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FRAME DECOMPOSITION OF DECOMPOSITION SPACES

LASSE BORUP AND MORTEN NIELSEN†

Abstract. A new construction of tight frames for L2(R
d) with flexible time-frequency

localization is considered. The frames can be adapted to form atomic decompositions for
a large family of smoothness spaces on Rd, a class of so-called decomposition spaces. The
decomposition space norm can be completely characterized by a sparseness condition
on the frame coefficients. As examples of the general construction, new tight frames
yielding decompositions of Besov space, anisotropic Besov spaces, α-modulation spaces,
and anisotropic α-modulation spaces are considered. Finally, curvelet-type tight frames
are constructed on Rd, d ≥ 2.

1. Introduction

In applicable harmonic analysis, smoothness spaces are often designed following the
principle that smoothness should be characterized by (or at least imply) some decay or
sparseness of an associated discrete expansion. An elementary example is provided by
the fact that a function in C1(T) has Fourier coefficients with decay O(1/N). For appli-
cations, a particular important example is given by orthonormal wavelets. It is known,
see [38], that suitable sparseness of a wavelet expansion is equivalent to smoothness mea-
sure in a Besov space. The fact that smoothness leads to sparse expansions has many
important practical implications. It is possible to use a sparse representation of a func-
tion to compress that function simply by thresholding the expansion coefficients. Again
wavelets provide an important example that has been successfully applied to compress
sound signals and images with smoothness in some Besov space, see e.g. [13, 12]. Other
interesting examples include sparse expansions in modulation spaces [33, 3], and sparse
curvelet expansions [43, 7].

In this paper we consider a general construction of smoothness spaces, a subclass of
so-called decomposition spaces, defined on Rd for which it is possible to find adapted
tight frames for L2(R

d). Each frame forms an atomic decomposition of the smoothness
space, and the space can be completely characterized by a sparseness condition on the
frame coefficients. It is therefore possible to compress the elements of such smoothness
spaces using the frame. The smoothness spaces considered here are special cases of a very
general construction of decomposition spaces introduced by Feichtinger and Gröbner [18]
and Feichtinger [15]. The family of spaces are based on structured decompositions of the
frequency space Rd, so strictly speaking they are decomposition spaces on the Fourier side.
This is a fairly standard approach to define smoothness spaces. For example, Besov spaces
correspond to a dyadic decomposition while the family of modulation spaces introduced
by Feichtinger [17] correspond to a uniform decomposition.

Recently the search for more efficient methods to compress natural images has shown
that new (often redundant) decomposition systems can produce sparser representations
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FRAME DECOMPOSITION OF DECOMPOSITION SPACES 2

of certain natural images than e.g. wavelets. One such new decomposition system is the
curvelet frame [43]. Bandlets and brushlets are other prominent examples, see [35] and
[37]. Curvelets correspond to a decomposition of the frequency plane that is significantly
different from both dyadic and uniform decompositions, and as a consequence, sparseness
for curvelet expansions cannot be described in terms of classical smoothness spaces. The
class of smoothness spaces considered here can be adapted to decompositions of curvelet-
type. The connection between nonlinear approximation properties and sparse expansions
has been studied from an abstract point of view in a number of papers, see for example
[33, 14, 25, 28, 29].

Several authors have consider function spaces built using ideas related to decomposi-
tion spaces. Gröbner [30] used the decomposition space methods in [18] to define the
α-modulation spaces as a family of intermediate spaces between modulation and Besov
spaces. Banach frames for α-modulation spaces have been considered by Fornasier [22]
in the univariate case and by the authors [1] in the multivariate setting. Group theoret-
ical constructions of function spaces, including smoothness spaces, have been studied by
Feichtinger and Gröchenig [16, 19, 20, 21, 31]. Frazier and Jawerth constructed frames
(their so-called ϕ-transform) for Besov and Triebel-Lizorkin spaces in [24, 23]. Their re-
sults were generalized recently by Bownik and Ho to the anisotropic case [5, 4]. Another
important application of discrete decompositions of spaces is to simplify the analysis of
operators acting on it. Pseudo-differential and Fourier integral operators on Besov and
modulation spaces have been studied extensively, see [2, 6, 8, 10, 11, 32, 39, 41, 44, 45]
and references herein.

The outline of this paper is as follows. In Section 2 we define the family of decompo-
sition spaces based on suitable coverings of the frequency space. In Section 3 we restrict
our attention to a smaller family of decomposition spaces based on what we call a struc-
tured splitting of the frequency space Rd. Structured splittings are obtained by applying
a countable family of invertible affine transformations to some fixed neighborhood of the
origin. The key step to obtain tight frames for such spaces is to construct a nice resolu-
tion of the identity adapted to the structured decomposition. Tight frames for structured
coverings are introduced in Section 3. Characterizations of the norm in the decomposi-
tion spaces in terms of frame coefficients are given in Section 4. The application of the
characterization to nonlinear approximation is consider in Section 4.2. Best n-term ap-
proximation with error measured in L2 and more general decomposition spaces is studied,
and Jackson type estimates are derived. The characterization given in Section 4 also im-
plies that the tight frame from Section 3 gives an atomic decomposition of the associated
decomposition space. In Section 5 we consider the problem of constructing interesting
structured coverings of Rd. A general method to construct structured coverings made
up of open balls in a space of homogeneous type over Rd is introduced. The covering
balls are chosen to have diameters given by a fixed function of their centers. Section 6
contains applications of the methods of Section 5 to obtain examples related to classical
smoothness spaces. Besov spaces, modulation spaces, and anisotropic Besov spaces are
shown to correspond to special cases of the construction. In Section 6 we also define a
new class of anisotropic α-modulation spaces. Finally, in Section 7 we demonstrate that
the construction yields new smoothness spaces adapted to curvelet-type decompositions
of the frequency space Rd, d ≥ 2. The tight frame corresponding to d = 2 is a variation of
the so-called second generation curvelets considered by Candés and Donoho in [7]. Em-
bedding results for curvelet-type decomposition spaces relative to Besov spaces are also
obtained.
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Let us summarize some of the notation used throughout this paper. We let F(f)(ξ) :=
(2π)−d/2

∫
Rd f(x)e−ix·ξ dx, f ∈ L1(R

d), denote the Fourier transform. By F � G we mean
that there exist two constants 0 < C1 ≤ C2 <∞ such that C1F ≤ G ≤ C2F .

2. Decomposition spaces

Let us introduce the family of smoothness spaces that will be considered throughout
this paper. The spaces are special cases of the family of decomposition spaces introduced
by Feichtinger and Gröbner [18] and Feichtinger [15]. First we define admissible coverings
of Rd, which we will consider as the frequency domain.

Definition 2.1. A set Q := {Qi}i∈I of measurable subsets Qi ⊂ Rd is called an admissible
covering if Rd = ∪i∈IQi and there exists n0 < ∞ such that #{j ∈ I : Qi ∩Qj 6= ∅} ≤ n0

for all i ∈ I.

Remark 2.2. By considering coverings of all of Rd we restricted our attention to spaces
of inhomogeneous type. However, the results in this paper can easily be modified to a
statement on homogeneous type spaces by considering admissible coverings of Rd\{0}.

Notice that an admissible covering has finite height, i.e.,
∑

i∈I

χQi
(ξ) ≤ n0 for all ξ ∈ Rd.

The converse is not true as it is easy to find a covering of finite height which is not
admissible. We also need partitions of unity compatible with the covers from Definition
2.1. The Fourier transform condition in Definition 2.3 is a consequence of the fact that
we consider decompositions of the frequency domain, and we wish to use the partition of
unity to induce a uniformly bounded family of multiplier operators on Lp(R

d).

Definition 2.3. Given an admissible covering {Qi}i∈I of Rd. A corresponding bounded
admissible partition of unity (BAPU) is a family of functions Ψ = {ψi}i∈I satisfying

• supp(ψi) ⊂ Qi, i ∈ I,
• ∑

i∈I ψi(ξ) = 1, ∀ξ ∈ Rd,

• supi∈I |Qi|1/p−1‖F−1ψi‖Lp <∞, ∀p ∈ (0, 1].

Given ψi ∈ Ψ, we define the multiplier ψi(D)f := F−1(ψiFf), f ∈ L2(R
d). By

a standard result on band-limited multipliers [46, Proposition 1.5.1], the conditions in
Definition 2.3 ensure that ψi(D) extends to a bounded operator on Lp(R

d), 0 < p ≤ ∞,
uniformly in i ∈ I.

We can now give the definition of a decomposition space on the Fourier side. For
particular choices of coverings, the decomposition spaces yield classical spaces such as
Besov and modulation spaces, see [18]. Recall that a (quasi-)Banach sequence space Y
on I is called solid if |ai| ≤ |bi| for all i implies that ‖{ai}‖Y ≤ ‖{bi}‖Y .

Definition 2.4. Let Q = {Qi}i∈I be an admissible covering of Rd for which there exists
a BAPU Ψ. Let Y be a solid (quasi-)Banach sequence space on I satisfying that `0(I) is
dense in Y . Then for p ∈ (0,∞], we define the decomposition space D(Q, Lp, Y ) as the
set of functions f ∈ S ′(Rd) satisfying

(2.1) ‖f‖D(Q,Lp,Y ) :=
∥∥∥
{∥∥ψi(D)f

∥∥
Lp

}
i∈I

∥∥∥
Y
<∞,

Remark 2.5. Using the assumption that `0(I) is dense in Y , it can be verified that S(Rd)
is dense in D(Q, Lp, Y ), see e.g. [18].
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Remark 2.6. We use a slightly different notation than [18]. Since we measure the “local
component” of a function in FLp, D(Q, Lp, Y ) is written D(Q,FLp, Y ) in the notation
of [18].

Given a decomposition spaceD(Q, Lp, Y ), it is important to know how stable the spaces
is relative to the choice of Q and BAPU, i.e., if we modify Q or the BAPU slightly, will
D(Q, Lp, Y ) change too? Usually one would prefer D(Q, Lp, Y ) to be independent of the
particular choice of BAPU and to remain unchanged under small geometric modifications
of Q. This problem has been studied in [18], and we list some of the results in the following
section.

2.1. Some basic properties of decomposition spaces. Let us introduce some nota-
tion needed to study properties of admissible coverings. Given an admissible covering
{Qi}i∈I of Rd and a subset J ⊂ I, we define

J̃ := {i ∈ I : ∃j ∈ J s.t. Qi ∩Qj 6= ∅}.

