Aalborg Universitet

AALBORG UNIVERSITY

Trees with paired-domination number twice their domination number

Henning, Michael A.; Vestergaard, Preben Dahl

Publication date:
2006

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Henning, M. A., \& Vestergaard, P. D. (2006). Trees with paired-domination number twice their domination number. Department of Mathematical Sciences, Aalborg University. (Research Report Series; No. R-2006-11).

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal?

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

AALBORG UNIVERSITY

Trees with paired-domination number twice their domination number

by
Michael A. Henning and Preben Dahl Vestergaard

Trees with paired-domination number twice their domination number

${ }^{1}$ Michael A. Henning*, and ${ }^{2}$ Preben Dahl Vestergaard
${ }^{1}$ School of Mathematical Sciences
University of KwaZulu-Natal
Pietermaritzburg, 3209 South Africa
E-mail: henning@ukzn.ac.za
${ }^{2}$ Department of Mathematics
Aalborg University
DK-9220 Aalborg East, Denmark
E-mail: pdv@math.aau.dk

March 21, 2006

Abstract

In this paper, we continue the study of paired-domination in graphs introduced by Haynes and Slater (Networks 32 (1998) 199-206). A paired-dominating set of a graph G with no isolated vertex is a dominating set of vertices whose induced subgraph has a perfect matching. The paired-domination number of G is the minimum cardinality of a paired-dominating set of G. For $k \geq 2$, a k-packing in G is a set S of vertices of G that are pairwise at distance greater than k apart. The k-packing number of G is the maximum cardinality of a k-packing in G. Haynes and Slater observed that the paired-domination number is bounded above by twice the domination number. We give a constructive characterization of the trees attaining this bound that uses labelings of the vertices. The key to our characterization is the observation that the trees with paired-domination number twice their domination number are precisely the trees with 2 -packing number equal to their 3 -packing number.

Keywords: domination, packing number, paired-domination
AMS subject classification: 05C69

[^0]
1 Introduction

In this paper, we continue the study of domination and paired-domination in graphs. For a graph $G=(V, E)$, a set S is a dominating set, denoted DS, if every vertex in $V \backslash S$ has a neighbor in S. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. We call a dominating set of cardinality $\gamma(G)$ a $\gamma(G)$-set. Domination and its many variations have been surveyed and detailed in the two books by Haynes, Hedetniemi, and Slater $[8,9]$. We are interested in a variation of domination called paired-domination.

A matching in a graph G is a set of independent edges in G. A perfect matching M in G is a matching in G such that every vertex of G is incident to a vertex of M. A paired-dominating set, denoted PDS, of a graph G is a set S of vertices of G such that every vertex is adjacent to some vertex in S and the subgraph $G[S]$ induced by S contains a perfect matching M (not necessarily induced). Two vertices joined by an edge of M are said to be paired in S. Every graph without isolated vertices has a PDS since the endvertices of any maximal matching form such a set. The paired-domination number of G, denoted by $\gamma_{\mathrm{pr}}(G)$, is the minimum cardinality of a PDS. A PDS of cardinality $\gamma_{\mathrm{pr}}(G)$ we call a $\gamma_{\mathrm{pr}}(G)$-set. Paired-domination was introduced by Haynes and Slater in $[10,11]$ as a model for assigning backups to guards for security purposes, and is studied, for example, in $[2,3,4,6,7,13,15,16]$ and elsewhere.

In general we follow the notation and graph theory terminology in [8]. Specifically, let $G=(V, E)$ be a graph with vertex set V and edge set E. For any vertex $v \in V$, the open neighborhood of v is the set $N(v)=\{u \in V \mid u v \in E\}$, and its closed neighborhood is the set $N[v]=N(v) \cup\{v\}$. If $v \in S$, then a vertex $w \in V \backslash S$ is an external private neighbor of v (with respect to S) if $N(w) \cap S=\{v\}$; and the external private neighbor set of v with respect to S, denoted $\operatorname{epn}(v, S)$, is the set of all external private neighbors of v. We denote the degree of v in G by $d_{G}(v)$. We denote a path on n vertices by P_{n}.

For ease of presentation, we mostly consider rooted trees. For a vertex v in a (rooted) tree T, we let $C(v)$ and $D(v)$ denote the set of children and descendants, respectively, of v, and we define $D[v]=D(v) \cup\{v\}$. The maximal subtree at v is the subtree of T induced by $D[v]$, and is denoted by T_{v}. A vertex of degree one is called a leaf and its neighbor is called a support vertex. A strong support vertex is adjacent to at least two leaves.

For $k \geq 2$, Meir and Moon [14] defined a k-packing in a graph G as a set S of vertices of G that are pairwise at distance greater than k apart, i.e., if $u, v \in S$, then $d_{G}(u, v)>k$. A 1 -packing is an independent set. The k-packing number of G, denote $\rho_{k}(G)$, is the maximum cardinality of a k-packing in G. We call a k-packing of cardinality $\rho_{k}(G)$ a $\rho_{k}(G)$-set. By definition, we have the following observation.

Observation 1 For $k \geq 1$ and for any graph $G, \rho_{k}(G) \geq \rho_{k+1}(G)$.

A 2-packing is also called a packing and the 2-packing number is also called the packing number denoted by $\rho(G)$. Thus a $\rho(G)$-set is a packing of maximum cardinality $\rho(G)$. By Observation 1, $\rho(G) \geq \rho_{3}(G)$.

Definition 1 We define a graph G to be a $\left(\rho=\rho_{3}\right)$-graph if $\rho(G)=\rho_{3}(G)$.

