

Aalborg Universitet

Trees with paired-domination number twice their domination number

Henning, Michael A.; Vestergaard, Preben Dahl

Publication date: 2006

Document Version Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA): Henning, M. A., & Vestergaard, P. D. (2006). Trees with paired-domination number twice their domination number. Department of Mathematical Sciences, Aalborg University. (Research Report Series; No. R-2006-11).

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

AALBORG UNIVERSITY

by

Michael A. Henning and Preben Dahl Vestergaard

R-2006-11

March 2006

DEPARTMENT OF MATHEMATICAL SCIENCES AALBORG UNIVERSITY Fredrik Bajers Vej 7 G • DK-9220 Aalborg Øst • Denmark Phone: +45 96 35 80 80 • Telefax: +45 98 15 81 29 URL: http://www.math.aau.dk

Trees with paired-domination number twice their domination number

¹Michael A. Henning^{*}, and ²Preben Dahl Vestergaard

¹School of Mathematical Sciences University of KwaZulu-Natal Pietermaritzburg, 3209 South Africa E-mail: henning@ukzn.ac.za

²Department of Mathematics Aalborg University DK-9220 Aalborg East, Denmark E-mail: pdv@math.aau.dk

March 21, 2006

Abstract

In this paper, we continue the study of paired-domination in graphs introduced by Haynes and Slater (Networks 32 (1998) 199–206). A paired-dominating set of a graph G with no isolated vertex is a dominating set of vertices whose induced subgraph has a perfect matching. The paired-domination number of G is the minimum cardinality of a paired-dominating set of G. For $k \geq 2$, a k-packing in G is a set S of vertices of G that are pairwise at distance greater than k apart. The k-packing number of G is the maximum cardinality of a k-packing in G. Haynes and Slater observed that the paired-domination number is bounded above by twice the domination number. We give a constructive characterization of the trees attaining this bound that uses labelings of the vertices. The key to our characterization is the observation that the trees with paired-domination number twice their domination number are precisely the trees with 2-packing number equal to their 3-packing number.

Keywords: domination, packing number, paired-domination AMS subject classification: 05C69

^{*}Research supported in part by the South African National Research Foundation and the University of KwaZulu-Natal.

1 Introduction

In this paper, we continue the study of domination and paired-domination in graphs. For a graph G = (V, E), a set S is a *dominating set*, denoted DS, if every vertex in $V \setminus S$ has a neighbor in S. The *domination number* $\gamma(G)$ is the minimum cardinality of a dominating set of G. We call a dominating set of cardinality $\gamma(G) = \gamma(G)$ -set. Domination and its many variations have been surveyed and detailed in the two books by Haynes, Hedetniemi, and Slater [8, 9]. We are interested in a variation of domination called paired-domination.

A matching in a graph G is a set of independent edges in G. A perfect matching M in G is a matching in G such that every vertex of G is incident to a vertex of M. A paired-dominating set, denoted PDS, of a graph G is a set S of vertices of G such that every vertex is adjacent to some vertex in S and the subgraph G[S] induced by S contains a perfect matching M (not necessarily induced). Two vertices joined by an edge of M are said to be paired in S. Every graph without isolated vertices has a PDS since the endvertices of any maximal matching form such a set. The paired-domination number of G, denoted by $\gamma_{\rm pr}(G)$, is the minimum cardinality of a PDS. A PDS of cardinality $\gamma_{\rm pr}(G)$ we call a $\gamma_{\rm pr}(G)$ -set. Paired-domination was introduced by Haynes and Slater in [10, 11] as a model for assigning backups to guards for security purposes, and is studied, for example, in [2, 3, 4, 6, 7, 13, 15, 16] and elsewhere.

In general we follow the notation and graph theory terminology in [8]. Specifically, let G = (V, E) be a graph with vertex set V and edge set E. For any vertex $v \in V$, the open neighborhood of v is the set $N(v) = \{u \in V \mid uv \in E\}$, and its closed neighborhood is the set $N[v] = N(v) \cup \{v\}$. If $v \in S$, then a vertex $w \in V \setminus S$ is an external private neighbor of v (with respect to S) if $N(w) \cap S = \{v\}$; and the external private neighbor set of v with respect to S, denoted epn(v, S), is the set of all external private neighbors of v. We denote the degree of v in G by $d_G(v)$. We denote a path on n vertices by P_n .

For ease of presentation, we mostly consider rooted trees. For a vertex v in a (rooted) tree T, we let C(v) and D(v) denote the set of children and descendants, respectively, of v, and we define $D[v] = D(v) \cup \{v\}$. The maximal subtree at v is the subtree of T induced by D[v], and is denoted by T_v . A vertex of degree one is called a *leaf* and its neighbor is called a *support* vertex. A strong support vertex is adjacent to at least two leaves.