Furthermore, let J̃ (0) := J , and define inductively J̃ (k+1) := ˜̃J (k), k ≥ 0. We write

ĩ(k) := {̃i}
(k)

and ĩ := {̃i} for a singleton set. Notice that ĩ := {j ∈ I : Qi ∩ Qj 6= ∅}.
Finally we define

Q̃i

(k)
:=

⋃

j∈ĩ(k)

Qj and ψ̃i :=
∑

j∈ĩ

ψj,

for {ψi}i∈I an associated BAPU.
Next we consider the notion of a Q-regular sequence space. Such sequence spaces induce

decomposition spaces which are independent of the particular choice of BAPU.

Definition 2.7. A solid (quasi-)Banach sequence space Y on I is called Q-regular if
h ∈ Y implies that h+ ∈ Y , where h+(i) =

∑
j∈ĩ h(j), i ∈ I.

It can be verified that the decomposition space D(Q, Lp, Y ) is independent of the par-
ticular BAPU provided that Y is Q-regular, see [18, Thm. 2.3].

To study the stability of D(Q, Lp, Y ) under a modification of Q, we need the notion of
equivalent coverings.

Definition 2.8. Let Q = {Qi}i∈I and P = {Pj}j∈J be two coverings of Rd. Q is called
subordinate to P if for every i ∈ I there exists j ∈ J such that Qi ⊆ Pj. Q is called
almost subordinate to P (written Q ≤ P) if there exists k ∈ N such that Q is subordinate

to {P̃j

(k)}j∈J . If Q ≤ P and P ≤ Q the two coverings are called equivalent and we write
Q ∼ P.

Furthermore, to ensure stability of D(Q, Lp, Y ) under a modification of Q, we need
some stability criteria for sequence spaces.

Definition 2.9. Let Q = {Qi}i∈I be an admissible covering. A strictly positive function
w on Rd is called Q-moderate if there exists C > 0 such that w(x) ≤ Cw(y) for all
x, y ∈ Qi and all i ∈ I. A strictly positive Q-moderate weight on I (derived from w) is a
sequence vi = w(xi), i ∈ I, with xi ∈ Qi and w a Q-moderate function.

For Y a solid (quasi-)Banach sequence space on I, we define the weighted space Yv :=
{{di}i∈I : {divi}i∈I ∈ Y }.
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Remark 2.10. Consider two equivalent admissible coverings Q = {Qi}i∈I and P = {Uj}j∈J

and assume that w is a Q-moderate function. Let {vi}i∈I and {uj}j∈J be weights on I
and J , respectively, derived from w. Then one can easily check that (uniformly) vi � vj

whenever Qi ∩ Uj 6= ∅.
A solid (quasi-)Banach sequence space on I is called symmetric if it is invariant under

permutation ρ : I → I. Notice that for a moderate weight v and a symmetric solid
(quasi-)Banach sequence space Y we have

‖f‖D(Q,Lp,Yv) �
∥∥∥
{
vi‖ψ̃i(D)f‖Lp

}
i∈I

∥∥∥
Y
.

The following important result on the stability of decomposition spaces was proved in
[18, p. 117]. The result shows that decomposition spaces are independent of the choice of
BAPU and they remain unchanged under certain geometric modifications of the admissible
cover Q. We say that a solid (quasi-)Banach sequence space Y on a countable index set
I corresponds to a solid (quasi-)Banach sequence space Ȳ on N if there exists a bijection
γ : I → N such that Y = γ∗(Ȳ ).

Theorem 2.11. Let Q and P be two equivalent countable admissible coverings of Rd, and
let Ψ = {ψi}i∈I and Φ = {ϕj}j∈J be corresponding BAPUs. Assume that Y and W are
symmetric (quasi-)Banach sequence space derived from the same (quasi-)Banach sequence
space Ȳ on N, and that {vi}i∈I and {uj}j∈J are weights derived from the same moderate
function w. Then

D(Q, Lp, Yv) = D(P, Lp,Wu),

with equivalent norms.

One elementary example of a symmetric (quasi-)Banach sequence space that will be
used in Section 4.2 is `τ (I), 0 < τ <∞.

Remark 2.12. To be precise, Theorem 2.11 is only considered for Banach spaces, B =
Lp(R

d) and Y , in [18]. However, all the arguments in the proof given in [18] hold true for
the quasi-Banach spaces in Theorem 2.11 using the fact that the multipliers ψi(D), i ∈ I,
and ϕj(D), j ∈ J , are uniformly bounded on Lp(R

d), 0 < p ≤ ∞.

3. Structured coverings and associated frames

In this section we consider a restricted class of admissible coverings having some addi-
tional structure that will allow us to construct associated tight frames for L2(R

d) that will
also give atomic decompositions of the associated decomposition spaces. The coverings
are simple in the sense that they are obtained by applying a countable family of invertible
affine maps to a fixed subset Q ⊂ Rd.

For an invertible matrix A ∈ GL(d,R) and a constant c ∈ Rd, we define the affine
transformation

Tξ := Aξ + c, ξ ∈ Rd.

For a subset Q ⊂ Rd we let QT := T (Q), and for notational convenience we define
|T | := |A| := | detA|. For admissible coverings generated by a nice family of affine
transformations it is possible to construct a corresponding BAPU. The following result is
based on the elementary fact that the Fourier transform is well-behaved under an affine
change of variables.
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Proposition 3.1. Given a countable family T of invertible affine transformations on Rd.
Suppose there exist two bounded open sets P ⊂ Q ⊂ Rd, with P compactly contained in
Q, satisfying

(3.1) {PT}T∈T and {QT}T∈T are admissible coverings.

Then there exist

(i) A BAPU {ψT}T∈T ⊂ S(Rd) corresponding to {QT}T∈T .
(ii) A system {ϕT}T∈T ⊂ S(Rd) satisfying

• supp(ϕT ) ⊂ QT , ∀T ∈ T ,
• ∑

T∈T ϕ
2
T (ξ) = 1, ∀ξ ∈ Rd,

• supT∈T |T | 1p−1‖F−1ϕT‖Lp <∞, ∀p ∈ (0, 1].
(iii) A pair of systems {g̃T}T∈T , {gT}T∈T ⊂ S(Rd), where gT (ξ) = Φ(T−1ξ) for a fixed

function Φ ∈ S(Rd). The functions satisfy
• supp(g̃T ), supp(gT ) ⊂ QT , ∀T ∈ T ,
• ∑

T∈T g̃T (ξ)gT (ξ) = 1, ∀ξ ∈ Rd,

• supT∈T |T | 1p−1‖F−1g̃T‖Lp <∞, ∀p ∈ (0, 1]

• supT∈T |T | 1p−1‖F−1gT‖Lp <∞, ∀p ∈ (0, 1].

Proof. Notice that |PT | � |T | � |QT | uniformly in T ∈ T . We begin by proving (i). Pick
a non-negative function Φ ∈ C∞(Rd) with Φ(ξ) = 1 for ξ ∈ P and supp(Φ) ⊂ Q. For
T ∈ T , we let gT (ξ) := Φ(T−1ξ). Clearly, gT ∈ C∞(Rd) with PT ⊂ supp(gT ) ⊂ QT .
Since we want a BAPU, we consider the (locally finite) sum g(ξ) :=

∑
T∈T gT (ξ). Notice

that there exists a constant N such that 1 ≤ g(ξ) ≤ N since {QT}T∈T has finite height
and {PT}T∈T covers Rd. Thus, we can define a smooth resolution of the identity by
ψT (ξ) := gT (ξ)/g(ξ).

In order to conclude, we need to verify that supT |T |1/p−1‖F−1ψT‖Lp < ∞, for all
p ∈ (0, 1]. Let

hT (ξ) := ψT (Tξ) =
Φ(ξ)

g(Tξ)
.

According to Lemma 3.2 below we have

‖F−1ψT‖Lp = |T |1−1/p‖F−1hT‖Lp.

It is easy to verify that for every β ∈ Nd
0 there exists a constant Cβ independent of T ∈ T

such that

(3.2) |∂β
ξ hT (ξ)| ≤ CβχQ(ξ).

Thus, using integration by parts, we have

‖F−1hT‖p
Lp

=

∫

Rd

∣∣∣∣
∫

Rd

hT (ξ)eix·ξ dξ

∣∣∣∣
p

dx

≤ Cd

( ∑

|β|≤d(d+1)/pe

‖∂βhT‖L1

)p ∫

Rd

(1 + |x|)−d−1dx <∞.

We conclude that {ψT}T∈T is a BAPU corresponding to the admissible covering {QT}T∈T .
This proves (i). To prove (ii), we repeat the above argument using the functions ϕT (ξ) =
gT (ξ)

/√∑
T ′∈T g

2
T ′(ξ), T ∈ T . Finally, for (iii) we use the functions gT from above with

“dual” system defined by g̃T = gT/
(∑

T ′∈T g
2
T ′(ξ)

)
. It is then easy to verify that all

conditions of (iii) are satisfied. �
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The following elementary Lemma is used in the proof of Proposition 3.1.

Lemma 3.2. Given p ∈ (0,∞], and an invertible affine transformation T . For a function

f ∈ Lp(R
d) let f̂T (ξ) := f̂(T−1ξ). Then

‖fT‖Lp = |T |1−1/p‖f‖Lp , 0 < p ≤ ∞.

Proof. Notice that if T = A ·+c, then fT (x) = |T |eix·cf(A>x). The result now follows by
a simple substitution. �

3.1. Frames and structured admissible coverings. The purpose of this section is
to construct frames and tight frames for L2(R

d) with frequency localization compatible
with any given structured covering of Rd satisfying the regularity conditions given in
Proposition 3.1.

Definition 3.3. Given a family T of invertible affine transformations on Rd. Suppose
there exist two bounded open sets P ⊂ Q ⊂ Rd, with P compactly contained in Q, such
that

(3.3) {PT}T∈T and {QT}T∈T are admissible coverings.

Then we call Q = {QT}T∈T a structured admissible covering and T a structured family
of affine transformations.

In the subsequent sections, given a structured admissible covering, the functions ϕT

and ψT will always be those given in Proposition 3.1 if nothing else is mentioned.

3.1.1. Tight frames. Let us now consider a construction of a tight frame adapted to a
given admissible covering based on the partition of unity given by Proposition 3.1.(ii).
The idea we employ has been used to construct time-frequency frames before. A similar
approach was used by Candés and Donoho in their second generation curvelet construction
[43] and by the authors in [1]. Curvelets correspond to one particular decomposition of the
frequency space, and generalized curvelet-type tight frames will be considered in Section 7.

Consider a structured admissible covering Q = {QT}T∈T . Suppose Ka is a cube in Rd

(aligned with the coordinate axes) with side-length 2a satisfying Q ⊆ Ka. Then we define

en,T (ξ) := (2a)−
d
2 |T |− 1

2χKa(T
−1ξ)ei π

a
n·T−1ξ, n ∈ Z, T ∈ T .

and

(3.4) η̂n,T := ϕT en,T n ∈ Zd, T ∈ T ,
with ϕT given in Proposition 3.1. We can also obtain an explicit representation of ηn,T in
direct space. Suppose T = A · +c, and µ̂T (ξ) := ϕT (Tξ). Then

(3.5) ηn,T (x) = (2a)−
d
2 |T |1/2µT (π

a
n+ A>x)eix·c.

