neighbors have status B, except possibly for one neighbor of v which has
status A. Add a path u1, u2, u3 and the edge vu1. Let sta(u1) = B, sta(u2) = C and
sta(u3) = A.

• Operation O9. Assume v and all its neighbors have status B, except possibly for
one neighbor of v which has status C. Add a path u1, u2, u3 and the edge vu1. Let
sta(u1) = A, sta(u2) = B and sta(u3) = C.
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• Operation O10. Assume v and all its neighbors have status B. Add a path u1, u2, u3

and the edge vu1. Let sta(u1) = A, sta(u2) = C and sta(u3) = B.

• Operation O11. Assume v has status A or B. Add a star K1,3 with center u and
leaves u1, u2 and u3, and add the edge vu1. Let sta(u) = sta(u1) = B, sta(u2) = A,
sta(u3) = C.

These eleven operations are illustrated in Figure 1 where by status X we mean a support
vertex of any status (namely, A, B, C or D). For Y ∈ {A,B}, by status YB we mean a
vertex of status Y all of whose neighbors have status B. For Z ∈ {A,C}, by status BZ we
mean a vertex of status B all of whose neighbors have status B, except possibly for one
neighbor which has status Z.

O1: tX tB&%
'$

O2: tBA tB tD
&%
'$

O3: tBB tA tC&%
'$

O4: tBA tB tA
tC�

�
�

H
H

H&%
'$

O5: tA/B tB tB tD
&%
'$

O6: tBA tB tD tB&%
'$

O7: tB tB tA tC
&%
'$

O8: tAB/BA tB tC tA&%
'$
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O9: tBC tA tB tC
&%
'$

O10: tBB tA tC tB&%
'$

O11: tA/B tB tB tA
tC�

�
�

H
H

H&%
'$

Figure 1. The eleven operations.

Our main result is the following constructive characterization of (ρ = ρ3)-trees that uses
labelings.

Theorem 3 The (ρ = ρ3)-trees are precisely those trees T such that (T, S) ∈ T for some
labeling S.

Theorem 3 is an immediate consequence of Theorem 4 presented in Section 2.2 and
Theorem 5 in Section 2.3.

2.2 (ρ, ρ3)-labelings

Definition 3 We define a (ρ, ρ3)-labeling of a tree T = (V,E) as a weak partition S =
(SA, SB, SC , SD) of V such that

• SA ∪ SD is a ρ(T )-set,
• SC ∪ SD is a 3-packing, and
• |SA| = |SC |.

We are now in a position to characterize (ρ = ρ3)-trees in terms of (ρ, ρ3)-labelings.

Theorem 4 A tree is a (ρ = ρ3)-tree if and only if has a (ρ, ρ3)-labeling.

Proof. Suppose T is a tree that has a (ρ, ρ3)-labeling (SA, SB , SC , SD). Then, ρ3(T ) ≤
ρ(T ) = |SA ∪ SD| = |SC ∪ SD| ≤ ρ3(T ). Hence we must have equality throughout this
inequality chain. In particular, ρ3(T ) = ρ(T ); that is, T is a (ρ = ρ3)-tree.

Conversely, suppose that T is a (ρ = ρ3)-tree. Let P be a ρ(T )-set and let L be a ρ3(T )-
set. Let SA = P \L, SB = V \ (P ∪ L), SC = L \ P , and SD = L ∩ P . Then, P = SA ∪ SD

is a ρ(T )-set and L = SC ∪ SD is a 3-packing. Further since |P | = ρ(T ) = ρ3(T ) = |L|, we
have |SA| = |SC |. Hence, (SA, SB , SC , SD) is a (ρ, ρ3)-labeling of T . 2

6



2.3 (ρ, ρ3)-labelled Trees

Given a (ρ, ρ3)-labeling S = (SA, SB, SC , SD) of a tree T , we will refer to the pair (T, S) as
a (ρ, ρ3)-labelled tree. In this subsection, we characterize (ρ, ρ3)-labelled trees.

Theorem 5 A labeled tree is a (ρ, ρ3)-labelled tree if and only if it is in T .

Proof. It is clear that the eleven operations Oi, 1 ≤ i ≤ 11, preserve a (ρ, ρ3)-labeling,
whence every element of T is a (ρ, ρ3)-labelled tree.