For $k \geq 2$, Meir and Moon [14] defined a *k*-packing in a graph *G* as a set *S* of vertices of *G* that are pairwise at distance greater than *k* apart, i.e., if $u, v \in S$, then $d_G(u, v) > k$. A 1-packing is an independent set. The *k*-packing number of *G*, denote $\rho_k(G)$, is the maximum cardinality of a *k*-packing in *G*. We call a *k*-packing of cardinality $\rho_k(G)$ a $\rho_k(G)$ -set. By definition, we have the following observation.

Observation 1 For $k \ge 1$ and for any graph G, $\rho_k(G) \ge \rho_{k+1}(G)$.

A 2-packing is also called a *packing* and the 2-packing number is also called the *packing* number denoted by $\rho(G)$. Thus a $\rho(G)$ -set is a packing of maximum cardinality $\rho(G)$. By Observation 1, $\rho(G) \ge \rho_3(G)$.

Definition 1 We define a graph G to be a $(\rho = \rho_3)$ -graph if $\rho(G) = \rho_3(G)$.

The following bound was first observed by Haynes and Slater [10]. The proof follows from the fact that every graph without isolated vertices has a minimum DS in which each vertex has an external private neighbor.

Observation 2 ([10]) For every graph G without isolated vertices, $\gamma_{pr}(G) \leq 2\gamma(G)$.

We call the graphs obtaining the upper bound in Observation 2, $(\gamma_{\rm pr} = 2\gamma)$ -graphs. It is our goal in this paper to characterize $(\gamma_{\rm pr} = 2\gamma)$ -trees. Recently, a characterization of $(\gamma_{\rm pr} = 2\gamma)$ -trees was given in [12]. The characterization we present here is a constructive characterization using labelings that is simpler than that presented in [12]. The key to our characterization is the observation that the family of $(\gamma_{\rm pr} = 2\gamma)$ -trees is precisely the family of $(\rho = \rho_3)$ -trees.

Observation 3 Let T be a tree of order at least 2. Then, T is a $(\gamma_{pr} = 2\gamma)$ -tree if and only if T is a $(\rho = \rho_3)$ -tree.

Observation 3 is an immediate consequence of the following two results.¹

Theorem 1 (Moon and Meir [14]) For every tree T, $\gamma(T) = \rho(T)$.

Theorem 2 (Bresar et. al. [1]) For every tree T of order at least 2, $\gamma_{pr}(T) = 2\rho_3(T)$.

Hence, by Observation 3, to characterize the $(\gamma_{pr} = 2\gamma)$ -trees it suffices to characterize the $(\rho = \rho_3)$ -trees.

2 $(\rho = \rho_3)$ -Trees

Our aim in this section is to give a constructive characterization of $(\rho = \rho_3)$ -trees (and hence, by Observation 3, of $(\gamma_{pr} = 2\gamma)$ -trees). The main idea to our constructive characterization is to find a labeling of the vertices that indicates the roles each vertex plays in the sets associated with both parameters. This idea of labeling the vertices is introduced in [5], where trees with equal domination and independent domination numbers as well as trees with equal domination and total domination numbers are characterized.

¹Since the result of Bresar et. al. [1] may not be readily available to the referees, we provide a proof–for refereeing purposes only–of Theorem 2 in the appendix.

2.1 Main Result

By a weak partition of a set we mean a partition of the set in which some of the subsets may be empty. We define a labeling of a tree T as a weak partition $S = (S_A, S_B, S_C, S_D)$ of V(T). The label or status of a vertex v, denoted $\operatorname{sta}(v)$, is the letter $x \in \{A, B, C, D\}$ such that $v \in S_x$. Our aim it to describe a procedure to build $(\rho = \rho_3)$ -trees in terms of labelings.

We begin by defining three labeled trees T_1 , T_2 and T_3 as follows. Let T_1 be a P_2 with one vertex labeled A and the other vertex C. Let T_2 be a P_2 with one vertex labeled B and the other vertex D. Let T_3 be a P_3 with the central vertex labeled B and with one leaf labeled A and the other leaf C.

Definition 2 Let \mathcal{T} be the family of labeled trees that: (i) contains the labeled trees T_1 , T_2 and T_3 ; and (ii) is closed under the eleven operations \mathcal{O}_j $(j = 1, 2, \dots, 11)$ listed below, which extend the tree T by attaching a tree to the vertex $v \in V(T)$.

