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Head and neck (HN) cancers pose a difficult problem in the planning of intensity-
modulated radiation therapy (IMRT) treatment. The primary tumor can be large
and asymmetrical, and multiple organs at risk (OARs) with varying dose-sparing
goals lie close to the target volume. Currently, there is no systematic way of
automating the generation of IMRT plans, and the manual options face planning
quality and long planning time challenges. In this article, we present a
reinforcement learning (RL) model for the purposes of providing automated
treatment planning to reduce clinical workflow time as well as providing a better
starting point for human planners to modify and build upon. Several models with
progressing complexity are presented, including the relevant plan dosimetry
analysis and model interpretations of the resulting strategies learned by the
auto-planning agent. Models were trained on a set of 40 patients and
validated on a set of 20 patients. The presented models are shown to be
consistent with the requirements of an RL model to be underpinned by a
Markov decision process (MDP). In-depth interpretability of the models is
presented by examination of the decision space using action hyperplanes. The
auto-planning agent was able to generate plans with superior reduction in the
mean dose of the left and right parotid glands by approximately 7 Gy ± 2.5 Gy (p <
0.01) over a starting, static template plan with only pre-defined general
prescription information. RL plans were comparable to a human expert’s
clinical plans for the primary (44 Gy), boost (26 Gy) , and the summed plans
(70 Gy) with p-values of 0.43, 0.72, and 0.67, respectively, for the dosimetric
endpoints and uniform target coverage normalization. The RL planning agent was
able to produce the plans used in validation in an average of 13.58 min, with a
minimum and a maximum planning time of 2.27 and 44.82 min, respectively.
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1 Introduction

The designing process of a radiation therapy treatment plan for head and neck (HN)
cancers can be time-consuming. The proximity of critical organs to a usually large and
asymmetric primary target volume (PTV) leads to numerous trade-offs between sparing
adjacent organs at risk (OARs) and healthy tissue and delivering the prescribed radiation
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dosage to the tumor. These trade-offs are usually based on more
complex dosimetric endpoints other than simply the minimum or
maximum dose limits, in particular the mean or median dose for the
parotid glands and oral cavity. The parotid glands are important to
spare at the risk of severe xerostomia or inadequate salivary
function. Complications from xerostomia include poor dental
hygiene, oral infections, sleep disturbances, pain, and difficulty
chewing and swallowing [1]. This must be considered as the
target must be treated, but complications should be avoided for
the long-term health of the patient. Radiobiological and post-
treatment studies have shown that severe xerostomia can be
avoided by limiting at least one of the glands’ mean dose to less
than 20 Gy or the dose of both glands to less than 25 Gy [2]. Over
dosing of the oral cavity can lead to severe complications or oral
mucositis that can have a very strong, negative impact on the
patient’s quality of life [3]. To avoid these side effects, Wang
et al. [4] recommends that the oral cavity outside of the PTV
should have a mean dose of less than 41.8 Gy, which is
associated with a significant reduction in oral mucositis as
compared to 58.8 Gy.

The highly conformal and sharp gradient distributions from
intensity-modulated radiation therapy (IMRT) have been shown
to have a significant improvement in parotid gland sparing over 3D

conformal therapy [5–7]. This is due to the fact that modulation of
the radiation fields can be optimized given a specific objective set
by solving an inverse optimization problem based on the dose
deposition matrices of the treatment field set. However, although
parotid glands are anatomically symmetric, relative to each other,
it is common for the parotid glands to not be symmetric about the
PTV due to the irregularity of the defined target. It is possible for
one parotid gland to be more proximal to the target and/or have a
larger overlap volume. This leads to the difficulty in sparing the
two parotids evenly. A more proximal gland may not be able to
meet the dose objectives, while the other could have a more
optimal dose distribution than prescribed. In this case, the dose
objectives can be removed or relaxed from one gland to enhance
the sparing of the other [8]. This is commonly referred to single-
side versus bi-lateral sparing. It is usually determined by the
physician by examining the spatial features of the parotid
glands in relation to the PTV. While no particular protocol is
used to determine single-side or bi-lateral sparing, there have been
many methods developed to predict the possible sparing of OARs
determined by anatomical features and past plans [7, 9–13].
Furthermore, it has been shown that the predicted median dose
is suitable as a criterion for choosing single-sided or bi-
lateral sparing [14].

FIGURE 1
Distributions of the change in D50 and Dmean for the left parotid when (A) increasing and (B) decreasing the dose objective. Note that each
distribution is highly Gaussian. Distributions of the change in the median and mean doses for the left parotid when (C) increasing and (D) decreasing the
volume objective. The distributions when changing the volume objective are not strictly Gaussian and show dependence on another variable.
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Different PTVs in HN cancer often have several dose levels. The
first is to a larger target volume that includes the entire region to be
treated and is usually prescribed a dose of approximately 44 Gy. The
second is to a smaller region within the large target region that will
receive another boosted dose usually of approximately 26 Gy.
Together, these two planning schemes create a volume with a
prescription of 44 Gy and a prescription of 70 Gy to the smaller
contained boosted region and are noted as the primary, boost, and
plan sum, respectively. There are two primary strategies for
achieving this: simultaneous integrated boost (IMRT-SIB) and
sequential (IMRT-SEQ). IMRT-SIB achieves the treatment plan
by treating the primary and boosted target simultaneously, while
IMRT-SEQ treats them as two separate plans. Both methods have
been shown to have similar survival rates [15], and thus for this
study, IMRT-SEQ will be used as is consistent with our institutions’
current practice.

