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low-density canopy
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based on an improved
Cartographer framework
Haoran Tan1,2†, Xueguan Zhao2,3,4†, Changyuan Zhai2,3, Hao Fu2,
Liping Chen2,3* and Minli Yang1*

1College of Engineering, China Agricultural University, Beijing, China, 2Intelligent Equipment Research
Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China, 3National Engineering
Research Center for Information Technology in Agriculture, Beijing, China, 4Beijing PAIDE Science
and Technology Development Co., Ltd, Beijing, China
To address the problem that the low-density canopy of greenhouse crops affects the

robustness and accuracy of simultaneous localization and mapping (SLAM)

algorithms, a greenhouse map construction method for agricultural robots based

on multiline LiDAR was investigated. Based on the Cartographer framework, this

paper proposes a map construction and localization method based on spatial

downsampling. Taking suspended tomato plants planted in greenhouses as the

research object, an adaptive filtering point cloud projection (AF-PCP) SLAM

algorithm was designed. Using a wheel odometer, 16-line LiDAR point cloud data

based on adaptive vertical projections were linearly interpolated to construct a map

and perform high-precision pose estimation in a greenhouse with a low-density

canopy environment. Experiments were carried out in canopy environments with

leaf area densities (LADs) of 2.945–5.301 m2/m3. The results showed that the AF-

PCP SLAM algorithm increased the averagemapping area of the crop rows by 155.7%

compared with that of the Cartographer algorithm. The mean error and coefficient

of variation of the crop row length were 0.019 m and 0.217%, respectively, which

were 77.9% and 87.5% lower than those of the Cartographer algorithm. The average

maximum void length was 0.124 m, which was 72.8% lower than that of the

Cartographer algorithm. The localization experiments were carried out at speeds

of 0.2 m/s, 0.4 m/s, and 0.6 m/s. The average relative localization errors at these

speeds were respectively 0.026 m, 0.029 m, and 0.046 m, and the standard

deviation was less than 0.06 m. Compared with that of the track deduction

algorithm, the average localization error was reduced by 79.9% with the proposed

algorithm. The results show that our proposed framework can map and localize

robots with precision even in low-density canopy environments in greenhouses,

demonstrating the satisfactory capability of the proposed approach and highlighting

its promising applications in the autonomous navigation of agricultural robots.
KEYWORDS

mobi le robot , l idar , s imultaneous local izat ion and mapping (SLAM) ,
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1 Introduction

The development of agricultural facilities ensures the stable and

safe supply of important agricultural products while reducing the

occupation of arable land. These facilities are important for

promoting the modernization of agriculture in rural areas (Bai

et al., 2023). The development of intelligent equipment suitable for

greenhouses is needed to ensure stable and efficient production in

agricultural facilities (Jin et al., 2021; Zhai et al., 2022). Due to the

narrow working environment of greenhouses, the applicability of

conventional field operation equipment in greenhouses is limited.

The traditional manual greenhouse management method has high

labor intensity, and the application of pesticides in a closed

environment may cause serious harm to the human body (Fu

et al., 2022; Li et al., 2022). Therefore, it is necessary to study

intelligent navigation robots that are suitable for application in

greenhouse environments (Huang and Sugiyama, 2022; Qiao

et al., 2022).

Environmental perception and real-time localization are the

basis of greenhouse robot navigation studies and are prerequisites

for autonomous navigation (Shamshiri et al., 2018; Chen et al.,

2020). However, the closed nature of the greenhouse environment

severely blocks satellite signals. Therefore, it is highly important to

study perception and localization methods that do not depend on

satellite navigation to develop navigation technology for greenhouse

environments (Mendes et al., 2019; Choi et al., 2022). High-

precision mapping and localization of agricultural robots are

critical for the automation of greenhouse operations (Dong et al.,

2020; Westling et al., 2021; Zhou et al., 2021). Using the prior map,

the robot can obtain prior information about the environment and

realize global path planning to achieve safe and accurate

autonomous navigation. To this end, researchers have carried out

many studies in the fields of sensor environment perception and

simultaneous localization and mapping (SLAM) (Matsuzaki et al.,

2018; Shi et al., 2020; Ouyang et al., 2022; Jiang and Ahamed, 2023;

Su et al., 2023).

