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Gastrointestinal (GI) cancers constitute more than 33% of new cancer cases

worldwide and pose a considerable burden on public health. There exists a

growing body of evidence that has systematically recorded an upward trajectory

in GI malignancies within the last 5 to 10 years, thus presenting a formidable

menace to the health of the human population. The perturbations in GI

microbiota may have a noteworthy influence on the advancement of GI

cancers; however, the precise mechanisms behind this association are still not

comprehensively understood. Some bacteria have been observed to support

cancer development, while others seem to provide a safeguard against it. Recent

studies have indicated that alterations in the composition and abundance of

microbiomes could be associated with the progression of various GI cancers,

such as colorectal, gastric, hepatic, and esophageal cancers. Within this

comprehensive analysis, we examine the significance of microbiomes,

particularly those located in the intestines, in GI cancers. Furthermore, we

explore the impact of microbiomes on various treatment modalities for GI

cancer, including chemotherapy, immunotherapy, and radiotherapy.

Additionally, we delve into the intricate mechanisms through which intestinal

microbes influence the efficacy of GI cancer treatments.
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GRAPHICAL ABSTRACT

Microbiomes in Gastrointestinal Cancers.
Introduction

Gastrointestinal (GI) malignancies constitute approximately

one-third of all newly diagnosed cancer cases globally and pose a

significant public health challenge. Colorectal cancer (CRC), Gastric

cancer (GC), liver cancer, and esophageal cancer are the most

commonly observed GI malignancies across the globe (1, 2). Since

GI malignancies have been on the rise over the past 5 to 10 years,

there is a severe health risk to people due to this trend. The past

decade has witnessed the substantiation of the role played by genetic

and epigenetic factors in the development of cancer. This has been

achieved through the extensive genomic and transcriptome

sequencing endeavors undertaken by multiple multinational

research initiatives (3). According to current studies, 2.7 million

individuals worldwide die from GI cancer yearly, with 4 million

cases diagnosed worldwide (4–6). Although GI cancers display a

diverse array of biological attributes, several shared risk factors have

been discerned. These include pro-tumor genetic mutations,

excessive intake of alcohol, smoking, adherence to the Western

diet, exposure to radioactive stimuli, and disturbance of the GI

microbiota’s homeostasis (7). Furthermore, the disruption of the

typical GI environment has been associated with the onset of GI

malignancies due to the emergence of pro-tumoral fibrosis and the

occurrence of significantly potent local or systemic inflammatory

and immunological reactions (8–10). In addition to these risk

factors, certain disorders are strongly linked to the origin of GI

cancers. For instance, it has been found that GI cancer and diabetes

are related. One of the most used anti-hyperglycemic medications,

metformin, has been demonstrated to lower the incidence rate of GI
Frontiers in Oncology 02
malignancies in diabetic individuals (11, 12). The comprehension of

the role of bacteria in cancer development is significantly restricted

compared to the knowledge we have about viruses causing

oncogenesis. However, it is feasible to consider that gaining a

better understanding of the long-lasting effects of changes in the

composition of the GI microbiota may have the potential to

contribute to the progress of preventive strategies against cancer.

Moreover, bacteria have the potential to indirectly facilitate the

process of carcinogenesis through the alteration of both systemic

and local immune reactions. These immune responses play a crucial

role in progressing GI tract malignancies (13). The GI tract of

humans harbors a vast number of microorganisms that work in

conjunction with the host to uphold both wellness and illness. The

intricate web of interactions between the GI microbiome and the

host gives rise to intimate connections that span various

components of human physiology, such as the metabolic,

immunological, and neuroendocrine systems (14). These creatures

are dynamic and subject to influences from medications, food,

lifestyle, genetics, and the environment (15). Researchers have

discovered that the influence of gut microorganisms extends

beyond the confines of the intestines, affecting a range of

conditions including pancreatic disease and hepatic disease, in

addition to intestinal diseases such as Inflammatory bowel disease

(IBD) and CRC (16). Shortly following the moment of birth, the

microbiota initiates the process of establishing residence within

the GI tract, subsequently maintaining its presence throughout the

entirety of an individual’s lifespan (17). However, it can vary

dynamically in response to nutrition, environmental stresses,

lifestyle choices, antibiotics, and other medications (18).
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Increasing proof suggests that the microbial population residing in

the digestive system holds immense potential to thwart the growth

of cancerous cells while also possessing the ability to enhance the

potency of chemotherapy and immunotherapy treatments (19). The

gut microbiota is accountable for producing short-chain fatty acids

(SCFAs), which bestow advantageous effects on the human body.

These SCFAs are generated through the metabolic breakdown of

dietary fiber, as well as the synthesis of vitamins B and K2.

Additionally, the gut microbiota metabolizes various chemicals,

such as sterols and exogenous substances, while also playing a role

in regulating immunological function (20).

This study aimes to investigate the primary impacts of intestinal

microbiota on the initiation and advancement of GI cancers, along

with the potential utilization of these microorganisms as a

sophisticated approach to discern and manage these ailments, as

expounded upon in this comprehensive analysis.
Microbiome in health and
gastrointestinal cancer

The analysis of the microbial populations found in various human

environments, such as the GI tract, mouth, skin, and vaginal area,

requires applying advanced sequencing techniques that can process

large amounts of data (21). The utilization of sophisticated sequencing

methodologies, encompassing amplicon and shotgun metagenomic

sequencing, has significantly transformed our comprehension of the

humanmicrobiome by delineating the bacteria linked to either optimal

well-being or pathological conditions (22). When the physical

condition of an individual is in a state of good health, the gut

microbiota engages continuously and regularly with the host

organism to sustain a state of balance within the intestines (23).

However, maintaining such balance is challenging since the host’s

genetic makeup and several exogenous variables, including nutritional

consumption and antibiotic usage, have a direct impact on the

microbiome (24–26). Dysbiosis, the alteration in both composition

and functionality within the microbiome, can occur when there is a

persistent disturbance in the stability of the microbial community. This

alteration may cause various disorders, including cancer (27, 28). In a

dysbiotic microbiome, various pathogenic occurrences are

encountered, including a modification in the assortment of

microorganisms, a decrease in beneficial commensals, and the

proliferation of pathobionts. All of these occurrences can impact the

formation of tumors, either in the vicinity of the GI tract or at a more

remote location, such as the pancreas and liver (29, 30). The GI system

harbors the highest abundance of commensal microorganisms among

all the regions of the human body. Variable parts of the digestive

system have varying levels of commensal microbial diversity and

abundance (31). While a multitude of bacteria belonging to the

phyla Firmicutes, Proteobacteria, Actinobacteria, Firmicutes,

Bacteroidetes, and are frequently observed within the gut, certain

bacterial species seem to be confined to specific regions (31, 32).

Each area or organ’s microbial population is related to host

characteristics, including pH, oxygen saturation, bile acids, and

nutritional bioavailability (33, 34).
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The thorough analysis of microbial populations in the host’s

environment has been extensively explained as a result of the rapid

advancements achieved in next-generation high-throughput

sequencing (NGS) (35, 36). Dysbiosis leads to the stimulation of

inflammatory components within the GI mucous membranes,

which encompasses the liberation of nitric oxide (NO), the

presence of oxidative stress, the creation and excretion of pro-

inflammatory cytokines, as well as the activation of cyclooxygenase

2 (COX-2). Dysbiosis also causes microecological alterations (27,

37). The detrimental effects of microbial metabolites on extra-

intestinal organs can manifest in various pathways, such as the

gut-liver axis and the gut-brain axis, thereby impairing their

optimal functioning (38, 39). Dysbiosis is believed to be most

comprehensible when viewed through carcinogenesis ,

representing a continuous divergence of the host microbiota from

a state of harmony and equilibrium that supports and, or upholds

various cancer phenotypes (40, 41). The maintenance of well-

balanced gut microbiota is crucial for promoting a healthy

lifestyle. At the same time, an imbalance in this microbial

community, known as dysbiosis, can lead to inflammatory

consequences that accelerate cancer progression (42).
The role of the microbiome in
colorectal cancer

Despite an increasingly widespread acceptance of colonoscopy

screening, colorectal cancer (CRC) remains the third most

commonly occurring cancer and the primary contributor to

cancer-related deaths in both male and female populations within

the United States (43). In 2019, a forecast indicated that there would

be an estimated 51,020 deaths and approximately 145,600 fresh

instances of CRC. Additionally, while the occurrence and fatality

rate of CRC has experienced a gradual decrease in the past few

decades in individuals aged 65 and above, a distinct trend has

emerged among individuals under 50, for whom conventional

screening methods have not been recommended (44). The

evolution of CRC has been comprehensively examined over

recent decades via migration and prospective cohort studies,

illustrating the significant influence of nutritional and lifestyle

determinants (43). According to estimations, it has been noted

that modifiable risk factors, namely excessive weight or obesity,

excessive alcohol consumption, smoking, high consumption of red

meat, physical inactivity, and inadequate intake of dietary fiber,

whole grains, or other beneficial nutrients, play a significant role in

approximately 50% to 60% of newly reported cases of CRC in the

US (43). The microbiome, which encompasses bacteria, viruses,

fungi, and an array of diverse organisms, possesses the ability to

regulate the condition of well-being, and modifications to it can

contribute to the emergence and progression of ailments. There

exists an increasing corpus of scholarly investigation indicating that

alterations in the constitution of the intestinal microbiota

contribute to the genesis and progression of CRC using the
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impact of environmental factors that pose a risk (45, 46). This could

be the case due to the microbiome’s effect on metabolism and

immune response (47). Hence, manipulating the intestinal

microbial community could potentially serve as a constituent of

strategies aimed at averting CRC (48, 49). Research has

demonstrated discrepancies in the composition of the intestinal

microbiomes between individuals afflicted with CRC and those

deemed healthy (controls). Additionally, certain microbial species

have been identified as exhibiting increased or diminished presence

within the gut microbiomes of CRC patients. Therefore, to improve

screening techniques, alterations in the microbiome can be utilized

as biomarkers in the early detection of CRC (49). The colon is home

to 70% of the human microbiome (50). Individuals who encounter

antibiotics early on exhibit an increased propensity to develop

colorectal adenoma during their later years (51). The microbiota

in the GI tract plays a crucial role in converting the dietary

components into metabolites that can either promote or suppress

the growth of tumors. The development of CRC is subsequently

influenced by these metabolites (52). Over 2000 different bacteria

species are thought to exist in the human gut (53, 54).
Microbes associated with risk of CRC

