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The epithelial barrier serves as a critical defensemechanism separating the human body

from theexternal environment, fulfillingbothphysical and immune functions. This barrier

plays a pivotal role in shielding the body from environmental risk factors such as

allergens, pathogens, and pollutants. However, since the 19th century, the escalating

threats posed by environmental pollution, global warming, heightened usage of

industrial chemical products, and alterations in biodiversity have contributed to a

noteworthy surge in allergic disease incidences. Notably, allergic diseases frequently

exhibit dysfunction in the epithelial barrier. The proposed epithelial barrier hypothesis

introduces a novel avenue for the prevention and treatment of allergic diseases. Despite

increased attention to the role of barrier dysfunction in allergic disease development,

numerous questions persist regarding the mechanisms underlying the disruption of

normal barrier function. Consequently, this review aims to provide a comprehensive

overview of the epithelial barrier’s role in allergic diseases, encompassing influencing

factors, assessment techniques, and repair methodologies. By doing so, it seeks to

present innovative strategies for the prevention and treatment of allergic diseases.
KEYWORDS

epithelial barrier, allergic diseases, barrier dysfunction, type 2 inflammation, prevention
and treatment
1 Introduction

Allergic diseases, characterized by inflammatory responses mediated by type 2 immune

reactions, encompass conditions such as asthma, atopic rhinitis (AR), atopic dermatitis

(AD), and food allergy (FA), arising from the intricate interplay of genetic and

environmental factors (1). Since the 19th century, the intensification of industrialization
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and modernization has contributed to escalating environmental

pollution, particularly in urban areas, exerting a pronounced impact

on human health (2). Current research unequivocally affirms the

pivotal role of environmental factors in the initiation and progression

of allergic diseases. The adverse effects of industrialization,

urbanization, and modernization on the environment, spanning air

pollution, global warming, climate alterations, and biodiversity

depletion, have led to a marked surge in allergic disease prevalence

(2, 3). Recent studies underscore the involvement of the epithelial

barrier in the pathogenesis of allergic diseases. In 2017, Pothoven and

Schleimer introduced the epithelial barrier hypothesis for type 2

inflammatory diseases, positing that dysfunction in the epithelial

barrier could catalyze the development of allergic diseases (4).

Akdis subsequently expanded upon this hypothesis, suggesting that

alterations in the environment and lifestyle resulting from

industrialization and urbanization disrupt the epithelial barrier

across the skin, upper and lower respiratory tracts, and intestinal

mucosa. Epithelial barrier compromise leads to microbial

dysregulation, bacterial translocation between epithelial and

subepithelial regions, and the onset of tissue microinflammation.

Epithelial barrier impairment not only forms the foundation for

allergic and autoimmune diseases but also underlies a spectrum of

conditions that elicit immunoinflammatory responses to bacteria,

viruses, and opportunistic pathogens (5). Current research categorizes

diseases marked by compromised epithelial barriers into three main

types: 1) chronic conditions stemming from localized barrier defects,

resulting in histopathological changes in affected skin and mucous

membranes, such as allergic diseases and inflammatory bowel disease

(6–8); 2) chronic autoimmune and metabolic diseases, including

diabetes, multiple sclerosis, autoimmune hepatitis, etc. (9–12); and

3) Neurodegenerative diseases linked to intestinal barrier deficits and

microbial translocations, such as Parkinson’s disease and Alzheimer’s

disease (13, 14).

The epithelial barrier hypothesis introduces a novel avenue for

investigating the prevention and treatment of allergic diseases.

Despite the emphasis on the role of barrier dysfunction in the

pathogenesis of allergic diseases, numerous questions persist

regarding the mechanisms underlying the disruption of normal

barrier function. Therefore, the objective of this review is to

furnish a comprehensive overview of the epithelial barrier’s role

in allergic diseases, encompassing influencing factors, evaluation

techniques, and repair methodologies. By doing so, it aims to pave

the way for exploring innovative therapeutic strategies for

allergic diseases.
2 Epithelial barrier dysfunction and
allergic diseases

2.1 The epithelial barrier

2.1.1 Composition of the epithelial barrier
The epithelial barriers of the skin, gastrointestinal system, and

respiratory tract exhibit both similarities and differences in terms of

structure, function, and biochemical properties. For instance, the
Frontiers in Immunology 02
skin provides a robust physical barrier, while the epithelial ciliary

movement in the airways continuously clears particulate matter,

facilitating gas exchange. In the gastrointestinal system, the

epithelium facilitates a broad range of nutrient and water

exchange while concurrently offering protection against microbes,

toxins, and environmental exposures (15). Consequently, epithelial

tissues serve multifaceted roles encompassing physical, chemical,

and immune barrier functions. Notably, the epithelial cells at each

site collaboratively form a cohesive epithelial barrier through

cellular connections (Figure 1). These connections are established

by tight junctions (TJs), adherens junctions (AJs), and desmosome

(16). AJs consist of diverse components such as E-cadherin, actinin,

vinculin, a-catenin, and b-catenin, while TJs form a complex

involving claudins, occludins, and junctional adhesion molecules

(17). TJs create a barrier by sealing the apical boundary, preventing

the unhindered entry of microorganisms, toxins, and pollutants,

and regulating the paracellular transport of ions and certain small

molecules (18). AJs play a crucial role in initiating and maintaining

intercellular adhesion, contributing to the establishment and

regulation of the apicobasolateral membrane structure (18).

Desmosomes, characterized by a symmetrical structure

comprising two adjacent plasma membranes separated by a 30-

nanometer cellular gap, possess a central dense layer or midline

flanked by mirrored triple-electron dense plaques (19).

Desmosomes play a pivotal role in establishing and maintaining

stable cell junctions.

2.1.2 Epithelial barrier and type 2
immune response

Disruption of the epithelial barrier emerges as a common

pathway contributing to the initiation and exacerbation of allergic

diseases (20, 21). Research has unequivocally established the

involvement of the epithelial barrier in the pathological

progression of allergic diseases (5). Dysfunction in the epithelial

barrier across various human tissues is characterized by cell

differentiation, compromised junction integrity, and impaired

innate defenses. Genetic predisposition, environmental influences,

and aberrant inflammation collectively promote the dysfunction

and breakdown of the epithelial barrier, thereby precipitating the

onset and progression of allergic diseases (22). Studies indicate that

compromised epithelial barriers activate epithelial cells, leading to

the release of alarm factors such as interleukin-25 (IL-25), IL-33,

and thymic stromal lymphopoietin (TSLP). This, in turn, promotes

cytokine release by type 2 innate immune cells, triggering and

exacerbating type 2 immune responses (23, 24). Epithelial cells play

a pivotal role in the initiation and exacerbation of allergic diseases.