It can easily be verified that µ̂T satisfies |∂β
ξ µ̂T (ξ)| ≤ CβχQ(ξ) for every β ∈ Nd. Thus,

we have for any N ∈ N,
(3.6)

|µT (x)| ≤ C(1 + |x|)−N

∣∣∣∣
∑

|β|≤N

xβµT (x)

∣∣∣∣ ≤ C(1 + |x|)−N
∑

|β|≤N

‖∂β
ξ µ̂T‖L1 ≤ CN(1 + |x|)−N ,

independent of T ∈ T . We notice that ηn,T is obtained by translating, “dilating”, and
modulating a unit-scale element µT . In some sense, ηn,T is a mix between a Gabor and a
wavelet system. We discuss this matter in more detail in Section 3.2.
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Let us study some basic properties of the system {ηn,T}n∈Zd,T∈T . Our starting point
is the simple observation that {en,T}n∈Z is an orthonormal basis for L2(T (Ka)). We can
actually use this fact to conclude that F := F (T ) := {ηn,T}n∈Zd,T∈T is a tight frame for
L2(R

d).

Proposition 3.4. Let F := F (T ) := {ηn,T}n∈Zd,T∈T be the system defined in (3.4) for a
structured admissible covering Q = {QT}T∈T . For all f ∈ L2(R

d) we have

‖f‖L2 =

(∑

T∈T

∑

n∈Zd

|〈f, ηn,T 〉|2
)1/2

,

and equivalently,

(3.7) f =
∑

T∈T

∑

n∈Zd

〈f, ηn,T 〉ηn,T .

Proof. Since {en,T}n∈Z is an orthonormal basis for L2(T (Ka)) and supp(ϕT ) ⊂ T (Ka) we
have ∑

n∈Zd

|〈f, ηn,T 〉|2 =
∑

n∈Zd

|〈ϕT f̂ , en,T 〉|2 = ‖ϕT f̂‖2
L2
.

But {ϕ2
T}T∈T is a partition of unity, so

∑

T∈T

‖ϕT f̂‖2
L2

=

∫

Rd

∑

T∈T

ϕ2(ξ)|f̂(ξ)|2 dξ = ‖f‖2
L2
,

proving that F (T ) is a tight frame. Let us derive (3.7) directly. Notice that

ϕT f̂ =
∑

n∈Zd

〈ϕT f̂ , en,T 〉en,T =
∑

n∈Zd

〈f̂ , η̂n,T 〉en,T

and hence,

(3.8) ϕ2
T f̂ =

∑

n∈Zd

〈f̂ , η̂n,T 〉ϕT en,T =
∑

n∈Zd

〈f̂ , η̂n,T 〉η̂n,T .

Again, since {ϕ2
T}T is a partition of unity,

f̂ =
∑

T∈T

ϕ2
T f̂ =

∑

T∈T

∑

n∈Zd

〈f̂ , η̂n,T 〉η̂n,T

which gives the tight frame expansion (3.7). �

Remark 3.5. Proposition 3.4 shows that we obtain a tight frame for L2(R
d) regardless of

the choice of cube Ka as long as Q ⊆ Ka. However, for practical purposes one should
choose a as small as possible to avoid unnecessary “oversampling” which shows up in the
formula for en,T as the constant (2a)−d/2.

3.1.2. An alternative construction. The tight frame in (3.5) is obtained by translating and
“dilating” a unit-scale element µT . We notice that the unit-scale generator µT depends
on T unlike for usual wavelet and Gabor bases where there is only a finite number of gen-
erators. In some cases it may be advantageous to have a fixed generator of the frame, and
by sacrificing tightness of the frame we can achieve one generator by using the partition
of unity given by Proposition 3.1.(iii). With the same notation and setup as in Section
3.1.1, we define two systems Γ̃ = {γ̃n,T}n,T and Γ = {γn,T}n,T by

(3.9) ̂̃γn,T := g̃T en,T and γ̂n,T := gT en,T , n ∈ Zd, T ∈ T ,



FRAME DECOMPOSITION OF DECOMPOSITION SPACES 9

with g̃T and gT given in Proposition 3.1.(iii). The representation of γ̃n,T in direct space is
similar to (3.5) [use µ̂T (ξ) := g̃T (Tξ)], but for γn,T we have a simplified formula. Suppose

T = A · +c, and Ψ̂(ξ) := gT (Tξ) = Φ(ξ). Then

(3.10) γn,T (x) = (2a)−d/2|T |1/2Ψ(π
a
n+ A>x)eix·c,

with generator Ψ ∈ S(Rd) that does not depend on T . We can use a slight modification
of the proof of Proposition 3.4 to obtain the frame expansion

(3.11) f =
∑

n,T

〈f, γn,T 〉γ̃n,T =
∑

n,T

〈f, γ̃n,T 〉γn,T , ∀f ∈ L2(R
d).

The expansion (3.11) gives us the freedom to analyze a function with the simple system Γ
and reconstruct with the more “complicated” dual system Γ̃, or the other way around. In
what follows, we will only state our results for the tight frame from Section 3.1.1, but the
reader can verify that each result can be modified in a straightforward way to a statement
on the dual frames Γ and Γ̃.

3.2. Some remarks on the structure of the frame. The frames defined in (3.5)
and (3.10) both have a structure that combines some important features of wavelet and
Gabor systems. Consider the frame given by (3.10). The frame is obtained operating
on a fixed unit-scale element Ψ by “dilation” by A, translation, and modulation. The
dilation and translation structure is a feature also found in a generic wavelet system
W = {|A|1/2ψ(Ajx − k)}j,k associated with a dilation matrix A. However, in (3.10) we
do not require A to be expansive or even to preserve Zd, any invertible matrix will work
as long as a structured admissible covering is created. Modulation is an integral part of
generic Gabor systems, G = {g(x − na)eibm·x}m,n, but in (3.10) modulation is combined
with dilation to form a type of “mixed” atoms.

There are also differences between the frame in (3.10) and the systems W and G. The
frame in (3.10) is not necessarily associated with a group or grid structure like W and
G, and this gives us much freedom to create adaptable coverings of Rd. The price for
this flexibility is that the frame is redundant and cannot be made into an orthonormal
basis unlike W and G (by choosing generators and grid points in a suitable way). From
this point of view, the frame expansion (3.11) should perhaps be considered an adaptable
variant of the ϕ-transform of Frazier and Jawerth [24, 23], see also the generalization in
[5, 4].

A special type of structured admissible coverings generate frames that are of more
“pure” wavelet type. Consider a structured admissible covering associated with a collec-
tion of linear transformations (i.e., the affine transformations all have translation factor
0). For such coverings, the oscillating factor disappears in (3.10) and we obtain a system
more similar to a wavelet system. In fact, the fundamental sets in (3.3) cannot contain
the origin when T is a family of invertible linear maps, and consequently all moments of
Ψ vanish similar to e.g. the Meyer wavelet. The other extreme case is more restricted.
There we keep A fixed and equal to the identity map, and the family of affine transfor-
mations reduces to a family of translation operators. In this case we basically obtain a
Gabor system with (possibly) irregular grid points.

4. Characterization of decomposition spaces

Here we consider the tight frame F (T ) defined in Section 3.1 as a tool to study and
characterize decomposition spaces. Since our interest lies beyond frame decompositions
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of L2(R
d), we will need the following lemma providing some basic facts about stability of

the system F (T ) defined in (3.4) for a structured admissible covering Q = {QT}T∈T . The
lemma below will be used later in Proposition 4.3 to obtain an explicit characterization
of decomposition space by the canonical frame coefficients. We remind the reader that
the functions ϕT and ψT are defined in Proposition 3.1.

Lemma 4.1. Given f ∈ S(Rd). For 0 < p ≤ ∞, we have
(∑

n∈Zd

|〈f, ηn,T 〉|p
)1/p

≤ C|T | 1p− 1
2‖ψ̃T (D)f‖Lp , and

‖ψT (D)f‖Lp ≤ C ′|T | 12− 1
p

∑

T ′∈eT

(∑

n∈Zd

|〈f, ηn,T ′〉|p
)1/p

.

with equivalence independent of T ∈ T . When p = ∞ the sum over n ∈ Zd is changed to
sup.

Proof. Notice that the representation (3.5) together with the estimate (3.6) yields

(4.1) sup
x∈Rd

∥∥{ηn,T (x)}n∈Zd

∥∥
`p
≤ Cp|T |

1
2 and sup

n∈Zd

‖ηn,T‖Lp ≤ C ′
p|T |

1
2
− 1

p .

Suppose p ≤ 1. It can easily be verified that supp(ψ̃T ∗ η̂n,T (T ·)) ⊂ K2a a cube with
side-length 4a. Hence, using the technical Lemma 4.2 below we obtain

∑

n∈Zd

|〈f, ηn,T 〉|p =
∑

n∈Nd
0

|〈ψ̃T (D)f, ηn,T 〉|p ≤
∑

n∈Zd

∥∥(
ψ̃T (D)f

)
ηn,T

∥∥p

L1

= C|T |1−p
∑

n∈Zd

∥∥(
ψ̃T (D)f

)
ηn,T

∥∥p

Lp
≤ C ′|T |1− p

2‖ψ̃T (D)f‖p
Lp
,

giving the first inequality in the lemma. For the other estimate, notice that

‖ψT (D)f‖Lp ≤ C
∑

T ′∈eT

‖ϕ2
T ′(D)f‖Lp ,

and by (3.8)

‖ϕ2
T ′(D)f‖p

Lp
≤

∑

n∈Zd

|〈f, ηn,T ′〉|p‖ηn,T ′‖p
Lp

≤ C|T | p
2
−1

∑

n∈Zd

|〈f, ηn,T ′〉|p.

For 1 < p <∞ the estimates follow using (4.1) for p = 1, together with Hölder’s inequality
(see e.g. [38, Sec. 2.5]). The case p = ∞ is left for the reader. �

The following technical lemma was used to prove Lemma 4.1.

Lemma 4.2. Suppose f ∈ S(Rd) satisfies supp(f̂) ⊂ B(0, r) for some constant r > 0.

Given an invertible affine transformation T , let f̂T (ξ) := f̂(T−1ξ). Then for 0 < p ≤ q ≤
∞

‖fT‖Lq ≤ C|T |1/p−1/q‖fT‖Lp,

for a constant C independent of T .

Proof. Using Lemma 3.2 and a Nikolskii-Plancherel-Polya type inequality on f (see e.g.
[46, p. 18]), we obtain

‖fT‖Lq = |T |1−1/q‖f‖Lq ≤ |T |1−1/qC‖f‖Lp.