Fusobacterium nucleatum
According to two separate investigations, tumor specimens had

more Fusobacterium DNA and RNA sequences than non-tumor

ones (55, 56). Similar relationships have been discovered in several

studies, including numerous cohorts of CRC patients worldwide

(57, 58). Fusobacterium nucleatum (F. nucleatum) has been
Frontiers in Oncology 04
associated with more advanced stages of disease, an increased

likelihood of recurrence, and shorter periods of survival for

patients, thus presenting compelling evidence of its potential

causal role in CRC (59) (Figure 1). It is found in 10%–15% of

tumors. Furthermore, F. nucleatum levels in tumor tissue have been

linked to reduced T-cell infiltration, corroborating studies that

claim F. nucleatum inhibits the anti-tumor immune response

(43). F. nucleatum has been linked to distinct clinical and

molecular characteristics in epidemiological investigations

involving individuals with CRC or precancerous lesions. The

aforementioned characteristics encompass the presence of

anatomical positioning on the right side, mutations in the BRAF

gene, and heightened levels of hypermutation alongside

microsatellite instability (58, 60, 61). The described attributes of

serrated neoplasia imply that F. nucleatummight have a part to play

in developing CRC through the serrated pathway. Research has

established a connection between F. nucleatum and the consensus

molecular subtype 1 of CRC (62). This particular subtype is

distinguished by an excessive expression of the immune system

and the presence of microsatellite instability (63–65). More recently,

in paired main tumors and distant metastases from CRC patients,

virtually identical, live Fusobacterium strains were discovered in

similar relative abundances. Fusobacterium thus seems to be a

crucial part of the tumor microenvironment (66).
Bacteroides fragilis
Enterotoxigenic Bacteroides fragilis (ETBF), a significant

pathogen that releases virulence factors to advance CRC,

generates B. fragilis toxin or fragilysin, thereby inciting an adverse
FIGURE 1

Microbes associated with risk of colorectal cancer.
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immune reaction (67) (Figure 1). Colitis characterized by a robust,

selective colonic Stat3 activation and a selective Th17 response was

seen in mice treated with ETBF (68). Notably, a study by Chung

et al. (69) provided more evidence that BFTs focus on the epithelial

cells of the colon to instigate an immune response within the

mucosal lining. This, in turn, triggers a series of inflammatory

reactions that require the activation of IL-17, NF-kB, and Stat3. The

molecular pathways of ETBF-induced adaptive immunity

modification in CRC were further characterized by other

researchers. Geis and colleagues (70) demonstrated that the

presence of regulatory T cells in the local microenvironment

resulted in a decrease in the quantity of IL2, thereby enabling the

proliferation of Th17 cells, which is essential for the promotion of

ETBF-induced CRC. Exosome miR-149-3p produced by colon cells

after ETBF treatment also promotes Th17 differentiation (67).

Consequences of long-term ETBF infection and inflammation

include carcinogenesis. According to an animal study, BFT was

required for the impact of ETBF infection, which increased colonic

inflammation and enhanced AOM/DSS-induced CRC (71). An IL-

17-driven monocytic-MDSC-dominant immunological profile was

shown to be related to ETBF-triggered CRC by Thiele et al. (72),

indicating that ETBF infection encourages MDSC-mediated

immune suppression. B. fragilis emerged as the sole species

consistently exhibiting higher levels in the intestinal microbiomes

of individuals diagnosed with CRC across various geographical

regions. This finding was established through a comprehensive

meta-analysis encompassing four case-control studies that

examined the metagenomes of CRC patients (73).

Escherichia coli
There is growing proof that pks+ Escherichia coli (E. coli) can

produce virulence factors that control the development and

progression of CRC (74) (Figure 1). A cancer-related pathogen

that often infects CRC patients and expresses the polyketide

synthase (pks) gene Colibactin, a hybrid peptide-polyketide

cytotoxin that E. coli produces, induces DNA double-strand

breaks and activates the DNA damage checkpoint mechanism in

eukaryotic cells (75, 76). The involvement of colibactin in CRC has

been shown by recent research. Anaphase bridge development, G2/

M cell cycle stoppage, chromosomal aberration, and instability are

all signs of the DNA damage response that even brief exposure to

pks+ E. coli causes in mammalian epithelial cells (76–78).

Cougnoux and colleagues (79), on the other hand, showed that

acceleration of AOM-DSS-induced CRC by pks+ E. coli is facilitated

by the stimulation of growth factor-secreting senescent cells, which

is achieved through the alteration of p53 SUMOylation.

Consequently, this modification encourages the proliferation of

uninfected cells. Colibactin-producing E. coli also alters the

immunological milieu, decreasing antitumor T-cell response and

causing immunotherapy resistance and their effects on DNA

damage (80).

Peptostreptococcus anaerobius
An anerobic bacteria called Peptostreptococcus >anaerobius (P.

anaerobius) often lives in the mouth cavity. The bacterium P.

anaerobius, which has been recently identified, was observed to
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have a higher occurrence rate among individuals diagnosed with

CRC in comparison to those who were in good health (81, 82)

(Figure 1). This remarkable finding was unearthed by employing

the cutting-edge technique of shotgun metagenomic sequencing on

fecal samples coupled with the exact 16S ribosomal RNA

sequencing method on mucosal samples (83, 84). Subsequent

examinations of functional nature revealed that P. anaerobius

expedited the progression of AOM-induced CRC by augmenting

the synthesis of cholesterol through the activation of TLR2/TLR4

signaling, thereby bolstering the proliferation of CRC cells (85, 86).

Moreover, investigations on the profiling of the microbiome in the

oral cavity have revealed that there are variations in the quantities of

different components of the oral biofilm, including Parvimonas,

Haemophilus, Alloprevotella, Prevotella, Lachnoanaerobaculum,

Streptococcus, and Neisseria, between patients with CRC and

control subjects (87, 88). The development of CRC has been

associated with varying gene expression patterns in the mucosal

surfaces of different bacteria. Notably, inquiries that have examined

samples derived from individuals with colonic neoplasia and

controls have discovered analogous networks of oral bacteria that

exist on both the oral and colonic mucosal surfaces (88).
Modulation of microbiota in CRC

In light of the crucial function that the gut microbiota fulfills in

CRC, extensive investigations have been conducted to unravel the

secrets of regulating gut dysbiosis to avert or combat this ailment

(89). Several tactics have been suggested, such as fecal microbial

transplantation (FMT), dietary changes, and antibiotic treatment.

At present, FMT has demonstrated efficacy in the management of

recurrent Clostridium difficile infection. Nevertheless, the utilization

of FMT in animals remains limited to the prevention and treatment

of CRC (90–94). FMT is only marginally beneficial in a preventative

situation, though. A more likely method of controlling the

microbiota to prevent CRC is dietary intervention. Recent

research has revealed how food and the microbiota interact to

cause CRC (95). For instance, high-fat diet-fed mice showed a

considerable change in the makeup of their intestinal microbial and

reduced gut barrier function, confirming the theory that high fat

causes CRC by encouraging microbial dysbiosis (96). Contrarily,

dietary fiber can promote the proliferation of advantageous

commensals, which produce metabolites such as Short-chain fatty

acids (SCFAs) linked to tumor-suppressing properties (97).

Intriguingly, ETBF-induced CRC in AOM-DSS mouse models

was suppressed by high salt diets, suggesting that the effect of diet

may depend on the situation (98, 99).
Effect of microbiota on cancer therapy
in CRC

Current research suggests that the makeup of microorganisms

in the GI system, referred to as the intestinal microbiome, can

impact the body’s response to different cancer therapies, including

immune checkpoint blockade (ICB) therapy and chemotherapy.
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The study involved comparing samples of rectal cancer that were

locally advanced, with and without treatment for F. nucleatum. The

results showed that F. nucleatum persistence after neoadjuvant

chemoradiotherapy (nCRT) is connected to increased recurrence

rates and the inhibition of immune cytotoxicity (100). Time and

time again, numerous studies have discovered that F. nucleatum

was more commonly present in patients with CRC who experienced

a recurrence following chemotherapy (101). Additionally, it was

observed that F. nucleatum targeted microRNAs, as well as the

innate immunological signaling pathways TLR4 and MYD88, to

stimulate the defense autophagy pathway and counteract the

response to chemotherapy (102, 103). These findings imply that

pathogenic microorganisms may not only influence colorectal

carcinogenesis but also enhance treatment resistance (104).

Contrarily, much research has also surfaced, demonstrating that

gut commensal bacteria can enhance ICB treatment by activating

antitumor T cells (105–107).
The role of the microbiome in
gastric cancer

Gastric cancer (GC) holds a prominent position as the fourth

leading contributor to cancer-related mortality globally.