Key cytokines, including IL-4, IL-13, IL-5, IL-9, TSLP, and IL-33,

feature prominently in allergic diseases, as they stimulate the

development of inflammatory responses and tissue repair (25–

27). However, inflammatory cytokines such as IL-4, IL-3, IFN-g,
and TNF-a have been demonstrated to disrupt epithelial barrier

function through various mechanisms. In primary bronchial

epithelial cells (PBEC) cultured at the gas-liquid interface, IFN-g
and TNF-a collaboratively impair barrier function, leading to

decreased expression of ZO-1 and JAM (28). IL-4 and IL-13
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induce epithelial barrier dysfunction by inhibiting the expression of

ZO-1, occludin, E-cadherin, and b-catenin (Figure 2) (29).
2.2 Epithelial barrier dysfunction and
allergic diseases

2.2.1 Epithelial barrier dysfunction and asthma
Asthma, characterized as a chronic inflammatory disease of the

airways, heavily relies on the integrity of respiratory epithelial cells,

which collectively establish a physical, functional, and immune

barrier. This barrier is crucial in safeguarding the host from

potential hazards associated with inhaled environmental risk

factors, thereby maintaining the overall health of the host.

Prolonged exposure to external stimuli, however, can lead to the

manifestation of epithelial barrier dysfunction within the asthma

phenotype (30). The human airway epithelium is composed of

predominant ciliated epithelial cells, mucous-secreting goblet cells,

club cells, and airway basal cells (6). In a healthy airway, TJs and AJs

establish connections between epithelial cells, forming a closed

barrier that effectively prevents the invasion of risk factors. This cell

barrier is naturally coated with mucus containing antimicrobial

agents, peptides, and antibodies, serving as a protective measure

against the intrusion of pathogenic bacteria and allergens (17, 31).

However, patients with asthma often exhibit airway epithelial barrier

disorders characterized by an increase in basal and goblet cells and a

decrease in terminally differentiated ciliated cell (32), This is

frequently accompanied by basement membrane thickening and

epithelial exfoliation, resulting in the formation of Creola bodies
Frontiers in Immunology 03
composed of exfoliated epithelial clusters (4). Research indicates that

during the course of asthma pathology, the number of MUC5B

decreases, while the expression of MUC5AC increases, leading to

mucus overproduction, airway obstruction, and the accumulation of

mucus materials, ultimately inducing chronic inflammation (33). In

addition, studies highlight the disruption of tight junctions and

adherent junctions in the epithelial barrier as typical features of

asthma. Similarly, deficiencies and dysfunction of E-cadherin, a-
catenin, ZO-1, and occludin have been identified in patients with

asthma (34), resulting in impaired barrier function. Moreover, a

damaged airway epithelial barrier activates cytokines (IL-4, IL-5, and

IL-13) released by ILC2s, further exacerbating the damage to the

epithelial barrier (20, 35). Beyond the damage to epithelial barrier

function caused by inflammation in asthma, several recent studies

indicate the potential existence of barrier function abnormalities in

airway epithelial cells in asthma patients (36). Further in-depth

research is still needed to elucidate the mechanism of action of the

epithelial barrier during asthma pathogenesis.

In summary, sustained exposure to risk factors such as

allergens, pathogenic bacteria, and viruses, coupled with immune

inflammatory responses, can lead to severe damage to epithelial

barrier components. This damage results in the disruption of

epithelial barrier function and structure, ultimately increasing

barrier permeability and contributing to the onset and

exacerbation of asthma.

2.2.2 Epithelial barrier dysfunction and AR
AR, characterized as an inflammatory condition affecting the

nasal mucosa and mediated by allergens, exhibits an escalating
FIGURE 1

Composition of the epithelial barrier. Epithelial cells establish barriers through the intricate interplay of tight junctions (TJs), adherens junctions (AJs),
and desmosomes. The TJ complex is comprised of claudins, occludins, and junctional adhesion molecules, with major cytoplasmic proteins
including ZO-1, ZO-2, and ZO-3. AJs, positioned directly below the TJ, encompass E-cadherin, actin, vinculin, a-catenin, and b-catenin.
Desmosomes, characterized by a symmetrical structure involving two adjacent plasma membranes, play a vital role in establishing and maintaining
stable cellular junctions.
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incidence, particularly in industrialized and modernized regions,

influenced by diverse factors. Recent investigations have brought

attention to the role of nasal mucosal epithelium in the pathogenesis

of AR (6). The nasal epithelium, acting as the primary interface for

allergens, pollutants, and pathogens, anatomically comprises two

segments: the initial third of the nasal cavity features stratified

squamous epithelium, while the remaining two-thirds possess a

pseudostratified columnar ciliary epithelium with goblet cells

covering the basement membrane (17). In a healthy state,

coordinated ciliary movement and mucus secretion constitute the

primary defense mechanism, preventing compromise of the nasal

mucosal barrier by various risk or irritant factors. However, in the

pathological context of allergic rhinitis, the central role played by the

dysfunction and disruption of TJs becomes evident, compromising

the integrity of the nasal epithelial barrier and subsequently hindering

ciliary motility and mucus secretion (37, 38). Under normal

conditions, nasal epithelial cells are bound together by TJs, forming

a complex known as an occlusion zone (ZO), inclusive of claudin,

occludin, and junction adhesion molecules (37). Notably, studies

have revealed diminished expression and immunoreactivity of E-

cadherin and ZO-1 in the nasal epithelium of individuals with allergic

rhinitis (39). Furthermore, Protease-activated receptor-2 (PAR-2) has

been implicated in diminishing the expression of ZO-1 and claudin-1,

with the latter involved in epithelial barrier dysfunction in AR (40).

Subsequent in vitro assessments of barrier function using primary

epithelial cells from AR patients demonstrated diminished barrier

function and reduced expression of tight junction proteins occludin

and ZO-1 in comparison to healthy controls (41). Additionally, type 2

cytokines (IL-4, IL-5, IL-13, TNF-a, etc.) produced during immune-
Frontiers in Immunology 04
inflammatory responses can directly impact the nasal epithelial

barrier, resulting in decreased expression of ZO-1 and E-cadherin

(28, 39). Furthermore, proteases from certain allergens have been

demonstrated to disrupt epithelial TJs and induce AR disease (4).

In summary, current studies suggest a pervasive disruption of

epithelial barrier function and increased permeability in AR patients.

This accelerates the penetration of allergens through the nasal

epithelial barrier, contributing to the onset and development of AR.

Multiple pathways in the pathogenic process of AR lead to damage to

the epithelial barrier, necessitating further in-depth research to

comprehensively understand the underlying mechanisms.