Conversely, the proof that every (ρ, ρ3)-labelled tree (T, S) belongs to T is by induction
on the order of T . The smallest (ρ, ρ3)-labelled trees are the labeled trees T1 and T2 defined
earlier, both of which are in T . So fix a (ρ, ρ3)-labelled tree (T, S) of order at least 3, and
assume that any smaller (ρ, ρ3)-labelled tree is in T . By Theorem 4, T is a (ρ = ρ3)-tree.

To complete the proof, we need to identify a set P of vertices that can be pruned to
leave a (ρ, ρ3)-labelled tree (by induction, this pruned tree is in T ) and an operation R or
a sequence of operations that restores the pruned vertices.

If T = P3, then either T = T3 or T can be obtained from either T1 or T2 by operation
O1, implying that T ∈ T .

Suppose there is a leaf u in SB adjacent to a strong support vertex. Let T ′ = T − u and
let S′ be the restriction of S to T ′. Then, (T ′, S′) is a (ρ, ρ3)-labelled tree, and we can take
P = {u} and R = O1. So we may assume that no leaf of status B is adjacent to a strong
support vertex. Hence we may assume that diam(T ) ≥ 3.

Among all longest paths in T , let v0, v1, v2, . . . , vdiam(T ) be chosen so that deg v1 is as
large as possible. Let T be rooted at the vertex vdiam(T ).

Case 1. dT (v1) ≥ 3, i.e., v1 is a strong support vertex. By assumption, no leaf of v1 has
status B. Since SA ∪ SD is a packing and SC ∪ SD is a 3-packing, v1 therefore has exactly
two children, say u0 and v0, one of status A and the other of status C. We may assume
sta(u0) = A and sta(v0) = C. Further, sta(v1) = sta(v2) = B and sta(w) = B for each
w ∈ N(v2), except possibly for one neighbor of v2 which has status A.

Let T ′ = T − D[v1]. Then, (SA ∪ SD) \ {u0} is a packing in T ′, and so ρ(T ′) ≥ ρ(T )− 1.
If ρ(T ′) = ρ(T ) − 1, then (T ′, S′) is a (ρ, ρ3)-labelled tree where S ′ is the restriction of S
to T ′, and we can take P = D[v1] and R = O4. Hence we may assume that ρ(T ′) = ρ(T ).
Thus, by Theorem 1, γ(T ′) = γ(T ). Let D be a γ(T )-set. Then, v1 ∈ D. If v2 /∈ epn(v,D),
then D \ {v1} is a DS of T ′ of cardinality γ(T ) − 1, contrary to assumption. Hence, for
every γ(T )-set D of T we must have that v2 ∈ epn(v,D). This implies that dT (v2) = 2. We
now consider the tree T ∗ = T − D[v2]. As observed earlier, v3 ∈ SA ∪ SB . Let S∗ be the
restriction of S to T ∗. Then, (T ∗, S∗) is a (ρ, ρ3)-labelled tree, and we can take P = D[v2]
and R = O11.
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Case 2. dT (v1) = 2. We consider four possibilities.

Case 2.1. v0 ∈ SD. Then, {v1, v2} ⊆ SB and every neighbor of v2 is in SB , except
possibly for one neighbor which is in SA. Let T ′ = T −{v0, v1}. Then, (SA ∪SD) \ {v0} is a
packing in T ′, and so ρ(T ′) ≥ ρ(T )−1. If ρ(T ′) = ρ(T )−1, then (T ′, S′) is a (ρ, ρ3)-labelled
tree where S′ is the restriction of S to T ′, and we can take P = {v0, v1} and R = O2. Hence
we may assume that ρ(T ′) = ρ(T ). This implies, as argued in Case 1, that dT (v2) = 2. We
now consider the tree T ∗ = T − D[v2]. As observed earlier, v3 ∈ SA ∪ SB . Let S∗ be the
restriction of S to T ∗. Then, (T ∗, S∗) is a (ρ, ρ3)-labelled tree, and we can take P = D[v2]
and R = O5.

Case 2.2. v0 ∈ SC . Then either v1 ∈ SA or v1 ∈ SB.