Furthermore, it also ranks as the fifth most commonly detected

form of cancer (108). Male rates are two times higher than female

rates. Eastern Asia has the highest incidence rates, approximately

26,000 fresh instances and 11,000 fatalities from GC manifest

annually within the US. The overall 5-year survival rate for GC is

considerably low, standing at 32.4%. This is probably because, in the

United States, up to 62% of instances of GC are diagnosed at late

stages, which are linked to lower overall survival rates than localized

illness (109). GC arises as a result of a multifaceted interplay

involving the genetic composition of the host, various

environmental factors (e.g., alcohol consumption, smoking,

excessive intake of salt and meat, and inadequate consumption of

vegetables and fruits), as well as microbial elements (e.g., the

presence of Helicobacter pylori (H. pylori) infection and the

composition of the intestinal microbiota). The persistent

activation of the immune system resulting from the intestinal

microbiota of the host has been associated with long-term

inflammation and altered interactions between the host’s

epithelium and microorganisms, which have been associated with

GC (110).
Microbiota in the healthy, non-
neoplastic stomach

The standard oxyntic (corpus) region of the human stomach,

characterized by a low pH and an acidic milieu, is a barrier against

the proliferation of commensal organisms and potentially

detrimental pathogens originating from the upper and lower GI

tracts. These regions serve as the primary abode for the vast

majority of the microorganisms that comprise the body’s

microbiota. These microorganisms are primarily found in the
Frontiers in Oncology 06
large and small intestines, as well as the oral cavity (111). The

false conclusion was reached due to several factors: the inadequate

achievement in isolating and cultivating gastric microbiota, the

absence of rapid and non-invasive diagnostic tests, and the

emergence of microarray and next-generation sequencing

technology, which have focused on the bacterial 16S ribosomal

RNA (16S rRNA) as the primary target for accurate taxonomy and

phylogeny identifications (112).
The prime pathogen: H. pylori

In 1982, Marshall and Warren discovered the significant

revelation that H. pylori was the underlying factor responsible for

both peptic ulcers and gastritis, thereby drawing attention to the

possibility of stomach infection leading to cancer development

(113). This particular microorganism, after recent discovery, has

been categorized as a type I carcinogen and is projected to have an

impact on over 50% of the global populace. In a tiny proportion of

the afflicted population (2%), this infection results in a predictable

step-by-step pattern of illness progression that, if discovered in

time, can be reversed (114). The CagA protein, one of the cag

pathogenicity islands, is a mechanism through which H. pylori

infection can cause cancer (115, 116). Depending on the

modifications after translation, CagA is initially introduced into

the cell through the Type IV secretion system. Subsequently, it

assumes a pathogenic role by stimulating the activation of SHP2,

Abl, or Src kinases within the enclosure of GC (114). The EPIYA

motif, which is distinguished by the existence of residues such as

proline, isoleucine, glutamate, tyrosine, and alanine, functions as

the site for phosphorylation within the CagA protein and may

display discrepancies depending on the particular strain of H. pylori

(117, 118). In addition, H. pylori can generate peptidoglycan within

the cellular environment of the host, thereby augmenting the

synthesis of IL-8 and cox, alongside other pro-inflammatory

cytokines (119, 120). Consequently, this leads to the persistence

of chronic inflammation and ultimately facilitates the emergence of

cancer. It has been additionally established that H. pylori releases

VacA toxin. This substance can potentially diminish T-cell

responses and facilitate the formation of lesions with minimal

opposition from the immune system (114, 121). Today, H. pylori

may be detected via a quick urease test, a polymerase chain reaction

test, a histological study of biopsy specimens, and a serological test.

Infection with H. pylori typically develops in childhood and persists

throughout the host ’s life without antibiotic therapy.

The transmission of bacteria can occur through direct contact

between individuals, either through oral-oral or fecal-oral

pathways (122). H. pylori is believed to persistently inhabit

approximately half of the global populace, with approximately

15% of individuals afflicted by this pathogen subsequently

progressing to the development of gastric ulcers (123). H. pylori

employs flagella to facilitate its entry into the gastric mucosa,

seeking refuge from the stomach’s highly acidic milieu. It is

essential to acknowledge that a substantial percentage, surpassing

20%, of H. pylori variants adhere to the exterior of gastric epithelial

cells (122). The ability of H. pylori to securely attach to the gastric
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epithelial cells is facilitated by the implementation of adhesion

molecules, including the outer inflammatory protein A (OipA),

sialic acid-binding adhesin (SabA), and adherence-associated

lipoproteins (AlpA/B) (124).
Dysbiosis of Non-H. Pylori microbiota in
gastric cancer

For many years, H. pylori has been thought of as the

predominant, if not the only, bacteria that can live in the

stomach’s acid environment and encourage gastric carcinogenesis

(111). However, new data from 16SrRNA sequencing showed that

non-H. pylori strains co-occurred in bothH. pylori + andH. pylori -

persons with GC (125). Additionally, accumulating evidence

indicates that the term “dysbiosis” best describes how the

microbiome gradually changes throughout the development of

GC (126, 127).
Microbiota in prevention and therapy of
GC: from mice to patients

Probiotics, traditionally limited to their use as food additives

(such as in yogurt), have been revolutionized by advanced methods

like fecal microbiota transplantation (FMT). These techniques have

introduced the concept of therapeutically restoring eubiotics in GI

illnesses, thereby transforming the field entirely (128). However,

there hasn’t been any research done yet on the treatment or

prevention of GC in humans. Notably, an international expert

council has questioned FMT practices due to inconsistent results

and the need for standardization and safety (129, 130).
Probiotics: prevention of GC

Proton pump inhibitors (PPIs) are widely used, which has

increased interest in how they may interact with the stomach

flora. PPI use over an extended period decreases stomach acid

output, encouraging bacterial proliferation because of increased pH

brought on by H. pylori. PPIs thus have a significant influence on

the variety and abundance of bacteria (131–133). For instance,

significant levels of Bifidobacteriaceae from the oral cavity

(Bifidobacterium dentium, Scardovia inopinata, and Parascardovia

denticolens) were found in human stomachs with hypochlorhydria

in gastritis patients on omeprazole (134, 135). PPIs also boost the

number of organisms that may colonize the mouth, such as

Clostridiales , Streptophyta , Veillonella , Fusobacterium ,

Leptotrichia , Oribacterium , Porphyromonas , Prevotella ,

Capnocytophaga, Granulicatella, Campylobacter, and Bulleidia

(133, 136). Nonsteroidal anti-inflammatory drugs (NSAIDs) and

PPIs can have adverse side effects on the GI mucosa, although

taking probiotic strains along with them might lessen these effects.

Bifidobacterium, as an exemplification, safeguards mice from the

occurrence of stomach ulcers caused by aspirin, while Lactobacillus

plantarum, derived from green tea, has curative properties against
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gastric ulcers induced by alcohol (137–139). In mice given the PPIs

rabeprazole or vonoprazan, oral Lactobacillus johnsonii

supplementation reduced indomethacin-induced minor intestine

damage (140).
Antibiotics: eradication of H. pylori

Large-scale clinical trials and field investigations have provided

substantial evidence in favor of the cancer-preventive effects of H.

pylori eradication. However, the emergence of antibiotic resistance

poses a significant challenge, as does the disturbance of the gut

microbiota and the impact of H. pylori on various other disease

states, including asthma and esophageal cancer (141). Various

microorganisms linked to stomach illness were found in a recent

randomized controlled clinical investigation one year after H. pylori

elimination (142). Probiotic Roseburia, Faecalibacterium

prausnitzii , and Sphingomonas were decreased, whereas

Streptococcus anginosus, Acinetobacter lwoffii, and Ralstonia were

enriched. Also linked to chronic gastritis were oral bacteria

(Streptococcus, Peptostreptococcus, Prevotella, Rothia, Parvimonas,

Granulicatella). Other researchers who conducted endoscopic

ablation of early GC in individuals experiencing a deficiency of

beneficial microorganisms, such as Ralstonia, Faecalibacterium,

Blautia, Methylobacterium, and Megamonas, observed a

prolonged presence of dysbiosis in patients after the eradication

of H. pylori (143, 144). The restoration of beneficial GI microbiota,

such as Bifidobacterium, Lactobacillus, Lachnoclostridium, and

Blautia, has been observed in young asymptomatic individuals

following the eradication of H. pylori. Additionally, the presence

of pathogenic Alistipes has been found to decrease (145, 146).
The role of the microbiome in
liver cancer

Liver cancer is the primary reason for cancer deaths, and its

prevalence is rising yearly (147). About 90% of initial liver

malignancies are hepatocellular carcinomas (HCC), a significant

worldwide health issue (148). Several factors increase the risk of

HCC, including chronic hepatitis B and C infections, alcoholism,

metabolic liver disease (particularly nonalcoholic fatty liver disease),

and exposure to food toxins like aristolochic acid and aflatoxins

(149). The World Health Organisation predicts that by 2030, this

illness will claim the lives of more than a million individuals (150).

Sorafenib, an inhibitor of multiple kinases that has received

approval for the management of hepatic carcinoma, occupies the

position of primary therapeutic modality for advanced HCC. It has

been shown to improve overall survival significantly, but it cannot

stop the progression of the disease because of the emergence of

resistance to antiproliferative therapies (151). The early detection

and treatment of HCC contribute to the enhancement of its

prognosis, which is also observed in the majority of disease

processes. The most optimal opportunity to detect a medical

condition at an early stage is by closely monitoring individuals

with a heightened likelihood of developing the disease. This group
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includes both those who have cirrhosis of any kind and those who

carry the hepatitis B virus (152). According to the 2012 NCCN

recommendations, individuals at a heightened risk should undergo

hepatic ultrasonography and AFP testing on a semiannual to annual

basis. Per the 2012 recommendations of the National

Comprehensive Cancer Network (NCCN), individuals classified

as high-risk should undergo hepatic ultrasonography and AFP

testing every six to twelve months (152, 153). The correlation

between the presence of microorganisms causing infection and

the onset of cancer has been recognized for a significant duration.

Among the various mechanisms that contribute to this association,

the chronic inflammation induced by infection is considered to be

an important causative factor. Emerging evidence indicates that the

resulting gut dysbiosis, characterized by an imbalanced state of

intestinal microbial composition linked to illness, is responsible for

the carcinogenic implications of these microbial stimuli.