2.2.3 Epithelial barrier dysfunction and AD
AD stands as the most prevalent chronic inflammatory skin

disease influenced by a combination of genetic and environmental

factors (42, 43). Current insights into AD pathogenesis encompass

skin barrier dysfunction, epigenetic alterations, immune factors,

skin, and intestinal dysbiosis, alongside interactions with external

risk factors (2, 44, 45). The pathology of AD is distinguished by a

disruption of skin barrier function. The human epidermis

comprises the stratum basale (SB), stratum spinosum (SS),

stratum granulosum (SG), and stratum corneum (SC) (43). The

SC, situated as the outermost layer above keratinocytes and

Langerhans cells (LC), plays a pivotal role in skin barrier function

(46). Studies reveal that the SC consists of proteins such as filaggrin,

involucrin, loricin, and an outer lipid layer. Particularly, filaggrin,

encoded by the FLG gene, serves as the primary source of natural

moisturizing factor (NMF) in SC (47). Mutations in FLG can

significantly reduce NMF in AD patients, closely correlating with
FIGURE 2

Epithelial barrier and type 2 immune response. When exposed to allergens, pathogenic bacteria, pollutants, etc., a compromised epithelial barrier
undergoes activation, leading to the release of alarm factors by epithelial cells, including interleukin-25 (IL-25), IL-33, and thymic stromal
lymphopoietin (TSLP). Additionally, activation may occur through the stimulation of dendritic cells, subsequently presenting antigens to Th2 cells and
ILC2s cells. This activation process promotes the release of type 2 cytokines, thereby triggering and exacerbating type 2 immune responses.
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disease severity and emphasizing NMF reduction as a common

feature in AD (47, 48). Currently, FLG gene mutations resulting in

epithelial dysfunction stand as the most prevalent and severe

genetic risk factor for AD (49). Notably, epithelial injury can

trigger innate immune responses, activating the release of pro-

inflammatory cytokines and chemokines by keratinocytes, and

enhancing antigen presentation by Langerhans cells and dermal

dendritic cells. Even in subjects with FLG null-mutation, type 2

immune inflammation can lead to decreased FLG expression in

AD-afflicted skin (50–52). Additionally, FLG mutations elevate skin

pH and activate skin proteases, inducing skin barrier dysfunction

(53). Additionally, FLG mutations elevate skin pH and activate skin

proteases, inducing skin barrier dysfunction (54). Jungersted et al.

have indicated that the pathogenesis of AD extends beyond FLG

mutations (55). During epidermal differentiation, keratinocytes

sequentially alter gene expression programs, culminating in

terminal differentiation and the formation of a mature corneal

layer. In AD-afflicted skin, the loss of corneodesmosin disrupts

barrier lipids, impairing skin barrier and antimicrobial function

(56). Furthermore, AD alters other proteins in the corneal layer,

including corneal adhesion, loricrin (LOR), and involucrin (IVL),

resulting in compromised skin barrier function and type 2 immune

response (56–59). Additionally, lipids such as ceramides are

reduced, and the release of inflammatory cytokines during allergic

reactions can further decrease the lipid content of SC, exacerbating

barrier dysfunction in AD patients (60–62). Various environmental

factors contribute to the disruption of skin barrier function,

including detergents, microplastics, particulate matter (PM), etc.,

confirmed to alter the integrity of the skin barrier (51). Specifically,

SC tight junctions can be disrupted by anionic surfactants in

commercial detergents, while other components can release

inflammatory cytokines that aggravate impairment of barrier

function (1, 63). Furthermore, dysregulation of the skin

microbiome exacerbates damage to the skin’s barrier function (51,

64, 65). Analyses of bacterial communities in AD states reveal that

Staphylococcus aureus colonization contributes to the pathogenesis

and aggravation of AD, with intestinal microbiota dysbiosis also

considered a significant factor in AD pathogenesis (1, 66).

According to existing research, AD can progress from skin

diseases to food allergies, allergic rhinitis, and later asthma, a

phenomenon commonly referred to as the atopic march (43,

67, 68).

In summary, the skin structure is compromised by a range of

environmental and genetic factors, including FLG mutations, skin

microbiota colonization, intestinal microbial dysbiosis, and

environmental pollution hazards. Skin barrier dysfunction allows

exposure to allergens, bacteria, and fungi, triggering immune

responses and leading to the onset of AD. Moreover, the

progression of AD can further induce the development of allergic

diseases such as allergic rhinitis and food allergy.

2.2.4 Epithelial barrier dysfunction and FA
FA represents an immune-inflammatory-mediated adverse

reaction to specific foods (69, 70). The underlying mechanism

across various food allergies involves immune activation and the
Frontiers in Immunology 05
disruption of tolerance to the intake of specific foods. Dysfunctions

of the gastrointestinal tract and skin barriers can contribute to food

sensitivities (71). Notably, CD103+ DCs mediate immune tolerance

in the gastrointestinal tract, while CD11b+ dermal DCs and

Langerhans cells (LCs) mediate cutaneous tolerance (72, 73). In

the pathogenic process of food allergy, impaired development of

regulatory T (Treg) cells is observed, being replaced by the

production of helper T2 (Th2) cells. These Th2 cells drive IgE

conversion and the expansion of allergic effector cells, thereby

exacerbating the immune response associated with food allergy

(72). The intestinal epithelial barrier is not a static physical barrier

but maintains a dynamic balance with the intestinal microbiome

and immune cells (74). Comprising a single layer of columnar

epithelium interspersed with goblet cells, encased by a layer of

mucus, the intestinal barrier protects the host from penetration by

digestive enzymes and microorganisms (67). Intestinal epithelial

cells selectively allow the absorption of nutrients, electrolytes, and

water while defending against the invasion of harmful

microorganisms and toxins (75). The mucus layer, the outermost

part of the intestinal epithelium, effectively blocks harmful

substances and tissues (74). It consists of an outermost mucus

rich in antimicrobial peptides and immunoglobulin A, and an inner

layer of mucus adhering directly to neighboring epithelial cells (74,

76). The inner layer of mucus, primarily composed of glycocalyx

produced by goblet cells, prevents antigens from invading the

lamina propria of the intestinal mucosa (74, 77). Moreover,

studies have highlighted the role of TJs as a key component in

controlling intestinal barrier permeability in epithelial cell junctions

(76). In the context of FA, impaired function of the intestinal

epithelial intercellular junctions leads to barrier dysfunction and

loss of osmotic function. This results in increased permeability,

allowing allergens to penetrate the intestinal barrier and stimulate

the submucosal immune system. Damaged epithelial cells release

inflammatory cytokines, such as TSLP, IL-25, and IL-33, inducing

cutaneous DCs and other cell types to shift the immune response

from tolerance to hypersensitivity. This process is involved in

allergic sensitization and triggering reactions by activating innate

lymphoid cells type 2 (ILC2) and producing IL-4 and IL-13 (69).