While this potential exists, the complex nature of the
planning process coupled with the trial-and-error tuning of
planning objectives results in a plan quality that is highly
correlated to the planner’s experience [16]. This has led to a
large influx of research into aiding this planning process using
machine learning techniques [17]. One of the more seminal and
important tools is knowledge-based planning (KBP), which aims
to estimate certain aspects of a plan such as the dose distribution
and dose–volume histograms (DVHs). This method has been
widely used and studied [18–23]. Perhaps, the most optimistic
application of machine learning to automatic planning can be
found using reinforcement learning (RL), in which a machine

seeks to mimic the decision processes of an expert planner. While
in the nascent stages of development, RL has shown some
promising results in modifying prostate plans where an
intermediate plan was given as the input and an optimal
strategy predicted [24, 25]. Again with prostate plans,
automatic planning was shown to have success using deep
reinforcement learning to modify plan parameters [26]. RL
was also used for non-small-cell lung cancer; however, this
application relied on a 3D dose prediction engine [27].
Neither of these applications seemed to demonstrate de novo
plan creation and/or relied on methods with little to no
interpretability. While deep learning methods have shown very
positive and encouraging results, there is a lack of interpretability
and sometimes a requirement of a large amount of data for the
models to train properly. Another good and more relevant
example of interpretable RL is found in the work done by
Zhang et al. [28] in the development of an auto-planning
agent for stereotactic body radiation therapy (SBRT) for
pancreatic cancer. The action space used in this model
consisted of increasing and decreasing the maximum or
minimum dose values so that the state and action space could
be easily interpreted. However, more often, objectives other than
the minimum and maximum dose are used in planning, and a
more robust action space is needed as is the case with HN cancers.
At this time, there exists no technology for creating IMRT plans
from scratch, which can handle the complexity of HN cancer
treatment with multiple goals and provide an insight into the
strategy used by the planning agent. Therefore, this work aims to

FIGURE 2
The left panels are the distribution of the change in the median andmean doses when the volume objective is changed. They are separated into the
first 20%, last 20%, and all transitions. The first 20% transitions show a higher response in the change inmedian dose. The 2D plots of the right panel are of
the change in the median dose with the initial volume objective. ρ gives the Spearman rank correlation coefficient between the two variables.

Frontiers in Physics frontiersin.org03

Stephens et al. 10.3389/fphy.2024.1331849

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1331849


explore the development and investigation of an RL model for the
purposes of HN IMRT planning.

2 Methods

2.1 Model definitions and transition
probabilities

RL can be modeled as a Markov decision process (MDP). An
MDP is a 4-tuple, (S, A, P, R), where

• S is a set of states which defines the environment in which the
agent operates in.

• A is a set of actions in which the agent can operate on the
environment inducing some change in state and reward.

• P defines the state action probability transitions, that is
• P(x, x′|a) � Pr(x → x′|a)
• R defines the reward observed from a change of state induced
by an action.

Each of these will be defined for this model in the following
sections. The following notation will be adopted. The state will be
denoted by a vector, x ∈ S ⊆ Rn; the action by some integer,
a ∈ A ⊆ Z+; and the reward by some real-valued number, r ∈ R.

The RL process can be described as the iterative interaction of an
agent with an environment. The environment is defined by some
current state observed by the agent. Ideally, this should include all

the information available to the agent to make informed decisions.
In the treatment planning process, a human planner mainly
observes three objects of information. The first is the current
dose distribution. Irrespective of the current plan configuration
(beam settings, IMRT objectives, etc.), there is some resulting
dose distribution. A human planner can observe the full
distribution or the individual DVHs for OARs of interest. Most
of this information is unnecessary or unprocessable for a human.
Simply including all the information into the state vector would
exponentially increase the model size, leading to an intractable
problem. For instance, the entire dose distribution is defined at
every point within a 3-D volume and can contain thousands of data
points. Thus, in the proposed RL model, a dosimetric summary for
each structure of interest will be included in the state definition. For
the parotid glands and oral cavity, both the mean and median doses
are included in the state, and for the PTV, the doses at 95% and 1%
volume are included to summarize the target’s coverage and hotspot.
These are included to ensure that the target is sufficiently treated
(coverage) and that the dose is not too high (hotspot) to cause
complications. The second piece of information is the current
objective set for the plan. When deciding whether to move a
planning objective for a structure, a human planner will take into
consideration where the current objective is. If there is not much
difference in the objective and the current dosimetry, then that
objective could possibly be pushed further. The converse is true as
well, in that a large difference between the objective and current
dosimetric state could indicate that the objective movement would
not have a large impact on the change of state. A third piece of

