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Abstract. Deep learning-based classifiers need lots of image data to train. 
Unfortunately, not all real-world cases are supported by a huge amount of image 
data. One of the cases are images for classification of pneumonia infections with 
chest X-rays images. This study proposes a way of synthesizing chest X-rays with 
abnormal conditions in order to use the synthesized images for classification 
purposes. A GAN-based technique can generate synthetic images with greater 
quality that resemble original images thus can provide a more balanced data 
distribution than other approaches. To indirectly evaluate the quality of our GAN-
based synthetic images, we used CNN-based classification architectures on 
diverse datasets. Three scenarios examined the effects of synthetic picture 
categorization. Scenario-1: adding 90% of synthesized images to the original 
images into the training dataset. Scenario-2: adding 50% of synthesized images to 
the original images. Scenario-3: adding 10% of synthesized image to the original 
images. The classification test revealed significantly increased F1 scores in all 
scenarios. Our study also emphasizes the significance of addressing the problem 
of imbalanced collections of chest X-ray images and the capability of GANs to 
alleviate this issue. 
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1 Introduction 

The domain of medical image analysis has experienced notable progression in 
recent times, wherein deep learning methodologies have emerged as potent 
instruments for a diverse array of diagnostic and prognostic endeavors. The 
classification of chest X-ray images holds significant importance in the timely 
identification and evaluation of diverse pulmonary ailments. One of the persistent 
challenges encountered in this particular domain pertains to the inherent disparity 
observed within datasets. Specifically, there exists an imbalance between the 
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quantity of positive cases, denoting instances with abnormalities, and the quantity 
of negative cases. It is worth noting that the former is frequently found to be 
considerably lower in number when compared to the latter. The presence of this 
disparity presents a significant hindrance to the advancement of precise and 
resilient machine learning models. These models have a tendency to exhibit bias 
in favor of the more prevalent class, which in turn may result in less than optimal 
clinical results. 

In order to tackle the aforementioned matter, this paper delves into the pioneering 
methodology of employing generative adversarial networks (GANs) for the 
purpose of generating synthetic images within the realm of chest X-ray image 
classification. GANs have garnered significant attention and acclaim within the 
realm of computer vision due to their remarkable capacity to produce synthetic 
data that exhibits a striking resemblance to real data. This characteristic of GANs 
offers a potential solution to the prevailing issue of limited availability of positive 
cases. The primary objective of this research endeavor was to effectively utilize 
GANs in order to generate synthetic chest X-ray images that depict abnormal 
cases. This will ultimately facilitate the augmentation of datasets that suffer from 
an imbalance in the distribution of abnormal cases, thereby improving the 
performance of classification models. 

In this paper, we will elucidate a thorough investigation into the methodology 
utilized for the production of synthetic chest X-ray images, the training of GANs 
on extensive chest X-ray datasets, and the seamless incorporation of these 
synthetic images into a cutting-edge classification framework. Furthermore, we 
assessed the influence of synthetic data augmentation on the performance, 
robustness, and generalization capabilities of the classification model. Our 
primary objective was to enhance the sensitivity and specificity for the early 
detection of diseases. 

The salient aspect of this study resides in its pioneering utilization of GANs to 
tackle the inherent difficulties presented by imbalanced collections of chest X-
ray images. The overarching objective was to enhance the precision and 
dependability of diagnostic systems employed in the realm of clinical practice. 
Through the mitigation of limitations imposed by imbalances within the dataset, 
the primary objective of this research endeavor was to offer a highly valuable 
solution that has the potential to greatly benefit healthcare professionals and, of 
utmost significance, patients. This solution aims to enhance the early detection of 
pulmonary conditions, thereby contributing to improved healthcare outcomes. 
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2 Materials And Methods 

2.1 Generative Adversarial Network 

A generative adversarial network  is a neural network-based architecture that 
utilizes a discriminator and a generator simultaneously during the learning 
process [1]. The generator’s role is to produce synthetic data that closely 
resembles a real dataset, while the discriminator is trained to differentiate 
between fake data generated by the generator and the real data [2]. The overall 
GAN architecture is depicted in Figure 2. 