In summary, when stimulated by allergens, epithelial cells

release alarmins, activating immune cells and antigen-presenting

cells. This promotes the occurrence of immune responses and the

release of cytokines and inflammatory mediators, further

exacerbating the destruction of the epithelial barrier. This, in

turn, increases the permeability of the intestinal barrier, forming

a vicious circle and aggravating the degree of food allergy

disease (78).

2.2.5 Microbial dysbiosis and the epithelial barrier
in allergic diseases

With the advancement of industrialization, modernization, and

urbanization, various factors such as environmental pollution,

increased consumption of processed foods, reduced contact with

animals, and excessive hygiene practices have contributed to a rising

incidence of allergic diseases. Changes in the environment, health,

and lifestyles have significantly impacted microbial diversity and
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homeostasis. Recent research indicates that alterations in the gut,

oral, and skin microbiota may trigger immune-mediated diseases,

including autoimmunity, allergies, and chronic inflammatory

conditions (79). Host-microbiota interactions play a fundamental

role in immune system development (79). The local immune system

not only adapts to the presence of host-beneficial microbiota,

maintaining internal homeostasis, but also responds appropriately

to pathogenic microorganisms (79). Microbial dysbiosis, a key focus

in the field of epithelial barrier dysfunction (5, 80). refers to the

phenomenon where changes and loss of biodiversity result in an

unstable microbial ecosystem dominated by one or several

microorganisms. This alteration disrupts the immune balance

maintained by the gut, skin, and respiratory microbiota, leading

to disease development (81, 82). Beneficial microbiota on mucosal

surfaces regulating various aspects of barrier homeostasis, including

barrier permeability, TJ expression, angiogenesis, local

microinflammation, and mucosal tolerance (2). However,

microbial dysregulation and epithelial barrier leakage can disturb

immune homeostasis. When the epithelial barrier is compromised,

the microbiota within the epithelium (beneficial flora, viruses,

conditionally pathogenic bacteria, etc.) can migrate between

affected epithelial cells or transfer to other sites (11, 83, 84). The

occurrence and development of allergic diseases are closely linked to

the imbalance of microbial flora in the epithelium. For instance,

studies have demonstrated an association between microbiota

dysbiosis and asthma (85). Multiple risk factors contribute to

asthma development , with dysregulat ion of external

microorganisms and host microbiota playing a significant role

(86). Host microorganisms participate in asthma pathogenesis

through the metabolites of gut microbes, such as Lachnospira,

Veillonella, Faecalibacterium, and Rothia (87). The “gut-lung axis”

proposes that metabolites produced by gut-derived microbiota

reach the lungs, shifting the Th2-Treg balance to Treg, protecting

against asthma development (79). Similarly, the composition and

function of upper respiratory tract microbiota influence asthma

pathogenesis, with variations observed at different ages (88).

Microbial flora dysbiosis is also implicated in allergic rhinitis

(AR). Studies have noted changes in nasal mucosal microbiota

associated with AR, including increased abundance of

Staphylococcus aureus, Propionibacterium, Corynebacterium, and

Bacteroidetes, and decreased abundance of Prevotella and

Streptococcus (89). Environmental microbiota exposure in early

life may be biologically linked to allergic manifestations,

emphasizing the importance of microbial interactions in AR

pathogenesis (90). The skin, as the body’s largest organ, is in

constant contact with the external environment and harbors a

variety of microorganisms between epithelial cells. Disruption of

skin function increases skin leakage, allowing resident bacteria and

opportunistic pathogens to enter epithelial tissue, inducing

inflammatory responses or exerting protective effects. Studies

suggest that decreased microbiome diversity in AD patients is

associated with increased disease severity and colonization of

pathogenic bacteria such as Staphylococcus aureus. Topical

application of commensal organisms can potentially reduce AD

severity (51, 91). The gastrointestinal tract, closely interacting with

environmental microorganisms through food ingestion and
Frontiers in Immunology 06
excretion, is rich in microbiota crucial for maintaining body

microenvironment homeostasis. However, damage to the

intestinal epithelial barrier increases mucosal permeability,

allowing the invasion of pathogenic bacteria and causing diseases

(92). Dynamic changes in gut microbiota are implicated in the

development of FA (93), with age and diet influencing intestinal

flora abundance and FA occurrence (94).

In summary, the interaction between dysbiosis of the

microbiota and epithelial barrier dysfunction can contribute to

the occurrence and progression of allergic diseases. Microbial

dysbiosis alters the microenvironment balance maintained by

microorganisms in respiratory tract, skin, and intestinal tissues,

leading to increased epithelial barrier permeability, heightened

sensitivity to allergens, and the onset and exacerbation of various

allergic diseases.
3 Factors that cause epithelial
barrier damage

With the ongoing processes of modernization, urbanization,

and industrialization, various factors have emerged as potential

inducers and exacerbators of allergic diseases. These include climate

change, environmental pollution, dietary habits, and biodiversity

loss, among others. Exposure to these factors can lead to alterations

in the structure of the epithelial barrier, impacting the development

of allergic diseases by disrupting normal immunomodulation.

Numerous studies highlight the prevalent role of impaired

epithelial barrier function in the pathogenesis of allergic diseases,

emphasizing that the function of the epithelial barrier influences

both innate and adaptive immune responses. Currently, a wealth of

research has identified several risk factors contributing to epithelial

barrier damage in the contemporary environment (18, 95), and

detailed information is shown in Table 1.
3.1 Environment factors and the
epithelial barrier

3.1.1 Particulate matter
Particulate matter (PM), also known as dust, is a variety of solid

or liquid particles that are uniformly dispersed in an aerosol system.

PM can be divided into primary particulate matter and secondary

particulate matter. Primary particulate matter is particulate matter

that is released into the atmosphere from a direct source of

pollution, such as combustion soot, automobile exhaust, etc.