FIGURE 3
Each plot gives the relative cost, with an initial cost of 1, at each action step for model 1’s validation set. The solid lines are the mean, and the shaded
region is the standard deviation for all validation sets. The (blue) agent consistently reduces the cost for all organs at risk while maintaining the target
coverage. The (green) random agent is given to show the improbability of making the correct choices made by the agent.
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information is the spatial features of the patient’s anatomy. The size
and proximity of critical organs to the PTV play a large role in how
well the organ can be spared. This would impact howmuch a human
planner would need to decrease the dose for a particular organ. For
example, if one of the parotids had a substantial overlap with the
target, then getting the mean dose below 25 Gy would be quite
difficult without substantially lessening the coverage of the target.
For the purposes of the current study, the spatial features are not
directly represented in the state definition. It is assumed that this
information is inherently encoded into the dose deposition matrix as
the deposition matrix is a function of the anatomy distribution. This
can be reasoned from the fact that the optimization, which is driven
by the dose deposition matrix, will have certain responses based on
the spatial characteristics of the medium. The agent will be assumed
to gain the spatial information from the response of the
optimization. The environment state is then defined as Eq. 1 follows:

x � . . . , D50%,i, Dmean,i, Dobj,i, Vobj,i, . . . , D95%,PTV, D1%,PTV( ), (1)

where i represents a specific structure of interest,Dobj,i is the current
position of the dose objective for structure i, and Vobj,i is the current
position of the volume objective for structure i. This formulation
also holds for multiple objectives for a single structure as these will
just be appended beside the first objective in order.

When the agent interacts with the environment, it takes certain
actions and then observes the change in state. These actions must be
encoded into the RL problem appropriately. During manual
planning, the planner is iteratively moving the objectives on
structures, with the ultimate goal of reaching an overall optimal
dose distribution balancing all objectives, that is, the dose and
volume of an objective are being changed whether increased or
decreased. With the model developed and investigated by Zhang
[28], the agent was allowed to increase and decrease the maximum
dose objective only. For this investigation, an additional action of
increasing or decreasing the volume objective will be added to the
objectives that are not linked to the maximum dose only. This can be
visualized as the moving of an objective in the dose–volume space of
a structure’s DVH which mimics the actions of a human planner.
This, in reality, is a continuous action but will be encoded as a
discrete action by Eq. 2

Dobj,i ← Dobj,i ±ΔD , (2)
Vobj,i ← Vobj,i ±ΔV

where ΔD andΔV are discrete values. In the current study, we
have experimentally set ΔD � 2Gy and ΔV � 5%.

A critical component of the MDP is the governance of the
underlying transition probabilities. For the information or strategy

FIGURE 4
(A) This is a plot of themagnitudes of the state–action pairs in the weightingmatrix throughout training. Each value corresponds to themagnitude of
the pair corresponding to the action of lowering the dose for an organ and the state of the dose of that organ. (B) This is a plot of the slope of the decision
boundary of the hyperplane between lowering the left parotid and the right parotid projected onto the portion of the state with the dose of the left and
right parotids. In this configuration, a slope of 1 would indicate a completely unbiased decision boundary. (C) The bottom is a portion of the
weighting matrices of the Q-function for the small dataset (biased) and large dataset (unbiased). The corresponding values highlight the asymmetry and
symmetry between sparing the left and right parotids as well as the secondary importance of the oral cavity determined by the agent.
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to be learned, there must be some order to the dynamics of the states
under the influence of actions. This does not mean that a certain
outcome is guaranteed given an action while in a certain state, but
that the transition of the state is governed by some well-defined
probability distribution. In order to define and investigate this
dynamics, different portions of the state will be investigated
independently. First, the portion of the state that describes the
current location of an objective has completely deterministic
dynamics, and is described in Eq. 3.

Pr Dobj → Dobj ±ΔD( ) � 1a�±ΔD, (3)
Pr Vobj → Vobj ±ΔV( ) � 1a�±ΔV.

The transition is more complex for the dosimetric portion of the
state. First, this portion of the state is continuous. Thus, the
transition will be defined in Eq. 4 as some perturbation of the
current portion of the state,

x′
i � xi + δxi, (4)

where i indicates a dosimetric element of the state. Then, the entire
transition can be characterized by the perturbation which we will
consider a continuous random variable defined by the probability

distribution, p(δxi|x, a). Note that the definition of the probability is
dependent on the current state and the action taken.

One of the important properties of an MDP is that the states
are Markovian, that is, the state transition probability is only a
function of the current state and no other past states. More
formally in Eq. 5,

p δx|a, xi, xi−1, . . . , xo( ) � p δx|a, xi( ). (5)

This intuitively holds as the optimization problem is only a
function of the current objectives and state and is agnostic to any
past states or decisions. In addition, the spatial features do not vary
significantly across patients so that these features do not cause
significant changes in the system dynamics.

The reward function will inform the agent of the effect of an action.
In some formulations, a reward or penalty is not given for every action
and is only given for reaching a determined endpoint like winning or
losing a game. Due to the complexity and size of our problem, however,
we will formulate the reward function in a way to speed up the
convergence. In this formulation, a reward or penalty will be given
to the agent based on the effect of the current action. This will be
determined based on some plan loss function. This loss function will
calculate the cost of the current state of a plan and will consist of