The following bound was first observed by Haynes and Slater [10]. The proof follows from the fact that every graph without isolated vertices has a minimum DS in which each vertex has an external private neighbor.

Observation $2([10])$ For every graph G without isolated vertices, $\gamma_{\mathrm{pr}}(G) \leq 2 \gamma(G)$.

We call the graphs obtaining the upper bound in Observation 2, $\left(\gamma_{\mathrm{pr}}=2 \gamma\right)$-graphs. It is our goal in this paper to characterize $\left(\gamma_{\mathrm{pr}}=2 \gamma\right)$-trees. Recently, a characterization of $\left(\gamma_{\mathrm{pr}}=2 \gamma\right)$-trees was given in [12]. The characterization we present here is a constructive characterization using labelings that is simpler than that presented in [12]. The key to our characterization is the observation that the family of $\left(\gamma_{\mathrm{pr}}=2 \gamma\right)$-trees is precisely the family of ($\rho=\rho_{3}$)-trees.

Observation 3 Let T be a tree of order at least 2. Then, T is a $\left(\gamma_{\mathrm{pr}}=2 \gamma\right)$-tree if and only if T is a $\left(\rho=\rho_{3}\right)$-tree.

Observation 3 is an immediate consequence of the following two results. ${ }^{1}$

Theorem 1 (Moon and Meir [14]) For every tree $T, \gamma(T)=\rho(T)$.

Theorem 2 (Bresar et. al. [1]) For every tree T of order at least 2, $\gamma_{\mathrm{pr}}(T)=2 \rho_{3}(T)$.

Hence, by Observation 3, to characterize the $\left(\gamma_{\mathrm{pr}}=2 \gamma\right)$-trees it suffices to characterize the ($\rho=\rho_{3}$)-trees.

$2\left(\rho=\rho_{3}\right)$-Trees

Our aim in this section is to give a constructive characterization of ($\rho=\rho_{3}$)-trees (and hence, by Observation 3 , of $\left(\gamma_{\mathrm{pr}}=2 \gamma\right)$-trees $)$. The main idea to our constructive characterization is to find a labeling of the vertices that indicates the roles each vertex plays in the sets associated with both parameters. This idea of labeling the vertices is introduced in [5], where trees with equal domination and independent domination numbers as well as trees with equal domination and total domination numbers are characterized.

[^1]
2.1 Main Result

By a weak partition of a set we mean a partition of the set in which some of the subsets may be empty. We define a labeling of a tree T as a weak partition $S=\left(S_{A}, S_{B}, S_{C}, S_{D}\right)$ of $V(T)$. The label or status of a vertex v, denoted $\operatorname{sta}(v)$, is the letter $x \in\{A, B, C, D\}$ such that $v \in S_{x}$. Our aim it to describe a procedure to build ($\rho=\rho_{3}$)-trees in terms of labelings.

We begin by defining three labeled trees T_{1}, T_{2} and T_{3} as follows. Let T_{1} be a P_{2} with one vertex labeled A and the other vertex C. Let T_{2} be a P_{2} with one vertex labeled B and the other vertex D. Let T_{3} be a P_{3} with the central vertex labeled B and with one leaf labeled A and the other leaf C.

Definition 2 Let \mathcal{T} be the family of labeled trees that: (i) contains the labeled trees T_{1}, T_{2} and T_{3}; and (ii) is closed under the eleven operations $\mathcal{O}_{j}(j=1,2, \cdots, 11)$ listed below, which extend the tree T by attaching a tree to the vertex $v \in V(T)$.

- Operation \mathcal{O}_{1}. Assume v is a support vertex of T. Add a new vertex u of status B and the edge $u v$. (Note that v can have any status.)
- Operation \mathcal{O}_{2}. Assume v and all its neighbors have status B, except possibly for one neighbor of v which has status A. Add a path u_{1}, u_{2} and the edge $v u_{1}$. Let $\operatorname{sta}\left(u_{1}\right)=B$ and $\operatorname{sta}\left(u_{2}\right)=D$.
- Operation \mathcal{O}_{3}. Assume v and all its neighbors have status B. Add a path u_{1}, u_{2} and the edge $v u_{1}$. Let $\operatorname{sta}\left(u_{1}\right)=A$ and $\operatorname{sta}\left(u_{2}\right)=C$.
- Operation \mathcal{O}_{4}. Assume v and all its neighbors have status B, except possibly for one neighbor of v which has status A. Add a path u_{1}, u_{2}, u_{3} and the edge $v u_{2}$. Let $\operatorname{sta}\left(u_{1}\right)=A, \operatorname{sta}\left(u_{2}\right)=B$, and $\operatorname{sta}\left(u_{3}\right)=C$.
- Operation \mathcal{O}_{5}. Assume v has status A or B. Add a path u_{1}, u_{2}, u_{3} and the edge $v u_{1}$. Let $\operatorname{sta}\left(u_{1}\right)=\operatorname{sta}\left(u_{2}\right)=B$ and $\operatorname{sta}\left(u_{3}\right)=D$.
- Operation \mathcal{O}_{6}. Assume v and all its neighbors have status B, except possibly for one neighbor of v which has status A. Add a path u_{1}, u_{2}, u_{3} and the edge $v u_{1}$. Let $\operatorname{sta}\left(u_{1}\right)=B, \operatorname{sta}\left(u_{2}\right)=D$ and $\operatorname{sta}\left(u_{3}\right)=B$.
- Operation \mathcal{O}_{7}. Assume v has status B. Add a path u_{1}, u_{2}, u_{3} and the edge $v u_{1}$. Let $\operatorname{sta}\left(u_{1}\right)=B, \operatorname{sta}\left(u_{2}\right)=A$ and $\operatorname{sta}\left(u_{3}\right)=C$.
- Operation \mathcal{O}_{8}. Assume v has status A and all its neighbors have status B or assume v and all its neighbors have status B, except possibly for one neighbor of v which has status A. Add a path u_{1}, u_{2}, u_{3} and the edge $v u_{1}$. Let $\operatorname{sta}\left(u_{1}\right)=B, \operatorname{sta}\left(u_{2}\right)=C$ and $\operatorname{sta}\left(u_{3}\right)=A$.
- Operation \mathcal{O}_{9}. Assume v and all its neighbors have status B, except possibly for one neighbor of v which has status C. Add a path u_{1}, u_{2}, u_{3} and the edge $v u_{1}$. Let $\operatorname{sta}\left(u_{1}\right)=A, \operatorname{sta}\left(u_{2}\right)=B$ and $\operatorname{sta}\left(u_{3}\right)=C$.
- Operation \mathcal{O}_{10}. Assume v and all its neighbors have status B. Add a path u_{1}, u_{2}, u_{3} and the edge $v u_{1}$. Let $\operatorname{sta}\left(u_{1}\right)=A, \operatorname{sta}\left(u_{2}\right)=C$ and $\operatorname{sta}\left(u_{3}\right)=B$.
- Operation \mathcal{O}_{11}. Assume v has status A or B. Add a star $K_{1,3}$ with center u and leaves u_{1}, u_{2} and u_{3}, and add the edge $v u_{1}$. Let $\operatorname{sta}(u)=\operatorname{sta}\left(u_{1}\right)=B, \operatorname{sta}\left(u_{2}\right)=A$, $\operatorname{sta}\left(u_{3}\right)=C$.