- Operation \mathcal{O}_1 . Assume v is a support vertex of T. Add a new vertex u of status B and the edge uv. (Note that v can have any status.)
- **Operation** \mathcal{O}_2 . Assume v and all its neighbors have status B, except possibly for one neighbor of v which has status A. Add a path u_1, u_2 and the edge vu_1 . Let $\operatorname{sta}(u_1) = B$ and $\operatorname{sta}(u_2) = D$.
- **Operation** \mathcal{O}_3 . Assume v and all its neighbors have status B. Add a path u_1, u_2 and the edge vu_1 . Let $sta(u_1) = A$ and $sta(u_2) = C$.
- **Operation** \mathcal{O}_4 . Assume v and all its neighbors have status B, except possibly for one neighbor of v which has status A. Add a path u_1, u_2, u_3 and the edge vu_2 . Let $\operatorname{sta}(u_1) = A$, $\operatorname{sta}(u_2) = B$, and $\operatorname{sta}(u_3) = C$.
- Operation \mathcal{O}_5 . Assume v has status A or B. Add a path u_1, u_2, u_3 and the edge vu_1 . Let $sta(u_1) = sta(u_2) = B$ and $sta(u_3) = D$.
- **Operation** \mathcal{O}_6 . Assume v and all its neighbors have status B, except possibly for one neighbor of v which has status A. Add a path u_1, u_2, u_3 and the edge vu_1 . Let $\operatorname{sta}(u_1) = B$, $\operatorname{sta}(u_2) = D$ and $\operatorname{sta}(u_3) = B$.
- Operation \mathcal{O}_7 . Assume v has status B. Add a path u_1, u_2, u_3 and the edge vu_1 . Let $\operatorname{sta}(u_1) = B$, $\operatorname{sta}(u_2) = A$ and $\operatorname{sta}(u_3) = C$.
- **Operation** \mathcal{O}_8 . Assume v has status A and all its neighbors have status B or assume v and all its neighbors have status B, except possibly for one neighbor of v which has status A. Add a path u_1, u_2, u_3 and the edge vu_1 . Let $\operatorname{sta}(u_1) = B$, $\operatorname{sta}(u_2) = C$ and $\operatorname{sta}(u_3) = A$.
- **Operation** \mathcal{O}_9 . Assume v and all its neighbors have status B, except possibly for one neighbor of v which has status C. Add a path u_1, u_2, u_3 and the edge vu_1 . Let $\operatorname{sta}(u_1) = A$, $\operatorname{sta}(u_2) = B$ and $\operatorname{sta}(u_3) = C$.

- **Operation** \mathcal{O}_{10} . Assume v and all its neighbors have status B. Add a path u_1, u_2, u_3 and the edge vu_1 . Let $\operatorname{sta}(u_1) = A$, $\operatorname{sta}(u_2) = C$ and $\operatorname{sta}(u_3) = B$.
- Operation \mathcal{O}_{11} . Assume v has status A or B. Add a star $K_{1,3}$ with center u and leaves u_1, u_2 and u_3 , and add the edge vu_1 . Let $sta(u) = sta(u_1) = B$, $sta(u_2) = A$, $sta(u_3) = C$.

These eleven operations are illustrated in Figure 1 where by status X we mean a support vertex of any status (namely, A, B, C or D). For $Y \in \{A, B\}$, by status Y_B we mean a vertex of status Y all of whose neighbors have status B. For $Z \in \{A, C\}$, by status B_Z we mean a vertex of status B all of whose neighbors have status B, except possibly for one neighbor which has status Z.

Figure 1. The eleven operations.

Our main result is the following constructive characterization of $(\rho = \rho_3)$ -trees that uses labelings.

Theorem 3 The $(\rho = \rho_3)$ -trees are precisely those trees T such that $(T, S) \in \mathcal{T}$ for some labeling S.

Theorem 3 is an immediate consequence of Theorem 4 presented in Section 2.2 and Theorem 5 in Section 2.3.

2.2 (ρ, ρ_3) -labelings

Definition 3 We define a (ρ, ρ_3) -labeling of a tree T = (V, E) as a weak partition $S = (S_A, S_B, S_C, S_D)$ of V such that

- $S_A \cup S_D$ is a $\rho(T)$ -set,
- $S_C \cup S_D$ is a 3-packing, and
- $|S_A| = |S_C|$.

We are now in a position to characterize ($\rho = \rho_3$)-trees in terms of (ρ, ρ_3)-labelings.

Theorem 4 A tree is a $(\rho = \rho_3)$ -tree if and only if has a (ρ, ρ_3) -labeling.

Proof. Suppose T is a tree that has a (ρ, ρ_3) -labeling (S_A, S_B, S_C, S_D) . Then, $\rho_3(T) \leq \rho(T) = |S_A \cup S_D| = |S_C \cup S_D| \leq \rho_3(T)$. Hence we must have equality throughout this inequality chain. In particular, $\rho_3(T) = \rho(T)$; that is, T is a $(\rho = \rho_3)$ -tree.