Secondary particles are formed by some polluting gas

components in the atmosphere, or these components are formed

by photochemical oxidation reactions with normal components in

the atmosphere. According to its aerodynamic diameter, it can be

mainly divided into three types (PM0.1, with a diameter of < 0.1mm;

PM 2.5, diameter< 2.5 mm; PM10 has a diameter of <10 mm) and

due to its small size and toxicity, it is easy to cause diseases,

especially respiratory diseases (147, 148). PM can significantly

alter epithelial barrier structure. Studies have shown that PM may

disrupt the integrity of the airway epithelial barrier by degrading TJ
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proteins such as occludin, claudin-1, and ZO-1 (96–99). In

addition, in mouse models, exposure to PM2.5 inhibits E-

cadherin levels in lung tissue, increasing IFN-g, IL-2, IL-4, IL-6,
and IL-10 in bronchoalveolar lavage fluid (100). Likewise, at lower

combustion temperatures, aromatic compounds chemically adhere

to the surface of metal oxide-containing PMs, resulting in the

formation of surface-stable environmentally persistent free

radicals (EPFRs). The reactive oxygen species (ROS) are produced

by the EPFR redox cycle containing PM, and the antioxidant and

inflammatory responses triggered by ROS after inhalation are

closely related to the degradation of claudin-1 and occludin

proteins in the airway epithelium and mouse lung tissues induced

by PM (97, 101). Likewise, at lower combustion temperatures,

aromatic compounds chemically adhere to the surface of metal

oxide-containing PMs, resulting in the formation of surface-stable

environmentally persistent free radicals (EPFRs). The ROS are

produced by the EPFR redox cycle containing PM, and the

antioxidant and inflammatory responses triggered by ROS after

inhalation are closely related to the degradation of claudin-1 and

occludin proteins in the airway epithelium and mouse lung tissues

induced by PM (102). Furthermore, PM2.5 and PM0.1 can cause

increased lysosomal membrane permeability, oxidative stress and

lipid peroxidation at low doses, and epithelial cell necrosis at high

doses (103). Recent studies have shown that PM can lead to DNA

damage, protein carbonation, and loss of cytokeratin and filaggrin

in epidermal structural proteins (104–106).

3.1.2 Nanoparticles
Nanoparticles (NPs), also known as ultrafine particles, typically

range in size between 1 and 100 nm. Over the past few decades, the

prevalence of nanoparticles in environmental pollution has been
TABLE 1 Environment factors and epithelial barrier.

Exposure
factors

Mechanism Reference

Particulate
matter

1.Degradation of TJ proteins, including
occludin, cladin-1 and ZO-1.
2.Inhibits E-cadherin levels.
3.Induces and increases ROS in epithelial
cells.
4.Foxp3 methylation is increased.
5.Increased permeability of lysosomal
membranes, oxidative stress, and lipid
peroxidation.
6.Causes DNA damage, protein
carbonation, and loss of cytokeratin and
filaggrin in epidermal structural proteins.

(96–106)

Nanoparticles

1.Disruption of the stability of lysosomal
membranes, triggering cell death.
2.Induces immature neurotrophic factor
imbalance overexpression, leading to
apoptosis of lung epithelial cells.
3.Stimulates the release of pro-inflammatory
cytokines, including IL-1a, IL-1b, IL-6,
TNF-a, and IL-8.
4.Increases the paracellular permeability of
human intestinal epithelial cells.

(107–111)

Ozone

1.Induce inflammatory cell invasion,
resulting in airway inflammation,
peribronchial collagen deposition, and
airway hyperresponsiveness.
2.Induce oxidative stress, leading to cell
stress, desquamation, and cell death.
3.Induce the production of IL−1a and IL-33
by epithelial cells and bone marrow cells.
4.Direct damage to the epithelial barrier.

(112–117)

Tobacco and
e-cigarettes

1.Increases the permeability of the alveolar
epithelial barrier.
2.Lead to decreased gene and protein
expression levels for a variety of TJ and AJ
proteins.
3.Disruption of intercellular connections
and the integrity of the barrier.

(118–121)

Enzymes
in allergens

1.Cleavage of occlusin to break down TJ
and induce intracellular ZO-1 proteolysis.
2.Destroy the tight junctions between
epithelial cells, activate protease-activated
receptor-2, and produce TSLP.
3.Directly activate the immune system.
4.Disruption of transmembrane adhesion
proteins increases epithelial permeability.
5.Induce airway epithelial cells to produce
IL-6, IL-8 and MCP-1; Disrupts epithelial
tight junctions and induces
cell desquamation.

(122–127)

Micro
And
nanoplastics

1.Change the folding of proteins, change
their secondary structure.
2.Interact with lipid bilayers and alter cell
membranes.
3.Penetrates the gastrointestinal barrier and
induces intestinal dysbiosis.
4.Causes oxidative stress, leading to
autophagy in human lung epithelial cells.

(128–133)

Detergents

1.Disruption of the integrity of the epithelial
barrier.
2.Increase transepidermal water loss
(TEWL) from the stratum corneum of the

(63, 134–136)

(Continued)
TABLE 1 Continued

Exposure
factors

Mechanism Reference

skin.
3.Damage to TJs and related molecules.
4.Induce the release of IL−25, IL−33 and
TSLP.
5.Change microbial homeostasis and disrupt
the interaction between mucus and bacteria.

Bacteria

1.Decreased the expression of occlusin and
ZO-1 proteins.
2.Secreted a-hemolysin, which interacts
with ADAM10 and degrades E-cadherin
protein.
3.Reduces the levels of alveolar occludin,
ZO-1, claudin-5, and VE-cadherin.
4.Disrupts epithelial integrity and increases
permeability.
5.Disrupts the host actin cytoskeleton and
impairs cell-cell adhesion.

(137–141)

Viruses

1.Resulting in the deletion of ZO-1 in the
tight junction complex.
2.Induce ROS and dsRNA production.
3.Leads to the destruction of TJs and AJs.
4.Increases claudin-2 expression and
decreases ZO-1, occludin and claudin-1
protein expression.

(142–146)
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steadily increasing, contributing significantly to air pollution.

Common nanoparticles include titanium dioxide (TiO2) and

silicon dioxide (SiO2), frequently utilized as additives in various

products such as food, cosmetics, paints, and catalysts. Research has

demonstrated that nanoparticles exhibit a high affinity for lipids,

leading to the encapsulation and disruption of phospholipid

membranes. This disruptive action extends to various lipid-rich

environments, including pulmonary surfactants and endothelial cell

junctions in lung blood vessels. Additionally, nanoparticles have

been shown to compromise the stability of lysosomal membranes,

triggering cell death (107). Specifically, TiO2-NP has been

implicated in enhancing the synthesis of interleukin-1a (IL-1a) by

inducing an unbalanced overexpression of immature neurotrophic

factors. This process, mediated through p75NTR signaling, is

associated with apoptosis of epithelial cells (108). Needle-like

TiO2-NP has also been found to stimulate the release of pro-

inflammatory cytokines such as IL-1a, IL-1b, IL-6, TNF-a, and IL-8,

disrupting cellular connections and compromising the skin barrier

(109). Moreover, nanoparticles tend to accumulate on the surface of

intestinal epithelial cells, M cells, and Peyer patches. Through

endocytosis by M cells or increased cell membrane integrity,

nanoparticles can disrupt the epithelial barrier, leading to cell

leakage and increased intestinal epithelial permeability (110).

Similarly, NPs have been observed to raise human intestinal

epithelial paracellular permeability (111).