FIGURE 5
(A) This is a projection of the decision surface onto the right and left parotid mean dose portions of the state. It can be seen that there is little bias
between the two from the slope of the boundary between lowering the objective on the left and right parotid. If the dose of the parotids is below some
limit, then from the Q-function, the agent will want to increase the dose. With the dose of both parotids close to the goal, the space for lowering the oral
cavity objective is activated. (B) The bottom two plots are projections of the decision surface onto the oral cavity mean dose and the left (bottom left)
and right (bottom right) parotid mean doses.
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penalties for not hitting certain goals. These penalties will include for the
PTV not reaching D95% � 44Gy and for the OARs not meeting the
prescription for themean doses. This model will only take into account a
single base plan with no boost and will, therefore, scale the prescriptions
for the parotids and oral cavity to 15 Gy and 25 Gy, respectively. The loss
function, L, can then be written as the sum of individual loss functions,
where the individual structure loss functions are simply the relative
difference between the actual dosimetric quantity and the goal. Finally,
the reward at some time t is given as follows in Eq. 6:

rt � Lt−1 − Lt. (6)

2.2 Q-function and model updating

The Q-function calculates the quality of a state–action pair, that
is, being in state x, it assesses the quality of taking action a. For
discrete state and action spaces, Q can simply be a matrix. However,
since the state space is continuous, Q must be approximated by a
function. The approximation for Q used in this study is defined as
follows in Eq. 7:

Q̂ x, a( ) � θTϕ x, a( ). (7)
In this definition, θ is a weighting vector and ϕ can be looked at

as a selector function defined in Eq. 8.

ϕ x, a( ) � vec x ⊗ 1a( ). (8)

With these definitions, the learning procedure follows the
state–action–reward–state–action (SARSA) algorithm. With a
state and action, a reward as well as the following state–action
pair are observed. The weighting matrix is then updated by Eq. 9

θt+1 � θt + αt rt + γQ̂ xt+1, at+1( ) − Q̂ xt, at( )( )ϕ xt, at( ), (9)

where α and γ are hyper-parameters, namely, learning rate and
discount factor, respectively.

In this learning scheme, the policy of choosing an action in a
given state is bootstrapped. Ultimately, the agent would select the
best available action for a given state. However, at the beginning, the
agent has very little idea of how to act. Thus, at the beginning, the
actions are mostly random. As the agent learns more, the rate at
which actions are taken randomly should decrease, allowing more
informed choices. This continues until the end of learning where the
agent will be taking mostly informed actions with a smaller chance
of exploration. The policy of action-taking is then formulated as in
Eq. 10, with random variables p ~ U(0, 1)

πt xt( ) � a ~ U 1, Nactions( ), p< ϵt
max aQ̂ xt, a( ), p≥ ϵt{ , (10)

where ϵ is the probability of taking a random action against an
informed one. At the beginning of learning, it should be very high

FIGURE 6
(A) This is a plot of the decision boundary between either lowering the objective volume or dose as a function of the current objective volume and
dose. Initially, the agent will lower the volume until reaching the trade-off boundary and then begin lowering the dose until it hits the boundary again. This
boundary is dynamic andmoves to the right with the increasing mean dose. (B) Sections of the weighting matrix important to the parotids and oral cavity
are zoomed in. The symmetry between the parotids can be seen. Not only can the reduced significance of the oral cavity be observed but also that
the preference is to lower the objective dose and not the objective volume.
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and decrease to some final probability, ϵ∞. For this scheme, the
following expression Eq. 11 for ϵt is adopted.

ϵt � ϵ∞
2t2

N2 + ϵ∞
1 + ϵ∞

, (11)

whereN is a set number of iterations. All the iterations involved with
one plan are considered an episode, and an epoch is where all the
episodes for the plans have been performed. Thus,
N � Nepochs ·Nepisodes ·Niterations. The learning scheme involves
applying some starting template to a plan and then taking
actions based on the current policy.

2.3 Q-function action hyperplanes

Given the above definition of the Q-function, it can also be
appropriate to represent it as a matrix equation for interpretation
purposes, that is, θ � vec(W), where W is a weighting matrix
instead of a weighting vector. Now, the Q-function can now be
written as follows in Eq. 12:

Q̂ x, a( ) � 1TaWx, (12)
where (1a)i � δia. In the situation where the policy is to choose the
best possible action at each state, the agent will select a that
maximizes Q̂(x, a). Therefore, we can look at the boundary
between two actions, ai and aj. The boundary separating the
space where each one would be more optimal over the other for
a given state is given by Q̂(x, ai) � Q̂(x, aj), which gives in Eq. 13,

∑
k

Wik −Wjk( )xk � 0. (13)

The above equation is of a plane in hyperspace. On one side of
the plane, one action is preferable, and on the other side, the other
action is preferable for the given state.

2.4 Model training

Two different RL models were trained using an in-house dose
and fluence calculation engine [29]. Each model is at the center of an
auto-planning agent that controls the dose and fluence calculation

FIGURE 7
Each plot is a scatter plot for the dosimetric endpoints where each point is a specific plan between model 2 and the clinical plans for the (A) primary
plan at 44 Gy, (B) boost plan at 26 Gy, and (C) plan sum.
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engine by manipulating the dose–volume objectives to generate
optimal treatment plans. The first (model 1) is a model in which the
agent could move the dose value of the objective up or down. The
second (model 2) was a model in which the agent could move both
the dose and volume values of the objective. This second model gave
the agent full control as a human planner would have. Under the
approval of the institutional IRB protocol, a training set of
40 patients was used for training and a separate set of
20 patients for validation. A sensitivity test was also performed
on model 1 using a dataset of only 15 patients to examine the effect
the size of the training set has on model performance. The patient
data consisted of the CT images and structure sets and were
completely anonymized with no personal identifiers present. The
dataset contained an evenmixture of plans where one of the parotids
was in closer contact or proximity with the target. The distributions
of the overlap with the target and the median distance from the
target were essentially equal between the left and right parotids, and
thus no obvious bias was present in the dataset. The overall goal
present in the reward function was to try and meet the dosimetric
goals for the left and right parotids (LP/RP) and the oral cavity (OC).
These goals were defined as D50% and Dmean less than 15 Gy for the