Conversely, suppose that T is a $(\rho = \rho_3)$ -tree. Let P be a $\rho(T)$ -set and let L be a $\rho_3(T)$ set. Let $S_A = P \setminus L$, $S_B = V \setminus (P \cup L)$, $S_C = L \setminus P$, and $S_D = L \cap P$. Then, $P = S_A \cup S_D$ is a $\rho(T)$ -set and $L = S_C \cup S_D$ is a 3-packing. Further since $|P| = \rho(T) = \rho_3(T) = |L|$, we have $|S_A| = |S_C|$. Hence, (S_A, S_B, S_C, S_D) is a (ρ, ρ_3) -labeling of T. \Box

2.3 (ρ, ρ_3) -labelled Trees

Given a (ρ, ρ_3) -labeling $S = (S_A, S_B, S_C, S_D)$ of a tree T, we will refer to the pair (T, S) as a (ρ, ρ_3) -labelled **tree**. In this subsection, we characterize (ρ, ρ_3) -labelled trees.

Theorem 5 A labeled tree is a (ρ, ρ_3) -labelled tree if and only if it is in \mathcal{T} .

Proof. It is clear that the eleven operations \mathcal{O}_i , $1 \leq i \leq 11$, preserve a (ρ, ρ_3) -labeling, whence every element of \mathcal{T} is a (ρ, ρ_3) -labelled tree.

Conversely, the proof that every (ρ, ρ_3) -labelled tree (T, S) belongs to \mathcal{T} is by induction on the order of T. The smallest (ρ, ρ_3) -labelled trees are the labeled trees T_1 and T_2 defined earlier, both of which are in \mathcal{T} . So fix a (ρ, ρ_3) -labelled tree (T, S) of order at least 3, and assume that any smaller (ρ, ρ_3) -labelled tree is in \mathcal{T} . By Theorem 4, T is a $(\rho = \rho_3)$ -tree.

To complete the proof, we need to identify a set P of vertices that can be pruned to leave a (ρ, ρ_3) -labelled tree (by induction, this pruned tree is in \mathcal{T}) and an operation \mathcal{R} or a sequence of operations that restores the pruned vertices.

If $T = P_3$, then either $T = T_3$ or T can be obtained from either T_1 or T_2 by operation \mathcal{O}_1 , implying that $T \in \mathcal{T}$.

Suppose there is a leaf u in S_B adjacent to a strong support vertex. Let T' = T - u and let S' be the restriction of S to T'. Then, (T', S') is a (ρ, ρ_3) -labelled tree, and we can take $P = \{u\}$ and $\mathcal{R} = \mathcal{O}_1$. So we may assume that no leaf of status B is adjacent to a strong support vertex. Hence we may assume that diam $(T) \geq 3$.

Among all longest paths in T, let $v_0, v_1, v_2, \ldots, v_{\text{diam}(T)}$ be chosen so that deg v_1 is as large as possible. Let T be rooted at the vertex $v_{\text{diam}(T)}$.

Case 1. $d_T(v_1) \ge 3$, i.e., v_1 is a strong support vertex. By assumption, no leaf of v_1 has status B. Since $S_A \cup S_D$ is a packing and $S_C \cup S_D$ is a 3-packing, v_1 therefore has exactly two children, say u_0 and v_0 , one of status A and the other of status C. We may assume $\operatorname{sta}(u_0) = A$ and $\operatorname{sta}(v_0) = C$. Further, $\operatorname{sta}(v_1) = \operatorname{sta}(v_2) = B$ and $\operatorname{sta}(w) = B$ for each $w \in N(v_2)$, except possibly for one neighbor of v_2 which has status A.

Let $T' = T - D[v_1]$. Then, $(S_A \cup S_D) \setminus \{u_0\}$ is a packing in T', and so $\rho(T') \ge \rho(T) - 1$. If $\rho(T') = \rho(T) - 1$, then (T', S') is a (ρ, ρ_3) -labelled tree where S' is the restriction of S to T', and we can take $P = D[v_1]$ and $\mathcal{R} = \mathcal{O}_4$. Hence we may assume that $\rho(T') = \rho(T)$. Thus, by Theorem 1, $\gamma(T') = \gamma(T)$. Let D be a $\gamma(T)$ -set. Then, $v_1 \in D$. If $v_2 \notin \operatorname{epn}(v, D)$, then $D \setminus \{v_1\}$ is a DS of T' of cardinality $\gamma(T) - 1$, contrary to assumption. Hence, for every $\gamma(T)$ -set D of T we must have that $v_2 \in \operatorname{epn}(v, D)$. This implies that $d_T(v_2) = 2$. We now consider the tree $T^* = T - D[v_2]$. As observed earlier, $v_3 \in S_A \cup S_B$. Let S^* be the restriction of S to T^* . Then, (T^*, S^*) is a (ρ, ρ_3) -labelled tree, and we can take $P = D[v_2]$ and $\mathcal{R} = \mathcal{O}_{11}$. **Case 2.** $d_T(v_1) = 2$. We consider four possibilities.