Consequently, this dysbiosis triggers chronic inflammation and,

ultimately, the development of cancer (154). However, it is

imperative to acknowledge that not all microorganisms are

harmful. A plethora of commensal bacteria have a crucial

function in fostering the development of the host’s immune

system (155, 156). The host’s state of health is influenced by the

constituent member types (pathogenic or commensal) and

abundance arrangement (dysbiotic or eubiotic) of the intestinal

microbial. Numerous investigations have effectively highlighted the

crucial functions that gut bacteria play in the development of HCC

(154, 157). The bidirectional interplay between the GI tract and the

hepatic organ transpires via the portal vein, a conduit that expedites

the passage of diverse entities originating from the gastrointestinal

system, including nourishing compounds, metabolic byproducts of

microorganisms, and constituents of said microorganisms, to the

hepatic entity (158, 159). Once in the bile duct, these substances go

from the liver to the gut. As a result of this enterohepatic

circulation, the liver is constantly exposed to substances that

originate from the gut (160). Furthermore, the association linking

the gut and the liver, commonly called the “gut-liver axis,” has

garnered increasing attention from researchers due to its pivotal

role in preserving liver homeostasis and averting the onset of

ailments (161, 162). One common finding in several liver illnesses

is that tight connections between adjacent intestinal epithelial cells

are impaired with increasing intestinal permeability, indicating that

substances coming from the gut have an impact on liver function

(160, 163). Furthermore, microbial dysbiosis in the lower GI tract

and small intestinal bacterial overgrowth (SIBO) are linked to liver

injury (164, 165). This finding implies that the bile produced by a

healthy liver, along with other liver-derived compounds,

contributes to the probiotic status of the gut microbiota (165).

The liver is commonly perceived as an organ devoid of

immunological function, instead playing a pivotal role in various

metabolic processes, energy source storage, and detoxification (166,

167). The organ can also be perceived as a highly responsive

component of the immune system, serving as a dwelling place for

various immune cells such as Kupfer cells, natural killer (NK)/NKT

cells, and T and B lymphocytes. Additionally, it harbors stromal

cells such as liver sinusoidal endothelial cells (LSECs) and hepatic

stellate cells (HSCs), which possess the ability to release cytokines
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and various other substances that can interact with immune

cells (160).
Hepatitis viral infection and
gut microbiome

Hepatitis is a liver inflammation that can either go away

independently or progress into a dangerous illness that causes

cirrhosis or HCC. Hepatitis B and C virus infections typically

result in chronic hepatitis, and viral infections are the primary

cause of hepatitis worldwide (168). Both viruses cause host immune

responses for clearance after infecting hepatocytes. To stop viral

replication, nucleoside (or nucleotide) analogs (NAs) are frequently

used to treat viral hepatitis. In addition, the mature gut microbiota

is necessary for quick HBV clearance via efficient host immune

boosting (154). The gut microbiota of individuals with cirrhosis

caused by HBV exhibited notable distinctions compared to the gut

microbiota of healthy control subjects, as indicated by a study

conducted using advanced next-generation sequencing technology

(169, 170). Specifically, certain bacterial species such as Clostridium,

Prevotella, Veillonella, and Streptococcus displayed higher

prevalence levels, whereas Alistipes and Eubacterium were found

to be less frequently observed (171). The presence of oral

microorganisms in higher quantities indicates that the transfer of

microbes from the mouth to the gut is a prevailing occurrence

among individuals with cirrhosis (171). The diversity of

microorganisms in the GI tract, assessed using the Shannon and

Simpson indices, declined in individuals with cirrhosis and

recovered to a level comparable to that of healthy individuals in

patients with HBV-related HCC (172, 173). In addition, the

diversity decreased more in early hepatitis B patients than in

intermediate cases, but not considerably, and both were lower

than in healthy controls (174). Collectively, the variety of gut

bacteria appears to decline during the early stages of HBV

infection and then recover to a level comparable to that of

healthy individuals as the liver disease advances. The aberrant bile

acid production and composition, which compromises the bile

acids’ antimicrobial defenses and enables the transfer of oral

species, are thought to contribute to these gut microbial changes

linked to HBV infection (154, 175).
Microbiome and alcoholic liver disease

Alcohol liver disease (ALD), characterized by alcoholic

hepatitis, alcoholic fatty liver disease, and alcoholic cirrhosis,

represents a significant contributing factor to various liver

ailments (176, 177). Alcohol’s metabolic byproducts are held

responsible for the adverse effects of alcohol abuse. Alcohol

undergoes oxidation within the hepatocyte, primarily resulting in

the formation of acetaldehyde through the activity of alcohol

dehydrogenase. Meanwhile, there is a limited production of

reactive oxygen species (ROS). Prolonged exposure to

acetaldehyde and ROS can lead to hepatotoxicity and

carcinogenicity within the liver (178). Although the liver is the
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primary site of alcohol metabolism, intestinal enzymes and

microorganisms are also capable of doing so (179, 180).

Therefore, drinking too much alcohol increases luminal

acetaldehyde and ROS, which disturbs the gut ecology by

affecting gut barrier function and promoting gut dysbiosis, which

alter the makeup of the gut’s microbial population (181–183). As

substantiation, the presence of alcoholic hepatitis resulted in a

decrease in Akkermansia in individuals with severe illness in

comparison to individuals who were in good health, and this

decrease was even more pronounced (184, 185). Mice that

underwent an FMT from individuals suffering from acute

hepatitis and alcoholism exhibited increased levels of Bacteroides,

Butyricimonas, Alistipes, Bilophila, and Clostridium XIVa compared

to mice that did not receive an FMT (186, 187). Additionally, the

presence of alcoholic hepatitis resulted in an elevation of bacterial

DNA levels in the bloodstream when compared to individuals who

do not consume alcohol. This increase was characterized by a

decrease in DNA from Bacteroidetes and an increase in DNA

from Fusobacteria (188).
Non-alcoholic fatty liver disease
and microbiome

It is estimated that approximately 80-100 million individuals in

the United States, constituting around 25% of the adult population,

are believed to be affected by non-alcoholic fatty liver disease

(NAFLD). The primary etiology of chronic hepatic ailment

presently observed worldwide is NAFLD (189–191). Hepatic

steatosis, a condition characterized by the accumulation of fat in

the liver exceeding 5% of its overall weight, can be attributed to an

excessive intake of alcohol. Abdominal imaging data suggests that

the global prevalence of NAFLD is expected to reach 25%, with the

African continent experiencing the lowest majority at 13.5% and the

Middle East observing the highest at 31.8%. Non-alcoholic

steatohepatitis (NASH) emerges in approximately 30% of

individuals diagnosed with NAFLD (192). NASH can potentially

progress from a state of simple steatosis to the more severe

conditions of cirrhosis or HCC, or it may experience a decline in

its condition (192, 193). It has been shown that NAFLD causes lipid

metabolism to be dysregulated, resulting in the loss of CD4+ T cells

and subsequen t l y encourag ing the deve lopment o f

hepatocarcinogenesis (194, 195). Similar to this, IgA+ cells that

have accumulated in the livers of NASH patients with fibrosis help

to promote hepatocarcinogenesis by inhibiting CD8+ T cell

activation (196, 197). The importance of the intestinal

metagenome in the etiopathogenesis of NAFLD has also been

emphasized by recent findings (192). The initial step in

establishing the etiological link between gut bacteria and NAFLD

was replicating the hepatic changes associated with the disease in

mice utilizing co-housing and FMT trials (198, 199). Dysbiosis, in

turn, can lead to the development of metabolic disorders, including

metabolic syndrome, obesity, Type 2 Diabetes Mellitus (T2DM),

and NAFLD (200, 201). Increased Enterobacteriaceae was shown to

be one of the characteristics that predicted NAFLD-cirrhosis,

reflecting its significant involvement in the development of
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NAFLD (169). Two strains of Enterobacteriaceae, which belong to

the Klebsiella pneumonia family, were fortuitously discovered to

produce ethanol among Chinese individuals affected by NAFLD

internally. This finding offers valuable knowledge regarding the

development of NAFLD in individuals who do not consume alcohol

(202). When compared to NASH cirrhosis, individuals with

NAFLD-related HCC had lower levels of Akkermansia and

Bifidobacterium species, indicating that gut dysbiosis may worsen

the development of NAFLD to hepatocarcinogenesis (203, 204).
The role of the microbiome in
esophageal cancer

Esophageal cancer, acknowledged as a highly prevalent form of

malignancy worldwide, is projected to have approximately 604,100

novel occurrences in 2020 (205). Nearly 80% of occurrences of this

malignant tumor are found in less developed areas, which bear a

disproportionately heavy burden. A discrepancy exists in the

occurrence and mortality rates between males and females, with

males representing approximately 70% of reported cases, resulting in

a 2 to 5-fold difference (206). Moreover, the likelihood of developing

esophageal cancer increases as individuals grow older, particularly in

middle-aged and older demographics (207). In conjunction with the

worldwide phenomenon of population growth and aging, the

escalating prevalence of risk factors such as alcohol and tobacco

consumption, inadequate dietary habits, sedentary lifestyles, and

obesity is contributing to the rapid escalation of esophageal cancer

globally (208, 209). esophageal cancer comes in two forms:

esophageal squamous cell carcinoma (ESCC, also known as SCC)

and esophageal adenocarcinoma (AC). AC is more typical in affluent

nations, while ESCC is more widespread in East Asia, Southern

Africa, East Africa, and Southern Europe (205). Based on the kind of

cell from which cancer arises, SCC and AC exhibit significant

differences in carcinogenesis (210). In terms of incidence during

the previous forty years, AC has been shown to surpass SCC by a

wide margin (108). SCC primarily impacts the upper and middle

regions of the thoracic esophagus, arising from the squamous cells

present within the mucosal lining of the esophagus. AC commences

in the epithelial cells, most in the inferior thoracic esophagus (210).

Although little is known about the esophageal microbiome, it is

recognized that it is not a sterile portion of the digestive system (211).