Suppose first that v1 ∈ SA. Then, v2 ∈ SB and every neighbor of v2 except for v1 is in SB.
Let T ′ = T − {v0, v1}. Then, (SA ∪ SD) \ {v0} is a packing in T ′, and so ρ(T ′) ≥ ρ(T ) − 1.
If ρ(T ′) = ρ(T )− 1, then (T ′, S′) is a (ρ, ρ3)-labelled tree where S ′ is the restriction of S to
T ′, and we can take P = {v0, v1} and R = O3. Hence we may assume that ρ(T ′) = ρ(T ).
This implies that γ(T ′) = γ(T ) and hence that dT (v2) = 2. We now consider the tree
T ∗ = T − D[v2]. As observed earlier, v3 ∈ SB . Let S∗ be the restriction of S to T ∗. Then,
(T ∗, S∗) is a (ρ, ρ3)-labelled tree, and we can take P = D[v2] and R = O7.

Suppose secondly that v1 ∈ SB . If v2 ∈ SB , then SA ∪ SD ∪ {v0} is a packing in T of
cardinality ρ(T ) + 1, which is impossible. Hence, v2 ∈ SA. Thus, N(v2) ⊆ SB . Suppose
dT (v2) ≥ 3. Since SA ∪ SD is a packing, no descendant of v2 is in SA ∪ SD. Hence if u1 is a
child of v2 different from v1, then (SA ∪SD ∪{u1, v0})\{v2} is a packing in T of cardinality
ρ(T ) + 1, which is impossible. Therefore, dT (v2) = 2. As observed earlier, v3 ∈ SB. If
T = P4, then ρ(T ) = 2, contradicting the fact that SA ∪ SD = {v2} is a ρ(T )-set. Hence,
n ≥ 5. Every neighbor of v3 different from v2 has status B, except possibly for one neighbor
of v3 which has status C. We now consider the tree T ′ = T −D[v2]. Let S′ be the restriction
of S to T ′. Then, (T ′, S′) is a (ρ, ρ3)-labelled tree, and we can take P = D[v2] and R = O9.

Case 2.3. v0 ∈ SA. Then either v1 ∈ SB or v1 ∈ SC .

Suppose that v1 ∈ SB . If v2 ∈ SB , then the set (SC ∪ SD) ∪ {v0} is a packing in T of
cardinality |SC |+|SD|+1 = |SA|+|SD|+1 = ρ(T )+1, which is impossible. Hence, v2 ∈ SC .
Since SC ∪ SD is a 3-packing, the vertex v3 is therefore at distance at least 3 from every
vertex in (SC ∪ SD) \ {v2}. But this implies that (SC ∪ SD ∪ {v0, v3}) \ {v2} is a packing in
T of cardinality |SC | + |SD|+ 1 = ρ(T ) + 1, which is impossible. Hence, v1 /∈ SB , implying
that v1 ∈ SC and v2 ∈ SB .

Let T ′ = T − {v0, v1}. Then, (SC ∪ SD ∪ {v2}) \ {v1} is a packing in T ′, and so by
Theorem 1, γ(T ′) = ρ(T ′) ≥ |SC ∪ SD| = |SA ∪ SD| = ρ(T ) = γ(T ). Consequently,
γ(T ′) = γ(T ). This implies that dT (v2) = 2. Since SC ∪ SD is a 3-packing, we observe that
either v3 has status A and all its neighbors have status B or v3 and all its neighbors have
status B, except possibly for one neighbor of v which has status A. We now consider the
tree T ∗ = T −D[v2]. Let S∗ be the restriction of S to T ∗. Then, (T ∗, S∗) is a (ρ, ρ3)-labelled
tree, and we can take P = D[v2] and R = O8.
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Case 2.4. v0 ∈ SB .