Case 2.1. $v_0 \in S_D$. Then, $\{v_1, v_2\} \subseteq S_B$ and every neighbor of v_2 is in S_B , except possibly for one neighbor which is in S_A . Let $T' = T - \{v_0, v_1\}$. Then, $(S_A \cup S_D) \setminus \{v_0\}$ is a packing in T', and so $\rho(T') \ge \rho(T) - 1$. If $\rho(T') = \rho(T) - 1$, then (T', S') is a (ρ, ρ_3) -labelled tree where S' is the restriction of S to T', and we can take $P = \{v_0, v_1\}$ and $\mathcal{R} = \mathcal{O}_2$. Hence we may assume that $\rho(T') = \rho(T)$. This implies, as argued in Case 1, that $d_T(v_2) = 2$. We now consider the tree $T^* = T - D[v_2]$. As observed earlier, $v_3 \in S_A \cup S_B$. Let S^* be the restriction of S to T^* . Then, (T^*, S^*) is a (ρ, ρ_3) -labelled tree, and we can take $P = D[v_2]$ and $\mathcal{R} = \mathcal{O}_5$.

Case 2.2. $v_0 \in S_C$. Then either $v_1 \in S_A$ or $v_1 \in S_B$.

Suppose first that $v_1 \in S_A$. Then, $v_2 \in S_B$ and every neighbor of v_2 except for v_1 is in S_B . Let $T' = T - \{v_0, v_1\}$. Then, $(S_A \cup S_D) \setminus \{v_0\}$ is a packing in T', and so $\rho(T') \ge \rho(T) - 1$. If $\rho(T') = \rho(T) - 1$, then (T', S') is a (ρ, ρ_3) -labelled tree where S' is the restriction of S to T', and we can take $P = \{v_0, v_1\}$ and $\mathcal{R} = \mathcal{O}_3$. Hence we may assume that $\rho(T') = \rho(T)$. This implies that $\gamma(T') = \gamma(T)$ and hence that $d_T(v_2) = 2$. We now consider the tree $T^* = T - D[v_2]$. As observed earlier, $v_3 \in S_B$. Let S^* be the restriction of S to T^* . Then, (T^*, S^*) is a (ρ, ρ_3) -labelled tree, and we can take $P = D[v_2]$ and $\mathcal{R} = \mathcal{O}_7$.

Suppose secondly that $v_1 \in S_B$. If $v_2 \in S_B$, then $S_A \cup S_D \cup \{v_0\}$ is a packing in T of cardinality $\rho(T) + 1$, which is impossible. Hence, $v_2 \in S_A$. Thus, $N(v_2) \subseteq S_B$. Suppose $d_T(v_2) \geq 3$. Since $S_A \cup S_D$ is a packing, no descendant of v_2 is in $S_A \cup S_D$. Hence if u_1 is a child of v_2 different from v_1 , then $(S_A \cup S_D \cup \{u_1, v_0\}) \setminus \{v_2\}$ is a packing in T of cardinality $\rho(T) + 1$, which is impossible. Therefore, $d_T(v_2) = 2$. As observed earlier, $v_3 \in S_B$. If $T = P_4$, then $\rho(T) = 2$, contradicting the fact that $S_A \cup S_D = \{v_2\}$ is a $\rho(T)$ -set. Hence, $n \geq 5$. Every neighbor of v_3 different from v_2 has status B, except possibly for one neighbor of v_3 which has status C. We now consider the tree $T' = T - D[v_2]$. Let S' be the restriction of S to T'. Then, (T', S') is a (ρ, ρ_3) -labelled tree, and we can take $P = D[v_2]$ and $\mathcal{R} = \mathcal{O}_9$.

Case 2.3. $v_0 \in S_A$. Then either $v_1 \in S_B$ or $v_1 \in S_C$.