�
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We now turn to a characterization of D(Q, Lp, Yv) in terms of the canonical frame
coefficients. To simplify the notation, we let

ηp
n,T := |T |1/2−1/pηn,T

denote the function ηn,T “normalized” in Lp(R
d), p ∈ (0,∞]. We use Lemma 4.1, and the

fact that S(Rd) is dense in D(Q, Lp, Yv), in Definition 2.4 to obtain the following result.

Proposition 4.3. Let Q = {QT}T∈T be a structured admissible covering. Let Y be a
symmetric (quasi-)Banach sequence space on T , and let v be a Q-moderate weight. Then,
for 0 < p ≤ ∞, we have the characterization

‖f‖D(Q,Lp,Yv) �
∥∥∥∥
{(∑

n∈Zd

|〈f, ηp
n,T 〉|p

)1/p}
T∈T

∥∥∥∥
Yv

,

with the usual modification for p = ∞.

Inspired by the characterization given by Proposition 4.3 we define the following coef-
ficient space.

Definition 4.4. Given a structured admissible covering Q = {QT}T∈T , a symmetric
(quasi-)Banach sequence space Y on T , and a Q-moderate weight v. Then for 0 < p ≤ ∞
we define the space d(Q, `p, Yv) as the set of coefficients c = {cn,T}n∈Zd,T∈T ⊂ C satisfying

‖c‖d(Q,`p,Yv) :=

∥∥∥∥
{(∑

n∈Zd

|cn,T |p
)1/p}

T∈T

∥∥∥∥
Yv

<∞.

4.1. Atomic decomposition of decomposition spaces. The characterization given
by Proposition 4.3 is an important step towards proving that the tight frame F (T ) from
Section 3.1 gives an atomic decomposition of D(Q, Lp, Yv). What remains is to study the
stability of the canonical reconstruction operator from d(Q, `p, Yv) into D(Q, Lp, Yv). We
study the reconstruction operator later in this section, but let us first recall the formal
definition of an atomic decomposition of a Banach space (see [31]).

Definition 4.5. Let X be a Banach space and let Xd be an associated Banach sequence
space on N. An atomic decomposition of X with respect to Xd is a sequence {(yn, xn) :
n ∈ N} ⊂ X ′ ×X, with X ′ the dual space to X, such that the following properties hold.

(1) The coefficient operator CX : f → {〈f, yn〉}n∈N is bounded from X into Xd.
(2) Norm equivalence:

‖f‖X � ‖{〈f, yn〉}n∈N‖Xd
, f ∈ X.

(3) We have

f =
∑

n∈N

〈f, yn〉xn, ∀f ∈ X.

When X = L2(R
d) and Xd = `2(Z

d), Definition 4.5 coincides with the usual definition
of a frame for L2(R

d).
Notice that the first two requirements of Definition 4.5 are satisfied by the sequence

{ηp
n,T}n,T according to Proposition 4.3 for the space D(Q, `p, Yv) with associated sequence

space d(Q, `p, Yv).
Let us now consider the canonical reconstruction operatorR : d(Q, `p, Yv) → D(Q,Lp, Yv).

We need the following lemma to show that the reconstruction operator can be defined as
a bounded linear operator.
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Lemma 4.6. Let Q = {QT}T∈T be a structured admissible covering. Let Y be a symmetric
(quasi-)Banach sequence space on T , and let v be a Q-moderate weight. Then, for 0 <
p ≤ ∞, and for any finite sequence {cn,T}n∈Nd

0,T∈T of complex numbers we have
∥∥∥

∑

n∈Zd,T∈T

cn,T |T |1/p−1/2ηn,T

∥∥∥
D(Q,Lp,Yv)

≤ C‖{cn,T}n∈Zd,T∈T ‖d(Q,`p,Yv).

Proof. Let f =
∑

n∈Zd,T ′∈T cn,T ′ηn,T ′ . For T ∈ T we have

∥∥ψT (D)f
∥∥

Lp
=

∥∥∥ψT (D)
(∑

T ′∈ eT

∑

n∈Zd

cn,T ′ η̃n,T ′

)∥∥∥
Lp

≤ C
∑

T ′∈ eT

∥∥∥
∑

n∈Zd

cn,T ′ηn,T ′

∥∥∥
Lp

since ψT (D) is a bounded operator on Lp(R
d) uniformly in T . Now, the same technique

as in the proof of Lemma 4.1 yields∥∥∥
∑

n∈Nd
0

cn,T ′ηn,T ′

∥∥∥
Lp

≤ C|T ′| 12− 1
p‖{cn,T ′}n∈Zd‖`p, 0 < p ≤ ∞,

uniformly in T ∈ T . The lemma follows since Y is symmetric and v is Q-moderate. �

We can now finally verify that F (T ) forms a Banach frame for the decomposition spaces.
Using Lemma 4.6, we define the coefficient operator C : D(Q, Lp, Yv) → d(Q, `p, Yv) by
Cf = {〈f, ηp

n,T 〉}n,T and the reconstruction operator R : d(Q, `p, Yv) → D(Q, Lp, Yv), by

{cn,T}n,T → ∑
n,T cn,T |T |1/p−1/2ηn,T .

Theorem 4.7. Given 0 < p ≤ ∞. Then the coefficient operator C and reconstruction
operator R are both bounded and makes D(Q, Lp, Yv) a retract of d(Q, `p, Yv), i.e., RC =
IdD(Q,Lp,Yv). In particular, for p ≥ 1, F (T ) is an atomic decomposition of the spaces
D(Q, Lp, Yv).

Proof. According to Proposition 4.3, the coefficient operator C is a bounded linear op-
erator, and using Lemma 4.6 it is easy to verify that the reconstruction operator R is a
bounded linear operator. Thus, (3.7) in Proposition 3.4 extends to a bounded splitting
RC = IdD(Q,Lp,Yv) as illustrated in the following commuting diagram.

D(Q, Lp, Yv)

C

D(Q, Lp, Yv)

R

d(Q, `p, Yv)

IdD(Q,Lp,Yv)

�

As an interesting corollary to Proposition 4.7 and the characterization given by Propo-
sition 4.3, we can introduce the following equivalent (quasi-)norm on D(Q, Lp, Yv).

Corollary 4.8. We have the following (quasi-)norm equivalence on D(Q, Lp, Yv),

(4.2) ‖f‖D(Q,Lp,Yv) � inf

{
‖{cn,T}n,T‖d(Q,`p,Yv) : f =

∑

n,T

cn,T |T |1/p−1/2ηn,T

}
.

The corollary shows that when sparseness of expansion coefficients is measured by
d(Q, `p, Yv), then the sparsest expansions (up to a constant) is actually the canonical
frame expansion.
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4.2. Application to nonlinear approximation. One of the important applications of
sparse discrete expansions is to approximation problems. One can use efficient approxima-
tions of a given function to obtain a (lossy) compression of the function. Here we discuss
nonlinear n-term approximation using the tight frames constructed in Section 3.1.1.

We begin by introducing a family of sparseness/smoothness spaces Sβ
p,q associated with

a certain type of admissible covering and a special class of weights. The spaces Sβ
p,q have

very simple characterizations in terms of frame coefficients.

Definition 4.9. Let T be a structured countable family of invertible affine transforma-
tions with associated admissible covering Q. Given β ∈ R and a Q-moderate function
w, define vw,β := {(w(bT ))β}AT ·+bT∈T . We let Sβ

p,q(T , w) denote the decomposition space
D(Q, Lp, (`q)vw,β

) for β ∈ R, 0 < p ≤ ∞, and 0 < q <∞.

Section 5 contains several examples to which Definition 4.9 applies, see also Sec-
tion 5.1.1.

Let {ηn,T} be the tight frame from Section 3.1 associated with T . Notice that,

|〈f, ητ
n,T 〉| = |T |1/p−1/τ |〈f, ηp

n,T 〉|, for 0 < τ, p ≤ ∞.

Suppose there exits a constant δ > 0 such that w(bT ) � wδ(bT ) := |T |
1
δ for T ∈ T . Then,

according to Proposition 4.3 we have the characterization

‖f‖Sβ
p,q

�
(∑

T

|T |βq/δ
(∑

n∈Zd

|〈f, ηp
n,T 〉|p

)q/p
)1/q

.

=

( ∑

T∈T

(∑

n∈Zd

|〈f, ηr
n,T 〉|p

)q/p
)1/q

, when
β

δ
=

1

p
− 1

r
.(4.3)

In Section 5 we will see that several function spaces satisfy the above criterion.
We can use this simple characterization in conjunction with Corollary 4.8 to study

the effect of thresholding the frame coefficients for functions in Sγ
τ,τ (T , wδ). Suppose

f ∈ Sγ
τ,τ (T , wδ), and consider its frame expansion

f =
∑

n,T

〈f, ηn,T 〉ηn,T .

Let {θm}m∈N be a decreasing rearrangement of the frame coefficients {|〈f, ηr
n,T 〉|}n,T , where

r is given by γ/δ = 1/τ − 1/r, and let fF
n be the n-term approximation of f obtained

by extracting from the frame expansion of f the terms corresponding to the n largest
coefficients {θm}n

m=1. Assume β ∈ R, and p > 0 satisfy (γ − β)/δ = 1/τ − 1/p > 0. Then
using Corollary 4.8 and the fact that β/δ = 1/p − 1/r, the approximation error in Sβ

p,p

obeys

‖f − fF
n ‖Sβ

p,p
≤ C

( ∑

m>n

|θm|p
)1/p

≤ C‖θ‖w`τ · n−(γ−β)/δ ≤ C ′‖f‖Sγ
τ,τ

· n−(γ−β)/δ,(4.4)

which follows from standard arguments, see e.g. [27]. An important special case of (4.4)
is for p = 2 and β = 0, where S0

2,2(T , wδ) = L2(R
d), and we obtain

‖f − fF
n ‖L2 ≤ C ′‖f‖Sγ

τ,τ
· n−γ/δ,

for γ/δ = 1/τ − 1/2.
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The estimate (4.4) can also be used to obtain a Jackson inequality for nonlinear n-term
approximation with F(T ). Consider the nonlinear set of all possible n-term expansions
using F(T ),

Σn :=
{
S =

∑

(n,T )∈Λ

cn,Tηn,T : #Λ ≤ n

}
,

and define the error of best n-term approximation as

σn(f,F(T ))Sβ
p,p

:= inf
g∈Σn

‖f − g‖Sβ
p,p
.

Notice that fF
n ∈ Σm so (4.4) clearly implies that

(4.5) σn(f,F(T ))Sβ
p,p

≤ C‖f‖Sγ
τ,τ

· n−(γ−β)/δ, n ≥ 0,

for 1/τ − 1/p = (γ − β)/δ.