3.1.3 Ozone
Ozone, an oxygen allotrope (O3), exhibits robust oxidizing

properties and finds applications as a bleach, air purifier, and

disinfectant. It serves as an alternative to catalytic oxidants in

chemical production and is utilized as a rocket fuel oxidizer in its

liquid form. Despite its beneficial uses, ozone poses a threat to

human health as a harmful air pollutant. Recent studies have

revealed that prolonged ozone exposure can lead to various

respiratory issues, including bronchial hyperresponsiveness,

asthma, chronic obstructive pulmonary disease, pulmonary

fibrosis, and, in severe cases, death (112). Acute exposure to

ozone is known to impair epithelial barrier function, inducing

airway inflammation, peribronchial collagen deposition, and

airway hyperreactivity (AHR) (113). This acute exposure

manifests as asthma symptoms, reduced lung function, increased

inflammatory cell infiltration, and heightened AHR (114). Notably,

ozone exposure detrimentally affects key molecules involved in

epithelial barrier function (149). The inflammatory response

induced by ozone in human lungs is reliant on the production of

ROS (115), leading to acute epithelial barrier injury and subsequent

disruption (116). Upon acute ozone stimulation, cell stress,

desquamation, and death occur through reactive ROS. This

process is followed by sustained injury and death of bronchiolar

epithelial cells, resulting in protein leakage, infiltration of

neutrophils and macrophages, and the production of IL-1a and

IL-33 by epithelial and myeloid cells (117). Emerging data indicate

that, under the control of the IL-33/ST2 axis, ozone directly

instigates barrier damage prior to the inflammatory damage

mediated by myeloid cells (117).
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3.1.4 Tobacco and e-cigarettes
Tobacco stands out as one of the most prevalent toxic

substances in the environment, containing approximately 5,000

chemicals notorious for their toxicity to the respiratory system.

Research conducted by Burns et al. has elucidated that exposure to

cigarette smoke induces an elevation in the permeability of the

alveolar epithelial barrier (118). Furthermore, the enduring

exposure to tobacco not only leads to diminished gene and

protein expression levels of various TJs and AJs proteins but also

culminates in the disruption of intercellular junctions (119, 120). In

recent years, e-cigarettes have gained prominence, initially

marketed as aids for smoking cessation. Despite their advertised

potential for assisting in quitting smoking, there is insufficient

evidence supporting this claim. E-cigarettes release evaporated

nicotine and flavoring, both of which harbor numerous known

toxicities capable of causing damage to the epithelial barrier (121).

3.1.5 Enzymes in allergens that disrupt the
epithelial barrier

Enzymes present in allergens serve as enhancers of allergic

reactions (122). Numerous studies have provided further validation

to the notion that the protease activity inherent in allergens,

including molds, pollen, cockroaches, house dust mites (HDMs),

and certain foods, plays a crucial role in disrupting epithelial

integrity and triggering innate immune responses (150). For

instance, investigations have demonstrated that mite allergens

contribute to the breakdown of TJs by cleaving occludin, leading

to intracellular ZO-1 proteolysis and the consequent disruption of

the epithelial barrier (123, 124). Matsumura et al. propose that

allergen-derived proteases induce TJs disruption among airway

epithelial cells, activate protease-activated receptor-2, and

generate TSLP, thereby activating the immune response (122).

Additionally, Vinhas et al. identified high-molecular-weight

proteases with serine and/or aminopeptidase activity in various

sensitized pollens, such as Olea europaea, Dactylis glomerata,

Cupressus sempervirens, and Pinus sylvestris. These proteases

were found to increase Calu-3 transepithelial permeability by

disrupting transmembrane adhesion proteins, including occludin,

claudin-1, and E-cadherin (125). Aspergillus, known for its

abundant production of proteases, induces the release of

cytokines like IL-6, IL-8, and MCP-1 in airway epithelial cells.

These enzymes also disrupt tight epithelial junctions and prompt

cell desquamation (126). Furthermore, Grozdanovic et al. posit that

cysteine proteases in food may contribute to the sensitization

process of food allergies by disrupting tight junctions (127). In

summary, the enzymes present in various active allergens play a

pivotal role in disrupting epithelial barrier function, resulting in

heightened epithelial barrier permeability. This, in turn, facilitates

the invasion of allergens, triggers immune responses, and

contributes to the development of allergic diseases.

3.1.6 Micro and nanoplastics
Microplastics (MPs) are water-insoluble polymer particles with

a size of less than 5 mm, while nanoplastic particles have a diameter

ranging from 1 nm to 1 mm. Recognized as emerging international
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pollutants due to their small particle size, microplastics are derived

from petroleum and are extensively utilized in various aspects of

daily life, presenting potential risks to human health (151). The

minute dimensions of micro and nanoplastics facilitate their

penetration into tissues, allowing interactions with cells and

cellular structural molecules (151). Prolonged exposure to these

particles has been associated with various degrees of damage to

human health (152). Research by Hollóczki et al. has demonstrated

the propensity of nanoplastics to interact with proteins,

fundamentally altering the secondary structure of these biological

macromolecules critical to their function (128). Molecular

dynamics simulations have revealed that polyethylene

nanoparticles dissolve into an incoherent single polymer chain

network within the hydrophobic core of the lipid bilayer,

inducing structural and dynamic changes that impact the cell

membrane (129). Recent studies evaluating the effects of

polystyrene nanoparticles, with diameters of 25 nm and 70 nm,

on human alveolar epithelial A549 cell lines indicated that the

toxicological effects of PS-NPs on alveolar epithelial cells were

dependent on exposure time, diameter, and concentration (130).

Jin et al. further observed that polystyrene MPs could induce

dysbiosis in intestinal microbiota, leading to intestinal barrier

dysfunction and metabolic disorders in mice (131). Additionally,

compared with spherical fluorescent polystyrene (PS) particles of

different sizes, particles with a diameter of less than 1.5 nm could

directly penetrate the gastrointestinal barrier, causing impaired

intestinal function (132). Similarly, nanomaterials have been

linked to oxidative stress, inducing autophagy in human lung

epithelial cells (133). Amidst rapid development, the escalating

use of microplastics and nanoplastics raises serious concerns

regarding environmental pollution, with concomitant hidden

health hazards for human beings.
3.2 Industrial products and
epithelial barriers

3.2.1 Detergents
The rise of modernization and industrialization has reinforced

people’s emphasis on hygiene, particularly highlighted during the

outbreak of the new coronavirus pneumonia epidemic. This

attention to hygiene has led to widespread use of detergents and

sanitizing products. However, excessive contact and utilization of

these cleaning agents can contribute to various diseases, especially

skin and respiratory conditions. Research indicates that detergents

can play a role in triggering the development of allergic diseases by

influencing epithelial barrier disorders (20, 153). Even at minimal

concentrations, anionic surfactants and detergents have been shown

to directly compromise the integrity of cutaneous keratinocytes and

bronchial epithelial barriers by disrupting TJs and associated

molecules (63, 134). Long-term use of cleansers, as demonstrated

by Douwes et al., can elevate transepidermal water loss (TEWL) in

the stratum corneum of the skin, subsequently increasing the risk of

contact dermatitis (135). The heightened risk of airway

inflammation is linked to the interaction of airway epithelium

with environmental air pollutants. Residues of detergents on
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recently cleaned clothing and floor surfaces can be easily inhaled