These eleven operations are illustrated in Figure 1 where by status X we mean a support vertex of any status (namely, A, B, C or D). For $Y \in\{A, B\}$, by status Y_{B} we mean a vertex of status Y all of whose neighbors have status B. For $Z \in\{A, C\}$, by status B_{Z} we mean a vertex of status B all of whose neighbors have status B, except possibly for one neighbor which has status Z.

\mathcal{O}_{2} :

$\mathcal{O}_{3}:$

\mathcal{O}_{4} :

\mathcal{O}_{5} :

$\mathcal{O}_{6}:$

\mathcal{O}_{7} :

$\mathcal{O}_{8}:$

Figure 1. The eleven operations.
Our main result is the following constructive characterization of ($\rho=\rho_{3}$)-trees that uses labelings.

Theorem 3 The $\left(\rho=\rho_{3}\right)$-trees are precisely those trees T such that $(T, S) \in \mathcal{T}$ for some labeling S.

Theorem 3 is an immediate consequence of Theorem 4 presented in Section 2.2 and Theorem 5 in Section 2.3.

$2.2\left(\rho, \rho_{3}\right)$-labelings

Definition 3 We define a $\left(\rho, \rho_{\mathbf{3}}\right)$-labeling of a tree $T=(V, E)$ as a weak partition $S=$ $\left(S_{A}, S_{B}, S_{C}, S_{D}\right)$ of V such that

- $S_{A} \cup S_{D}$ is a $\rho(T)$-set,
- $S_{C} \cup S_{D}$ is a 3-packing, and
- $\left|S_{A}\right|=\left|S_{C}\right|$.

We are now in a position to characterize ($\rho=\rho_{3}$)-trees in terms of (ρ, ρ_{3})-labelings.
Theorem $4 A$ tree is a $\left(\rho=\rho_{3}\right)$-tree if and only if has a $\left(\rho, \rho_{3}\right)$-labeling.
Proof. Suppose T is a tree that has a $\left(\rho, \rho_{3}\right)$-labeling $\left(S_{A}, S_{B}, S_{C}, S_{D}\right)$. Then, $\rho_{3}(T) \leq$ $\rho(T)=\left|S_{A} \cup S_{D}\right|=\left|S_{C} \cup S_{D}\right| \leq \rho_{3}(T)$. Hence we must have equality throughout this inequality chain. In particular, $\rho_{3}(T)=\rho(T)$; that is, T is a ($\rho=\rho_{3}$)-tree.

Conversely, suppose that T is a $\left(\rho=\rho_{3}\right)$-tree. Let P be a $\rho(T)$-set and let L be a $\rho_{3}(T)$ set. Let $S_{A}=P \backslash L, S_{B}=V \backslash(P \cup L), S_{C}=L \backslash P$, and $S_{D}=L \cap P$. Then, $P=S_{A} \cup S_{D}$ is a $\rho(T)$-set and $L=S_{C} \cup S_{D}$ is a 3-packing. Further since $|P|=\rho(T)=\rho_{3}(T)=|L|$, we have $\left|S_{A}\right|=\left|S_{C}\right|$. Hence, $\left(S_{A}, S_{B}, S_{C}, S_{D}\right)$ is a $\left(\rho, \rho_{3}\right)$-labeling of T.

2.3 (ρ, ρ_{3})-labelled Trees

Given a $\left(\rho, \rho_{3}\right)$-labeling $S=\left(S_{A}, S_{B}, S_{C}, S_{D}\right)$ of a tree T, we will refer to the pair (T, S) as a $\left(\rho, \rho_{3}\right)$-labelled tree. In this subsection, we characterize $\left(\rho, \rho_{3}\right)$-labelled trees.

Theorem 5 A labeled tree is a $\left(\rho, \rho_{3}\right)$-labelled tree if and only if it is in \mathcal{T}.