In Figure 2, the generator is trained using the real dataset, which undergoes 
mathematical operations through convolution layers to generate synthetic data. 
Convergence is achieved when the distribution produced by the generator 
matches the distribution of the real data. The convergence can be observed 
through the error values generated by the discriminator and the generator, using 
the following Eq. (1):  

 ���(�(�))  +  ���(1 −  �(�(�)))  (1) 

Here, D represents the discriminator and G represents the generator. The 
generation and discrimination process is repeated until the predetermined 
convergence limit is reached. However, GAN algorithms have certain limitations 
in synthetic image tasks, including instability, collapse, and low resolution [3]. 
To address these issues, this study incorporated modifications to the loss function 
using Wasserstein distance, as described by Eq. (2). 

 ����, ��� = ����∼����,����(�,�)∼�[�(�, �)]   (2) 

In this formula, W represents the Wasserstein distance, ��  represents the real 
distribution, �� represents the generated distribution, and γ represents the joint 

distribution between the two. By using this modified loss function, the training 
process becomes more stable, resulting in higher image resolution and 
overcoming the limitations of the original GAN algorithm [4]. 

2.2 Dataset Description 

To develop an effective pre-diagnosis model, it is important to have a substantial 
amount of well-balanced data [5]. However, obtaining a sufficiently large and 
balanced dataset of X-ray images for pneumonia infections can be challenging 
due to factors such as cost and local privacy regulations. Therefore, this research 
project addressed this issue by gathering X-ray data on pneumonia infections 
from various sources, including Kemarny, et al. [6], Rahman, et al. [7], and 
Chowdhury, et al. [8], resulting in a total of 17,984 data samples. Detailed labels 
for the data can be found in Table 1. 
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To ensure the reliability of the collected data, a quality check was conducted on 
the X-ray images. Any images that were damaged or irrelevant to the study were 
excluded. The data collected from different sources were then combined and 
appropriately labeled, as indicated in Table 1. The datasets comprised multiple 
classes, each representing a specific type of pneumonia infection. For a visual 
representation of each class, example images are presented in Figure 1. 

Table 1 Composition of the datasets. 

Label Name Number of Images 
Healthy 10.192 

Covid-19 3.621 
Bacterial Pneumonia  2.826 

Viral Pneumonia  1.345 
The imbalanced chest X-ray datasets comprised Covid-19, healthy, bacterial pneumonia, and viral 
pneumonia. 

Healthy Covid-19 Bacterial Pneumonia Viral Pneumonia 

Figure 1 Sample data. Samples of chest X-ray images from a healthy patient and 
patients with Covid-19, bacterial pneumonia, and viral pneumonia. 

2.3 Model Evaluation 

To evaluate the performance of each research output, various metrics were 
utilized. The first metric employed was the Frechet Inception Distance (FID) [9], 
which assesses both the quality and distribution of the generated images from the 
generative adversarial network. In the context of medical research, FID is 
commonly used to measure image quality by comparing the similarity between 
generated and real images. It calculates the distance between the feature 
distributions extracted from the generated and real images using the following Eq. 
(3): 

���(�, �) =  ����� − �����
�

+  �� ��� + �� −  2 ∗ ��� ∗ ���
�.�

�  (3) 

Here, P represents the feature distribution of the real or reference images, while 
Q represents the feature distribution of the generated images. up and �q denote 

the mean feature distributions of P and Q, respectively, while CP and CQ represent 
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the covariance matrices of the feature distributions of P and Q, respectively. A 
smaller FID value indicates a closer resemblance between the generated and the 
real images. 

Another metric employed was the non-parametric statistical test known as Mann-
Whitney U [10]. This is used to measure the distribution of the data and determine 
its significance. The Mann-Whitney U test compares two independent samples to 
ascertain whether they are drawn from the same population. The formula for 
calculating the Mann-Whitney U value is in Eq. (4): 

 � = ��  −
��∗(����)

�
  (4) 

In this formula, �1  represents the sum of ranks of the first sample, while �1 

represents the number of samples in the first sample. The Mann-Whitney U test 
utilizes the rank of the data rather than the actual values. A threshold of 0.05 is 
commonly applied to determine whether a significant difference exists between 
the distributions of the real and the generated images. 

