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Abstract. Accurate throughput predictions can significantly improve the quality 
of experience (QoE), where QoE denotes a network’s capacity to provide 
satisfactory service. By increasing the results of good throughput predictions, the 
best strategy can be planned for managing data transmission networks with the 
aim of better and faster data transmission, thereby increasing QoE. Consequently, 
this paper investigates how to predict the throughput of wireless sensor networks 
utilizing multimedia data. First, we conducted a comparative analysis of relevant 
prior research on the topic of throughput prediction in Multimedia Internet of 
Things (Multimedia IoT). We developed a throughput prediction framework for 
wireless sensor networks based on what we learned from these studies using 
machine learning. The Throughput Prediction Framework identifies historical 
throughput data and employs these traits to predict throughput. In the final phase, 
multiple camera nodes and local servers are utilized to test a framework for 
throughput prediction. Our analysis demonstrates that WSN-IoT predictions are 
quite precise. For a 1-second time breakdown, the average absolute percentage 
error for all investigated scenarios ranges from 1 to 8 percent. 

Keywords: framework; Internet of Things (IoT); multimedia; throughput prediction; 
wireless sensor network. 

1 Introduction 

The Internet of Things (IoT) continues to expand, and with the development of 
IoT technology, smart cities are becoming more sophisticated. IoT continues to 
support progress in increasing effectiveness, efficiency, automation, software, 
and quality connectivity [1]. One of the enablers of IoT is the wireless sensor 
network (WSNs) technique. WSN gathers sensor data for centralized processing. 
WSNs are used in a variety of applications that enable integration of the physical 
world into the computer-based world, yielding benefits and enhancements in 
remotely managing the physical world, keeping electronic records of physical 
variables, early detection of potential threats, predictions, and economic benefits. 
WSNs are desirable for practical IoT implementations due to their low cost and 
ease of deployment. However, their small size and low cost result in resource 
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limitations including energy supply, memory size, processing speed, and 
communication bandwidth. WSNs’ limited resources need to be managed 
effectively to allow them to continue operating for as long as possible [2].  

WSN differs from conventional wireless networks in that the resources of each 
sensor node are severely constrained. The primary objective of a sensor network 
is to detect a phenomenon and transmit the collected data to a user who is 
interested. Sensing and the delivery of high-quality data present the greatest 
difficulty in WSNs [3]. Using a WSN to transmit multimedia IoT data presents 
greater challenges than transmitting scalar data. Typically, multimedia files such 
as audio, video, and image contain a greater quantity of data, resulting in a greater 
degree of delay in the data flow. Currently, multimedia streaming has become 
one of the internet’s most indispensable services. Moreover, due to the vast 
number of internet users, global network traffic is becoming increasingly 
congested [4]. Therefore, a significant amount of research is required to address 
this issue while simultaneously enhancing quality of exerience (QoE). 

QoE defines the impact of a service’s overall performance in relation to the level 
of customer satisfaction [5]. Throughput is one of the QoEfactors and is a 
calculation of the speed of sending appropriate data. Due to two main issues, 
though, it is very difficult to provide QoS in WSNs. Firstly, the typical severe 
limitations of WSN nodes, such as those related to their energy, computational, 
and communication capabilities, as well as the large-scale nature of WSNs. And 
secondly, the majority of QoS properties are interdependent in a way that 
improving one of them may degrade others, for example, increasing throughput. 
These unfavorable circumstances push system designers to seek out the greatest 
QoS metric compromises possible [6].  

One of the QoE metrics is throughput, which shows the reduction in traffic that a 
destination node successfully receives [6]. Based on a throughput dataset, we can 
obtain several throughput prediction results. Several studies related to throughput 
prediction are similar to Elsherbiny’s research in [7], which predicts throughput 
on 4G LTE networks. This throughput prediction uses some machine learning 
algorithms as in Na’s research [8], who used LSTM to predict throughput in LTE 
networks. The results of this prediction can also be further utilized, as in [9], 
namely by utilizing throughput prediction results for adaptive bitrate control.  

Further research is required into the management of sending this multimedia data 
to address issues with WSN and multimedia IoT data transmission. When 
conducting network management, there are several factors to consider before 
selecting the best method to modify the throughput parameters that determine 
how strong the network is being used. As a result, this study aimed to develop a 
throughput prediction framework for WSNs in multimedia IoT. This study started 



338 Rosa Eliviani & Yoanes Bandung 
 

by comparing earlier studies that have addressed the issue of throughput 
prediction in multimedia IoT. Using machine learning, we then built a throughput 
prediction framework for WSNS based on the knowledge we gained from the 
preliminary study. In order to estimate throughput, the Throughput Prediction 
Framework locates historical throughput data and uses this feature. We tested it 
with the multimedia IoT framework using many camera nodes and local servers 
after explaining WSN-IoT predictions. This IoT feature enables multimedia IoT 
applications, or the use of multimedia (M-IoT). IoT for multimedia is concerned 
with multimedia data that is connected and engages with other multimedia [10].  