Proof. It is clear that the eleven operations $\mathcal{O}_{i}, 1 \leq i \leq 11$, preserve a (ρ, ρ_{3})-labeling, whence every element of \mathcal{T} is a $\left(\rho, \rho_{3}\right)$-labelled tree.

Conversely, the proof that every $\left(\rho, \rho_{3}\right)$-labelled tree (T, S) belongs to \mathcal{T} is by induction on the order of T. The smallest $\left(\rho, \rho_{3}\right)$-labelled trees are the labeled trees T_{1} and T_{2} defined earlier, both of which are in \mathcal{T}. So fix a $\left(\rho, \rho_{3}\right)$-labelled tree (T, S) of order at least 3 , and assume that any smaller $\left(\rho, \rho_{3}\right)$-labelled tree is in \mathcal{T}. By Theorem $4, T$ is a $\left(\rho=\rho_{3}\right)$-tree.

To complete the proof, we need to identify a set P of vertices that can be pruned to leave a $\left(\rho, \rho_{3}\right)$-labelled tree (by induction, this pruned tree is in \mathcal{T}) and an operation \mathcal{R} or a sequence of operations that restores the pruned vertices.

If $T=P_{3}$, then either $T=T_{3}$ or T can be obtained from either T_{1} or T_{2} by operation \mathcal{O}_{1}, implying that $T \in \mathcal{T}$.

Suppose there is a leaf u in S_{B} adjacent to a strong support vertex. Let $T^{\prime}=T-u$ and let S^{\prime} be the restriction of S to T^{\prime}. Then, $\left(T^{\prime}, S^{\prime}\right)$ is a $\left(\rho, \rho_{3}\right)$-labelled tree, and we can take $P=\{u\}$ and $\mathcal{R}=\mathcal{O}_{1}$. So we may assume that no leaf of status B is adjacent to a strong support vertex. Hence we may assume that $\operatorname{diam}(T) \geq 3$.

Among all longest paths in T, let $v_{0}, v_{1}, v_{2}, \ldots, v_{\operatorname{diam}(T)}$ be chosen so that $\operatorname{deg} v_{1}$ is as large as possible. Let T be rooted at the vertex $v_{\operatorname{diam}(T)}$.

Case 1. $d_{T}\left(v_{1}\right) \geq 3$, i.e., v_{1} is a strong support vertex. By assumption, no leaf of v_{1} has status B. Since $S_{A} \cup S_{D}$ is a packing and $S_{C} \cup S_{D}$ is a 3 -packing, v_{1} therefore has exactly two children, say u_{0} and v_{0}, one of status A and the other of status C. We may assume $\operatorname{sta}\left(u_{0}\right)=A$ and $\operatorname{sta}\left(v_{0}\right)=C$. Further, $\operatorname{sta}\left(v_{1}\right)=\operatorname{sta}\left(v_{2}\right)=B$ and $\operatorname{sta}(w)=B$ for each $w \in N\left(v_{2}\right)$, except possibly for one neighbor of v_{2} which has status A.

Let $T^{\prime}=T-D\left[v_{1}\right]$. Then, $\left(S_{A} \cup S_{D}\right) \backslash\left\{u_{0}\right\}$ is a packing in T^{\prime}, and so $\rho\left(T^{\prime}\right) \geq \rho(T)-1$. If $\rho\left(T^{\prime}\right)=\rho(T)-1$, then $\left(T^{\prime}, S^{\prime}\right)$ is a $\left(\rho, \rho_{3}\right)$-labelled tree where S^{\prime} is the restriction of S to T^{\prime}, and we can take $P=D\left[v_{1}\right]$ and $\mathcal{R}=\mathcal{O}_{4}$. Hence we may assume that $\rho\left(T^{\prime}\right)=\rho(T)$. Thus, by Theorem $1, \gamma\left(T^{\prime}\right)=\gamma(T)$. Let D be a $\gamma(T)$-set. Then, $v_{1} \in D$. If $v_{2} \notin \operatorname{epn}(v, D)$, then $D \backslash\left\{v_{1}\right\}$ is a DS of T^{\prime} of cardinality $\gamma(T)-1$, contrary to assumption. Hence, for every $\gamma(T)$-set D of T we must have that $v_{2} \in \operatorname{epn}(v, D)$. This implies that $d_{T}\left(v_{2}\right)=2$. We now consider the tree $T^{*}=T-D\left[v_{2}\right]$. As observed earlier, $v_{3} \in S_{A} \cup S_{B}$. Let S^{*} be the restriction of S to T^{*}. Then, $\left(T^{*}, S^{*}\right)$ is a $\left(\rho, \rho_{3}\right)$-labelled tree, and we can take $P=D\left[v_{2}\right]$ and $\mathcal{R}=\mathcal{O}_{11}$.