3 Result and Discussion 

3.1 Synthetic Images 

The GAN generator network developed in the preceding phase was employed to 
generate synthetic images. Specifically, this study generated 15,000 synthetic 
images for each label. Following the generation process, these images were fed 
into a discriminator network to assess their quality. To determine whether a 
synthetic image should be included in the final dataset, a threshold of 0.5 was 
utilized, meaning that only images deemed authentic by the discriminator were 
selected. The distribution of the images for each label in the resulting datasets is 
presented in Table 2, and an example synthetic image can be observed in Figure 
2. 

Table 2 Synthetic image composition.  

Label 
Number of 

generated synthetic 
images 

Number of synthetic images after 
selection 

 (discriminator error > 0.5) 
Covid-19 15,000 14,995 

Bacterial Pneumonia  15,000 5,680 
Viral Pneumonia  15,000 15,000 

We produced  15,000 synthetic chest X-ray images for each category with the trained GANs.  We then selected 
only those synthetic images which had discriminator error >0.5 to ensure the authenticity of the synthetic images 
for each category. 
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Table 2 indicates a significant decrease in the number of images, approximately 
three times fewer than the number of images generated by GAN, specifically in 
the bacterial pneumonia label. This reduction may be attributed to the suboptimal 
quality of the synthetic images produced by GAN. Several factors could 
contribute to the suboptimal GAN output, such as dataset quality, architecture, or 
GAN parameters. To evaluate the quality of the generated synthetic images, 
researchers employed the Frechet Inception Distance (FID) metric, which 
measures both the quality and diversity of the synthetic images. For comparison 
purposes, the researchers also included FID values from SMOTE conventional 
augmentation techniques, and conventional GANs. The FID values for each 
approach are presented in Table 3. 

Table 3 FID scores. 

Label 
FID Score 

Our 
Study 

SMOTE LSGAN DCGAN 
Conventional 
Augmentation 

Vanilla 
GAN 

Covid 4,015 7,015 16,167 72,555 28,642 494,668 
Bacterial 

Pneumonia  
2,822 7,833 52,427 89,693 32,714 469,939 

Viral 
Pneumonia  

5,919 11,787 47,251 43,127 36,806 502,041 

Evaluation of the quality of the synthetic images generated by our study and alternative approaches. Lower FID-
score indicates more resemblance of the generated synthetic image to original images. 

Vanilla DCGAN LSGAN Our Study 

Figure 2 Image synthesis. Sample of generated synthetic images using several 
alternative approaches. 

According to Table 3 and Figure 2, the FID value for GAN was lower compared 
to the other techniques. This finding suggests that the synthetic data generated by 
our study exhibits better image quality, closely resembling original images, and 
demonstrates a more balanced diversity in the data distribution compared to the 
other algorithms. The distribution of the synthetic dataset generated by GAN was 
visualized using a two-dimensional PCA algorithm, as depicted in Figure 3. 
Figure 3 provides a comparison of the original and the synthetic images at ratios 
of 3,621:14,995, 2,826:5,680, and 1,345:15,000, respectively. 



GANs for Synthetic Image Generation to Address Imbalance 379 
 

The distribution results of the GAN synthetic data in Figure 3 demonstrate that 
the image synthesis did not always produce identical or identical images, nor did 
it deviate significantly from the distribution of the original images. However, in 
Figure 4, the synthetic data for viral pneumonia shows some data points that 
deviate from the central distribution of the original data. This can be attributed to 
the limited availability of labeled viral pneumonia datasets, which hampers the 
formation of a robust GAN model compared to other labels. 

In addition to analyzing the per-instance data distribution, the researchers also 
conducted a data analysis in the Gaussian distribution domain. Figure 3 reveals 
that the distribution pattern of the synthetic data still followed a similar spread as 
the original data, albeit with relatively wide differences in mean and standard 
deviation values in some cases. However, the synthetic data tended to approach 
a normal distribution, which indicates a correct pattern for the number of data . 