5. Construction of decomposition spaces and associated frames

The remaining part of the paper is devoted to constructing decomposition spaces with
a suitable structure such that the results of Section 3 can be applied. Most importantly,
given a reasonable partition of the frequency space, we would like to construct an adapted
admissible covering along with an associated BAPU in order to define families of decom-
position spaces based on various weights. In addition, an equivalent structured covering
is needed to construct the tight frames of Section 3.1. In Section 5.1 below we consider
a fairly general method to construct structured coverings made up of open balls in a
space of homogeneous type over Rd. The covering balls are chosen to have diameters
given by a fixed function of their centers. The advantage of dealing with spaces of ho-
mogeneous type is that the decomposition spaces and associated frames can be adapted
to any given anisotropy on Rd. In Section 6 we apply the construction to obtain tight
frames for Besov and anisotropic Besov spaces and we introduce a family of anisotropic
α-modulation spaces which generalizes anisotropic Besov spaces.

5.1. A general construction of structured coverings. We now consider a general
construction of structured coverings and associated decomposition spaces. The construc-
tion is inspired by Feichtinger’s construction in [15] and uses the notion of a space of
homogeneous type over Rd along with an associated regulation function to create a struc-
tured covering based on balls with certain nice geometric properties.

Let us first recall the definition of a space of homogeneous type on Rd. Spaces of
homogeneous type over any nonempty set were introduced by Coifman and Weiss, see
[9]. A function d : Rd × Rd → [0,∞) is called a quasi-distance on Rd if the following
conditions are satisfied:

a) ∀x, y ∈ Rd, d(x, y) = 0 if and only if x = y,
b) ∀x, y ∈ Rd, d(x, y) = d(y, x),
c) there exists a constant K ≥ 1 such that

d(x, y) ≤ K(d(x, z) + d(z, y))

for every x, y and z in Rd.

The d-ball Bd(x, r) is defined by Bd(x, r) = {y ∈ Rd : d(x, y) < r}. We equip Rd with
a topology by saying that O ⊆ Rd is open if for any x ∈ O there exists r > 0 such that
Bd(x, r) ⊆ O. In general, Bd(x, r) may not be an open subset in Rd but there is a result of
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Maćıas and Segovia [36] which says that it is possible to replace d by a continuous quasi-
distance d′ that is equivalent to d, i.e., d(x, y) � d′(x, y) for every x, y ∈ Rd. In particular,
every d′-ball is open in Rd. Below we will assume that d is a continuous quasi-distance
on Rd.

Let µ be a positive Borel measure on Rd such that every d-ball Bd(x, r) has finite µ-
measure. We assume that µ satisfies a doubling condition, that is, there exists a constant
A such that

(5.1) 0 < µ(Bd(x, 2r)) ≤ Aµ(Bd(x, r)) <∞.

We call the structure (Rd, d, µ) a space of homogeneous type on Rd.

Example 5.1. An example that will be used later is the quasi-distance d(x, y)a := |x−
y|a :=

∑d
j=1 |xj − yj|1/ai , where each ai > 0. Then (Rd, da, dx) is a spaces of homogeneous

type on Rd, see [9, Chap. 3]. We also notice that the topology induced by d(x, y)a on Rd

is equivalent to the standard Euclidean topology.

We now turn to the construction of admissible coverings of Rd. To keep the construc-
tion geometrically simple, we use a suitable collection of d-balls to cover Rd. Another
simplification is that we choose the radius of a given d-ball in the cover as a suitable
function of its center. The following class of regulation functions will be useful for that
purpose.

Definition 5.2. Let (Rd, d, µ) be a space of homogeneous type. A function h : Rd →
(0,∞) is called d-moderate if there exist constants R, δ0 > 0 such that d(x, y) ≤ δ0h(x)
implies R−1 ≤ h(y)/h(x) ≤ R.

Several examples of d-moderate functions will be considered in Section 6. We can use
a d-moderate function to define a continuous covering of Rd and then prune it to a “nice”
admissible covering.

Lemma 5.3. Suppose (Rd, d, µ) is a space of homogeneous type, and let h : Rd → (0,∞)
be d-moderate with constants δ0 and R, and pick 0 < δ < δ0. Then

a) there exist an admissible cover {Bd

(
xj, δh(xj)

)
}j∈J of Rd and a constant 0 < δ′ < δ

such that {Bd

(
xj, δ

′h(xj)
)
}j∈J are pairwise disjoint.

b) Any two admissible coverings

{Bd

(
xi, δ1h(xi)

)
}i∈I := {Ai}i∈I and {Bd

(
yj, δ2h(yj)

)
}j∈J := {Bj}j∈J

of the type considered in a) satisfy supi∈I #J(i) < ∞ and supj∈J #I(j) < ∞,
where

J(i) := {j | j ∈ J,Ai ∩ Bj 6= ∅}, I(j) := {i | i ∈ I,Bj ∩ Ai 6= ∅}.
Proof. We begin by proving a). Fix 0 < δ < δ0. Let Ux := Bd

(
x, δh(x)

)
. Define

ν(x) = {y ∈ Rd|Ux ∩ Uy 6= ∅}, and let U ′
x = ∪y∈ν(x)Uy. Suppose z ∈ U ′

x. We would like
to estimate d(x, z). Notice that z ∈ Uy for some Uy with Ux ∩ Uy 6= ∅. Pick a point
z0 ∈ Ux ∩ Uy. Then

d(x, z) ≤ K(d(x, z0) +K(d(z0, y) + d(y, z)))

< δK(h(x) + 2Kh(y))

≤ δKh(x)(1 + 2KR2),(5.2)

where K is the constant in the quasi-triangle inequality for d. Thus, U ′
x ⊂ Bd

(
x,R1δh(x)

)

for R1 := K(1 + 2KR2). Using Zorn’s Lemma, choose a maximal set {xj}j∈J ⊂ Rd such
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that C1 := {Vxj
}j∈J are pairwise disjoint, with Vx := Bd

(
x, δ

R1
h(x)

)
. The maximality of

the set ensures that {V ′
xj
}j∈J covers Rd, and consequently Q = {Bd

(
xj, δh(xj)

)
}j∈J also

covers Rd. Thus we only need to show that for Q, #ĩ is uniformly bounded for all i ∈ J .
Let m be a constant satisfying 2m ≥ R1. Fix an i ∈ J . Then (5.1) yields

µ
{
Bd

(
xj,

δ
R1
h(xj)

)}
≥ A−2mµ

{
Bd

(
xj, R1δh(xj)

)}
≥ A−2mµ{Uxi

} for all j ∈ ĩ.

Now, since C1 are pairwise disjoint, we have

(5.3) #ĩ ≤ sup
j∈ĩ

µ
{
Bd

(
xi, R1δh(xi)

}

µ
{
Bd

(
xj,

δ
R1
h(xj)

)} ≤ A2mµ
{
Bd

(
xi, R1δh(xi)

)}

µ{Uxi
} ≤ A3m.

We now turn to the proof of b). Fix i ∈ I, and pick j ∈ J(i). An estimate similar
to the one in (5.2) shows that there exists a constant C = C(K,R, δ1, δ2) such that for
any z ∈ B(yj, δ2h(yj)), d(xi, z) ≤ Ch(xi). Pick δ′2 < δ2 such that {B(yj, δ

′
2h(yj))}j∈J are

pairwise disjoint. Using the d-moderation of h we have h(yj) ≥ R−2h(xi) for j ∈ J(i), so
there exists a constant C ′ such that

#J(i) ≤ µ
{
Bd

(
xi, Ch(xi)

}

µ
{
Bd

(
yj, δ′2R

−2h(xi)
)} ≤ C ′.

The estimate for I(j) is similar. �

It is an open problem whether the coverings given by Lemma 5.3 are structured for
a general quasi-distance d. However, if we impose one additional assumption on the
quasi-distance d, it is possible to show that the coverings are indeed structured. We
assume that the quasi-distance d is translation invariant and induced by a positive function
ρ : Rd → [0,∞), i.e., d(x, y) = ρ(x− y). Recall that an anisotropy on Rd is a vector a =

(a1, a2, . . . , ad) of positive numbers, which we assume is normalize such that
∑d

j=1 ai = d.

For t ≥ 0 the anisotropic dilation matrix Da(t) is defined by Da(t) = diag(ta1 , . . . , tad).
The function ρ is called homogeneous with respect to the anisotropy a if ρ(Da(t)ξ) = tρ(ξ)
for t > 0 and ξ ∈ Rd. We have the following result on structured coverings.

Theorem 5.4. Let a be an anisotropy and suppose that the quasi-distance d is induced
by ρ, which we assume is homogeneous with respect to a. Suppose h : Rd → (0,∞) is
d-moderate. Then

a) the family Q = {Bd

(
xj, δh(xj)

)
}j∈J given in Lemma 5.3 is a structured admissible

covering of Rd. Moreover, the covering is countable if the topology induced by d is
finer than the Euclidean topology on Rd.

b) Any two such families of structured admissible coverings are equivalent in the sense
of Definition 2.8, i.e., h determines exactly one equivalence class of structured
admissible coverings.

c) Let P and Q be two equivalent countable coverings of the type from b), and Assume
that Y and W are symmetric (quasi-)Banach sequence spaces derived from the
same (quasi-)Banach sequence space Ȳ on N, and that {vi}i∈I and {uj}j∈J are
weights derived from the same moderate function w. Then

D(Q, Lp, Yv) = D(P, Lp,Wu),

with equivalent norms, i.e, h, Ȳ , and w determine exactly one decomposition space
up to equivalent norms.
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Proof. Let δ < δ0, and {xj}j∈J be the points given in Lemma 5.3. Define P := Bd(0, 1),
Q = Bd(0, 2), and

Tjξ = Ajξ + xj, where Aj = Da(δh(xj)).

If ρ is homogeneous with respect to a, we have

ρ(T−1
j ξ) = ρ

(
Da

( 1

δh(xj)

)
(ξ − xj)

)
=

1

δh(xj)
ρ(ξ − xj).

Thus,
PTj

= {ξ : ρ(T−1
j ξ) < 1} = {ξ : ρ(ξ − xj) < δh(xj)} = Bd(xj, δh(xj)).

Now, using Lemma 5.3 it is straight forward to verify that {PTj
}j∈J and {QTj

}j∈J are
admissible coverings. To prove countability of Q when the topology induced by d is finer
than the standard topology, we simply associate an Euclidean ball with rational radius
and center to each set in Q in such a way that the these rational balls are pairwise disjoint.