The rest of this paper is organized as follows: Section 1 introduces the research; 
the content is from background research, the research purpose, and a small 
review. The second section presents related work on the same topic as that of the 
present research. Section 3 describes the WSN-IoT throughput prediction 
framework, its phases, and details. Section 4 describes the implementation of the 
framework, our experiment, the analysis, and the results. Finally, Section 5, 
provides the conclusions from all the whole study. 

1.1 Related Works 

This section discusses previous studies related to our research. The following 
subsections explain the main topics related to this research, i.e., wireless sensor 
networks (WSNs) in an Internet of Things (IoT) environment and machine 
learning-based throughput prediction. 

1.2 Wireless Sensor Networks (WSNs) in an Internet of Things 
(IoT) Environment 

The introduction of WSNs has opened new opportunities for monitoring 
applications. One of the advances in using WSNs is home monitoring. Home 
monitoring WSNs can collect sensing data such as temperature, humidity, and 
the state of other sensors such as magnetic sensors or switches, and are also 
capable of changing the environment and the physical world through actuators 
such as servos, motors, or switches. The use of WSNs includes various 
applications that enable the integration of the physical world into the computer-
based world, which results in benefits and an increase in our quality of life. A 
wide range of wireless sensor devices has also been developed to enable wireless 
connectivity and the sensing of small objects [11]. 

However, WSNs have differences compared to other wireless networks. Wireless 
sensor network is a collective term to define a collection of small, somewhat 
independent computers whose primary target is sensing some physical property 
of their environment such as vibration, humidity, or temperature. They consist of 
several to thousands of sensor nodes, often also referred to as nodes or sensors, 
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which are connected via wireless communication. Typically, there is at least one 
dedicated node, called a sink or base station, that connects the sensor network to 
the outside world. Some of the general characteristics of WSNs that differentiate 
them from other types of wireless networks are that sensor nodes have very 
limited resources; wireless connections are spontaneous and unplanned; and 
sensor networks deal with various phenomena and need to transfer data to 
external users [3]. 

1.3 Machine Learning based Throughput Prediction 

This subsection presents some of the literature study on throughput prediction 
with machine learning and deep learning methodologies within wireless sensor 
networks. In [12], the authors conducted research to compare the machine 
learning algorithms ARIMA and LSTM in forecasting time series datasets. 
Compared to ARIMA, LSTM consistently achieved error rate reductions between 
84 and 87 percent, demonstrating its superiority over ARIMA. Furthermore, it 
was found that the trained prediction model behaved randomly and that the 
amount of training cycles, or epochs’ as they are called in deep learning, had no 
impact on its performance. In [13], the authors compare SARIMA, LSTM and 
CNN to forecast time series data but not to a throughput dataset.  

The research in [8] explored the application of machine learning and deep 
learning methodologies in predicting throughput in wireless sensor networks, 
explaining previous research efforts that have used learning models for this 
purpose. Recognizing the importance of accurate throughput predictions, the 
cited studies aimed to reduce latency and improve the efficiency of time-sensitive 
services, as reported in their respective research findings. Thus, [8] predicted 
future throughput using the attention-based LSTM model. The dataset was 
derived from TCP logs and LTE network throughput. This work mentions that 
throughput prediction is essential for latency reduction. Moreover, some studied 
used LSTM in their throughput prediction, for example, [7] and [8]. In [7], 
besides using an LSTM model, the authors also used the arithmetic mean (AM), 
harmonic mean (HM), last sample (LS), moving average (MA), a hidden Markov 
model (HMM), and a stochastic model. In this work [8], regression models such 
as K-Nearest Neighbor (KNN), Support Vector Machine Regression (SVR), 
Ridge Regression, Random Forest Regression, Autoregressive Integrated 
Moving Average (ARIMA), and Long Short-Term Memory (LSTM) were used.  