In recent years, with the development of computer technology

and edge computing equipment, the sensors used for greenhouse

operating environment perception and localization have included

ultrasonic technology (Palleja and Landers, 2017; Chen et al., 2018;

Lao et al., 2021), ultra-wideband (UWB) technology (Hou et al.,

2020; Yao et al., 2021), LiDAR technology (Chen et al., 2019; Zhang

et al., 2020; Saha et al., 2022; Sun et al., 2022), and machine vision

technology (Nissimov et al., 2015; Wang et al., 2022a; Wang et al.,

2022b). Huang et al. (2021) designed a robot localization system

based on spread spectrum sounds for a greenhouse containing a

strawberry ridge and achieved centimeter-level localization

accuracy in a small greenhouse. However, the coverage of sound

localization technology is limited, which significantly increases the

cost in large-scale scenarios. Aiming to address the problem of

insufficient features in greenhouse environments, Zhang et al.

(2022) proposed a visual localization method based on

benchmark markers and factor graphs. This method considers the

constraint relationship between robot motion characteristics and

variables, and the standard deviation of the localization error is less

than 0.05 m. This method solves the problem of unstructured and
Frontiers in Plant Science 02
insufficient features in greenhouses by adding benchmark markers

to the SLAM front-end module. Although this method can achieve

stable localization of the robot, it depends on the number of tags

detected. In the case in which the plant is occluded or the number of

tags is insufficient, inaccurate localization or even failure may occur.

Yan et al. (2022) designed a loosely coupled real-time localization

and mapping system based on an extended Kalman filter and

visual-inertial odometry (VIO) using multisensor fusion and the

visual-IMU-wheel odometry method to achieve accurate pose

estimation and dense three-dimensional (3D) point cloud

mapping in greenhouses. However, while the localization method

based on visual SLAM performs well under good light conditions,

the high light intensity in the environment interferes with the

extraction of visual features, which may cause issues with map

construction in the greenhouse environment and errors in robot

pose calculation results.

To address the effects of greenhouse environment lighting on

robot perception, LiDAR, which has advantages such as high stability

and robustness, is a competitive perception and localization

technology for all-weather greenhouse operations. The AgriEco

Robot, designed by Abanay et al. (2022), is based on a two-

dimensional (2D) LiDAR sensor and performs autonomous

navigation. This robot can accurately navigate between rows of

strawberry greenhouse crops, detect the end of a row, and switch

to the next row. To solve the problem of inaccurate localization

caused by the lack of structure in grape greenhouse scenes, Aguiar

et al. (2022) designed a VineSLAM algorithm. The algorithm is based

on 3D LiDAR point cloud extraction and uses half-plane features to

construct an environmental map. The robot can achieve accurate

localization in symmetrical long vineyard corridors. However, with

seasonal changes, a decrease in grape canopy density affects map

construction results and localization effects. Long et al. (2022)

proposed a method to reduce the cumulative errors of odometers

in long-distance greenhouse operations and the problem of mapping

and localization accuracy. Their method is based on the UWB/IMU/

ODOM/LiDAR-integrated localization system and integrates LiDAR

with the two-dimensional map established through the adaptive

Monte Carlo localization (AMCL) algorithm for global localization

of the robot. The method is suitable for relatively open greenhouse

environments where shorter crops are planted. However, in

greenhouse environments with taller crops, due to the physical

characteristics of UWB technology, the occlusion of plants affects

the stability of the SLAM system. However, due to the large number

of unstructured crops and irregular planting gaps in greenhouses, it is

difficult for LiDAR-based methods to obtain clear map boundaries.