In the esophagus, food passes through quickly, likely limiting the

prevalence of microorganisms. However, the pH in healthy people is

very steady (about 7), which is ideal for various microbes. The

esophagus is home to certain microbes, according to microbiome

analysis (212, 213). It is worth mentioning that the composition of

microorganisms inhabiting the lower, middle, and upper regions of

the esophagus is indistinguishable (214). Most of the esophageal

microbiome comprises six phyla, namely Bacteroides, Firmicutes,

Fusobacteria, Proteobacteria, Actinobacteria, and TM7 (215, 216).

There is a varied microbial community seen among the Gram-

positive bacteria. Particularly, the esophagus of healthy people has

the highest concentration of the Streptococcus genus (217). In

addition, the esophagus also harbors Prevotella and Veillonella

(211). The microbiome is changed by esophageal disorders. It is
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possible to identify esophageal illnesses by the unbalanced changes in

the esophageal microbiome (218, 219). Recent research has expanded

our understanding of the connection between changes in the gut

microbiota and the development of esophageal cancer. It has been

proposed that this connection may be essential for the creation and

growth of tumors (220). Blackett et al. (221) showed that individuals

with Barrett’s esophagus and gastroesophageal reflux disease (GERD)

had significantly higher concentrations of Campylobacter. It is

believed that campylobacter causes the esophageal mucosa to

become inflamed, followed by epithelial metaplasia, which finally

results in malignant transformation (222). Elliott and colleagues (223)

discovered that certain strains of Lactobacillus are concentrated

within tumors in roughly 50% of AC patients and that microbial

diversity diminishes in AC while relative Lactobacillus fermentum

abundance rises. Zaidi et al. (224) found that AC contains large

amounts of E. coli. Additionally, there was a significant increase in the

expression of several Toll-like receptors (TLR1, 3, 6, 7, and 9) within

the neoplastic tissue of a rat model mimicking AC. Etiological

investigations have elucidated that H. pylori has the potential to

mitigate the occurrence of AC through the suppression of gastric acid

secretion, thereby reducing the likelihood of reflux esophagitis while

also modulating the quantity of T cells (225). H. pylori, on the other

hand, has been shown to cause GERD to manifest. Several studies

have established a correlation between Tannerella forsythia and an

increased likelihood of AC. Conversely, symbiotic Streptococcus

pneumoniae and Neisseria have been associated with a decreased

risk of AC. Notably, the enrichment of Porphyromonas gingivalis (P.

gingivalis) has been identified as a significant risk factor for ESCC, as

highlighted by various investigations (226–230). P. gingivalis induces

the process of epithelial-mesenchymal transformation (EMT) using

the transforming-growth-factor (TGF)-dependent Smad/YAP/TAZ

signaling pathway, and also triggers the activation of the nuclear

factor (NF)-B signaling pathway, thereby stimulating the

proliferation and metastasis of ESCC cells (231, 232). It has been

proven that the microbiome of the esophagus contains viral DNA

from the Gammapapillomavirus, Betaherpesvirus, and

Gammaherpesvirus. With the discovery of Papillomavirus (HPV)

DNA from esophageal neoplasia, the probability of developing ESCC

was increased in the presence of EBV and HPV infections (233).

Fungi infections with inflammation are common in esophageal

cancer patients, which may suggest a possible link with the

development of esophageal cancer (233). In research by Deng et al.

(234) comprising 23 esophageal cancer patients and 23 matched

healthy persons, the gut microbiome was examined. By 16S rRNA

gene sequencing, the gut microbiota was examined from fresh stool

samples. When the strain was considered, it was shown that

esophageal cancer patients had much larger amounts of

Actinobacteria and Firmicutes and lower levels of Bacteroidetes

than healthy people. According to scientists, individuals with

esophageal cancer had lower levels of bacteria that produce SCFAs

while having higher levels of bacter ia that produce

lipopolysaccharides (LPS) (234, 235). The significance of the pool

of SCFAs ought to be underscored as it possesses various benefits,

including its ability to mitigate inflammation and enhance the

structural integrity of the intestinal barrier. It is of utmost

importance to acknowledge that anaerobic microorganisms located
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in the distal regions of the GI tract synthesize butyrate, thereby

suggesting that it may exert a substantial influence on the

pathogenesis of neoplastic growths within this system,

encompassing esophageal carcinoma (236). In a study conducted

on patients with ESCC, it was discovered that the presence of

Fusobacteria, Bacteroidetes, and Spirochaetes was notably reduced

(n=18) (176). The high-fat diets (HFD) negatively impact the bile

acids composition and the gut flora. According to research in mice,

the modifications in bile acid composition brought on by HFD may

aid in the emergence of Barrett’s esophagus and esophageal

cancer (205).
Non-bacteria microbiome (virus,
fungi, and archaea) in GI cancer

Bacteria are the predominant microorganisms found

throughout the GI tract (237). The impact of specific species or

the combined bacteriome on GI cancers has been extensively

researched (238). However, in recent times, the presence of

viruses, fungi, archaea, and microscopic eukaryotes in the GI tract

has been confirmed due to the progress made in sequencing

technology and biotechnology (233) (Figure 2).
Viruses in GI cancers

Viruses exhibit a comparatively reduced presence in the gut when

compared to bacteria, yet they have been identified as constituents of

the enduring commensal microbial consortium within the GI tract

(230, 239–241). Viruses have a notable impact on GI cancers. The

human virome, encompassing the entirety of viruses found within the

human body, is a vital component of the humanmicrobiota and aids in

the preservation of tissue equilibrium (242). Bacteriophages have been

predominantly recognized within the microbiome, where they are

ascribed to various functions. The functions encompassed within this

domain encompass the regulation of bacterial populations through the

cyclic processes of phages, namely lysogenic and lytic. The proportions

of lytic and lysogenic phages are said to have a relationship with the

bacteriome and are linked to the overall health condition of an

individual (241, 243). Lysogenic bacteriophages might also play a

role in the targeted establishment of bacteria and improving the

fitness of host bacteria through the exchange of genetic material

within the GI tract (243, 244). The involvement of viruses in the

development of GI cancers is evident as they impact the abundance of

these viruses, infect the cells of the epithelium, or alter the composition

of the bacterium (245). A multi-cohort study was conducted in which

fecal samples were analyzed using shotgunmetagenomics to investigate

the virome shift in patients with CRC compared to healthy individuals.

Additional examination revealed that there was a fluctuation observed

in the colon bacteriophages, with variations evident in both the early

and late stages of CRC (246, 247). The analysis conducted subsequently

revealed that there was a variation in the displacement of the colon

bacteriophages between the initial and advanced stages of CRC (248,

249). Epsilon15likevirus, Betabaculus virus, Punalikevirus, and

Mulikevirus exhibited a noteworthy augmentation in CRC
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individuals, thereby being linked to escalated intensity and fatality rates.

It has been suggested that viruses belonging to the eukaryotic colon

could potentially disrupt the balance of the immune system and trigger

modifications in the DNA via mechanisms that are dependent on the

presence of the virus (250). Indeed, there is a growing body of evidence

suggesting that infections caused by eukaryotic viruses are linked to an

elevated risk of CRC (251). In cancerous tissues of CRC patients, there

was a presence of viral infections including HPV, human herpesviruses,

human polyomaviruses, human bocavirus, and Inoue-Melnick virus in

comparison to the surrounding normal tissues (252, 253). In the same

manner that tumor tissues of CRC patients exhibited the presence of

viral DNAs, similar findings were observed in the GC tissues. The well-

documented role of Epstein-Barr virus (EBV) as an etiological agent in

the development of GC further supports this observation. EBV-positive

gastric carcinoma is distinguished by distinct genomic abnormalities

and clinicopathological characteristics (254, 255). After being infected,

the EBV incorporates its DNA into the host organism. Subsequently, it

manifests latent protein and disrupts DNA methylation through the

influence of miRNA under the presence of the latent protein. This

process ultimately leads to the development of EBV-positive GC (255,

256). The prevalence of human cytomegalovirus (HCMV) is extensive

within human populations, encompassing a range of infectious

microorganisms. HCMV has been documented to endure within the

host for extended durations after the initial infection (257). Recent

research has placed greater emphasis on the connections between

HCMV and several types of malignancies, such as glioblastoma, breast

cancer, GC, and CRC (258). HCMV was observed to exhibit a greater

presence in GC tissue compared to the surrounding normal tissues,

thus suggesting its potential involvement in the development of

carcinogenesis and potentially facilitating the lymphatic metastasis

process in GC (259). Furthermore, HCMV has also been
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documented to elicit disturbances in the GI tract, such as

inflammatory bowel disease, ulceration, erosion of the cell wall, and

hemorrhage in the mucosal lining (258). Reports have also been

documented regarding the identification of viruses, particularly

bacteriophages, within the esophageal microbiome. DNA viruses

inc lud ing be tahe rpe sv i ru s , gammaherpe sv i ru s , and

gammapapillomavirus were also found (20, 260). Due to their

primary focus on bacteria, it is conceivable that the correlation

between the virome of the esophagus and adenocarcinoma could be

elucidated in investigations involving larger groups of subjects. In

addition, it has been reported that infections caused by EBV and HPV

are associated with a heightened susceptibility to ESCC (261). Latent

gammaherpesvirus 68 infection in a mouse model exhibited the

capacity to induce persistent immune system stimulation, thereby

safeguarding against pathogenic infection caused by Listeria

monocytogenes (262, 263).
Fungi in the GI cancer

Fungi have established their presence as inhabitants of the GI tract of

individuals in good health, although their composition is primarily

influenced by lifestyle factors, particularly dietary choices (264). These

microorganisms have been observed to exist within the gastric

compartment, colon, pancreas, and esophagus, albeit in a significantly

smaller ratio when compared to bacteria (265, 266). Recent research is

commencing to unveil the significance of fungi in the GI tract. A variety

of fungi such as Candida, Cryptococcus, Saccharomyces, Malassezia,

Debaryomyces, Cladosporium, Trichosporon, and Galactomyces have

been documented as inhabiting the gastrointestinal tract of healthy

individuals (264). Fungi play a crucial role in sustaining the
FIGURE 2

Non-bacteria microbiome (virus, fungi, and archaea) in gastrointestinal cancer.
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equilibrium of the GI tract. Furthermore, they have been demonstrated