2 WSN-IoT Forecast: Wireless Sensor Network Throughput 
Prediction Framework in Multimedia Internet of Things 

The WSN-IoT Throughput Prediction Framework is a flow framework for 
predicting future throughput in WSNs in IoT environments based on past 
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throughput data. Figure 1 shows the phases of the WSN-IoT Throughput 
Prediction Framework. The four stages of predicting throughput in WSNs and M-
IoT are shown in Figure 1. These stages are the WSN and Multimedia IoT stage, 
the dataset stage, the training stage, and finally the throughput prediction stage. 
The identification stage serves as a pivotal step in analyzing the network and its 
architecture. Subsequently, the dataset stage is employed to collect and prepare 
the necessary dataset. Finally, the training and prediction stages are utilized to 
apply algorithms to predict the throughput dataset based on historical data. 
Detailed explanations for each stage are given after Figure 1. 

 

 

 

 

Figure 1 Throughput prediction framework.  

2.1 Identifying WSN and Multimedia IoT Stage 

The WSN and Multimedia IoT identification stage aims to identify the 
architectural system used in data transmission. This process is like an observation 
process, such as node conditions, location, distance, movement, and throughput. 
The first process is to determine the WSN and Multimedia IoT devices and 
environments, for example sensor devices with sensing such as capturing pictures 
and recording audio or video. After that, determine the sink and sensor nodes of 
the device used are determined. For example, when sending data to the cloud by 
a camera sensor device, then it is determined which device functions as the sink 
or base station. Here the sink can be one or more node. Then other sensor devices 
can have connections with each other and with other devices. After all the points 
have been determined for their respective functions, the next step is to design a 
scenario diagram of the implemented system architecture. The system’s 
architectural design can be seen in Figure 2. It is a system architecture for WSN-
IoT that can be applied to different system configurations. These nodes are useful 
as monitoring sensors, for example temperature sensors, image capture sensors, 
light sensors, and others. Each of these nodes has a relationship with other nodes 
using one server. Additionally, it is crucial to note that in the image capture 
process, precise time synchronization is required to obtain accurate data. 
Furthermore, at the identification stage, it is essential to consider the power and 
resource requirements of each device to ensure the system’s continuity 
efficiently. 
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Figure 2 Architecture system. 

2.2 Dataset Stage 

The dataset stage is the stage of retrieval and preparation of the throughput dataset 
by processing data according to the applied system architecture. Data retrieval is 
carried out by recording the process of sending data on multimedia IoT devices. 
To save the process of sending the data in the form of throughput data, the size 
of the file sent, the initial time of sending the data in microseconds, and the final 
time of sending data in microseconds are recorded. This data retrieval aims to 
determine the throughput history of the WSN and multimedia networks. Then 
after the data has been collected, for example thousands of data, the dataset is 
processed. Data processing is done by collecting the data and average them into 
calculations per second. It is intended that the data sent considers the time 
between sending data. After that some of these datasets are divided into two parts, 
namely a training dataset and a testing dataset, where the training dataset can be 
used to conduct machine learning to study historical throughput patterns. The 
throughput data is obtained by calculating the number of data bits sent divided by 
the duration of data transmission. The duration of data transmission is obtained 
by reducing the value of the final time of sending data with the value of the initial 
time of sending the data. Based on the results of this dataset processing, 
predictions are made by testing the dataset and generating future throughput 
predictions.  

2.3 Training Stage 

The training stage is the stage for processing the dataset that has been prepared 
to feed into several appropriate machine learning algorithms because this stage 
aims to select the best algorithm model for the throughput dataset and train the 
algorithm. This algorithm is trained so that it can study past throughput historical 
data and can predict future throughput. According to [7], models are suitable for 
predicting datasets such as throughput data are based on time series algorithms. 
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Some of these machine learning algorithms are like Recurrent Neural Networks 
(RNN), Long short-term memory (LSTM), Gated Recurrent Unit (GRU) or 
Autoregressive Integrated Moving Average (ARIMA). Based on this, this study 
used several machine learning time series dataset models, namely AR, MA, 
ARIMA and LSTM. In addition, a machine learning model, namely deep 
learning, was added, which is a convolutional neural network (CNN). The 
machine learning algorithm model with the best predictive results was then 
selected from the five machine learning models. The selection was based on the 
results of the mean absolute error (MAE), root mean square error (RMSE), and 
mean absolute precentag error (MAPE) evaluation matrices. This evaluation used 
a comparison of the throughput predicted value with the actual throughput data. 