Case 2. $d_{T}\left(v_{1}\right)=2$. We consider four possibilities.
Case 2.1. $v_{0} \in S_{D}$. Then, $\left\{v_{1}, v_{2}\right\} \subseteq S_{B}$ and every neighbor of v_{2} is in S_{B}, except possibly for one neighbor which is in S_{A}. Let $T^{\prime}=T-\left\{v_{0}, v_{1}\right\}$. Then, $\left(S_{A} \cup S_{D}\right) \backslash\left\{v_{0}\right\}$ is a packing in T^{\prime}, and so $\rho\left(T^{\prime}\right) \geq \rho(T)-1$. If $\rho\left(T^{\prime}\right)=\rho(T)-1$, then $\left(T^{\prime}, S^{\prime}\right)$ is a $\left(\rho, \rho_{3}\right)$-labelled tree where S^{\prime} is the restriction of S to T^{\prime}, and we can take $P=\left\{v_{0}, v_{1}\right\}$ and $\mathcal{R}=\mathcal{O}_{2}$. Hence we may assume that $\rho\left(T^{\prime}\right)=\rho(T)$. This implies, as argued in Case 1 , that $d_{T}\left(v_{2}\right)=2$. We now consider the tree $T^{*}=T-D\left[v_{2}\right]$. As observed earlier, $v_{3} \in S_{A} \cup S_{B}$. Let S^{*} be the restriction of S to T^{*}. Then, $\left(T^{*}, S^{*}\right)$ is a $\left(\rho, \rho_{3}\right)$-labelled tree, and we can take $P=D\left[v_{2}\right]$ and $\mathcal{R}=\mathcal{O}_{5}$.

Case 2.2. $v_{0} \in S_{C}$. Then either $v_{1} \in S_{A}$ or $v_{1} \in S_{B}$.
Suppose first that $v_{1} \in S_{A}$. Then, $v_{2} \in S_{B}$ and every neighbor of v_{2} except for v_{1} is in S_{B}. Let $T^{\prime}=T-\left\{v_{0}, v_{1}\right\}$. Then, $\left(S_{A} \cup S_{D}\right) \backslash\left\{v_{0}\right\}$ is a packing in T^{\prime}, and so $\rho\left(T^{\prime}\right) \geq \rho(T)-1$. If $\rho\left(T^{\prime}\right)=\rho(T)-1$, then $\left(T^{\prime}, S^{\prime}\right)$ is a $\left(\rho, \rho_{3}\right)$-labelled tree where S^{\prime} is the restriction of S to T^{\prime}, and we can take $P=\left\{v_{0}, v_{1}\right\}$ and $\mathcal{R}=\mathcal{O}_{3}$. Hence we may assume that $\rho\left(T^{\prime}\right)=\rho(T)$. This implies that $\gamma\left(T^{\prime}\right)=\gamma(T)$ and hence that $d_{T}\left(v_{2}\right)=2$. We now consider the tree $T^{*}=T-D\left[v_{2}\right]$. As observed earlier, $v_{3} \in S_{B}$. Let S^{*} be the restriction of S to T^{*}. Then, $\left(T^{*}, S^{*}\right)$ is a $\left(\rho, \rho_{3}\right)$-labelled tree, and we can take $P=D\left[v_{2}\right]$ and $\mathcal{R}=\mathcal{O}_{7}$.

Suppose secondly that $v_{1} \in S_{B}$. If $v_{2} \in S_{B}$, then $S_{A} \cup S_{D} \cup\left\{v_{0}\right\}$ is a packing in T of cardinality $\rho(T)+1$, which is impossible. Hence, $v_{2} \in S_{A}$. Thus, $N\left(v_{2}\right) \subseteq S_{B}$. Suppose $d_{T}\left(v_{2}\right) \geq 3$. Since $S_{A} \cup S_{D}$ is a packing, no descendant of v_{2} is in $S_{A} \cup S_{D}$. Hence if u_{1} is a child of v_{2} different from v_{1}, then $\left(S_{A} \cup S_{D} \cup\left\{u_{1}, v_{0}\right\}\right) \backslash\left\{v_{2}\right\}$ is a packing in T of cardinality $\rho(T)+1$, which is impossible. Therefore, $d_{T}\left(v_{2}\right)=2$. As observed earlier, $v_{3} \in S_{B}$. If $T=P_{4}$, then $\rho(T)=2$, contradicting the fact that $S_{A} \cup S_{D}=\left\{v_{2}\right\}$ is a $\rho(T)$-set. Hence, $n \geq 5$. Every neighbor of v_{3} different from v_{2} has status B, except possibly for one neighbor of v_{3} which has status C. We now consider the tree $T^{\prime}=T-D\left[v_{2}\right]$. Let S^{\prime} be the restriction of S to T^{\prime}. Then, $\left(T^{\prime}, S^{\prime}\right)$ is a $\left(\rho, \rho_{3}\right)$-labelled tree, and we can take $P=D\left[v_{2}\right]$ and $\mathcal{R}=\mathcal{O}_{9}$.

Case 2.3. $v_{0} \in S_{A}$. Then either $v_{1} \in S_{B}$ or $v_{1} \in S_{C}$.
Suppose that $v_{1} \in S_{B}$. If $v_{2} \in S_{B}$, then the set $\left(S_{C} \cup S_{D}\right) \cup\left\{v_{0}\right\}$ is a packing in T of cardinality $\left|S_{C}\right|+\left|S_{D}\right|+1=\left|S_{A}\right|+\left|S_{D}\right|+1=\rho(T)+1$, which is impossible. Hence, $v_{2} \in S_{C}$. Since $S_{C} \cup S_{D}$ is a 3-packing, the vertex v_{3} is therefore at distance at least 3 from every vertex in $\left(S_{C} \cup S_{D}\right) \backslash\left\{v_{2}\right\}$. But this implies that $\left(S_{C} \cup S_{D} \cup\left\{v_{0}, v_{3}\right\}\right) \backslash\left\{v_{2}\right\}$ is a packing in T of cardinality $\left|S_{C}\right|+\left|S_{D}\right|+1=\rho(T)+1$, which is impossible. Hence, $v_{1} \notin S_{B}$, implying that $v_{1} \in S_{C}$ and $v_{2} \in S_{B}$.