Suppose that v1 ∈ SA ∪ SB ∪ SC . Let T ′ = T − {v0, v1}. If v1 ∈ SA ∪ SB , then SC ∪ SD

is a packing in T ′, while if v1 ∈ SB ∪ SC , then SA ∪ SD is a packing in T ′. It follows that
ρ(T ′) = ρ(T ) and therefore that dT (v2) = 2. If v2 ∈ SD, then every vertex at distance 1
and 2 from v2 is in SB , while every vertex at distance 3 from v2 is in SA ∪ SB . But then
(SC ∪ SD ∪ {v0, v3}) \ {v2} is a packing in T of cardinality ρ(T ) + 1, which is impossible.
Hence, {v1, v2} ∩ SD = ∅. If {v1, v2} ∩ SA = ∅, then SA ∪ SD ∪ {v0} is a packing in T
of cardinality ρ(T ) + 1, which is impossible. If {v1, v2} ∩ SC = ∅, then SC ∪ SD ∪ {v0} is
a packing in T of cardinality ρ(T ) + 1, which is impossible. Hence, either v1 ∈ SA and
v2 ∈ SC or v1 ∈ SC and v2 ∈ SA. The former case cannot occur because v1 ∈ SA implies
that v3 ∈ SB and that every neighbor of v3 different from v2 is in SB except possibly one
v3-neighbor which may belong to SA. But now (SC ∪SD) \ {v2}∪ {v0, v3} is a packing in T
of cardinality ρ(T ) + 1, a contradiction. Thus the latter case v1 ∈ SC , v2 ∈ SA occurs and
every vertex at distance 1 and 2 from v2 except for v1 is labelled B. Recall dT (v2) = 2. We
now consider the tree T ∗ = T −D[v2]. Let S∗ be the restriction of S to T ∗. Then, (T ∗, S∗)
is a (ρ, ρ3)-labelled tree, and we can take P = D[v2] and R = O10.

Hence we may assume that v1 ∈ SD. With our earlier assumptions, we may therefore
assume that every leaf of a path of length diam(T ) has status B and its neighbor (of degree-
2) has status D. Suppose that dT (v2) ≥ 3. Let u1 be a child of v2 different from v1. If u1 is
not a leaf, then, by our earlier assumptions, u1 has status D, and so we have two vertices of
status D at distance 2 apart, contradicting the fact that SD is a packing. Hence, u1 is a leaf
and u1 ∈ SB . But then (SA ∪SD ∪{u1, v0}) \ {v1} is a packing in T of cardinality ρ(T )+1,
a contradiction. Hence, dT (v2) = 2. Since v1 ∈ SD, {v2, v3} ⊂ SB and every neighbor
of v3 have status B, except possibly for one neighbor of v3 which has status A. We now
consider the tree T ∗ = T − D[v2]. Let S∗ be the restriction of S to T ∗. Then, (T ∗, S∗) is a
(ρ, ρ3)-labelled tree, and we can take P = D[v2] and R = O6. 2
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Appendix: For refereeing purposes only

In this appendix we present a proof of the result due to Bresar et. al. [1] that the paired
domination number of a tree is equal to twice its 3-packing number. We begin with two
observations from [1]. Recall that the independence number β(G) of a graph G is the
maximum cardinality of a set of independent vertices in G.

Observation 4 (Bresar et. al. [1]) If D is a γpr(G)-set in a graph G without isolated
vertices, then |D| ≥ 2β(G[D]).

Proof. Let D′ ⊂ D be a maximum independent set in G[D]. Since each vertex of D′ has
a partner, and these partners are distinct, γpr(G) = |D| ≥ 2|D′| = 2β(G[D]). 2

Observation 5 (Bresar et. al. [1]) For any graph G without isolated vertices, γpr(G) ≥
2ρ3(G).

Proof. Let D be a γpr(G)-set and let S be a ρ3(G)-set. For each vertex v ∈ S, let v′ be a
vertex of D that dominates v and let D′ = ∪v∈S{v

′}. Since the vertices in S are pairwise
at distance at least 4 apart, the vertices v′, where v ∈ S, are distinct and the set D′ is an
independent set in G[D]. Hence, by Observation 4, γpr(G) = |D| ≥ 2|D′| = 2ρ3(G). 2

Recall Theorem 2:

Theorem 2 (Bresar et. al. [1]) For every tree T of order at least 2, γpr(T ) = 2ρ3(T ).

Proof. We proceed by induction on the order n ≥ 2 of a tree T . If n = 2, then T = K2

and γpr(T ) = 2 = 2ρ3(T ). This establishes the base case. Assume then that n ≥ 3 and
that all nontrivial trees T ′ of order less than n satisfy γpr(T

′) = 2ρ3(T
′). Let T be a tree

of order n. If T is star or a double star, then γpr(T ) = 2 = 2ρ3(T ). Hence we may assume
that diam(T ) ≥ 4.