Let us consider the proof of b). Recall that any d-ball Bd(x,R) is open, and we claim
that it is also arcwise connected. We can connect x to any y ∈ Bd(x,R) by the continuous
path γ : [0, 1] → Bd(x,R) given by γ(t) = x+Da(t)(y− x). Consider any two admissible
structured coverings Q and P of the type from a). It follows that each set in either Q or
P is open and arcwise connected, and by b) in Lemma 5.3 that they have “finite overlap”.
We can therefore apply [20, Proposition 3.6] to conclude that Q ∼ P in the sense of
Definition 2.8. According to [20, Proposition 3.5], ∼ is an equivalence relation on ad-
missible coverings, so h determines exactly one equivalence class of structured admissible
coverings.

Part c) is a direct consequence of Theorem 2.11. �

Theorem 5.4 ensures that we can construct a BAPU corresponding to the admissible
covering given in Lemma 5.3, provided that h is d-moderate. The following result proved
in [15] gives an abundance of d-moderate functions.

Lemma 5.5. Suppose the quasi-distance d is induced by ρ, and let h : Rd → (0,∞)
be a weakly subadditive function, i.e., there exist a constant C1 such that h(x + y) ≤
C1(h(x)+h(y)), for all x, y ∈ Rd. Assume furthermore that h satisfies the growth condition

(5.4) h(x) ≤ C(1 + ρ(x)), for all x ∈ Rd.

Then h is d-moderate. In particular, suppose s : [0,∞) → [1,∞) is a non-decreasing
function satisfying s(2t) ≤ Kss(t) and s(t) ≤ Cs(1 + t) for all t ≥ 0, then h(x) = s(ρ(x))
is weakly subadditive (and thus d-moderate).

5.1.1. Generic admissible weights. Here we consider two families of admissible weights
needed to define the decomposition spaces. Suppose the assumptions of Theorem 5.4 are
satisfied, and let

Q = {Bd

(
xj, δh(xj)

)
}j∈J

be an associated countable structured covering generated by the affine transformations
T = {Tj}j∈J . Notice that for any x ∈ Bd

(
xj, δh(xj)

)
we have (uniformly in j),

ρ(x) ≤ K(d(x, xj) + ρ(xj)) ≤ C(h(xj) + ρ(xj)),

and
ρ(xj) ≤ K(d(x, xj) + ρ(x)) ≤ C(h(xj) + ρ(x)) ≤ C ′(h(x) + ρ(x)).

Now, if h satisfies the growth condition (5.4), then 1 + ρ(x) is a Q-moderate function on
Rd, and thus {(1 + ρ(bT ))β}AT ·+bT∈T , β ∈ R, is a Q-moderate weight.
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In particular, Definition 4.9 applies and Theorem 5.4 shows that the space Sβ
p,q(T , 1+ρ)

is well-defined and depends only on h and ρ. Henceforth, we will use the notation Sβ
p,q(h, ρ)

to denote Sβ
p,q(T , 1 + ρ).

Another natural weight is induced by the regulation function h. Observe that

|Bd

(
xj, δh(xj)

)
| � |Tj | � det diag

[
(δh(xj))

a1, . . . , (δh(xj))
ad

]
� h(xi)

d,

since d =
∑d

i=1 ai. Hence, |Tj|β/d � h(xj)
β, and clearly hβ is a Q-moderate function on

Rd since h is d-moderate, so {|Tj |β/d}j∈J is a Q-moderate weight.

6. Tight frames for some new (and old) smoothness spaces

In this section we consider some specific applications of Theorem 5.4. The first two
examples are based on the same choice of regulation function h but with different metrics
on Rd. For isotropic spaces we use the Euclidean metric in Theorem 5.4 to obtain new
tight frames for Besov and α-modulation spaces. For a given anisotropy on Rd, we use
the quasi-metric induced by | · |a of Example 5.1 to generate tight frames for anisotropic
Besov spaces and for anisotropic α-modulation spaces. Anisotropic α-modulation is a new
family of spaces that “interpolate” between anisotropic Besov and classical modulation
spaces. The third class of examples in Section 7 are not derived from regulation functions,
but are inspired by the curvelet tight frames introduced by Candés and Donoho.

6.1. Isotropic spaces. Let us first consider Rd with the Euclidean norm | · | and a simple
family of regulation functions to create covers corresponding to classical isotropic spaces.
We let hα(x) = (1 + |x|)α, where α ∈ [0, 1] is fixed. According to Lemma 5.5, hα is
moderate w.r.t. Euclidean distance since (1 + 2t)α ≤ 2α(1 + t)α for t ≥ 0. Obviously the
Euclidean distance is homogeneous w.r.t. the (an)isotropy a = (1, 1, . . . , 1), so we can use
Theorem 5.4 to conclude that hα determines one decomposition space (up to equivalent
norms) for each choice of a suitable weight Yv. In particular, Sβ

p,q(hα, | · |) is well-defined.

Observe that any covering ball B in Rd associated with hα satisfies the following simple
geometric rule: x ∈ B ⇒ (1+|x|)αd � |B|. For α = 1 this corresponds to a “dyadic” cover
while α = 0 corresponds to a uniform cover. Let us consider a more explicit representation
of the respective spaces.

6.1.1. The case α = 1. First we consider the case α = 1, which corresponds to Besov
spaces. Let E2 = {±1,±2}, E1 := {±1}, and E := Ed

2 \ Ed
1 . For each k ∈ E, and j ∈ N

define bj,k := 2j(v(k1), . . . , v(kd)), where

v(k) = sgn(k) ·
{

1/2 for k = 1

3/2 for k = 2.

Suppose T = {4I, Tj,k}j∈N,k∈E is given by Tj,kξ = 2jξ + bj,k and let Q ⊂ Rd be an
open cube with center 0 and side length r > 1/2. Then {Tj,kQ}j∈N,k∈E is a structured
admissible covering og Rd. Figure 1 illustrate this fact for d = 2. Using T it can be
verified that Sβ

p,q(h1, | · |) is a Besov space. In fact Sβ
p,q(h1, | · |) = Bβ

p,q(R
d), see e.g. [46, p.

85] for details. The tight frame F(T ) yields an atomic decomposition of the Besov space
Bβ

p,q(R
d), and (4.3) gives a Lizorkin-type characterization of the norm on Bβ

p,q(R
d). Since

|bj,k| � |Tj,k|1/d, Eq. (4.5) provides the Jackson estimate

σn(f,F(T ))Bβ
p,p(Rd) ≤ C‖f‖Bγ

τ,τ (Rd) · n−(γ−β)/d, n ≥ 0,

for 1/τ − 1/p = (γ − β)/d.
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T3,(2,1)Q

Figure 1. A decomposition of the frequency plane using the structured
family T from Section 6.1.1 on a fixed cube Q.

6.1.2. The case 0 ≤ α < 1. Next we suppose 0 ≤ α < 1, which corresponds to α-
modulation spaces. Define bk = k|k|α/(1−α), k ∈ Zd \ {0}, and let T = {Tk}k∈Zd\{0} be

given by Tkξ = |k|α/(1−α)ξ + bk. This type of “polynomial” covering was first considered
by Päivärinta and Somersalo in [40] to study pseudodifferential operators, and it was
proven by the authors in [1] that (4.3) gives a characterization of the α-modulation space
Mβ,α

p,q (Rd) introduced by Gröbner [1, 30]. We have Sβ
p,q(hα, | · |) = Mβ,α

p,q (Rd), so the tight

frame F(T ) gives an atomic decomposition ofM β,α
p,q (Rd), and (4.3) gives a characterization

of the norm on Mβ,α
p,q (Rd). In particular, for α = 0, we obtain the classical modulation

spaces introduced by Feichtinger [17]. In [1], the authors constructed a nontight frame
for Mβ,α

p,q (Rd), and as far as we know, the frame given by (3.4) is the first example of a

tight frame for Mβ,α
p,q (Rd). We have |bk| � |Tk|

1
dα . Thus, if 0 < α < 1, Eq. (4.5) provides

the Jackson estimate

σn(f,F(T ))Mβ,α
p,p (Rd) ≤ C‖f‖Mγ,α

τ,τ (Rd) · n−(γ−β)/(dα), n ≥ 0,

for 1/τ − 1/p = (γ − β)/(dα).

6.2. Anisotropic spaces. Next we consider the same construction as above but adapted
to a given anisotropy a on Rd. Let d be induced by | · |a defined in Example 5.1, and define
ha

α(x) = (1+ |x|a)α, which is d-moderate according to Lemma 5.5. It is easy to check that
| · |a is homogeneous w.r.t. a, so we can use Theorem 5.4 to conclude that ha

α determines
one decomposition space (up to equivalent norms) for each choice of a suitable weight Yv.
In particular, the space Sβ

p,q(h
a

α, | · |a) is well-defined. Also notice that for a = (1, 1, . . . , 1),
ha

α is the regulation function considered in the isotropic case. In this particular case,
we obtain the same isotropic spaces as in Section 6.1. In general, we obtain anisotropic
version of the spaces considered in Section 6.1.

6.2.1. The case α = 1. First suppose α = 1, which will correspond to anisotropic Besov
spaces. To see this, let us describe the anisotropic Lizorkin decomposition. Given the
anisotropy a = (a1, . . . , ad), define the cubes

Qj = {x : |xi| ≤ 2jai, i = 1, . . . , d} for j = 0, 1, . . . ,
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and the corridors Kj = Qj \ Qj−1 for j ∈ N. Recall the set E from the isotropic Besov
spaces. For each j ∈ N and k ∈ E define

Pj,k = {x ∈ Rd : sgn(xi) = sgn(ki), and (|ki| − 1)2j−1 ≤ |xi|1/ai ≤ |ki|2j−1}.
Clearly, Kj ⊂ ∪k∈EPj,k. The family {Q0, Pj,k} gives an anisotropic Lizorkin decomposition
of Rd. The cubes Pj,k can be generated by a family of affine transformations T . In fact,
let cj,k be the center of the cube Pj,k, and define the function B : E → Rd×d by

B(k) = diag(h(k)1, . . . , h(k)d), where h(k)i =

{
2−(ai+1) if |ki| = 1,

(1 − 2−ai)/2 if |ki| = 2.

Then the family T = {Da(1), Tj,k}j∈N,k∈E given by Tj,kξ = Da(2
j)B(k)ξ + cj,k generates

the sets Pj,k. For this choice it can be verified that Sβ
p,q(h

a

1, | · |a) is an anisotropic Besov

space, see e.g. [15, p. 223]. In fact, Sβ
p,q(h

a

1 , | · |a) = Ba,β
p,q (Rd), so the tight frame F(T ) gives

an atomic decomposition of Ba,β
p,q (Rd), and (4.3) gives a Lizorkin-type characterization of

the corresponding norm. Notice that |cj,k|a � 2j � |Tj,k|1/d, since d =
∑d

i=1 ai. Thus Eq.
(4.5) provides the Jackson estimate

σn(f,F(T ))Ba,β
p,p (Rd) ≤ C‖f‖Ba,γ

τ,τ (Rd) · n−(γ−β)/d, n ≥ 0,

for 1/τ − 1/p = (γ − β)/d. Wavelet characterizations of anisotropic Besov spaces are
considered in e.g. [26, 34].