Let $T^{\prime}=T-\left\{v_{0}, v_{1}\right\}$. Then, $\left(S_{C} \cup S_{D} \cup\left\{v_{2}\right\}\right) \backslash\left\{v_{1}\right\}$ is a packing in T^{\prime}, and so by Theorem 1, $\gamma\left(T^{\prime}\right)=\rho\left(T^{\prime}\right) \geq\left|S_{C} \cup S_{D}\right|=\left|S_{A} \cup S_{D}\right|=\rho(T)=\gamma(T)$. Consequently, $\gamma\left(T^{\prime}\right)=\gamma(T)$. This implies that $d_{T}\left(v_{2}\right)=2$. Since $S_{C} \cup S_{D}$ is a 3-packing, we observe that either v_{3} has status A and all its neighbors have status B or v_{3} and all its neighbors have status B, except possibly for one neighbor of v which has status A. We now consider the tree $T^{*}=T-D\left[v_{2}\right]$. Let S^{*} be the restriction of S to T^{*}. Then, $\left(T^{*}, S^{*}\right)$ is a $\left(\rho, \rho_{3}\right)$-labelled tree, and we can take $P=D\left[v_{2}\right]$ and $\mathcal{R}=\mathcal{O}_{8}$.

Case 2.4. $v_{0} \in S_{B}$.
Suppose that $v_{1} \in S_{A} \cup S_{B} \cup S_{C}$. Let $T^{\prime}=T-\left\{v_{0}, v_{1}\right\}$. If $v_{1} \in S_{A} \cup S_{B}$, then $S_{C} \cup S_{D}$ is a packing in T^{\prime}, while if $v_{1} \in S_{B} \cup S_{C}$, then $S_{A} \cup S_{D}$ is a packing in T^{\prime}. It follows that $\rho\left(T^{\prime}\right)=\rho(T)$ and therefore that $d_{T}\left(v_{2}\right)=2$. If $v_{2} \in S_{D}$, then every vertex at distance 1 and 2 from v_{2} is in S_{B}, while every vertex at distance 3 from v_{2} is in $S_{A} \cup S_{B}$. But then $\left(S_{C} \cup S_{D} \cup\left\{v_{0}, v_{3}\right\}\right) \backslash\left\{v_{2}\right\}$ is a packing in T of cardinality $\rho(T)+1$, which is impossible. Hence, $\left\{v_{1}, v_{2}\right\} \cap S_{D}=\emptyset$. If $\left\{v_{1}, v_{2}\right\} \cap S_{A}=\emptyset$, then $S_{A} \cup S_{D} \cup\left\{v_{0}\right\}$ is a packing in T of cardinality $\rho(T)+1$, which is impossible. If $\left\{v_{1}, v_{2}\right\} \cap S_{C}=\emptyset$, then $S_{C} \cup S_{D} \cup\left\{v_{0}\right\}$ is a packing in T of cardinality $\rho(T)+1$, which is impossible. Hence, either $v_{1} \in S_{A}$ and $v_{2} \in S_{C}$ or $v_{1} \in S_{C}$ and $v_{2} \in S_{A}$. The former case cannot occur because $v_{1} \in S_{A}$ implies that $v_{3} \in S_{B}$ and that every neighbor of v_{3} different from v_{2} is in S_{B} except possibly one v_{3}-neighbor which may belong to S_{A}. But now $\left(S_{C} \cup S_{D}\right) \backslash\left\{v_{2}\right\} \cup\left\{v_{0}, v_{3}\right\}$ is a packing in T of cardinality $\rho(T)+1$, a contradiction. Thus the latter case $v_{1} \in S_{C}, v_{2} \in S_{A}$ occurs and every vertex at distance 1 and 2 from v_{2} except for v_{1} is labelled B. Recall $d_{T}\left(v_{2}\right)=2$. We now consider the tree $T^{*}=T-D\left[v_{2}\right]$. Let S^{*} be the restriction of S to T^{*}. Then, $\left(T^{*}, S^{*}\right)$ is a $\left(\rho, \rho_{3}\right)$-labelled tree, and we can take $P=D\left[v_{2}\right]$ and $\mathcal{R}=\mathcal{O}_{10}$.

Hence we may assume that $v_{1} \in S_{D}$. With our earlier assumptions, we may therefore assume that every leaf of a path of length $\operatorname{diam}(T)$ has status B and its neighbor (of degree2) has status D. Suppose that $d_{T}\left(v_{2}\right) \geq 3$. Let u_{1} be a child of v_{2} different from v_{1}. If u_{1} is not a leaf, then, by our earlier assumptions, u_{1} has status D, and so we have two vertices of status D at distance 2 apart, contradicting the fact that S_{D} is a packing. Hence, u_{1} is a leaf and $u_{1} \in S_{B}$. But then $\left(S_{A} \cup S_{D} \cup\left\{u_{1}, v_{0}\right\}\right) \backslash\left\{v_{1}\right\}$ is a packing in T of cardinality $\rho(T)+1$, a contradiction. Hence, $d_{T}\left(v_{2}\right)=2$. Since $v_{1} \in S_{D},\left\{v_{2}, v_{3}\right\} \subset S_{B}$ and every neighbor of v_{3} have status B, except possibly for one neighbor of v_{3} which has status A. We now consider the tree $T^{*}=T-D\left[v_{2}\right]$. Let S^{*} be the restriction of S to T^{*}. Then, $\left(T^{*}, S^{*}\right)$ is a $\left(\rho, \rho_{3}\right)$-labelled tree, and we can take $P=D\left[v_{2}\right]$ and $\mathcal{R}=\mathcal{O}_{6}$.