2.4 Predicting Throughput Stage 

After the training phase has been completed, the machine learning algorithm 
model is obtained with the closest prediction results. Then the throughput is 
predicted with the selected machine learning algorithm model using the 
throughput history with previous data that has been recorded in the dataset stage. 
For example, there are several machine learning algorithms were used, namely 
AR, MA, ARIMA, LSTM and CNN. The five machine learning algorithm models 
are trained and predicted throughput. Then, the algorithm model with the best 
evaluation result value is used in the prediction stage. Finally, the predicted 
throughput data can be used for further network management. One such treatment 
is reported in [9], which used throughput prediction results to adaptively control 
video bitrates. 

3 Experimental Setup and Result 

This section presents the setup of the experiment and the experimental result. The 
experiment started with the throughput prediction process: data collection, 
preprocessing data, data training, and data prediction. Below, the results are 
analyzed and discussed.  

3.1 System Implementation  

For this research, we used the IoT concept for the proposed system architecture. 
In the experiment, the IoT system consisted of the following components: one 
ESP32-CAM and one ESP-EYE, a node with sensing capability for taking 
multimedia data, a router to give access to the internet, and a local server. We 
used a Raspberry Pi model 3 B. We used wireless fidelity (Wi-Fi) for the 
connection between devices. The router connected the node device and the local 
server without modification to that router. 
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Figure 3 Implemented architecture system. 

In this architectural system, several protocols support sending data in IoT 
systems. The protocols developed in [14] were Message Queuing Telemetry 
Transport (MQTT), Constrained Application Protocol (CoAP), Hypertext 
Transfer Protocol (HTTP), and Extensible Messaging and Presence Protocol 
(XMPP). MQTT transport over TCP/IP, with a tree architecture and application 
to message IoT applications with the same architecture and usage as before but 
with CoAP transport via UDP/IP TCP/IP and a client-server architecture were 
then transported by XMPP and HTTP. However, XMPP is suitable for 
decentralized IoT systems, and HTTP is suitable for energy management, 
gateways, and home services. Moreover, [14] compares them by message type, 
constrained network (GPRS, 2G, 3G), low power, and security. According to 
[14], with low power, COAP has excellent value. It had the best values compared 
to the other options with both good and poor values. 

Because of the research paper in [14], data delivery in the proposed architecture 
system research uses the Constrained Application Protocol (CoAP). The reason 
for using this protocol is that CoAP supports data delivery with limited resources. 
The IoT concept with current resources has limited capabilities. It has request and 
response message types. CoAP works on UDP, so it has high-speed device-to-
device communication. It differs from other protocols, like Hypertext Transfer 
Protocol (HTTP), which works on TCP. Here is a demonstration photo of the 
ESP32-CAM and the Raspberry Pi. 
 

 

 

 

 

Figure 4 32-CAM and Raspberry Pi. 
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In Figure 3, there are three scenarios are used for throughput prediction. This 
scenario can be called Scenario A, Scenario B, and Scenario C. The research used 
five ESPs that can be seen in the system architecture, namely one ESP-EYE and 
four ESP32-CAMs. However, the throughput prediction stage uses datasets from 
the three main ESPs in this architecture system, along with information from the 
scenarios in Table 1. In utilizing the demonstration scenario, the collected dataset 
encompasses the size of image files in bits, the initial transmission time, and the 
successful transmission time. 

Table 1 Scenario demonstration. 

Scenario Description 
A ESP-EYE is a sensor node as a sink that is directly connected to the router 
B ESP32-CAM 1 is a sensor node that is connected to one hub 
C ESP32-CAM 2 is a sensor node connected to two hubs 

3.2 Throughput Prediction  

Throughput is the number of bits per second received by the receiver. This 
throughput is one of the critical parameters for assessing the service quality of 
wireless sensor networks [15]. The results of the throughput prediction data assist 
the next step in dynamically selecting the appropriate multimedia bitrate. This 
throughput prediction can help ensure the QoE, but throughput prediction alone 
is not enough. It is not enough because knowing how to predict throughput is only 
the initial stage of being able to choose the best strategy in network management 
by adjusting network speed conditions. For example, we can choose a video 
bitrate by adjusting network speed based on the results of throughput prediction; 
the better the network conditions, the higher the video bitrate sent. With this 
strategy, QoE can increase because buffering is avoided. 

We set up the components before beginning the throughput prediction process. 
The IoT system consisted of the following components: one ESP32-CAM and 
one ESP-EYE, a node with sensing capability for taking multimedia data, a router 
to give access to the internet, and a local server. For the data programming built 
with CoAP, in the ESP-32, we used ESP IDF [16], and in the Raspberry Pi, we 
used AioCoAP [17]. The server program ran with the Raspbian operating system. 
The camera nodes took the multimedia data and sent it regularly to the server, 
and then the server received the multimedia data. 