LP and RP and 25 Gy for the OC, where D50% stands for the dose
received by 50% of the volume or the median dose andDmean stands
for the mean of the entire dose distribution for the OAR.

The training consisted of a series of episodes within multiple
epochs. An episode is defined as the agent taking actions on one
particular plan. After the agent performs a number of actions on a
particular plan, it moves on to the next plan. If all plans have been
iterated over, the epoch is over, and the agent may start again. At the
beginning of each episode, each plan is set with a set of initial
template objectives. This is to ensure that there are distinct starting
points for corresponding episodes across epochs. The initial
template is static for the PTV objectives, always setting the lower
and upper bounds at the same point. The starting template also
contained maximum dose objectives on the spinal cord and larynx
along with a normal tissue objective (NTO). A maximum dose
objective on the larynx is not common and is used here only to keep
the agent from sacrificing it for larger gains toward the goals. For the
organs investigated, an objective was placed for D50% to be no
greater than the organ-specific goal (15 Gy for the parotids, 25 Gy
for the oral cavity). The models were then trained using the SARSA
algorithm [30]. Both models were trained using the full training set.

FIGURE 8
Each plot is a scatter plot for the dosimetric endpoints where each point is a specific plan between model 2 with state scaling and the clinical plans
for the (A) primary plan at 44 Gy, (B) boost plan at 26 Gy, and (C) plan sum.
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2.5 Model analysis

To ensure that the model definitions were consistent with those
of an MDP, state–action transition probability functions were
investigated by sampling state transitions under certain actions
from the training data. Then, for a given action, the probability
density function for the state transitions in question was estimated
using kernel density estimation [31]. Finally, the dependence of the
state change on the elements of the current state will be measured
using a Spearman’s rank correlation coefficient.

To investigate the sensitivity of training set size on model training,
the results from model 1 trained on the small dataset (N = 15) were
compared to those on the large dataset (N = 40). With equal weighting
between the left and right parotids, any bias was quantified by
comparing the resulting Q-function between the small and large set.
Quantification of the bias was performed in two ways. The first was by
observing the magnitudes of the state–action pairs of the Q-function
weighting matrix throughout training. For example, Wij, where i
corresponds to the action of lowering the left parotid dose and j
corresponds to the mean dose of the left parotid (i.e., the j th element of
the state vector). The second is by examining the slope of the decision
plane between the actions of lowering the left or right parotid dose
throughout training. This is found by projecting onto the portion of the
state pertaining to only the left and right parotid mean dose. More
explicitly in Eq. 14,

Wik1 −Wjk1( )xk1 � Wik2 −Wjk2( )xk2, (14)

where i pertains to lowering the left parotid dose, j pertains to lowering
the right parotid dose, k1 refers to the portion of the state vector
containing the current left parotid mean dose, k2 refers to the portion
of the state vector containing the current right parotidmean dose, andxk1

and xk2 refer to the current left and right parotidmean dose, respectively.
For each of the models, the Q-function was investigated using

action hyperplanes. This analysis investigated the structure of the
weighting matrix of the final Q-function and interpreted how the
agent will act given that weighting matrix. The individual model
performance and its ability to plan on new cases were investigated
by having the agent create plans and then compare model plans with
corresponding clinical plans. During planning, the agent continued to
take actions until all goals were met or a maximum number of actions
were met. The maximum number of actions is set to ensure the agent
has ample time to meet all goals and was set to be 35. The agent-created
plan was compared to clinical plans in two scenarios. For both
scenarios, the agent was given the task to devise two separate plans
for each case. The primary plan was a 44 Gy prescription to the primary
PTV, and the boost plan was a 26 Gy prescription to the boost PTV. A
comparison was also performed using the plan sums, which was simply
the summation of the 44 Gy and 26 Gy plans. In the first scenario, no
plan-specific goals were included, and the agent simply planned using
the learned models. In the second scenario, the states were scaled to
incorporate plan-specific goals for the parotids and oral cavity that were
used in the clinical plans. The scaling was performed by scaling the
dosimetric value associated with each goal with the difference between
the plan-specific goal and the original goal for which the agent was

TABLE 1 Statistical analysis between models, template plans, and clinical plans.