Covid Bacterial pneumonia 

 
Viral pneumonia 

Figure 3 Data distribution of chest X-ray images for each category. The 
distribution pattern of the synthetic data (colored orange) follows a similar spread 
as the original data (colored blue), albeit with relatively wide differences in mean 
and standard deviation values in some cases. However, the synthetic data tends to 
approach a normal distribution. 
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Figure 4 Data distribution of original and synthetic images on a Gaussian chart. 
Comparison of the original data distribution (left) and the synthetic data 
distribution (right). 
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4 Classification 

A classification model was utilized to evaluate the results of GAN’s synthetic 
image generation. In this study, we employed CNN-based architectures 
commonly used in image classification research to assess the performance of the 
classification models. The F1 scores for each classification model, with testing-
to-training data ratios of 10:90, 50:50, and 90:10, respectively, running for 50 
epochs, are presented in Table 4. 

From Table 4, it can be seen that GAN-generated data could improve the F1 score 
across all architectures for 10% and 50% original training data. However, there 
was a decrease in the F1 score for the EfficientNetB0 and DenseNet121 
architectures when using 90% original training data. To determine the statistical 
significance of the improvement in the F1 score resulting from the addition of 
GAN-generated training data, the researchers conducted a Mann-Whitney U 
nonparametric statistical test with a threshold p-value of 0.05 [11-10]. 

Table 4 Classification result – additional synthetic images to the datasets under 
three scenarios for classification tasks.  

Architecture 
Scenario-1 Scenario-2 Scenario-3 

all ori 
+90% 
synth 

all ori 
+50% 
synth 

all ori 
+10% 
synth 

MobilenetV2 0.6752 0.9454 0.7817 0.9348 0.4138 0.9049 
Resnet50V2 0.9175 0.9330 0.9110 0.9121 0.8113 0.8870 

EfficientNetB0 0.9797 0.9780 0.9660 0.9713 0.8863 0.9446 
DenseNet121 0.9612 0.9484 0.9506 0.9517 0.8492 0.9029 

VGG19 0.9190 0.9294 0.8717 0.9174 0.6708 0.8529 

In this study, a p-value of 0.03147 was obtained based on the data from Table 4. 
This result indicates that the addition of GAN-generated synthetic data provides 
a significant improvement in the F1 score for the classification results based on 
the conducted testing scenarios. In addition to comparing the F1 scores with non-
synthetic data models, the authors also compared the classification outcomes with 
GAN algorithms from previous studies. The F1 scores for each approach can be 
found in Table 5. 

Table 5 Comparison of our synthetic images with other synthetic images from 
different classification techniques. 
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Table 5 shows that our generated synthetic data had comparable results for 
classification tasks, especially in Scenario-1 and Scenario-2. However, our 
generated synthetic data had lower FID scores, which indicates resemblance to 
the original images. This phenomenon indicates that for classification tasks with 
deep learning, the higher semantic information in the synthetic images is not 
significantly important, but it is important for human subjects. This indicates the 
difference in nature of the processes in our brain and the process of classification 
with deep learning. 

5 Conclusion 

In this study, data synthesis using GAN algorithms was conducted to address the 
imbalanced data issue in pneumonia infection classification using X-ray image 
data as input. The findings of this study indicate that the constructed GAN 
architecture produced synthetic data that closely approximates the quality of 
original data, while exhibiting a more diverse data distribution compared to 
conventional augmentation algorithms. The GAN architecture developed in this 
study also demonstrated better resolution and relative resistance to collapse 
compared to the tested GAN algorithms. Moreover, the synthetic data utilized in 
the construction of the classification model significantly enhanced the F1 score 
based on the results of statistical tests. 

For future research, several improvements can be made, including the utilization 
of more advanced GAN architectures such as Big GAN and Style GAN. The 
incorporation of these GAN variants may enhance image sharpness at high 
resolutions. In addition to the basic GAN architectures, employing a penalty 
system instead of gradient clipping may provide more stable image quality. 
Involving experts, specifically radiologists, in the research would have a 
significant impact on expanding the scope of analyses that can be performed. In 
this study, quantitative analysis was only conducted on the overall image quality. 
However, by involving experts in the quantitative analysis process from a medical 
perspective, there is a greater possibility of discovering new findings and ideas. 
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