In the process of throughput prediction, this work starts with data collection. Data 
collection is the next step in the delivery of data from the ESP32-Cam and 
Raspberry Pi. The system should be configured as described in Figure 3 in order 
to collect this dataset. The amount of data sent by each transmission made by the 
sensor node is then recorded, along with the initial and last transmissions. The 
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amount of data divided by the delivery duration can be used to get the delivery 
time duration and throughput value. The dataset is divided into two parts: training 
data and test data. After the dataset is ready, the next step is preprocessing the 
data. Data preprocessing prepares the dataset for the machine learning process. 
The data can be cleaned, normalized, or reduced. The next step is training and 
predicting the data when it is ready. Training and predicting the data is the process 
of getting the prediction result. The last step is evaluating the prediction result to 
know the best prediction from all data used. 

Based on the identified characteristics, conditions, and needs, the proposed 
throughput prediction algorithm in this study encompasses ARIMA, AR, MA, 
LSTM, and CNN. This assertion is substantiated by the performance results 
documented in [7], wherein it is revealed that in the time series forecasting model, 
ARIMA yielded satisfactory outcomes and can be recognized as a suitable 
algorithm for time-series datasets. Furthermore, [8] concluded that the LSTM 
model demonstrated robustness against dynamic fluctuations, resulting in the 
highest prediction accuracy. Lastly, for comparative purposes, CNN was 
employed because in the paper [13], this algorithm was applied for the analysis 
and forecasting of time-series data alongside the utilization of ARIMA and 
LSTM.  

This research predicted throughput with a time series dataset. There are many 
ways to predict time-series datasets. To predict time series data, it is generally 
recommended to use an autoregressive integrated moving average (ARIMA) and 
essential models such as autoregressive (AR), moving average (MA), and long-
short-term memory (LSTM). Besides that, another deep learning algorithm, a 
convolutional neural network (CNN), was also used in this research. We utilized 
the Autoregressive (AR) algorithm model to forecast throughput data based on a 
dataset comprising 5,050 training data and 500 testing data. The data was 
transmitted from the ESP32-Cam to the Raspberry Pi through a Wi-Fi connection. 

3.2.1 Autoregressive (AR) 

The autoregressive algorithm (AR) model is a model that utilizes the dependence 
between an observation and several observations that are left behind [18]. The 
equation for this AR model is shown below. 

 �� = Φ����� + Φ����� + ⋯+Φ����� (1) 

Where: 
yt = lag term 

φ = coefficient of the lag term 
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Visualization results of our throughput predictions use AR algorithms are shown 
in Figures 5 to 7. The three figures demonstrate that although the anticipated 
value cannot be predicted with accuracy, it nevertheless complies with the trend 
that represents the real data. 

 

Figure 5 Autoregressive model performance on test set Scenario A. 

 

Figure 6 Autoregressive model performance on test set Scenario B. 

 

Figure 7 Autoregressive model performance on test set Scenario C. 

3.2.2 Moving Average (MA) 

The moving average (MA) algorithm model is a model that predicts the next data 
based on the previous data so that the data has a dependency between the 
observed values and the consecutive error values [18]. 

 �� = θ��� + ������ + ⋯+ ������ (2) 

 

 

 



 Prediction Framework in Multimedia Internet of Things 347 
 
 

Where: 
yt = moving average process 

θ = constants 

et = error terms 

Figures 8 to 10 show visualization results from our throughput prediction using a 
moving average model.  

 

Figure 8 Moving average model performance on test set Scenario A. 

 

 

Figure 9 Moving average model performance on test set Scenario B. 

 

 

Figure 10 Moving average model performance on test set Scenario C. 
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3.2.3 Autoregressive Integrated Moving Average (ARIMA) 

Autoregressive Integrated Moving Average (ARIMA) is a model that utilizes the 
forecasting time of pre-existing values [19]. ARIMA is a general model of the 
autoregressive moving average (ARMA) model. This algorithm model combines 
the processes of the AR and MA models, then creates a composite model from 
the time series. Usually, ARIMA is defined in three terms, namely p, d, and q, to 
capture the critical elements of the model [18]. P is the autoregressive process, d 
is the differentiation process, and q is the moving average process. It is a form 
with order (p, q) on the ARIMA model. 