to possess functions in systemic immunity, regulation of inflammatory

reactions, and protection against infectious agents (267). Fungi are

purported to stimulate the activation of T helper 17 cells, which play a

crucial role in safeguarding the host against infections. Moreover, these

cells contribute to the development of secondary lymphoid organs and

the fine-tuning of the host’s immune and inflammatory responses (268,

269). Fungal species, namely Candida albicans, Saccharomyces cerevisiae,

andCandida glabrata, have been detected in the esophagus of individuals

in a non-pathogenic state (270). Candida and Phialemonium

demonstrate the capacity to endure the harsh acidic conditions

prevalent within the ecosystem, specifically within the gastric fluids

(271, 272). The ratio between Basidiomycota and Ascomycota was

found to be imbalanced in patients with CRC, similar to other diseases

affecting the intestines. In individuals with CRC, an elevation in the

population ofMalasseziomycetes fungi and a decrease in the abundance

of Saccharomycetes fungi were noted (273, 274). The composition of

fungal genera including Aspergillus, Rhodotorula, Kwoniella,

Pseudogymnoascus, Malassezia, Talaromyces, Moniliophthora,

Debaryomyces, Pneumocystis, and Nosemia experienced changes in

CRC cases, a finding that was confirmed in separate cohorts of

Chinese and European populations (275). In an experimental mouse

model investigating esophageal cancer, the administration of oral fungi

Cladosporium cladosporiodeswas found to enhance the severity of ESCC.

Interestingly, this detrimental effect was effectively counteracted by

treatment with antifungal agents (276). Additionally, infections caused

by the C. albicans fungus were documented in patients suffering from

ESCC (277). The presence of an imbalance in gastric fungi was observed

in individuals with GC. The profile of the fungal community

(mycobiome) in GC patients exhibited notable differences, including a

decrease in diversity, compared to the control group. Candida and

Alternaria exhibited an increased concentration in the GC, whereas

Thermomyces and Saitozyma experienced a decrease in abundance

within the GC (278, 279). Similar to other GI microbiome members,

alterations in the resident mycobiome that impair their functioning,

manipulation of the whole microbiome, or infection by specific

pathogenic fungus species may all influence GI malignancies (280, 281).
Archaea in GI cancer

The progress in the field of sequencing and the analytical

methods used in bioinformatics have facilitated the examination of

archaea, a group that has received less attention in comparison to

bacteria, viruses, and fungi within the intestinal ecosystem (282).

Archaea represent a distinctive assemblage of prokaryotic organisms

characterized by their lack of D-glycerol, esters, fatty acids, and

peptidoglycan (283, 284). Owing to their cellular composition,

these organisms were recognized for their ability to colonize harsh

habitats such as those characterized by high temperatures, alkaline

conditions, acidic conditions, and high salinity levels (285). Archaea

were commonly presumed to inhabit environments characterized by

severe ecological conditions, nevertheless, recent investigations have

ascertained their presence in mesophilic conditions comprising

human skin, oral cavity, nasal passages, vaginal region, and the GI

tract (286). In the GI tract, there have been documented occurrences
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of both methanogenic archaea and haloarchaea, with their respective

proportions being subject to variation dependent on the individual

(287). Methanogenic archaea facilitate the reduction of carbon

dioxide through the process of methanogenesis, occurring in the GI

tract during nutrient digestion. This metabolic activity effectively

assists in the elimination of hydrogen from the gut (288, 289).

Colonic archaea have also been found to play a role in the

elimination of trimethylamine (TMA) from the GI tract. TMA is

generated as a byproduct during the degradation of choline mediated

by colon microorganisms, and its presence has been linked to

elevated probabilities of atherogenesis and the development of

cardiovascular ailments (290, 291). The activation of antigen-

specific adaptive immune responses by Archaea is a phenomenon

that should not be overlooked, as it has the potential to play a crucial

role in maintaining immune homeostasis within the GI tract (292).

Distinct groups of archaea in the colon were observed in individuals

with CRC and colorectal adenoma in comparison to those who were

in good health, thus suggesting a modification during the various

phases of the development of cancer (293). The presence of Archaea

has also been linked to the emergence of IBD, anorexia, and

anaerobic abscesses (294, 295) (Table 1).
Microbiomes and therapies for
gastrointestinal cancers

Chemotherapy

It is widely established that systemic chemotherapies impact both

healthy GI tract cells and cancer cells. The microbiome will

undoubtedly experience a disturbance, thus resulting in dysbiosis,

which refers to an interruption in the typical makeup of the

microbiome. Chemotherapy has been demonstrated to possess a

wide-ranging impact on the microbiota, leading to a reduction in

the variety of microorganisms. This reduction is accompanied by an

elevation in the abundance of Firmicutes and a decline in

Bacteroidetes (324). Moreover, gram-negative bacteria tend to

increase while gram-positive bacteria decrease due to chemotherapy
TABLE 1 A summary of studies relating the gut microbiome to
GI cancers.

Type
of
cancer

Methods Used Conclusion References

CRC The study analyzed
the microbial
communities in the
colon and the genetic
variability of
Fusobacterium in 43
Vietnamese patients
with CRC and 25
individuals with non-
cancerous colorectal
polyps. This was
achieved through the

- F. nucleatum
consistently
demonstrates an
association with
CRC.
- The diagnostic
and therapeutic
options can utilize
the genomic
diversity present
in Fusobacterium.

Tran
et al. (296)

(Continued)
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TABLE 1 Continued

Type
of
cancer

Methods Used Conclusion References

utilization of 16S
rRNA gene profiling,
anaerobic
microbiology, and
comprehensive
genome analysis

The analysis of 18
surgical specimens of
human CRC was
conducted using 16S
rRNA gene
sequencing.
- Differential
examination of
microbiomes in
tissues and mucus

-Enterobacteriaceae
and Sutterella
exhibit a higher
presence in the
mucus layer that
envelops the
mucosa.
- Rikenellaceae
exhibits a higher
concentration
within the mucosal
layer that overlays
cancerous tissues.

Tajima
et al. (297)

-Using a reverse
microbiomics (RM)
strategy.
-Comparative
genomics analysis
using Vaxign

- The utilization of
the RM
methodology was
implemented in
order to predict the
presence of 18
autoantigens and
76 potential
virulence factors.
- Proposed new
model of CRC
pathogenesis
involving
riboflavin synthase

Wang
et al. (298)

- Culture-
independent methods
for identifying
bacterial populations
- Sequencing V1-V3
or V3-V5 variable
regions of bacterial
16S ribosomal RNA

- The presence of
probiotic strains
has the potential to
impact the
treatment of CRC.
- Additional
investigation is
required to
ascertain the most
effective treatment.

Kim et al. (299)

N/A - The intestinal
microbiota plays a
crucial role in the
advancement of
colorectal cancer.
- The potential of
the intestinal
microbiota to
function as a
biomarker in the
prompt
identification of
CRC
is considerable.

Ren et al. (300)

- A systematic search
find clinical studies
published in the last
two decades.

-Bacterial
metabolism exhibits
a robust correlation
with the

Fratila
et al. (301)

(Continued)
F
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TABLE 1 Continued

Type
of
cancer

Methods Used Conclusion References

- A comprehensive
analysis was
conducted on the
following subjects:
dietary interventions,
potential biomarkers
for CRC, probiotic
administration in
non-surgical patients,
and probiotic
administration in
surgical patients.

development of
colonic
carcinogenesis and
is subject to dietary
influences.
- Probiotics and
prebiotics function
as agents that can
modify the
microbiota by
inhibiting the
proliferation of
epithelial cells and
counteracting DNA
damage.
- As supplementary
treatments to
surgery or
chemotherapy,
Bifidobacteria and
Lactobacilli
reduce
complications.

- A comprehensive
search of the
literature was
conducted on March
3rd and 4th, 2023.

-Research indicates
that biomarkers
based on oral
microbiota show
potential as a non-
invasive means of
identifying CRC.
However,
additional studies
are required in
order to
comprehend the
mechanisms of
oral dysbiosis.

Negrut
et al. (302)

- To facilitate the
screening process,
pertinent articles
were extracted from
different databases by
utilizing specific
keywords
and phrases.

-CRC is linked to
imbalances in the
GI microbiome.

Eastmond
et al. (303)

- A systematic review
of 2009.
- Patients diagnosed
with any stage of
CRC were enrolled in
the study.

-Microbiome
composition could
potentially
influence the
outcomes of
surgery for CRC,
although the
available evidence
is currently limited.

Lauka
et al. (304)

- A Mendelian
randomization (MR)
study was conducted
using a two-sample
approach in order to
elucidate the causal
relationship between
the CRC and gut

- The inquiry
confirmed the
causal correlation
between the gut
microbiota and
CRC, positing a
possible linkage
between genes and

Xiang
et al. (305)

(Continued)
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TABLE 1 Continued

Type
of
cancer

Methods Used Conclusion References

microbiota.
- A thorough
examination was
performed on a total
of 166 bacterial
characteristics
spanning four
hierarchical levels:
species, genus, family,
and order.

pathogenic
microbiota in CRC.
- The examination
of the GI
microbiome and its
comprehensive
analysis involving
multiple omics
techniques are of
utmost importance
in the endeavor to
impede and
manage CRC.

- The study evaluated
the effectiveness of
microbiome-derived
biomarkers using
noninvasive samples.
- A study of 28
studies found that
only two explored the
co-metabolome as a
potential biomarker
for colorectal cancer
and advanced
adenoma patients.