Δμ(p − value) Model 1 vs template Model 2 vs template Model 2 vs model 1

Left parotid −4.00 Gy (<0.01) −6.96 Gy (<0.01) −2.96 Gy (<0.01)

Right parotid −4.11 Gy (<0.01) −7.14 Gy (<0.01) −3.03 Gy (<0.01)

Oral cavity 0.26 Gy (0.9) 0.10 Gy (0.97) −0.17 Gy (0.94)

Total plan (<0.01) (<0.01) (0.041)

Model 2 vs clinical

Δμ(p − value) Primary (44 Gy) Boost (26 Gy) Plan sum (70 Gy)

Left parotid −5.40 Gy (<0.01) −0.98 Gy (0.5) −6.30 Gy (0.02)

Right parotid −5.79 Gy (<0.01) −0.42 Gy (0.7) −6.08 Gy (0.02)

Oral cavity −0.29 Gy (0.9) 0.85 Gy (0.6) −0.67 Gy (0.87)

Total plan (<0.01) (0.83) (0.07)

Model 2* vs clinical

Δμ(p − value) Primary (44 Gy) Boost (26 Gy) Plan sum (70 Gy)

Left parotid −1.38 Gy (0.36) 4.16 Gy (0.48) −2.61 Gy (0.38)

Right parotid −1.70 Gy (0.28) −0.78 Gy (0.58) −2.51 Gy (0.36)

Oral cavity 0.41 Gy (0.87) 0.91 Gy (0.6) 1.4 Gy (0.74)

Total plan (0.43) (0.72) (0.67)

The first value is themean difference between the two, with the second being the p-value. A negative number indicates the first listed was less than the second, and in the cases withmodel 2 against

the clinical, a negative value indicates that model 2 was lower on average. Model 2* indicates that the plan states were scaled to plan-specific goals while model 2 uses static, plan-independent

goals. A p-value less than 0.05 indicates a statistical difference, while any values greater than 0.05 show no statistical difference between the two datasets. All plans were normalized such that PTV

coverage was the same with D95% � 44 Gy.
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trained on (i.e., 15 Gy for parotids and 25 Gy for oral cavity). For
instance, consider that the goal for the left parotid is a mean dose of
12 Gy. In some state where the actual mean dose of the left parotid is
15 Gy, the agent would see this as the goal being met. Thus, the mean
dose of 15 Gy must be scaled such that the agent knows it is still 3 Gy
away from obtaining the goal. It must be noted that this scaling is only
performed during validation when the agent is planning on plans not
used in the training set. These plan-specific goals must be determined
prior to either physician prescription and preference or some
determined base case scenario for the organ of interest. For the
validation plans, the plan-specific goals were taken as the final mean
dose for the organs in the corresponding clinical plan.

3 Results

3.1 State–action transition probabilities

The state and action transition probability distributions were
found to behave in an intuitive manner. The increasing and
decreasing of the dose objective produced translations in the

distributions of the change in the dosimetric state roughly
around the amount the objective was changed. The distributions
were Gaussian with a mean of just under ± 2Gy for the median dose
and less than ± 0.5Gy for the mean dose. The change in the mean
dose was not as strong as that of the median dose when increasing or
decreasing the dose objective. This is shown in Figure 1. Changing
the volume was less predictable, but it still acted as expected in the
fact that increasing and decreasing the volume objective had a
similar effect on the dosimetric state. The change in the state was
shown to not be independent of the current state. Furthermore,
partitioning of the data into the first and last 20% of transitions
showed that when changing the volume in the first 20% of
transitions, the resulting change in the dose was higher than that
in the last 20% of transitions. This was due to the fact that the
starting position of the volume objective was higher in the first 20%
than in the last 20% of transitions. This is shown by analyzing the
correlation of both the change in the dose and the position of the
volume objective when increasing or decreasing that objective and is
demonstrated in Figure 2. The change in the volume had a stronger
response when the initial volume objective was higher, and these two
variables showed strong correlations with each other with a

FIGURE 9
(A) Clinical vs. (B) agent-delivered dose distributions.
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correlation of 0.68 and 0.72 for increasing and decreasing the
volume, respectively. The vast majority of correlations between
the change in the state and the current state were almost
0 besides these two instances. The response of the dose to
changing the dose objective behaved in the same manner as with
changing the volume.

Regarding checking the Markov property of the system, non-
negligible correlations were found between the change in the state
and past states when increasing or decreasing the volume objective.
However, this was shown to be from the correlation of the current
state and the past states. The current position of the volume
objective was very highly correlated and, in some cases,
completely determined by the past few states. No extra
correlation was present between the transition and past states
beyond the correlation between the states themselves.

3.2 Model analysis and validation

The first model (model 1) was successfully trained on the training
set and tested on the testing set. In this model, the agent could only
change the dose objective. Once trained, the agent was able to
successfully plan for the given goals on the testing set. For each
organ at risk goal (left parotid, right parotid, and oral cavity), the
agent successfully acted to lower the median dose of each in an efficient
manner. All of this was accomplished while maintaining PTV coverage.
The agent was also observed to switch back and forth between OARs
during planning. This is shown in Figure 3 as the agent planned for each
goal simultaneously balancing against the need to cover the PTV. This
contrasts with the planning done by purely selecting random actions

where no goal was met. Figure 3 also shows that for the vast majority of
plans, the agent was able to fully reduce the individual costs for the
median doses connected to the OARs, while the random actions were
not capable of accomplishing this. Thus, the agent learned to plan
accordingly to the given actions. An inherent bias was observed in
model 1 when trained only using a 15-case set. This was seen by the
agent preferring to spare the left parotid over the right parotid. The bias
can be seen in the differing weightingmatrices. The state–action pair for
lowering the left parotid objective and the current dose of the left
parotid was much higher than that for lowering the right parotid
objective and the current dose of the right parotid. This is shown in
Figure 4 along with the magnitude of the corresponding state
element–action pairs throughout training between the small and
large training sets. The decision boundary slope between the
state–action pairs of lowering the dose and the current dose of the
parotids can be projected onto the dimensions of the state representing
the dose of the left and right parotids. The slope of this projection would
describe the bias between the two and is plotted in Figure 4 as well.