 �� = � + ∑ Φ����� +∈�+
�
��� ∑ ������

�
���  (3) 

where: 

φi ≠ 0 

θi ≠ 0 

σ > 0 

p = AR orders 

q = MA orders 

Figures 11 to 13 show visualization result from our throughput prediction use 
ARIMA algorithms. The same as with AR, three figures demonstrate that 
although the anticipated value cannot be predicted with accuracy, it nonetheless 
complies with the trend that represents the real data. 

 

Figure 11 ARIMA model performance on test set Scenario A.  
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Figure 12 ARIMA model performance on test set Scenario B. 

 

Figure 13 ARIMA model performance on test set Scenario C. 

3.2.4 Long-Short Term Memory (LSTM) 

This long-short-term memory (LSTM) model is an upgrade from the existing 
recurrent neural network (RNN) algorithm. RNN needs to be improved. RNN has 
a weakness in learning because it is long-term [18]. The upgrade of the LSTM 
creates a model that can remember data or information for a longer period of time. 
This upgrade allows the model to read, write, and delete data and information. 
LSTM generally has three gates: forget, input, and output. The function of the 
forget gate is to set the required or deleted information. The input gate determines 
the information that enters the memory, and the last output gate considers the 
value of the output result [18]. 

In this research, using the LSTM algorithm model, we predicted the throughput 
of data delivery from the ESP32-Cam to the Raspberry Pi using a Wi-Fi 
connection as shown in Figure 3. Figure 14, Figure 15, and Figure 16 show 
visualization results from our throughput prediction. The three figures show that 
the predictions had constant values, did not fluctuate, and still corresponded to 
the actual data trends. 
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Figure 14 LSTM model performance on test set Scenario A.  

 

Figure 15 LSTM model performance on test set Scenario B. 

 

Figure 16 LSTM model performance on test set Scenario C. 

3.2.5 Convolutional Neural Network (CNN) 

The CNN method is a deep learning method that can carry out the learning 
process. CNN consists of four layers: a convolutional layer, a pooling, being 
layer, a fully connected layer, and a striding layer. This convolution layer embeds 
a filter so that it helps perform convolution operations by looking at the output 
and its dimensions. Pooling helps reduce the spatial size of the representation 
gradually. The fully connected layer is a valuable layer for connecting inputs and 
all neurons; it can activate the sigmoid. Finally, some strides help to show the 
number of pixels that pass through each execution [13]. From the three figures, 
the throughput predictions were still inaccurate and below the actual values, 
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especially in Scenario C, as can be seen from the three figures (Figures 17 to 19), 
but they could be made to follow the actual data trend. 

The model is defined as a sequential model, representing a linear sequence of 
layers. The first layer is the Conv1D layer with 16 filters, a kernel size of 3, and 
a ReLU activation function. The second layer is the MaxPooling1D layer with a 
pool size of 2. Next, there is the Flattening layer, utilized to flatten the output 
from the previous layer into a one-dimensional vector. The fourth layer is the 
Dense layer with 10 units and ReLU activation. The fifth layer is the Dense layer 
with the number of units matching n_outputs and without activation function 
(linear). This design is intended to effectively extract and comprehend features 
from the input data for prediction or analysis purposes. 

 

Figure 17 CNN model performance on test Scenario A.  

 

Figure 18 CNN model performance on test set ESP 2. 

 

 

Figure 19 CNN model performance on test set ESP 3. 
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3.3 Evaluation 

From throughput prediction results, there are evaluations for assigning value to 
the actual and prediction data. In this research, we used three performance metrics 
to analyze the results of the throughput prediction. These three performance-
metrics were mean absolute error (MAE), root mean square error (RMSE), and 
mean absolute percentage error (MAPE). The MAE calculates the typical value 
difference between the prediction and the actual value in the final form. The range 
of values for this MAE is 0 to infinity. An inaccuracy in the actual value is 
represented by MAE. The forecasting model used performs better the lower the 
MAE value. If the outliers are evidence of faulty data, use MAE. If the test set 
additionally contains a lot of outliers, the model’s performance will be subpar 
[20]. The formula for MAE is given in Eq. (4), where n is the number of datasets, 
P denotes the prediction, and A denotes the actual value [21]. 

 MAE =
�

�
∑ |P� − A�|
�
���  (4) 

The root mean square error (RMSE) compares the predicted result to the actual 
value. The smaller the RMSE value, the more accurate the forecast. A fitted linear 
regression model displays a value of 0 when the model has perfect data [7]. Eq. 
(5) presents the formula for RMSE, where n denotes several datasets, ŷ denotes 
the prediction, and denotes the actual value. 