6.2.2. The case 0 ≤ α < 1. Next we consider the case 0 ≤ α < 1, which corresponds
to a family of spaces which we will call anisotropic α-modulation spaces. According to
Theorem 5.4, Sβ

p,q(h
a

α, | · |a) is well-defined and we define the anisotropic α-modulation

space Ma,β,α
p,q (Rd) by

Ma,β,α
p,q (Rd) := Sβ

p,q(h
a

α, | · |a), 0 < p ≤ ∞ , 0 < q <∞, β ∈ R.

One can check that for α = 0, which corresponds to uniform coverings of the frequency
space, Ma,β,0

p,q (Rd) reduces to the classical modulation space M β,0
p,q (Rd). This follows from

the fact that the unit ball in (Rd, | · |a) contains an Eulidean ball and is itself contained
in some Euclidean ball.

Theorem 5.4 tells us that there exists a structured covering associated with ha

α, but
unlike the isotropic case, we do not (in general) know of any explicitly given structured
covering. However, suppose T = {Ak · +bk}k∈Zd\{0} is one of the equivalent structured
covering given by Theorem 5.4. The tight frame F(T ) yields an atomic decomposition
of Ma,β,α

p,q (Rd), and (4.3) gives a characterization of the norm on M a,β,α
p,q (Rd). We have

|bk|a � |Ak|
1

dα since
∑d

j=1 aj = d. Thus, if 0 < α < 1, Eq. (4.5) provides the Jackson
estimate

σn(f,F(T ))Ma,β,α,
p,p (Rd) ≤ C‖f‖Ma,γ,α

τ,τ (Rd) · n−(γ−β)/(dα), n ≥ 0,

for 1/τ − 1/p = (γ − β)/(dα).

7. Curvelet-type decomposition spaces

This final section is concerned with a study of decomposition spaces associated with
certain splittings of the frequency space inspired by the decompositions considered by
Candés and Donoho in their construction of curvelet tight frames for L2(R

2). In [7] they
considered so-called second generation curvelet tight frames obtained by a subdivision of
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the dyadic coronas in R2 into small wedges satisfying the rule “length = height2”. A sim-
ilar type of atomic decomposition was considered earlier by Smith in [42] for the purpose
of studying Fourier integral operators. Below we adapt our general construction from
Section 3 to generate structured coverings of Rd that can be used to obtain curvelet-type
tight frames for L2(R

d), d ≥ 2. We obtain a natural family of sparseness (smoothness)
spaces associated to curvelet-type frames, and in Section 7.3 we show that the sparse-
ness spaces for the second generation curvelets from [7] and the sparseness space for the
curvelet-type frames from Section 7 are the same.

7.1. Curvelet-type decompositions. Our goal is to define curvelet-type tight frames
for L2(R

d), d ≥ 2 by introducing structured decompositions of Rd compatible with the
time-frequency properties of curvelets. The frequency decomposition associated with
curvelets is obtained by splitting each dyadic band {x ∈ Rd : 2j ≤ |x| < 2j+1} into
approximately 2j/2 equally sized “wedges”. For d = 2, it is straightforward to obtain
such wedges by simply subdividing S1 into 2bj/2c equal pieces. For d > 2, the process
is slightly more complicated and we need the following geometric lemma to ensure that
we can find a certain number of approximately equidistant points on the unit sphere
Sm = {x ∈ Rm+1 : |x| = 1}.
Lemma 7.1. Let (Sm, ρ), m ≥ 1, be the metric space on the unit sphere Sm with the
geodesic metric ρ. Let BSm(x, r) := {y ∈ Sm : ρ(x, y) < r} be an open ball of geodesic
radius r > 0 around x ∈ Sm. For 0 < r there exists a set {xk}L

k=1 ⊂ Sm of points
satisfying {BSm(xk, r)}k are pairwise disjoint, Sm = ∪kBSm(x, 3r), and (uniformly in r)
L = #{xk} � r−m for r → 0. Furthermore, there exists a constant 0 < A <∞ depending

only on m such that #k̃ ≤ A for k = 1, . . . , L.

Proof. Fix r > 0. Let Ux = BSm(x, r), ν(x) = {y ∈ Sm : Ux∩Uy 6= ∅}, and U ′
x = ∪y∈ν(x)Uy.

By Zorn’s lemma there exists a maximal set {xk}k ⊂ Sm satisfying {Uxk
}k are pairwise

disjoint. The maximality implies that {U ′
xk
}k covers Sm. Clearly, U ′

x ⊆ BSm(x, 3r). Hence
Sm = ∪kBSm(x, 3r). Let dσ be the surface measure on Sm. Since σ(Ux) � rm and {Uxk

}k

are pairwise disjoint, there exists a constant 0 < Cm < ∞ depending only on m such
that #{xk} ≤ Cmr

−m. Likewise, σ(BSm(x, 3r)) � (3r)m, which gives a lower bound
#{xk} ≥ cm3−mr−m. Finally, notice that

σ(BSm(xi, r)) ≥ Cm9−mσ(BSm(xk, 9r))

for all i, k. Thus

#k̃ ≤ sup
i

σ(BSm(xk, 9r))

σ(BSm(xi, r))
≤ 9m.

�

We can now define curvelet-type structured coverings for d ≥ 2. For each j ∈ N, let
{xj,`}`∈Lj

⊂ Sd−1 be a set of points obtained using Lemma 7.1 with r = 2−j/2. It is easy
to check that we have the uniform bound

#Lj+1/#Lj ≤ Cd

for all j ∈ N. Thus the wedges

W 1
j,` = [2j, 2j+1] × BSd−1(xj,`, 3 · 2−j/2), j ∈ N, ` ∈ Lj

and
W 2

j,` = [2j−1, 2j+2] ×BSd−1(xj,`, 7 · 2−j/2), j ∈ N, ` ∈ Lj

are both admissible coverings of Rd \B(0, 2).
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Let Rj,` be an orthogonal transformation which maps (1, 0, . . . , 0) ∈ Rd to the point
ej,` ∈ Rd given in polar coordinates by (1, xj,`) ∈ R+ × Sd−1. Using the hyperspherical
coordinates ϕ1, . . . , ϕd−1, given by the relations

x1 = |x| cosϕ1

x2 = |x| sinϕ1 cosϕ2

...

xd−1 = |x| sinϕ1 · · · sinϕd−2 cosϕd−1

xd = |x| sinϕ1 · · · sinϕd−2 sinϕd−1,

we have that R−1
j,`W

1
j,` can be described by 0 ≤ ϕ1 < 3 · 2−j/2, 0 ≤ ϕi < π, i = 2, . . . , d− 2

and 0 ≤ ϕd−1 < 2π. A similar description holds for R−1
j,`W

2
j,`.

Consider the parabolic dilation matrix

Dj = diag(2j, 2j/2, . . . , 2j/2),

and define a family T of invertible affine transformations on Rd by

TJξ = RJDjξ, J ∈ J ,
where J = {(j, `) : j ∈ N, ` ∈ Lj}. Then by simple estimates on sine and cosine it can
be verified that there exists a cube Q ⊂ Rd satisfying

T−1
j,` W

1
j,` ⊂ Q ⊂ T−1

j,` W
2
j,` ∀(j, `) ∈ J .

Thus T = {T0, TJ}J∈J is a structured family of affine transformations for some T0 satis-
fying B(0, 2) ⊂ T0Q.

We now define the associated curvelet-type system F (T ) = {ηn,T}n∈Zd,T∈T by (3.4).
According to Proposition 3.4, F (T ) is a tight frame for L2(R

d).
For d = 2 the wedges W 1

j,` are similar to those considered by Donoho and Candés in [7]
(see also Section 7.3.1 below). Figure 2 illustrates a tiling of the frequency plane by such
wedges.

Figure 2. Sketch of a tiling of the frequency plane using the polar wedges
in Section 7.1.
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Remark 7.2. It is possible to use the parabolic dilation matrix

Dj = diag(aj, bj, . . . , bj),

in the construction of the structured admissible family T above provided 1 < b < a <
∞. In fact, all the above arguments and the following results hold true with obvious
modifications.

7.2. Curvelet spaces. Let Gβ
p,q denote the decomposition space corresponding to the

curvelet-type decomposition, using the weights |2jej,k|β = 2jβ.
Since 2j = |Tj,k|2/(d+1), Eq. (4.5) provides the Jackson estimate

σn(f,F(T ))Gβ
p,p(Rd) ≤ C‖f‖Gγ

τ,τ (Rd) · n−2(γ−β)/(d+1), n ≥ 0,

for 1/τ − 1/p = 2(γ − β)/(d+ 1).

7.2.1. Stability of curvelet spaces. A number of choices were made in the construction
of the curvelet-type frames (in particular, multiple points on Sd−1 are chosen), so it is
a serious concern whether the associated decomposition spaces depend on the particular
choice. The following lemma shows that this is not the case; any two choices will lead to
decomposition spaces that agree up to equivalence of norms.

Lemma 7.3. Let Gβ
p,q and G̃β

p,q be any pair of curvelet spaces associated with the con-

struction of Section 7.1. Then Gβ
p,q = G̃β

p,q with equivalent norms.

Proof. Let {ϕj,k} and {ϕ̃j,k} be BAPUs generating the two curvelet spaces in question.
It follows easily from the construction of the curvelet structured decomposition that
supp(ϕj,k)∩ supp(ϕ̃j′,k′) 6= ∅ implies |j− j ′| ≤ 1. Moreover, for |j− j ′| ≤ 1, we claim that

sup
k′

#{k : supp(ϕj,k) ∩ supp(ϕ̃j′,k′) 6= ∅} <∞,

and

sup
k

#{k′ : supp(ϕj,k) ∩ supp(ϕ̃j′,k′) 6= ∅} <∞.

The claim follows from an argument similar to the one use to prove part b) of Lemma 5.3,
where we use the properties of the points obtained from Lemma 7.1. The lemma now
follows from Theorem 2.11 and this finite overlap property. �

7.2.2. Curvelet and Besov spaces. It is well-known that Besov spaces can be defined using
a partition of unity adapted to the dyadic frequency bands {x ∈ Rd : 2j ≤ |x| < 2j+1}, and
the curvelet splitting of the frequency space can therefore be considered a refinement of
the Besov space one. We use this observation below to obtain embedding results between
curvelet spaces and Besov spaces.