into the airways, impairing airway barrier function and bronchial

epithelial cells. Studies have revealed that emulsifiers can thicken

mucosal surface fluid, entrap commensal bacteria, disrupt healthy

interactions between epithelial cells and commensal bacteria, alter

the microbiota, and interfere with mucosa-bacterial interactions,

thereby inducing intestinal inflammation (136). Current research is

ongoing to determine whether detergent residues from cleaned

dishes can damage the esophageal or gastrointestinal epithelial

barrier. Identification of such effects would necessitate the

implementation of appropriate avoidance measures (20).
3.3 Pathogen and epithelial barriers

3.3.1 Bacteria
In the pathological mechanisms of epithelial barrier

dysfunction, dysbiosis of the microbiota has been reported (5,

154). Among them, bacteria were significantly associated with

epithelial barrier dysfunction. Bacterium infections mainly rely on

its ability to disrupt the epithelial barrier by affecting cell-cell

junctions and altering the expression of TJ and AJ proteins. For

example, Staphylococcus aureus colonization and release of

enterotoxin B (SEB) can reduce epithelial cell integrity and

increase mucosal permeability by decreasing the expression of

occlusin and the expression of ZO-1 protein during ALI culture

of polyp epithelial cells (137). Similarly, the addition of purified

Staphylococcus aureus V8 protease to ALI-cultured human nasal

epithelial cells (HNECs) also found the same barrier integrity

impairment and discontinuous expression of ZO-1 (155). Studies

also have shown that Staphylococcus aureus secreted a-hemolysin

interacts with the metalloproteinase domain-containing protein 10

(ADAM10), which can lead to the cleavage of AJ protein E-cadherin

and disrupt the lung epithelial barrier in mice (138). Furthermore,

Peter et al., when studying human lung tissue with Streptococcus

pneumoniae infection, found that pneumococcal infection reduced

the levels of alveolar occludin, ZO-1, claudin-5, and VE-cadherin

(139). In dextran sulfate sodium (DSS)-induced mouse models of

colitis and Caco-2 cell lines, Fusobacterium nucleatum was found to

disrupt epithelial integrity and increase permeability by regulating

the expression and distribution of tight junction proteins ZO-1 and

occulin, causing an aberrant inflammatory response and

aggravating colonic inflammation (140). Besides, bacteria can also

cause dysfunction of the epithelial barrier through other pathways.

Studies have shown that Pseudomonas aeruginosa mediates the

disruption of the epithelial barrier by using four effectors: protein

exosomes (Exo) S, ExoT, ExoU and ExoY (141). For example, ExoS

and ExoT disrupt the host actin cytoskeleton and induce barrier

disruption by impairing cell-to-cell adhesion, where ExoY disrupts

barrier integrity without cytotoxicity, while another effector protein,

ExoU, produces rapid necrotic cytotoxicity (141). In the human

body, beneficial commensal bacteria are able to protect and

maintain the homeostatic balance of the microenvironment in the

body, and the destruction of the epithelial barrier function by

pathogenic bacteria leads to an increase in its permeability, which

not only enables pathogenic bacteria to reach the subepithelial
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tissue, but also promotes the secondary invasion of other allergens

and pathogens.

3.3.2 Viruses
Viruses are a non-cellular organism that is tiny, simple in

structure, contains only one nucleic acid (DNA or RNA), and

must parasitize and replicate in living cells. Some studies have found

that epithelial dysfunction has a certain correlation with the

invasion of viruses. Sajjan et al. found the loss of ZO-1 in the

tight junction complex of rhinovirus (RV)-infected cells in a mouse

model, and pointed out that RV promotes bacterial binding and

translocation by disrupting airway epithelial barrier function,

leading to disease occurrence (142). It is worth noting that RV

can stimulate the production of ROS and destroy the epithelial

barrier, and can also disrupt the epithelial barrier function through

dsRNA produced during RV replication (143). In addition, The E

protein of SARS coronaviruses and novel coronaviruses interacts

with PALS1, a tight junction-related protein, and alter tight

junction formation and epithelial morphology, which is

manifested by the loss of PALS1 leading to the destruction of TJs

and AJs (144, 145). Similarly, Smallcombe et al. found that the

molecular composition of TJs in the Respiratory syncytial virus

(RSV)-infected airways was altered, as evidenced by significant

upregulation of claudin-2 expression and downregulation of ZO-

1, occludin, and claudin-1 protein expression, suggesting that

increased claudin-2 expression contributes to airway epithelial

barrier leakage (146). Different viruses have different mechanisms

of epithelial barrier damage, but all of them can increase epithelial

barrier permeability and lead to disease infection. Therefore,

strategies to maintain barrier function have great potential in the

development of antiviral drugs.
4 Evaluation and restoration of
epithelial barriers

4.1 Evaluation of epithelial barrier function

Currently, various methods are employed to assess epithelial

barrier function, encompassing the measurement of biomarkers,

epithelial barrier permeability assays, tissue biopsy, and epithelial

cytology, as detailed in Table 2. Transepidermal water loss (TEWL)

has emerged as a widely utilized tool for evaluating epithelial barrier

dysfunction (156). This process involves a sensor making contact

with the skin surface to measure the amount of moisture evaporating

from the skin. TEWL measurements, when used in conjunction with

stratum corneum stripping (STS), offer insights into the integrity of

the skin barrier (43). Tissue biopsy and specific analyses of epithelial

cytology serve as additional approaches to assess cell junction

structures and associated protein status (156). Ongoing research

explores innovative methods for analyzing the skin barrier,

including minimally invasive and scarless STS analysis combined

with proteomics (43). Mass spectrometry-based protein analysis has

revealed significantly lower expression levels of proteins linked to the

skin barrier (filaggrin-2, corneodesmosin, desmoglein-1,
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desmocollin-1, and transglutaminase-3) and natural moisturizing

factors (arginase-1, caspase-14, and gamma-glutamyl

cyclotransferase) at lesion sites in patients with atopic dermatitis,

both with and without a history of herpes eczema (157). Evaluation of

gut barrier permeability employs various chemicals, such as sugar,

polyethylene glycol, and 51Cr-EDTA, directly assessing barrier

function (158). Indirect assessments of mucosal integrity through

potential blood biomarkers are also employed. Clara cell protein

(CC16) serves as a potential biomarker for airway epithelial injury,

with increased serum CC16 observed in acute or chronic lung

disorders characterized by elevated airways permeability (159).