- Based on the
current evidence, it
is not yet
appropriate for
routine clinical
implementation to
utilize the potential
of the fecal and
oral gut
microbiome in
order to improve
CRC
screening tools.

Zwezerijnen
et al. (306)

-A meta-analysis of
fecal metagenomics
sequencing data from
11 studies involving
692 patients with
CRC and 602 healthy
controls evaluated
features associated
with CRC.

- In this
investigation,
significant
correlations were
found between
CRC status and
colibactin, fadA,
and F. nucleatum
compared to
control subjects.
- Several distinct
microbial species
were found to be
selectively enriched
in young patients
diagnosed
with CRC.

Kharofa
et al. (307)

Gastric - The cutoff value for
H. pylori infection is
determined using
pyrosequencing.
- Extragastric
microbiome is
investigated using
animal models.

- Relationship
between GC and
gastric microbiome.
- There has been
limited
advancement in
comprehending the
non-H.
pylori function.

Yang
et al. (308)

- Five patients were
diagnosed with GC,
non-atrophic gastritis,
and intestinal
metaplasia of the
intestinal type.

-The diversity of
bacteria declined
progressively from
non-atrophic
gastritis to
intestinal
metaplasia to GC.
- There was a
noticeable disparity
in microbiota

Aviles
et al. (309)

(Continued)
F
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Type
of
cancer

Methods Used Conclusion References

between non-
atrophic gastritis
and GC

- New methods for
identifying microbes
in the stomach using
molecular techniques
have been developed.
- Studies conducted
on the INS-GAS
transgenic
mouse model

- The development
of GC is influenced
by the presence of
gastric microbiota.
- Microorganisms
are linked to
individuals
diagnosed with GC.

Stewart
et al. (310)

N/A - The significance
of the gastric
microbiome in the
development of
cancer is not
substantial.
- H. pylori and
inflammation play
significant roles in
the development
of GC.

Engstrand
et al. (311)

- Nucleotide
sequencing
techniques
-
Biocomputational
tools

- Chronic
inflammation is
linked to GC.
- H. pylori and
other bacteria
contribute to the
development
of GC.

Schulz
et al. (312)

-The study consisted
of 48 individuals
diagnosed with GC
and 120 individuals
without cancer. This
group comprised of
20 individuals with
normal gastric
mucosa, 40
individuals with
atrophy, 20
individuals with
gastritis, and 40
individuals with
intestinal metaplasia

- The group that
was under control
exhibited the most
significant overall
bacterial alpha
diversity
measurements, with
the groups with
intestinal
metaplasia and
cancer following
closely behind.
- The groups with
atrophy and
gastritis exhibited
the lowest level
of diversity.

Gantuya
et al. (313)

-The study included
60 individuals
diagnosed with
chronic gastritis, 30
individuals with early
GC, and 30
individuals with
advanced GC.

- The inquiry
revealed significant
variations in the
microbial profile
and composition
when contrasting
the initial and
progressed stages
of GC.

Wang
et al. (314)

- A total of 1630
individuals who were
infected with
asymptomatic H.

- The elimination
of H. pylori has the
potential to offer
extended defense

Yan et al. (315)

(Continued)
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treatment. Even though various chemotherapy regimens may have

distinct effects on the composition of the GI microbiota, this assertion

remains valid (324, 325). The gut microbiota controls toxicity,

anticancer effects, and medication effectiveness to control host

reactions to chemotherapy medicines (326). The TIMER

mechanistic paradigm presents an opportunity to alter the

connection between the GI microbiota and chemotherapeutic

medications using immunomodulation, translocation, enzyme
TABLE 1 Continued

Type
of
cancer

Methods Used Conclusion References

pylori.
-The individuals
assigned to undergo
H. pylori eradication
therapy numbered
817, whereas the
placebo group
consisted of
813 individuals

against GC in
populations at high
risk, especially for
those individuals
who are initially
infected with the
bacteria but do not
possess
precancerous
gastric lesions.

Liver - Characterization of
intestinal microbial
composition in mice
and humans
- Using
bacteriotherapy and
antibiotics as
potential therapeutic
choices is
being explored.

- The impact of
modifications in
the gut microbiota
on the progression
of hepatic
malignancy is of
considerable
importance.
- Bacteriotherapy
possesses the
capacity to modify
the composition of
microbiota and
decrease
inflammation.

Moreno
et al. (316)

- This review
analyzes existing
evidence and
examines potential
mechanisms.
- Possible therapeutic
applications are
being discussed

- The microbiota of
the GI tract
contributes to the
development of
liver cancer.
- Potential
therapeutic uses
consist of
probiotics
and FMT.

Zhou
et al. (317)

- Between mice that
were free from germs
and mice that were.
- Alternatives such as
gnotobiotic or
humanized models
were employed.

- The dysbiosis of
the GI microbiota
exerts a substantial
influence on the
progression of
hepatic disorders.
- Gnotobiotic
models are
applicable for
microbiome
research.

Hartmann
et al. (318)

N/A - The connection
between an
imbalance in liver
diseases and gut
microbiota.
- Therapeutic
strategies may be
developed by
manipulating
microbiota.

Abe et al. (319)

Esophageal N/A - Microbiota
diversity and
uniformity decline
in cases of
esophageal cancer.

Moreira
et al. (320)

(Continued)
TABLE 1 Continued

Type
of
cancer

Methods Used Conclusion References

- The prevalence of
Gram-negative
bacteria is elevated
in
esophageal cancer.

- Comparative
metagenomic
approaches
- Sequencing of the
16S rRNA gene

- The imbalance of
the microbiota can
lead to esophageal
tumorigenesis.
- The identification
of microbiota has
the potential to
enhance the
methods of
EC treatment.

Zhou
et al. (220)

- Analysis of bacteria
at genus level in gut
- Principal coordinate
analysis (PCoA) and
analysis of
similarities
(ANSOIM)

- The gut
microbiota could
potentially play a
role in the
pathogenesis and
progression of
esophageal
squamous cell
carcinoma.
- Certain gut
bacteria may serve
as biomarkers for
the screening of
these types
of cancer.

Shen
et al. (321)

Next-generation
sequencing
techniques.

- Streptococcus is
the predominant
bacterial group
found in the
normal esophagus.
- Gram-negative
bacteria are more
prevalent in the
diseased esophagus.

Park et al. (322)

- 16S rRNA gene
sequencing
-
Bioinformatics
analysis

- ESCC patients
exhibit unique
microbial features
in comparison to
individuals who are
in good health.
- The development
of ESCC may be
influenced by the
microbiome present
in the esophagus.

Lv et al. (323)
N/A, No Answer.
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degradation, metabolism, and ecological variation (327). Yamamura

and colleagues (328) have discovered a significant association

between the intratumoral DNA of F. nucleatum and the response

of patients’ ESCC to neoadjuvant treatment. Liu et al. (384) have

found that through autophagy, the intracellular bacterium F.

nucleatum provides chemoresistance to ESCC cells. By inducing

the activation of autophagy and enhancing the expression of

autophagy-associated genes, F. nucleatum specifically acts upon the

TLR4/MyD88 signaling pathway, leading to a reduction in the levels

of miRNA-4802 and miRNA-18a. Consequently, this molecular

modulation results in developing resistance to chemotherapy in

CRC. In patients with CRC who are undergoing adjuvant

chemotherapy, it has been observed that the presence of F.

nucleatum infection leads to a reduction in the effectiveness of 5-

Fluorouracil (5-FU) treatment by regulating the baculoviral IAP

repeat containing 3 (BIRC3) through the TLR4/NF-B signaling

pathway (329, 385). In a mouse CRC model, Mycoplasm hyorhinis

may metabolize gemcitabine into inactive 2’, 2’-difluoro deoxyuridine

via the CDDL gene (330). Furthermore, it has been established that

the majority of the bacteria in PDAC are Gammaproteobacteria,

which possess the CDDL gene necessary for the metabolization of

gemcitabine. Ciprofloxacin can counteract this impact (331).

Different commensal microbiota can alter the tumor

microenvironment, impacting how well conventional

chemotherapy works. By lowering the generation of ROS, the lack

of Lactobacillus reduces the cytotoxicity of oxaliplatin (332). In one

study, Chinese patients receiving FOLFOX treatment for low-lying

rectal tumors had their gut microbiomes examined by fecal samples.

It has been demonstrated that FOLFOX reduces the variety of the

whole microbiome, and intriguingly, this diversity was reduced in

patients who reacted to the FOLFOX rather than in nonresponders

(333–335). Lactobacillus rhamnosus, a probiotic, improved the

effectiveness of capecitabine against mouse GC growth (336).

Cyclophosphamide (CTX) inhibits several immunological signaling

cascades to produce its anticancer action (337). Preclinical research

has revealed that some bacterial species, such as Enterococcus hirae

(E. hirae), are necessary for CTX-induced immunological activation.