Lemma 7.4. Let K = d−1
2

. For 0 < p ≤ ∞, 0 < q <∞, and β ∈ R we have

Bβ+s
p,q (Rd) ↪→ Gβ

p,q(R
d),

where s = K 1
q
. Likewise,

Gβ
p,q(R

d) ↪→ Bβ−s′

p,q (Rd),

where s′ = K(max(1, 1/p) − min(1, 1/q))
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Proof. Let {ϕj,k} be a BAPU corresponding to a curvelet-type decomposition. Let {ψj}j∈N0

be a partition of unity with essential support on the dyadic frequency bands {x ∈ Rd :
2j ≤ |x| < 2j+1} and satisfying

‖f‖Bβ
p,q

�
(∑

j∈N0

(2βj‖ψj(D)f‖p)
q
)1/q

,

supp(ϕj,k) ⊂ supp(ψ̃j), k ∈ Lj, and supp(ψj) ⊂ ∪k∈Lj
supp(ϕ̃j,k)

for all j ∈ N0. Such a partition clearly exist, due to the construction of the curvelet-type
decomposition.

For the first embedding we notice that
∑

j∈N0

∑

k∈Lj

2βqj‖ϕj,k(D)f‖q
p =

∑

j∈N0

∑

k∈Lj

2βqj‖ϕj,k(D)ψ̃j(D)f‖q
p ≤ C

∑

j∈N0

∑

k∈Lj

2βqj‖ψ̃j(D)f‖q
p

≤ C
∑

j∈N0

2jK2βqj‖ψ̃j(D)f‖q
p,

since for a given level j there are #Lj � 2jK polar cubes in the covering {ϕj,k}.
We now turn to the second embedding. Suppose p ≥ 1 and q < 1. Since supp(ψj) =

∪k∈Lj
supp(ϕ̃j,k) we have

∑

j∈N0

(2βj‖ψj(D)f‖p)
q =

∑

j∈N0

(
2βj

∥∥∥ψj(D)
∑

k∈Lj

ϕ̃j,k(D)f
∥∥∥

p

)q

≤ C
∑

j∈N0

(
2βj

∥∥∥
∑

k∈Lj

ϕ̃j,k(D)f
∥∥∥

p

)q

≤ C
∑

j∈N0

(
2βj

∑

k∈Lj

‖ϕ̃j,k(D)f‖p

)q

≤ C
∑

j∈N0

∑

k∈Lj

(2βj‖ϕ̃j,k(D)f‖p)
q.

The other cases are obtained by appropriate Hölder inequalities using the bound on the
sum over k for a given level j. �

7.3. Equivalence with second generation curvelets. The curvelet-type frames de-
fined in Section 7 appear to be quite similar to the second generation curvelets of Candés
and Donoho in the comparable case, i.e., for d = 2. In this section we compare the two
type of frames on a quantitative basis and show that the sparseness spaces associated
with the two type of frames are the same (and given by specific decomposition smooth-
ness spaces). Thus, whenever a function has a sparse curvelet expansion, the function
will have an equally sparse curvelet-type decomposition and vice versa.

Let us briefly recall the definition of the so-called second generation curvelets given by
Candés and Donoho. We refer the reader to [7] for a much more detailed discussion on
the curvelet construction.

7.3.1. Second generation curvelets. Assume ν is an even C∞(R) window that is supported
on [−π, π] and its 2π-periodic extension obeys |ν(θ)|2 + |ν(θ − π)|2 = 1, for θ ∈ [0, 2π).
Define νj,`(θ) = ν(2bj/2cθ − π`) for j ≥ 0 and ` = 0, 1, . . . , 2bj/2c − 1. Assume that w is a
smooth compactly supported function that obeys

|w0(t)|2 +
∑

j≥0

|w(2−jt)|2 = 1, t ∈ R,

with w0 a smooth function supported in a neighborhood of the origin. For j ≥ 2 and
` = 0, 1, . . . , 2bj/2c − 1, put

(7.1) κj,`(ξ) = w(2−j|ξ|)
(
νj,`(θ) + νj,`(θ + π)

)
, ξ = |ξ| eiθ.
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The support of w(2−j|ξ|)ν(2bj/2cθ) is contained in a rectangle Rj = I1j × I2j given by

I1j = {ξ1, tj ≤ ξ1 ≤ tj + Lj}, I2j = {ξ2, 2|ξ2| ≤ lj},
where Lj = δ1π2j and lj = δ22π2j/2 (δ1 depends weakly on j, see [7, Sec. 2]). Now let

Ĩ1j = ±I1j, and define R̃j = Ĩ1j × I2j. The system

uj,k(ξ1, ξ2) =
2−3j/4

2π
√
δ1δ2

· ei(k1+1/2)2−j ξ1
δ1 · ei

k22−j/2ξ2
δ2 , k1, k2 ∈ Z,

is then an orthonormal basis for L2(R̃J). Finally, define

(7.2) γ̂µ′(ξ) = κJ(ξ)uj,k(R
>
J ξ), µ′ = (j, `, k),

where RJ is rotation by the angle π2−bj/2c`, and let γ̂µ1(ξ) = 2π · κ1(ξ)uk(ξ), where
κ2

1(ξ) = w2
0(|ξ|)+w2(|ξ|)+w2(|ξ|/2), and uk(ξ) = (2πδ0)

−1 ·ei(k1ξ1/δ0+k2ξ2/δ0) for a constant
δ0 > 0. The curvelet system {γµ}µ is a tight frame for L2(R

2).

7.3.2. Equivalence of curvelet-type frames and second generation curvelets. Now we prove
that the second generation curvelets and the curvelet-type frames of Section 7 yield the
same sparseness spaces for d = 2. In this case we have an explicit structured family of
affine transformations. We let T = {T1, Tj,`}j≥2,`=0,1,...,2bj/2c+1−1 be given by Tj` := Rj,`Dj,

where Rj,` is the Rotation by the angle π2−bj/2c`, and Dj = diag(2j, 2j/2).

Lemma 7.5. Let κj,` and γj,`,k be given by (7.1) and (7.2) respectively. Then we have

(1) κj,`(D) is a bounded operator on Lp(R
d), 0 < p ≤ ∞, uniformly in j and `.

(2) There exist two constants C,C ′ <∞ such that
(∑

k∈Z2

|〈f, γj,`,k〉|p
)1/p

≤ C23/2j( 1
p
− 1

2
)‖κ̃2

j,`(D)f‖Lp , and

‖κ2
j,`(D)f‖Lp ≤ C ′23/2j( 1

2
− 1

p
)
(∑

k∈Z2

|〈f, γj,`,k〉|p
)1/p

.

for all (j, `) ∈ J .

Proof. Let Ωj,k be the support of κj,k. Notice that in polar coordinates

Ωj,k = {(r, θ) : a2j ≤ |r| ≤ b2j, |θ − π`2−bj/2c| ≤ π2−bj/2c},
for some constants a and b satisfying 0 < 4a < b <∞.

Define λj,`(ξ) := κj,`(Tj,`ξ). By simple estimates on sine and cosine we obtain

supp(λj,`) = T−1
j,` Ωj,` ⊂ K := [−b, b] × [−

√
2bπ,

√
2bπ].

In fact, supp(λj,`) ⊂ [−b,−a/2]∪ [a/2, b]× [−
√

2bπ,
√

2bπ] for j ≥ 4. Furthermore, it can
be verified that for any β ∈ N2

0 there exists a constant Cβ such that

(7.3) ∂βλj,`(ξ) ≤ CβχK(ξ),

Now, the same technique as in the proof of Proposition 3.1 yields the first statement of
the lemma.

To prove the second statement, notice that we can write γ̂j,`,k in terms of λj,`:

γ̂j,`,k(ξ) =
2−3/4j

2π
√
δ1δ2

λj,`(T
−1
j,` ξ)e

k′·(T−1
j,` ξ),
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where

k′ :=

[
(k1 + 1/2)/δ1

k2/δ2

]
.

Thus

γj,`,k(x) =
23/4j

2π
√
δ1δ2

F−1λj,`(T
>
j,kx+ k′).

Now, as in the proof of Lemma 4.1, the bound (7.3) implies

sup
x∈Rd,`

∥∥{γj,`,k(x)}k∈Z2

∥∥
`p
≤ Cp2

3j/4 and sup
k∈Zd,`

‖γj,`,k‖Lp ≤ C ′
p2

3/2j( 1
2
− 1

p
),

and the claim follows using the same arguments as in the proof of Lemma 4.1. �

Let {ψ1, ψj,`}j,` be a BAPU corresponding to {T1, T }, where T1 is a suitable invertible
affine transformation taking care of low frequencies. From the proof of Lemma 7.5 we
have that we can choose the BAPU such that supp(ϕj,`) ⊂ supp(κ̃j,`), and

supp(κj,`) ⊂ supp(ϕ̃Tj,`
) ∪ supp( ˜ϕT

j,`+2bj/2c
).

Thus Lemma 7.5 implies

‖f‖Gβ
p,q

�
( ∑

(j,`)∈J

2jq(β+ 3
2
( 1
2
− 1

p
))
(∑

k

|〈f, γj,`,k〉|p
)q/p

)1/q

�
( ∑

(j,`)∈J

|Tj,`|
2qβ
3

(∑

k

|〈f, γp
j,`,k〉|p

)q/p
)1/q

,

where γp
j,`,k denotes the function γj,`,k normalized in Lp(R

2).

7.3.3. Concluding remarks. The reader can verify that the result from the previous section
imply that the curvelets on R2 satisfy the following Jackson estimate

σn(f, {γµ}µ)L2(R2) ≤ C‖f‖
G

3/2
2/3,2/3

(R2)
· n−1, n ≥ 0.

This Jackson estimate along with the careful analysis in [7] show that images (functions)
with compact support that are C2 except for discontinuities along piecewise C2-curves
(see [7, Definition 1.1] for the precise definition of this function class) are contained in

G
3/2+ε
2/3,2/3(R

2) for any ε > 0. For G
3/2+ε
2/3,2/3(R

2), Lemma 7.4 gives the embedding

B
9/4+ε
2/3,2/3(R

2) ↪→ G
3/2+ε
2/3,2/3(R

2) ↪→ B
5/4+ε
2/3,2/3(R

2).
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[31] K. Gröchenig. Describing functions: atomic decompositions versus frames. Monatsh. Math., 112(1):1–

42, 1991.
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[33] K. Gröchenig and S. Samarah. Nonlinear approximation with local Fourier bases. Constr. Approx.,
16(3):317–331, 2000.

[34] R. Hochmuth. Wavelet characterizations for anisotropic Besov spaces. Appl. Comput. Harmon. Anal.,
12(2):179–208, 2002.

[35] E. Le Pennec and S. Mallat. Sparse geometric image representations with bandelets. IEEE Trans.
Image Process., 14(4):423–438, 2005.
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