Interestingly, the agent learned to spare the oral cavity only
secondarily to both parotids, even though equal weighting was
given in the reward function. This can be seen in the decision
boundaries. The region in which sparing of the oral cavity is
preferred is much smaller than that for the parotids. The region’s
size is dependent on the current dose of the oral cavity and grows
linearly with it. The decision boundaries between the three
organs are shown in Figure 5. The fact that the agent learned
to spare the oral cavity secondary to the parotids is most likely
due to the relative difficulty of reaching the goals between the
organs. The oral cavity’s goal is normally much easier to reach
than with the parotids. Thus, although the weighting in the

FIGURE 10
Selection of DVHs comparing the plans produced bymodel 2 to corresponding clinical plans. The solid lines represent the plans created by the auto-
planning agent, while the dashed line represents the corresponding clinical plan. RX notes that the agent was using plan-specific goals.
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reward function is the same, the parotids experience much higher
rewards early on as they lie further away from the goal.

Model 2 was also successfully trained and implemented.
Analysis of the resulting weighting matrix showed a strategy in
which there is a trading off between lowering the objective volume
and dose for the parotid glands. This trade-off is a function of the
current position of the objectives and the current mean dose. The
weighting matrix and the section of the decision boundary for model
2 are shown in Figure 6. The observed strategy learned from the
agent was to lower the dose of the parotids by a trade-off between
lowering the objective volume and dose given the decision
boundaries between the two. What was observed for the oral
cavity was not only reducing its dose of secondary importance
but that it was primarily achieved by lowering the dose objective
only. When comparing the validated plans to plans produced simply
by placing the template objectives, model 2 outperformed the
template plans for both parotids, with an average reduction in
the mean dose of 7 Gy ± 2.5 Gy. This was compared to a 4 Gy
± 1.5 Gy improvement by model 1. For both model 1 and model 2,
the improvement in the oral cavity was minimal and approximately
1% on average. Model 2 displayed essentially no improvement over
model 1 when comparing the mean dose of the oral cavity. This is in
alignment with the priority of adjusting the dose objective over the
volume objective.

Model 2 produced plans with distributions that are highly
comparable with those of the clinical plans. For comparisons
with clinical plans, all plans were normalized such that PTV
coverage was the same with D95% � 44 Gy. In the first case
where model 2 was used with no state scaling for plan-specific
goals, it produced slightly better plans than the clinical plans for the
primary plans at 44 Gy with p< 0.01. The difference was mainly
within single-side sparing cases in the sparing of the parotid with
very high mean doses seen in the clinical plan. For the boost PTV
plans at 26 Gy, model 2 produced plans within 1 Gy of the mean
doses from the clinical plans for both parotids and the oral cavity
with p � 0.83 for all three OARs. Combining the primary and
boosted plans resulted in very comparable sum plans with the
clinical sum plans, with an overall composite p-value of 0.07.
When the dosimetric portion of the state was scaled to account
for plan-specific goals, model 2 produced plans highly similar to the
clinical plans. With all plans normalized such that D95% for the PTV
was 44 Gy, the plans produced by the agent tended to have slightly
higher hotspots than the clinical plans. Dmax for the clinical plans
averaged approximately to 49 Gy, while the plans produced by
model 2 averaged approximately to 51 Gy (±1 Gy). The sum plan
dosimetry for model 2 is compared to the clinical sum plans shown
in Figure 7 without plan specific goals and Figure 8 with plan-
specific goals. All the statistical analyses are summarized in Table 1.
The RL planning agent was able to produce these plans used in
validation in an average of 13.58 min with a minimum and a
maximum planning time of 2.27 and 44.82 min, respectively.

With comparable dosimetry endpoints, model 2 produced
slightly different DVH shapes compared to the clinical plans. The
clinical plans had a sharper PTV DVH slope from a dose range of
95% to 105%, with fewer hotspots. The oral cavity DVH shapes were
very similar between the two plans. For both parotids, even with
similar final mean doses, the DVHs had noticeably different shapes
in many cases. Typically, the clinical case DVHs were higher in the

lower-dose regions and lower in the high-dose regions than those for
model 2. Cross-over points often happened between 40% and 50% of
the volume. For model 2, PTV coverage had comparable dose
decreases to clinical plans, in the range from 90% to 50% dose.
Model 2 produced less sparing of organs not included in the model
like the spinal cord, larynx, and pharynx. These were included in
optimization but with static plan-independent objectives. These
static objectives may or may not reflect the optimal sparing of
these organs and thus would lead to the observed discrepancies.
Model 2 also had stronger normal tissue sparing as these were also
not manipulated by the agent. A human planner may make the
decision to sacrifice some normal tissue sparing, but the agent
currently cannot make that decision. Some examples of the dose
distribution are shown in Figure 9 and examples of the DVHs
in Figure 10.