Strategies for indirect mucosal integrity assessment involve

detecting molecules present in the blood, normally found in the

intestinal lumen (e.g., LPS), or identifying elevated levels of proteins

constituting the intestinal barrier (intestinal fatty-acid binding

protein (I-FABP) or tight-junction molecules). These markers

indicate intestinal wall damage or elevated concentrations of

signaling barrier regulators, such as zonulin, in the blood (158).

Moreover, the gold standard for evaluating epithelial barrier function

at present involves an assessment combining electrophysiological

measurements and probes of varying molecular sizes (158). Rinaldi

et al. conducted direct in vivo assessments of epidermal barrier

function using electrical impedance (EI) spectroscopy, emphasizing

the rapid and reliable diagnostic capabilities of electrical impedance

spectroscopy in detecting skin barrier defects (160).
4.2 Epithelial based interventions for
allergic diseases therapy

Presently, restoring epithelial barrier function is recognized as a

novel strategy for the treatment and prevention of allergic diseases.

Notably, Hagner et al. discovered reduced adrenomedullin

expression in airway epithelial cells of asthma patients, and

supplementation with adrenomedullin promoted the repair of

airway epithelial damage (161). Pim1 kinase activity has been
TABLE 2 Methods for assessing the epithelial barrier.

Methods Inspection and analysis Reference

TEWL Measure the amount of water lost
from the body through
SC diffusion.

(43, 156)

Tissue biopsy and
epithelial cytology-
specific analysis

Minimally invasive and scarless STS
analysis combined with proteomics.

(43, 156, 157)

Epithelial barrier
permeability assays

By tracking the metabolism of
markers, the permeability of the
epithelium can be judged.

(158)

Biomarkers Testing the blood levels of CC16,
connexin, I-FABP, and zonulin.

(158, 159)

Electrical
impedance
spectroscopy

Direct assessment of epidermal
barrier function in vivo.

(158, 160)
TEWL, Transcutaneous water loss.
CC16, Clara cell protein16.
FABP, intestinal fatty acid-binding protein.
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identified as crucial for maintaining airway epithelial integrity and

preventing pro-inflammatory cytokine secretion induced by HDMs

(162). Histone deacetylase (HDAC) activity is implicated in allergic

inflammation and tight junction dysfunction between epithelial

cells. Increased HDAC activity is an underlying mechanism

leading to dysregulation of epithelial cell repair. Inhibition of

HDAC activity emerges as a potential strategy to restore nasal

epithelium integrity, offering a new avenue for allergic rhinitis

therapy (163). Moreover, treatments for allergic diseases play a

role in repairing epithelial barrier function. Yuan et al. reported that

allergen-specific immunotherapy (SIT) reduced airway

inflammatory infiltration and hyperresponsiveness in allergic

mice, restoring airway epithelial integrity. This treatment also

attenuated Der f-induced airway epithelial endoplasmic reticulum

(ER) stress and epithelial apoptosis. Importantly, 4-PBA, an ER

stress inhibitor, was found to inhibit IL-25-induced apoptosis of

airway epithelial cells dependent on PERK activity (164). Research

on intestinal and cutaneous epithelial barrier repair has gained

attention. Sun et al. demonstrated that AMP-activated protein

kinase (AMPK) enhanced intestinal barrier function and

epithelial differentiation by promoting the expression of CDX2

(165). Additionally, He et al. highlighted that different

concentrations of vitamin A weakened LPS-induced intestinal

epithelial permeability, enhanced the expression of tight junction

proteins, and improved intestinal barrier function (166). Various

approaches exist to prevent and restore skin barrier integrity,

encompassing the use of emollients, moisturizers, occlusive

agents, environmental control, and more. Emollients have been

reported to reduce the incidence of AD by approximately 50%,

exhibiting a protective effect on the skin barrier (167, 168).

Emollients and moisturizers in AD serve to protect the skin, form

a physical barrier, and retain moisture. Environmental factors, such

as allergens, temperature and humidity, skin irritants, and PM2.5,

can contribute to skin barrier damage. Effective prevention of skin

damage involves controlling these environmental factors. Studies

indicate that increased colonization of Staphylococcus aureus on the

skin in AD is linked to the loss of commensal bacteria (169). This

implies that skin barrier repair can be achieved through microbiota

regulation. Current research suggests that human-derived bacteria

can reduce Staphylococcus aureus colonization in AD, pointing to

the potential of microbiome balance regulation as a therapeutic and

preventive approach for allergic diseases (43).
5 Conclusion

The epithelial barrier hypothesis has emerged as a promising

avenue for disease prevention and treatment. In the context of

contemporary developments in modernization, industrialization,

and commercialization, various external risk factors, such as

environmental pollution, global warming, widespread detergent

use, and biodiversity changes, continually stimulate the epithelial

barriers in the skin, respiratory tract, and intestines. This persistent

stimulation compromises the integrity of the epithelial barrier,
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leading to dysbiosis, microbiota translocation in interepithelial

and subepithelial regions, and the development of tissue

microinflammation. Impaired epithelial barrier function increases

permeability, elevating the risk of diverse diseases, especially

allergic conditions.

The physical barrier of the epithelial barrier acts as a defense

against stimuli like allergens and pathogenic bacteria. Breaches in

this physical barrier prompt epithelial cells to release alarm signals

(IL-25, IL-33, and TSLP) and activate antigen-presenting cells like

dendritic cells. Subsequently, ILC2s cells and Th2 cells are activated,

initiating a type 2 immune response. Conversely, the secretion of

type 2 immune factors can influence epithelial cells, exacerbating or

repairing epithelial barrier dysfunction. Consequently, strategies

aimed at treating and restoring epithelial barrier function can be

integrated into allergic disease treatment approaches, contributing

to disease prevention and management. This review highlights

several measures to prevent epithelial barrier dysfunction and

address allergic diseases: (1) Control of Environmental Factors:

Minimize or avoid exposure to risk factors that harm the epithelial

barrier. (2) Development and Use of Safe Products: Adopt safe

cleaning products, emollients, and other related items. (3) Mastery

of Epithelial Barrier Assessment: Detect epithelial barrier damage

promptly through effective assessment methods for preventive

purposes. (4) Strengthening the Mucosal Barrier: Prevent bacterial

translocation, block colonization by opportunistic pathogens, and

reinforce the mucosal barrier. Understanding the role of the

epithelial barrier in the mechanisms of allergic diseases can pave

the way for innovative preventive and therapeutic methods in

future research.
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