References

[1] B. Bresar, M. A. Henning, and D. F. Rall, Paired-domination of Cartesian products of graphs, manuscript (2005).
[2] M. Chellali and T. W. Haynes, Trees with unique minimum paired-dominating sets. Ars Combin. 73 (2004), 3-12.
[3] M. Chellali and T. W. Haynes, Total and paired-domination numbers of a tree. AKCE Int. J. Graphs Comb. 1 (2004), 69-75.
[4] M. Chellali and T. W. Haynes, On paired and double domination in graphs. Utilitas Math. 67 (2005), 161-171.
[5] M. Dorfling, W. Goddard, M. A. Henning, and C. M. Mynhardt, Construction of trees and graphs with equal domination parameters, manuscript (2003).
[6] O. Favaron and M.A. Henning, Paired domination in claw-free cubic graphs. Graphs Combin. 20 (2004), 447-456.
[7] S. Fitzpatrick and B. Hartnell, Paired-domination. Discuss. Math. Graph Theory 18 (1998), 63-72.
[8] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[9] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater (eds), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
[10] T. W. Haynes and P. J. Slater, Paired-domination in graphs. Networks 32 (1998), 199-206.
[11] T. W. Haynes and P. J. Slater, Paired-domination and the paired-domatic number. Congr. Numer. 109 (1995), 65-72.
[12] T. W. Haynes and M. A. Henning, Trees with large paired-domination number. To appear in Utilitas Math.
[13] M. A. Henning, Trees with equal total domination and paired-domination numbers. To appear in Utilitas Math.
[14] A. Meir and J. W. Moon. Relations between packing and covering numbers of a tree. Pacific J. Math. 61 (1975), 225-233.
[15] K. E. Proffitt, T. W. Haynes, and P. J. Slater, Paired-domination in grid graphs. Congr. Numer. 150 (2001), 161-172.
[16] H. Qiao, L. Kang, M. Cardei, and Ding-Zhu, Paired-domination of trees. J. Global Optimization 25 (2003), 43-54.

Appendix: For refereeing purposes only

In this appendix we present a proof of the result due to Bresar et. al. [1] that the paired domination number of a tree is equal to twice its 3 -packing number. We begin with two observations from [1]. Recall that the independence number $\beta(G)$ of a graph G is the maximum cardinality of a set of independent vertices in G.

Observation 4 (Bresar et. al. [1]) If D is a $\gamma_{\mathrm{pr}}(G)$-set in a graph G without isolated vertices, then $|D| \geq 2 \beta(G[D])$.

Proof. Let $D^{\prime} \subset D$ be a maximum independent set in $G[D]$. Since each vertex of D^{\prime} has a partner, and these partners are distinct, $\gamma_{\mathrm{pr}}(G)=|D| \geq 2\left|D^{\prime}\right|=2 \beta(G[D])$.

Observation 5 (Bresar et. al. [1]) For any graph G without isolated vertices, $\gamma_{\mathrm{pr}}(G) \geq$ $2 \rho_{3}(G)$.

Proof. Let D be a $\gamma_{\mathrm{pr}}(G)$-set and let S be a $\rho_{3}(G)$-set. For each vertex $v \in S$, let v^{\prime} be a vertex of D that dominates v and let $D^{\prime}=\cup_{v \in S}\left\{v^{\prime}\right\}$. Since the vertices in S are pairwise at distance at least 4 apart, the vertices v^{\prime}, where $v \in S$, are distinct and the set D^{\prime} is an independent set in $G[D]$. Hence, by Observation $4, \gamma_{\mathrm{pr}}(G)=|D| \geq 2\left|D^{\prime}\right|=2 \rho_{3}(G)$.

Recall Theorem 2:
Theorem 2 (Bresar et. al. [1]) For every tree T of order at least 2, $\gamma_{\mathrm{pr}}(T)=2 \rho_{3}(T)$.
Proof. We proceed by induction on the order $n \geq 2$ of a tree T. If $n=2$, then $T=K_{2}$ and $\gamma_{\mathrm{pr}}(T)=2=2 \rho_{3}(T)$. This establishes the base case. Assume then that $n \geq 3$ and that all nontrivial trees T^{\prime} of order less than n satisfy $\gamma_{\mathrm{pr}}\left(T^{\prime}\right)=2 \rho_{3}\left(T^{\prime}\right)$. Let T be a tree of order n. If T is star or a double star, then $\gamma_{\mathrm{pr}}(T)=2=2 \rho_{3}(T)$. Hence we may assume that $\operatorname{diam}(T) \geq 4$.

In the proof we shall frequently prune the tree T to a tree T^{\prime} and then establish that $\gamma_{\mathrm{pr}}(T) \leq \gamma_{\mathrm{pr}}\left(T^{\prime}\right)+2 k$ and $\rho_{3}(T) \geq \rho_{3}\left(T^{\prime}\right)+k$ for some integer $k \geq 0$. Since $\gamma_{\mathrm{pr}}(T) \geq 2 \rho_{3}(T)$ and $\gamma_{\mathrm{pr}}\left(T^{\prime}\right)=2 \rho_{3}\left(T^{\prime}\right)$, it then follows that $\gamma_{\mathrm{pr}}\left(T^{\prime}\right)+2 k \geq \gamma_{\mathrm{pr}}(T) \geq 2 \rho_{3}(T) \geq 2\left(\rho_{3}\left(T^{\prime}\right)+k\right)=$ $\gamma_{\mathrm{pr}}\left(T^{\prime}\right)+2 k$, whence $\gamma_{\mathrm{pr}}(T)=2 \rho_{3}(T)$, as desired.