To activate the host immune response, CTX causes the bacteria to

relocate to the spleen and lymph nodes. The anti-tumor action of

CTX is likewise dependent on E. hirae and Barnesiella

intestinihominis, according to further investigations (338, 339). By

controlling antitumor cytotoxic CD8+ T cell responses and

stimulating the IL-12 signaling pathway, butyrate may increase the

effectiveness of oxaliplatin (340). According to prospective research,

individuals with locally advanced rectal cancer (LARC) may benefit

from using the gut microbiota as possible biomarkers to gauge how

well they respond to neoadjuvant chemotherapy and radiation (341).
Immunotherapy

The identification of immunotherapy, a therapeutic approach

that harnesses the immune system of the body to tackle cancer, has

emerged as a highly promising domain in the realm of cancer therapy
Frontiers in Oncology 16
(342). In the treatment of GI cancers, especially those that exhibit

microsatellite instability (MSI-H), the utilization of immune

checkpoint inhibitors (ICIs) like anticytotoxic T lymphocyte-

associated protein 4 (CTLA-4) and anti-programmed cell death 1

(PD1) antibodies is being implemented (343–345). While dysbiosis

can establish a connection between the microbiome and

carcinogenesis, it is also plausible that a microbiome in good health

possesses substantial potential to bolster antitumor immunity (346,

347). It has been proven that the therapeutic agents pembrolizumab

and nivolumab, which function as inhibitors of PD-1, exhibit

enhanced clinical efficacy in the prevalence of Akkermansia

muciniphila and Bifidobacterium (348, 349). B. fragilis and

Bacteroides thetaiotaomicron are also linked to the effectiveness of

anti-CTLA-4 antibodies like ipilimumab (350). As the FMT from

individuals who responded to ICI and those who did not into mice

was carried out, it is noteworthy to observe that the microbiome of

ICI responders exhibited a sustained augmentation of the anti-PD1

effects compared to the nonresponders. This observation highlights

the intrinsic capability of the microbiome to stimulate the immune

response against tumors (351). The interactions between ICI and

microbiome highlight the crucial role that the host microbiome and

tumor microenvironment may have in forecasting the response to

treatment (351, 352). The potential impact of the microbiome on the

effectiveness of ICIs suggests that it could also have a substantial role

in regulating immune-related adverse events (iRAEs) associated with

ICIs (353, 354). In the context of a practical inquiry, individuals

afflicted with severe iRAEs exhibited heightened incidences of

Streptococcus, Faecalibacterium, and Stenotrophomonas (355, 356).

The concept of harnessing the GI microbiota to enhance the

production of the anti-inflammatory compound known as butyrate

by the gut microbiota to prevent colitis induced by ICI has already

been discussed (357). The utilization of antibiotics to eliminate

microbiota appears to diminish the efficacy of immunotherapy

(358). In fibrosarcoma, melanoma, and CRC mice models, a

combination of ampicillin, colistin, and streptomycin was

demonstrated to impede the inhibition of CTLA-4 and

subsequently revive the growth of tumors (359). A recent

investigation discovered that in mice subjected to anti-CTLA-4

treatment, the administration of Bifidobacterium potentially

diminishes autoimmune adversities. However, the absence of

vancomycin exacerbates immunotherapy-induced colitis (360). The

significant microorganisms that serve as predictive biomarkers for

immunotherapy response were identified thanks to these studies. A

study conducted on a rat colon adenocarcinoma model has identified

a group of 11 bacterial strains that could potentially enhance the

efficacy of immunotherapy (361). It’s interesting to note that

probiotics have been examined as adjuvants in cancer therapies. In

a murine model of CRC, the administration of cell lysates derived

from Lactobacillus acidophilus in conjunction with a monoclonal

antibody targeting CTLA-4 induced a substantial augmentation in

CD8+ T lymphocytes, specifically the effector memory subset, along

with a noteworthy reduction in regulatory T cells (Tregs).

Additionally, the synergistic combination recovered animals with

CRC-induced dysbiosis and reduced the aberrant abundance of
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Proteobacteria in the tumor microenvironment (362). Therefore,

using immunotherapy in concert with probiotics may considerably

aid the development of innovative therapeutic methods against CRC

(363, 364) (Figure 3).
Radiotherapy

Uncertainty persists over how gut microbiota controls the

effectiveness of radiotherapy. Radiotherapy can augment the overall

immune response regulated by the immune system in addition to the

cytotoxicity of tumors (365) (Figure 3). In addition to causing tumor

cell death, local irradiation can boost systemic immunity and

inflammation. The therapeutic utility, however, was limited due to

adverse outcomes, including bystander effects on adjacent cells,

genomic instability, and alterations to commensal microorganisms

(366). Research indicates that the microbiota residing in the GI tract

could potentially exert a notable influence on the efficacy of radiation

therapy (367, 368). The inhibition of apoptosis in cancer cells and the

prevention of local immunocyte infiltration were observed when

comparing germ-free mice to conventional mice with radiation. The

implications of these findings suggest that the commensal microbiota

could potentially have a positive impact on the regulation of the

body’s reaction to radiotherapy treatment (369, 370). In experimental

mice and humans getting radiotherapy, the gut flora is destroyed,

which may lead to colitis and diarrhea partially mediated by IL-1b
Frontiers in Oncology 17
(371). Intestinal cell apoptosis and intestinal barrier function

degradation are further side effects of radiotherapy that might

result in intestinal inflammation (372). Further investigation

revealed that angiopoietin-like 4 (ANGPTL4), a protein lipoprotein

lipase inhibitor, plays a crucial role in radiotherapy damage resistance

(373). Streptococcus, Lactobacillus, and Bifidobacterium spp

stimulated the expression of ANGPTL4 to shield germ-free mice

and regular mice from the harmful effects of irradiation (369).

Additionally, butyrate, a widely recognized advantageous microbial

byproduct, was demonstrated to enhance the efficacy of radiation in

preclinical patient-derived CRC organoid models, suggesting the

potential utilization of butyrate in combination with other therapies

for cancer management (374). Additionally, a clinical investigation

showed that formulations including Lactobacillus casei, L.

acidophilus, and B. bifidum might reduce the intestinal adverse

effects of radiation exposure (375, 376). Lactobacillus rhamnosus,

although it possesses the ability to facilitate the recovery of radiation-

induced damage to the intestinal mucosa, induce mesenchymal stem

cell pre-migration via the TLR2 pathway, and protect the regular

intestinal cavity, its effect on the preservation of transplanted tumor

tissue is minimal (387). Additional research has revealed that the

radioprotective properties of the microflora are mediated by SCFAs,

particularly propionate, and specific tryptophan metabolites

generated by the microbiota (377). These results offer a possible

therapeutic target for reducing radiotherapy-related side effects and

alleviating radiation-induced harm (Table 2).
FIGURE 3

Microbiomes and therapies for gastrointestinal cancers.
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TABLE 2 A summary of microbiomes and their role in the treatment of
GI cancers.

Type
of

treatment

Methods
Used

Conclusion References

Immunotherapy N/A - The success of
cancer
immunotherapy
is influenced by
microbiota.
- The harnessing
of microbiota
has the potential
to enhance the
body’s immune
response against
tumors, thereby
promoting
antitumor
immunity.

Goc et al. (378)

-High-throughput
sequencing
technology
-Regulation of
gut microbiota

- The intestinal
microbiota plays
a crucial role in
the progression
and control of
GI cancer.
- The regulation
of gut microbiota
is suggested as a
novel approach
for treating
GI issues.

Liu et al. (379)

N/A - The dysbiosis
of the gut
microbiome has
an impact on
both the
prognosis and
treatment of
tumors.
- The microbiota
can enhance the
anti-cancer
immune
response.

Wan et al. (380)

- Meta-analysis
was conducted on
16S rRNA gene
sequencing data.
- A multivariate
selbal analysis is
employed in order
to identify
bacterial genera.

- Gut
microbiome
features may
predict
immunotherapy
response.
- The application
of machine
learning
algorithms has
the potential to
enhance the
prognosis of
cancer patients.

Liang
et al. (381)

-recruited 74
patients with
advanced
gastrointestinal
cancer receiving
anti-PD-1/PD-L1
therapy and

- The potential
of the
microbiome as a
marker for
immune-
checkpoint
blockade

Peng
et al. (382)

(Continued)
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Type
of

treatment

Methods
Used

Conclusion References

collected stool
samples before and
during
immunotherapy,
along with clinical
evaluations.
-16S rRNA
taxonomy survey

responses is
indicated by the
impact of gut
microbiomes on
anti-PD-1/PD-L1
outcomes,
particularly in a
subset of GI
cancer patients.

Chemotherapy/
immunotherapy/
radiotherapy

- The identification
of particular gut
microorganisms
for use as
biomarkers is
being investigated
through screening
processes.
-Fine-tuning the
gut microbiota for
cancer prevention

- Gut
microbiota’s role
in cancer
development is
crucial.
- Improving
cancer treatment
outcomes can be
achieved by
adjusting gut
microbiota
through
fine-tuning.

Zhou
et al. (383)

Chemotherapy -The association
between F.
nucleatum and
chemotherapy
response was
investigated in 120
ESCC resected
specimens and 30
pre-treatment
biopsy specimens.

- F. nucleatum
induces
chemoresistance
in ESCC cells
through the
regulation of
autophagy.
- Targeting F.
nucleatum
during
chemotherapy
could lead to
different
therapeutic
results for
patients
with ESCC.

Liu et al. (384)

- Genes that are
differentially
expressed in
colorectal cancer
cell lines due to
infection by F.
nucleatum were
examined using a
comprehensive
analysis of the
entire genome via
microarray.
- examined the
clinical significance
of F. nucleatum
infection, BIRC3
protein expression,
and resistance to
5-Fu treatment in
patients with CRC.

- F. nucleatum
and BIRC3 have
the potential to
be effective
therapeutic
targets in
combating
chemoresistance
to 5-Fu
treatment in
advanced CRC.

Zhang
et al. (385)

Radiotherapy Three cohorts of
patients (n = 134)
were recruited

- The microbiota
offers potential
for the

Reis et al. (386)

(Continued)
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Conclusion

Gastrointestinal (GI) cancer constitutes one of the new cancer

cases worldwide and imposes a significant burden on public health,

thus presenting a major threat to human population health.
Frontiers in Oncology 19
Disturbances in the gastrointestinal microbiota may have a

significant impact on the development of gastrointestinal cancers.

Some bacteria have been found to support the development of

cancer, while others appear to protect against it. Studies have shown

that changes in the composition and abundance of microbiomes

can be associated with the development of various gastrointestinal

cancers, such as colon, stomach, liver, and esophageal cancers. In

this study, we examine the importance of gut microbiomes in

gastrointest inal cancers and their impact on various

gastrointestinal cancer treatments, including chemotherapy,

immunotherapy, and radiotherapy. The information in this article

paves the way for researchers in the field of cancer and microbiome.
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