 RMSE = �
�

�
∑ (ŷ� − ��)

��
���  (5) 

The mean absolute precentage error (MAPE) is a percentage of the average 
absolute value of the forecasting error. MAPE has a very intuitive interpretation 
in terms of relative error. The smaller the MAPE value, the more accurate the 
forecasting model is implemented. The equation for calculating the MAPE value 
is shown in the following equation [20]. 

 MAPE =
���%

�
∑ �

����

��
��

���  (6) 

where: 
n = number of datasets  
y = average value 
x = predicted value 

This research used five algorithm models: AR, MA, ARIMA, LSTM, and CNN. 
Moreover, from the results, we evaluated every result with three performance 
metrics: MAE, RMSE, and MAPE. MAE serves as a performance metric by 
calculating the average difference between the forecasted and the actual values in 
their absolute form. It ranges from 0 to infinity, with lower MAE values 
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indicating better performance of the applied forecasting model. MAE specifically 
measures errors in the actual values and is particularly useful when outliers 
represent data anomalies [7]. On the other hand, the RMSE evaluates the residuals 
between the predicted and the actual results, providing insights into the model’s 
overall performance. A smaller RMSE value signifies a more accurate forecast 
[20]. Meanwhile, the MAPE represents the percentage of the average absolute 
value of the forecasting errors. MAPE offers an intuitive interpretation in terms 
of relative error, where a decreased MAPE value indicates enhanced accuracy in 
the implemented forecasting model [7]. 

Table 2 Summary of throughput prediction evaluation. 

ESP Model MAE RMSE MAPE 

A 

AR  13277.624 19491.594 1.034 
MA 14751.351 22853.587 1.301 

ARIMA 16395.375 29056.982 7.814 
LSTM 11518.082 15942.046 1.403 
CNN 17744.811 24095.251 2.514 

B 

AR  9902.120 14201.272 8.962 

MA 11237.650 17399.863 1.149 
ARIMA 10924.456 16003.699 1.130 
LSTM 9740.015 12506.501 1.729 

CNN 8974.625 12919.303 7.393 

C 

AR  14015.330 22171.242 1.618 

MA 15748.343 25410.757 1.943 
ARIMA 18631.169 50125.583 1.247 

LSTM 12846.562 18249.030 1.919 
CNN 21853.083 36403.502 2.524 

The bold type in Table 2 is the best evaluation value compared to the values of 
the other algorithms. LSTM had the best value in the MAE and RMSE 
evaluations in Scenarios A and C, while in Scenario B it was only for the RMSE 
values. In addition, in terms of MAPE scores, ARIMA had the best evaluation 
scores in Scenarios B and C, while Scenario A it was not ARIMA but AR. We 
can conclude that LSTM was the optimal algorithm in this study, followed by 
ARIMA. In many instances of this throughput prediction experiment, LSTM was 
appropriate for most of the data. In addition, CNN was capable of predicting 
throughput, which is the time series data, but this is insufficient. Utilizing 
recurrent neural networks (RNN) and their development, such as LSTM, provides 
a more accurate prediction of throughput for time series data. Consequently, the 
next step for this research is to utilize the LSTM throughput prediction results to 
assist in dynamically selecting the optimal bitrate for multimedia. 
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4 Conclusions 

The purpose of this paper was to create a framework for predicting throughput, 
especially for WSN and multimedia IoT. In this paper, we present WSN-IoT 
Forecast: Wireless Sensor Network Throughput Prediction Framework in 
Multimedia Internet of Things, a machine learning framework that makes use of 
past throughput data in wireless sensor networks (WSN) and the Internet of 
Things (IoT) from an environmental perspective. We utilized the autoregressive 
(AR), moving average (MA), ARIMA, LSTM, and CNN. According to the results 
of the evaluation, throughput prediction was acceptable in terms of mean absolute 
percentage error, with low but acceptable accuracy. For a time breakdown of one 
second, the average absolute percentage error for all investigated scenarios fell 
between 1 and 8 percent. The next challenge is utilizing the predicted results for 
adaptive bitrate control in real-time. 

References 

[1] Saad, W., Bennis, M. & Chen, M., A Vision of 6G Wireless Systems: 
Applications, Trends, Technologies, and Open Research Problems, IEEE 
Network, pp. 134-142, 2020.  

[2] Jamalipour, A., Wireless Sensor Network: A Networking Perspective, 
Hoboken, New Jersey: John Wiley & Sons, Inc., 2009.  

[3] Förster, A., Introduction to Wireless Sensor Networks, New Jersey: John 
Wiley & Sons, 2016.  