In the proof we shall frequently prune the tree T to a tree T ′ and then establish that
γpr(T ) ≤ γpr(T

′)+2k and ρ3(T ) ≥ ρ3(T
′)+k for some integer k ≥ 0. Since γpr(T ) ≥ 2ρ3(T )

and γpr(T
′) = 2ρ3(T

′), it then follows that γpr(T
′)+2k ≥ γpr(T ) ≥ 2ρ3(T ) ≥ 2(ρ3(T

′)+k) =
γpr(T

′) + 2k, whence γpr(T ) = 2ρ3(T ), as desired.

Suppose T has a strong support vertex v. Let u be a leaf neighbor of v, and let T ′ =
T − u. Any γpr(T

′)-set contains the support vertex v and is therefore a PDS of T , and so
γpr(T ) ≤ γpr(T

′). Any ρ3(T
′)-set is also a 3-packing in T , and so ρ3(T ) ≥ ρ3(T

′). Thus,
γpr(T ) = 2ρ3(T ). Hence we may assume that T has no strong support vertex.

Let T be rooted at a leaf r of a longest path P . Let P be a r–u path, and let v be the
neighbor of u. Then, u is a leaf of T and, since T has no strong support vertex, degT v = 2.
Let w denote the parent of v on this path and x the parent of w.

Suppose degT w ≥ 3 and w is a support vertex. Let v′ be the leaf-neighbor of w, and let
T ′ = T −v′. Then there exists a γpr(T

′)-set that contains w (if w is not in some γpr(T
′)-set,
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then u and v are paired in such a γpr(T
′)-set and we can simply replace u with the vertex

w thereby pairing v and w in the new γpr(T
′)-set). Such a PDS is also a PDS of T , and so

γpr(T ) ≤ γpr(T
′). Clearly, ρ3(T ) ≥ ρ3(T

′). Thus, γpr(T ) = 2ρ3(T ).

Suppose degT w ≥ 3 and w is not a support vertex. Then, each child of w is a support
vertex of degree 2. Let v′ be a child of w different from v, and let u′ be the leaf-neighbor
of v′. Let T ′ = T − u′ − v′. Any γpr(T

′)-set can be extended to a PDS of T by adding to
it the vertices u′ and v′ (with u′ and v′ paired), and so γpr(T ) ≤ γpr(T

′) + 2. Let S′ be a
ρ3(T

′)-set that contains as many leaves as possible. Then, S ′ ∩ N [w] = ∅ (for example, if
S′ contains a vertex from the set {v, w, x}, then we can simply replace such a vertex with
the vertex u). Hence, S′ can be extended to a 3-packing of T by adding to it the leaf u′,
and so ρ3(T ) ≥ |S′| + 1 = ρ3(T

′) + 1. Thus, γpr(T ) = 2ρ3(T ). Hence we may assume that
degT w = 2 for otherwise γpr(T ) = 2ρ3(T ), as desired.

Suppose degT x = 2. Let T ′ = T −{u, v, w, x}. Any pr(T ′)-set can be extended to a PDS
of T by adding to it the vertices v and w (with v and w paired), and so γpr(T ) ≤ γpr(T

′)+2.
Any ρ3(T

′)-set can be extended to a 3-packing of T by adding to it the vertex u, and so
ρ3(T ) ≥ ρ3(T

′) + 1. Thus, γpr(T ) = 2ρ3(T ). Hence we may assume degT x ≥ 3.

Let T ′ = T − {u, v, w}. Every γpr(T
′)-set can be extended to a PDS of T by adding to it

the vertices v and w (with v and w paired), and so γpr(T ) ≤ γpr(T
′) + 2. Every ρ3(T

′)-set
that does not contain x (if x belongs to a some ρ3(T

′)-set, then we can simply replace x
with a child of x in T ′) can be extended to a 3-packing of T by adding to it the vertex u,
and so ρ3(T ) ≥ ρ3(T

′) + 1. Thus, γpr(T ) = 2ρ3(T ). 2
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