Suppose T has a strong support vertex v. Let u be a leaf neighbor of v, and let $T^{\prime}=$ $T-u$. Any $\gamma_{\mathrm{pr}}\left(T^{\prime}\right)$-set contains the support vertex v and is therefore a PDS of T, and so $\gamma_{\mathrm{pr}}(T) \leq \gamma_{\mathrm{pr}}\left(T^{\prime}\right)$. Any $\rho_{3}\left(T^{\prime}\right)$-set is also a 3-packing in T, and so $\rho_{3}(T) \geq \rho_{3}\left(T^{\prime}\right)$. Thus, $\gamma_{\mathrm{pr}}(T)=2 \rho_{3}(T)$. Hence we may assume that T has no strong support vertex.

Let T be rooted at a leaf r of a longest path P. Let P be a $r-u$ path, and let v be the neighbor of u. Then, u is a leaf of T and, since T has no strong support vertex, $\operatorname{deg}_{T} v=2$. Let w denote the parent of v on this path and x the parent of w.

Suppose $\operatorname{deg}_{T} w \geq 3$ and w is a support vertex. Let v^{\prime} be the leaf-neighbor of w, and let $T^{\prime}=T-v^{\prime}$. Then there exists a $\gamma_{\mathrm{pr}}\left(T^{\prime}\right)$-set that contains w (if w is not in some $\gamma_{\mathrm{pr}}\left(T^{\prime}\right)$-set,
then u and v are paired in such a $\gamma_{\mathrm{pr}}\left(T^{\prime}\right)$-set and we can simply replace u with the vertex w thereby pairing v and w in the new $\gamma_{\mathrm{pr}}\left(T^{\prime}\right)$-set). Such a PDS is also a PDS of T, and so $\gamma_{\mathrm{pr}}(T) \leq \gamma_{\mathrm{pr}}\left(T^{\prime}\right)$. Clearly, $\rho_{3}(T) \geq \rho_{3}\left(T^{\prime}\right)$. Thus, $\gamma_{\mathrm{pr}}(T)=2 \rho_{3}(T)$.

Suppose $\operatorname{deg}_{T} w \geq 3$ and w is not a support vertex. Then, each child of w is a support vertex of degree 2. Let v^{\prime} be a child of w different from v, and let u^{\prime} be the leaf-neighbor of v^{\prime}. Let $T^{\prime}=T-u^{\prime}-v^{\prime}$. Any $\gamma_{\mathrm{pr}}\left(T^{\prime}\right)$-set can be extended to a PDS of T by adding to it the vertices u^{\prime} and v^{\prime} (with u^{\prime} and v^{\prime} paired), and so $\gamma_{\mathrm{pr}}(T) \leq \gamma_{\mathrm{pr}}\left(T^{\prime}\right)+2$. Let S^{\prime} be a $\rho_{3}\left(T^{\prime}\right)$-set that contains as many leaves as possible. Then, $S^{\prime} \cap N[w]=\emptyset$ (for example, if S^{\prime} contains a vertex from the set $\{v, w, x\}$, then we can simply replace such a vertex with the vertex u). Hence, S^{\prime} can be extended to a 3 -packing of T by adding to it the leaf u^{\prime}, and so $\rho_{3}(T) \geq\left|S^{\prime}\right|+1=\rho_{3}\left(T^{\prime}\right)+1$. Thus, $\gamma_{\mathrm{pr}}(T)=2 \rho_{3}(T)$. Hence we may assume that $\operatorname{deg}_{T} w=2$ for otherwise $\gamma_{\mathrm{pr}}(T)=2 \rho_{3}(T)$, as desired.

Suppose $\operatorname{deg}_{T} x=2$. Let $T^{\prime}=T-\{u, v, w, x\}$. Any $\operatorname{pr}\left(T^{\prime}\right)$-set can be extended to a PDS of T by adding to it the vertices v and w (with v and w paired), and so $\gamma_{\mathrm{pr}}(T) \leq \gamma_{\mathrm{pr}}\left(T^{\prime}\right)+2$. Any $\rho_{3}\left(T^{\prime}\right)$-set can be extended to a 3 -packing of T by adding to it the vertex u, and so $\rho_{3}(T) \geq \rho_{3}\left(T^{\prime}\right)+1$. Thus, $\gamma_{\mathrm{pr}}(T)=2 \rho_{3}(T)$. Hence we may assume $\operatorname{deg}_{T} x \geq 3$.

Let $T^{\prime}=T-\{u, v, w\}$. Every $\gamma_{\mathrm{pr}}\left(T^{\prime}\right)$-set can be extended to a PDS of T by adding to it the vertices v and w (with v and w paired), and so $\gamma_{\mathrm{pr}}(T) \leq \gamma_{\mathrm{pr}}\left(T^{\prime}\right)+2$. Every $\rho_{3}\left(T^{\prime}\right)$-set that does not contain x (if x belongs to a some $\rho_{3}\left(T^{\prime}\right)$-set, then we can simply replace x with a child of x in T^{\prime}) can be extended to a 3-packing of T by adding to it the vertex u, and so $\rho_{3}(T) \geq \rho_{3}\left(T^{\prime}\right)+1$. Thus, $\gamma_{\mathrm{pr}}(T)=2 \rho_{3}(T)$.

[^0]: *Research supported in part by the South African National Research Foundation and the University of KwaZulu-Natal.

[^1]: ${ }^{1}$ Since the result of Bresar et. al. [1] may not be readily available to the referees, we provide a proof-for refereeing purposes only-of Theorem 2 in the appendix.