[4] Krawiec, P. & Sosnowski, M., DASCo: Dynamic Adaptive Streaming over 
CoAP, Multimedia Tools and Applications, pp. 4641-4660, 2018.  

[5] Bouraqia, K., Sabir, E., Sadik M. & Ladid, L., Quality of Experience for 
Streaming Services: Measurements, Challenges and Insights, IEEE 
Access, 8, pp. 13341-13361, 2020.  

[6] Koubâa, A., Severino, R., Alves, M. & Tovar, E., Improving Quality-of-
Service in Wireless Sensor Networks by Mitigating Hidden-Node 
Collisions, IEEE Transactions on Industrial Informatics, 5(3), pp. 299-313, 
2009.  

[7] Elsherbiny, H., Abbas, H.M., Abou-zeid, H., Hassanein H.S. & Noureldin, 
A., 4G LTE Network Throughput Modelling and Prediction,  IEEE Global 
Communications Conference, Canada, 2020.  

[8] Na, H., Shin, Y., Lee, D. & Lee, J., LSTM-Based Throughput Prediction 
for LTE Networks, ICT Express, 2021.  

[9] Wei, B., Song, H., Wang, S., Kanai, K. & Katto, J., Evaluation of 
Throughput Prediction for Adaptive Bitrate Control using Trace-Based 
Emulation, IEEE Access, 7, pp. 51346-51356, 2019.  



 Prediction Framework in Multimedia Internet of Things 355 
 
 

[10] Wang, Q., Zhao, Y., Wang, W., Minoli, D., Sohraby, K., Zhu, H. & 
Occhiogrosso, B., Multimedia IoT Systems and Applications, 2017 Global 
Internet of Things Summit (GIoTS), 2017.  

[11] Jurado-Lasso, F.F., Marchegiani, L., Jurado, J.F., Abu-Mahfouz, A.M. & 
Fafoutis, X., A Survey on Machine Learning Software-Defined Wireless 
Sensor Networks (ML-SDWSNs): Current Status and Major Challenges, 
IEEE Access, 10, pp. 23560-23592, 2022.  

[12] Siami-Namini, S., Tavakoli, N. & Siami-Namini, A., A Comparison of 
ARIMA and LSTM in Forecasting Time Series, in 17th IEEE International 
Conference on Machine Learning and Applications, 2018.  

[13] Dwivedi, S.A., Attry, A., Parekh, D. & Singla, K., Analysis and 
Forecasting of Time-Series Data using SARIMA, CNN and LSTM, 
International Conference on Computing, Communication, and Intelligent 
Systems (ICCCIS), 2021.  

[14] Nikolov, N., Research of MQTT, CoAP, HTTP and XMPP IoT 
Communication protocols for Embedded Systems, Proc. XXIX 
International Scientific Conference Electronics ET2020, Sozopol, 
Bulgaria, 2020.  

[15] Vatti, R. & Gaikwad, A.N., Throughput Improvement of Wireless 
Networks using Collision Control Approach, SRATE-International Journal 
of Research in Application Technologies, 6(2), pp. 15-23, 2016.  

[16] Hoang, T.N., Van S.T. & Nguyen, B., ESP-NOW based Decentralized Low 
Cost Voice Communication Systems for Buildings, International 
Symposium on Electrical and Electronics Engineering (ISEE), Ho Chi 
Minh City, Vietnam, 2019.  

[17] Viola, F., Turchet, L., Antoniazzi, F. & Fazekas, G., C Minor: A Semantic 
Publish/Subscribe Broker for the Internet of Musical Things, 23rd 

Conference of Open Innovations Association (FRUCT), Bologna, Italy, 
2018.  

[18] Verma, P., Reddy, S.V., Ragha D.L. & Datta, D.D., Comparison of Time-
Series Forecasting Models, International Conference on Intelligent 
Technologies (CONIT) , Karnataka, India, 2021.  

[19] Siami-Namini, S., Travakoli, N. & Namin, A.S., A Comparative Analysis 
of Forecasting Financial Time Series using ARIMA, LSTM and BiLSTM, 
arXiv, 2019.  

[20] Chicco, D., Warrens, M.J. & Jurman, G., The Coefficient of Determination 
R-Squared Is More Informative Than SMAPE, MAE, MAPE MSE and 
RMSE in Regression Analysis Evaluation, Peerj Computer Science, 2021.  

[21] Khan, M. & Noor, S., Performance Analysis of Regression-Machine 
Learning Algorithms for Predication of Runoff Time, Agrotechnology, 
8(1), pp. 1-12, 2019.  