Suppose that $v_1 \in S_B$. If $v_2 \in S_B$, then the set $(S_C \cup S_D) \cup \{v_0\}$ is a packing in T of cardinality $|S_C| + |S_D| + 1 = |S_A| + |S_D| + 1 = \rho(T) + 1$, which is impossible. Hence, $v_2 \in S_C$. Since $S_C \cup S_D$ is a 3-packing, the vertex v_3 is therefore at distance at least 3 from every vertex in $(S_C \cup S_D) \setminus \{v_2\}$. But this implies that $(S_C \cup S_D \cup \{v_0, v_3\}) \setminus \{v_2\}$ is a packing in T of cardinality $|S_C| + |S_D| + 1 = \rho(T) + 1$, which is impossible. Hence, $v_1 \notin S_B$, implying that $v_1 \in S_C$ and $v_2 \in S_B$.

Let $T' = T - \{v_0, v_1\}$. Then, $(S_C \cup S_D \cup \{v_2\}) \setminus \{v_1\}$ is a packing in T', and so by Theorem 1, $\gamma(T') = \rho(T') \ge |S_C \cup S_D| = |S_A \cup S_D| = \rho(T) = \gamma(T)$. Consequently, $\gamma(T') = \gamma(T)$. This implies that $d_T(v_2) = 2$. Since $S_C \cup S_D$ is a 3-packing, we observe that either v_3 has status A and all its neighbors have status B or v_3 and all its neighbors have status B, except possibly for one neighbor of v which has status A. We now consider the tree $T^* = T - D[v_2]$. Let S^* be the restriction of S to T^* . Then, (T^*, S^*) is a (ρ, ρ_3) -labelled tree, and we can take $P = D[v_2]$ and $\mathcal{R} = \mathcal{O}_8$.

Case 2.4. $v_0 \in S_B$.

Suppose that $v_1 \in S_A \cup S_B \cup S_C$. Let $T' = T - \{v_0, v_1\}$. If $v_1 \in S_A \cup S_B$, then $S_C \cup S_D$ is a packing in T', while if $v_1 \in S_B \cup S_C$, then $S_A \cup S_D$ is a packing in T'. It follows that $\rho(T') = \rho(T)$ and therefore that $d_T(v_2) = 2$. If $v_2 \in S_D$, then every vertex at distance 1 and 2 from v_2 is in S_B , while every vertex at distance 3 from v_2 is in $S_A \cup S_B$. But then $(S_C \cup S_D \cup \{v_0, v_3\}) \setminus \{v_2\}$ is a packing in T of cardinality $\rho(T) + 1$, which is impossible. Hence, $\{v_1, v_2\} \cap S_D = \emptyset$. If $\{v_1, v_2\} \cap S_A = \emptyset$, then $S_A \cup S_D \cup \{v_0\}$ is a packing in Tof cardinality $\rho(T) + 1$, which is impossible. If $\{v_1, v_2\} \cap S_C = \emptyset$, then $S_C \cup S_D \cup \{v_0\}$ is a packing in T of cardinality $\rho(T) + 1$, which is impossible. Hence, either $v_1 \in S_A$ and $v_2 \in S_C$ or $v_1 \in S_C$ and $v_2 \in S_A$. The former case cannot occur because $v_1 \in S_A$ implies that $v_3 \in S_B$ and that every neighbor of v_3 different from v_2 is in S_B except possibly one v_3 -neighbor which may belong to S_A . But now $(S_C \cup S_D) \setminus \{v_2\} \cup \{v_0, v_3\}$ is a packing in Tof cardinality $\rho(T) + 1$, a contradiction. Thus the latter case $v_1 \in S_C$, $v_2 \in S_A$ occurs and every vertex at distance 1 and 2 from v_2 except for v_1 is labelled B. Recall $d_T(v_2) = 2$. We now consider the tree $T^* = T - D[v_2]$. Let S^* be the restriction of S to T^* . Then, (T^*, S^*) is a (ρ, ρ_3) -labelled tree, and we can take $P = D[v_2]$ and $\mathcal{R} = \mathcal{O}_{10}$.

Hence we may assume that $v_1 \in S_D$. With our earlier assumptions, we may therefore assume that every leaf of a path of length diam(T) has status B and its neighbor (of degree-2) has status D. Suppose that $d_T(v_2) \geq 3$. Let u_1 be a child of v_2 different from v_1 . If u_1 is not a leaf, then, by our earlier assumptions, u_1 has status D, and so we have two vertices of status D at distance 2 apart, contradicting the fact that S_D is a packing. Hence, u_1 is a leaf and $u_1 \in S_B$. But then $(S_A \cup S_D \cup \{u_1, v_0\}) \setminus \{v_1\}$ is a packing in T of cardinality $\rho(T) + 1$, a contradiction. Hence, $d_T(v_2) = 2$. Since $v_1 \in S_D$, $\{v_2, v_3\} \subset S_B$ and every neighbor of v_3 have status B, except possibly for one neighbor of v_3 which has status A. We now consider the tree $T^* = T - D[v_2]$. Let S^* be the restriction of S to T^* . Then, (T^*, S^*) is a (ρ, ρ_3) -labelled tree, and we can take $P = D[v_2]$ and $\mathcal{R} = \mathcal{O}_6$. \Box