4 Discussion

Overall, bothmodels 1 and 2 showed significant steps toward the
goal of producing an overall auto-planning agent. The models
presented satisfy all conditions necessary in an MDP and
provided a meaningful environment for agent learning. This is an
important component to consider when developing an RL agent.
Most of the models can take weeks to train, and increasing the size of
the model will exponentially increase that time. Knowing the
consistency of the environment is crucial with a lag time this
large in between results.

It is not surprising that model 1 failed to plan for the mean dose
after successfully planning for the median dose. The median dose is
directly linked to a specific dose–volume objective, namely, the dose
at 50% volume. So the response of this goal will be large when
changing the specific objective as had been seen with the transition
probabilities. What was also seen with the transition probabilities is
that the mean dose had a much smaller response and thus would
need more movement to completely reduce it to the desired amount.
Thus, the movement in the volume space expanded the desired total
movement amount. Hence, allowing the agent to move in the dose
and volume space greatly improved the agent’s planning ability.
Moving the objective diagonally in the dose–volume space will
reduce the area under the curve more effectively than simply
moving it in the dose space. It was also apparent from the strong
correlation of the transition probabilities to the current location of
the objective that including this information into the state function
is crucial to provide the agent with as much needed information
as possible.

Model 2 showed very promising results when compared to the
clinical plans. In both scenarios of including and not including plan-
specific goals, the agent produced statistically similar plans to that of
those used in the clinic. This included producing very comparable
and acceptable dose distributions. This is quite promising as the
agent created these plans in a matter of minutes without human
intervention. It should be noted though that only the three organs
mentioned were included. For a fully automated planning agent, all
organs would need to be considered and more objective control
points may need to be added to the PTV to better control the
coverage/hotspot trade-off. This can be built upon the
framework presented.
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Another interesting result was that of discovering the model bias
that seemed to be dependent on the training set size. No apparent
bias was found in the smaller training set when anatomical and
geometric values were investigated. However, the small bias inherent
to the set was exacerbated when using a small training set. This
resulted in a slightly different final dosimetry as the biased organs
had greater sparing. This may not be important for some cases, but if
the agent is not able to get the preferred organ below a certain point,
it could spend the entire planning time on it without considering the
others. Currently, the agent has no way of giving up on a goal, and
this could be an interesting avenue for future work.

Another limitation is the lack of heterogeneity correction in the
dose calculation and optimization model. This is not a big difference
for the sites studied here but could potentially pose issues when
dealing with lung cases. The large air or vapor areas in the lungs can
drastically affect photon and electron transport as compared to
normal tissue or even bone. Thus, in these instances, larger
differences due to heterogeneities could be present.

Computational cost is also a potential limitation to this and future
studies. Model 1 exceeded 10,000 training iterations with only one
objective per the three OARs, andmodel 2 reached over 24,000 training
iterations. Therefore, using the current computation setup, it would be
difficult to include multiple control points for multiple organs as well as
more PTV objectives to ensure a sharp DVH for the target. Since the RL
problem is iterative and is based onMarkov decision chains, large-scale
parallelization is not an option. The needed speed-up would need to be
in the optimization step. With so many optimization steps, a small
reduction in cost would potentially lead to a very large reduction for the
entire training process.

Even given the methods mentioned in the introduction that can
predict the achievable DVH or dosimetric endpoints for an OAR
given the patient anatomy, it would be more complete to remove the
goal as input and have it inferred by the agent. This would allow
more flexibility and remove a prior step. To accomplish this goal,
anatomical features would need to be included into the state
function. It has already been shown that certain features are
good predictors for the final achievable median dose [9]. These
include the median distance from target, the overlap percentage
between the organ and the target, and the total volume within an
organ specific range. These would be simple factors to add into the
state function to allow the agent spatial and anatomical information
to adjudicate the goal for each of the glands.

There are few other limitations to this study that further work can
improve on. The first is that a larger dataset from multiple institutions
could be used. The reason for this is to incorporate a larger and more
diverse patient population and include institutional differences in both
the training and evaluation of the model. Another is a study on the
selection of hyper-parameters. The long training time for the models
limits the ability to tune hyper-parameters, and thus more work is
needed in selecting these. Finally, this study also incorporates a
discretized action space, when in reality a human planner can
change the objectives by any real value and has control over all
regions of interest. The addition of regions of interest must be done
carefully in order to reduce the computational cost.

The SARSA algorithm presented is very simple. However, it
has been shown to be powerful. The presented model
architecture provides a very solid foundation with the ability
to interpret the learning of the agent. These methods rely on

relatively small datasets and provide the potential of moving
into more deep learning methodologies as with increase in
understanding.

5 Conclusion

An RL model was developed and tested for the purposes of
creating IMRT plans for HN cancer treatment. The proposed
models were based on including dosimetric and objective
information in the state function and were shown to perform in
aMarkovian fashion that well-approximates the conditions required
by an RLmodel. The proposed model was shown to make significant
improvements over template plans, creating plans that were
statistically similar to clinical plans and made in a fraction of the
time. The methods and results presented here have shown that RL
can be used to develop efficient IMRT planning agents that
automatically create clinically acceptable plans in a matter of
minutes. This will allow not only for building upon this model
for HN cancers but for other treatment sites as well.
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