References

- B. Bresar, M. A. Henning, and D. F. Rall, Paired-domination of Cartesian products of graphs, manuscript (2005).
- [2] M. Chellali and T. W. Haynes, Trees with unique minimum paired-dominating sets. Ars Combin. 73 (2004), 3–12.
- [3] M. Chellali and T. W. Haynes, Total and paired-domination numbers of a tree. AKCE Int. J. Graphs Comb. 1 (2004), 69–75.
- [4] M. Chellali and T. W. Haynes, On paired and double domination in graphs. Utilitas Math. 67 (2005), 161–171.
- [5] M. Dorfling, W. Goddard, M. A. Henning, and C. M. Mynhardt, Construction of trees and graphs with equal domination parameters, manuscript (2003).

- [6] O. Favaron and M.A. Henning, Paired domination in claw-free cubic graphs. *Graphs Combin.* 20 (2004), 447–456.
- [7] S. Fitzpatrick and B. Hartnell, Paired-domination. Discuss. Math. Graph Theory 18 (1998), 63–72.
- [8] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
- [9] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater (eds), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
- [10] T. W. Haynes and P. J. Slater, Paired-domination in graphs. Networks 32 (1998), 199–206.
- [11] T. W. Haynes and P. J. Slater, Paired-domination and the paired-domatic number. Congr. Numer. 109 (1995), 65–72.
- [12] T. W. Haynes and M. A. Henning, Trees with large paired-domination number. To appear in *Utilitas Math.*
- [13] M. A. Henning, Trees with equal total domination and paired-domination numbers. To appear in *Utilitas Math.*
- [14] A. Meir and J. W. Moon. Relations between packing and covering numbers of a tree. *Pacific J. Math.* 61 (1975), 225–233.
- [15] K. E. Proffitt, T. W. Haynes, and P. J. Slater, Paired-domination in grid graphs. Congr. Numer. 150 (2001), 161–172.
- [16] H. Qiao, L. Kang, M. Cardei, and Ding-Zhu, Paired-domination of trees. J. Global Optimization 25 (2003), 43–54.

Appendix: For refereeing purposes only

In this appendix we present a proof of the result due to Bresar et. al. [1] that the paired domination number of a tree is equal to twice its 3-packing number. We begin with two observations from [1]. Recall that the *independence number* $\beta(G)$ of a graph G is the maximum cardinality of a set of independent vertices in G.

Observation 4 (Bresar et. al. [1]) If D is a $\gamma_{pr}(G)$ -set in a graph G without isolated vertices, then $|D| \ge 2\beta(G[D])$.

Proof. Let $D' \subset D$ be a maximum independent set in G[D]. Since each vertex of D' has a partner, and these partners are distinct, $\gamma_{pr}(G) = |D| \ge 2|D'| = 2\beta(G[D])$. \Box

Observation 5 (Bresar et. al. [1]) For any graph G without isolated vertices, $\gamma_{pr}(G) \geq 2\rho_3(G)$.

Proof. Let D be a $\gamma_{pr}(G)$ -set and let S be a $\rho_3(G)$ -set. For each vertex $v \in S$, let v' be a vertex of D that dominates v and let $D' = \bigcup_{v \in S} \{v'\}$. Since the vertices in S are pairwise at distance at least 4 apart, the vertices v', where $v \in S$, are distinct and the set D' is an independent set in G[D]. Hence, by Observation 4, $\gamma_{pr}(G) = |D| \ge 2|D'| = 2\rho_3(G)$. \Box

Recall Theorem 2:

Theorem 2 (Bresar et. al. [1]) For every tree T of order at least 2, $\gamma_{pr}(T) = 2\rho_3(T)$.

Proof. We proceed by induction on the order $n \ge 2$ of a tree T. If n = 2, then $T = K_2$ and $\gamma_{\rm pr}(T) = 2 = 2\rho_3(T)$. This establishes the base case. Assume then that $n \ge 3$ and that all nontrivial trees T' of order less than n satisfy $\gamma_{\rm pr}(T') = 2\rho_3(T')$. Let T be a tree of order n. If T is star or a double star, then $\gamma_{\rm pr}(T) = 2 = 2\rho_3(T)$. Hence we may assume that diam $(T) \ge 4$.

In the proof we shall frequently prune the tree T to a tree T' and then establish that $\gamma_{\rm pr}(T) \leq \gamma_{\rm pr}(T') + 2k$ and $\rho_3(T) \geq \rho_3(T') + k$ for some integer $k \geq 0$. Since $\gamma_{\rm pr}(T) \geq 2\rho_3(T)$ and $\gamma_{\rm pr}(T') = 2\rho_3(T')$, it then follows that $\gamma_{\rm pr}(T') + 2k \geq \gamma_{\rm pr}(T) \geq 2\rho_3(T) \geq 2(\rho_3(T') + k) = \gamma_{\rm pr}(T') + 2k$, whence $\gamma_{\rm pr}(T) = 2\rho_3(T)$, as desired.

Suppose T has a strong support vertex v. Let u be a leaf neighbor of v, and let T' = T - u. Any $\gamma_{\rm pr}(T')$ -set contains the support vertex v and is therefore a PDS of T, and so $\gamma_{\rm pr}(T) \leq \gamma_{\rm pr}(T')$. Any $\rho_3(T')$ -set is also a 3-packing in T, and so $\rho_3(T) \geq \rho_3(T')$. Thus, $\gamma_{\rm pr}(T) = 2\rho_3(T)$. Hence we may assume that T has no strong support vertex.

Let T be rooted at a leaf r of a longest path P. Let P be a r-u path, and let v be the neighbor of u. Then, u is a leaf of T and, since T has no strong support vertex, $\deg_T v = 2$. Let w denote the parent of v on this path and x the parent of w.

Suppose deg_T $w \ge 3$ and w is a support vertex. Let v' be the leaf-neighbor of w, and let T' = T - v'. Then there exists a $\gamma_{\rm pr}(T')$ -set that contains w (if w is not in some $\gamma_{\rm pr}(T')$ -set,

then u and v are paired in such a $\gamma_{\rm pr}(T')$ -set and we can simply replace u with the vertex w thereby pairing v and w in the new $\gamma_{\rm pr}(T')$ -set). Such a PDS is also a PDS of T, and so $\gamma_{\rm pr}(T) \leq \gamma_{\rm pr}(T')$. Clearly, $\rho_3(T) \geq \rho_3(T')$. Thus, $\gamma_{\rm pr}(T) = 2\rho_3(T)$.

Suppose $\deg_T w \ge 3$ and w is not a support vertex. Then, each child of w is a support vertex of degree 2. Let v' be a child of w different from v, and let u' be the leaf-neighbor of v'. Let T' = T - u' - v'. Any $\gamma_{\rm pr}(T')$ -set can be extended to a PDS of T by adding to it the vertices u' and v' (with u' and v' paired), and so $\gamma_{\rm pr}(T) \le \gamma_{\rm pr}(T') + 2$. Let S' be a $\rho_3(T')$ -set that contains as many leaves as possible. Then, $S' \cap N[w] = \emptyset$ (for example, if S' contains a vertex from the set $\{v, w, x\}$, then we can simply replace such a vertex with the vertex u). Hence, S' can be extended to a 3-packing of T by adding to it the leaf u', and so $\rho_3(T) \ge |S'| + 1 = \rho_3(T') + 1$. Thus, $\gamma_{\rm pr}(T) = 2\rho_3(T)$. Hence we may assume that $\deg_T w = 2$ for otherwise $\gamma_{\rm pr}(T) = 2\rho_3(T)$, as desired.

Suppose $\deg_T x = 2$. Let $T' = T - \{u, v, w, x\}$. Any $\operatorname{pr}(T')$ -set can be extended to a PDS of T by adding to it the vertices v and w (with v and w paired), and so $\gamma_{\operatorname{pr}}(T) \leq \gamma_{\operatorname{pr}}(T') + 2$. Any $\rho_3(T')$ -set can be extended to a 3-packing of T by adding to it the vertex u, and so $\rho_3(T) \geq \rho_3(T') + 1$. Thus, $\gamma_{\operatorname{pr}}(T) = 2\rho_3(T)$. Hence we may assume $\deg_T x \geq 3$.

Let $T' = T - \{u, v, w\}$. Every $\gamma_{\rm pr}(T')$ -set can be extended to a PDS of T by adding to it the vertices v and w (with v and w paired), and so $\gamma_{\rm pr}(T) \leq \gamma_{\rm pr}(T') + 2$. Every $\rho_3(T')$ -set that does not contain x (if x belongs to a some $\rho_3(T')$ -set, then we can simply replace xwith a child of x in T') can be extended to a 3-packing of T by adding to it the vertex u, and so $\rho_3(T) \geq \rho_3(T') + 1$. Thus, $\gamma_{\rm pr}(T) = 2\rho_3(T)$. \Box