Hou et al. (2020) developed a greenhouse robot navigation system

based on a Cartographer with dual LiDAR. This system improved the

efficiency of map building and enabled robotic mapping and

autonomous navigation in a strawberry greenhouse environment.

However, as the environmental map construction of strawberry

plants is based on strawberry ridges, the results cannot be

generalized to typical unridged greenhouse environments. At

present, there are no researchers dedicated to solving the laser

SLAM problem in greenhouse sparse feature environments. In the

industrial field, Xie et al. (2021) proposed a visual-inertial fusion

SLAM method for sparse lunar feature environments that integrates
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visual measurements and inertial sensor information via pose

optimization methods to achieve high-precision joint positioning

and improve the accuracy of relative pose estimation between

key frames.

Although the above studies proposed improved methods to

address problems such as greenhouse terrains, cumulative odometer

errors, and irregular greenhouse structures, the impact of the sparse

canopy characteristics of greenhouse crops on laser SLAM-based

methods has not been considered. For crop environments such as

low-density canopies in greenhouses, traditional laser SLAM

methods have difficulty constructing accurate and complete

environmental maps due to the loss of contour information

caused by map degradation; thus, these methods cannot meet the

localization accuracy needs for agricultural robot operation. In

addition, SLAM methods based on 2D LiDAR can obtain

environmental information only at the installation height level,

while SLAM methods based on 3D LiDAR have higher

computational costs and higher requirements for achieving good

industrial computing performance (Jiang et al., 2022). The purpose

of this study was to explore a low-cost spatial downsampling-based

map construction and localization method based on the

Cartographer framework to optimize the map construction effect

and localization accuracy in suspended crop environments in

greenhouses to construct maps and realize high-precision pose

estimates in low-density canopy environments in greenhouses.
2 Materials and methods

2.1 Test platform

The map construction and localization hardware system built in

this paper is primarily composed of a perception module, control

module, power module, and drive module, as shown in Figure 1. The
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Autolabor Pro1 platform produced by Qingke Intelligent Company

(Shanghai, China) was selected as the robot chassis. The maximum

movement speed of the robot is 1 m/s, and the robot can carry a

maximum load of 50 kg. The four-wheel differential control of the

robot can achieve stationary turning, allowing for turning in narrow

spaces. The size was 726 × 617 × 273 mm, and the system was

equipped with an RS-LiDAR-16 three-dimensional LiDAR system

from Suteng Juchuang Company (Shenzhen, China). The LiDAR

system can collect 300,000 data points per second, the acquisition

frequency ranges from 5 to 20 Hz, the horizontal viewing angle range

is 360°, and the resolution ranges from 0.1° to 0.4°. The vertical

viewing angle is 30°, and the resolution is 2°. The measurement range

is 0.2–100 m. The industrial computer that the robot is equipped with

the Ubuntu 18.04 operating system, and the algorithm for the overall

software system of the greenhouse mobile robot is designed based on

the ROSMelodic. The specific model of the sensor is shown in Table 1.

The STM32 microcontroller can control the linear speed and

angular velocity of the mobile robot, provide real-time feedback

based on the motion state information of the robot, and interact with

the industrial computer through RS232 serial communication. The

industrial computer collects, fuses, and processes the robot sensor

information; constructs the map; plans the path; and performs

autonomous localization and navigation according to the control

instructions. The ROS system installed on the industrial computer

has a distributed architecture, which allows each functional module

in the framework to be designed and compiled separately during

runtime, with loose coupling between the modules.
2.2 Research method

2.2.1 Improved Cartographer algorithm design
The Cartographer algorithm (Hess et al., 2016) is an open-

source laser SLAM framework proposed by Google that is widely
FIGURE 1

Map construction and localization hardware system of the greenhouse mobile robot.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1276799
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Tan et al. 10.3389/fpls.2024.1276799
used in the fields of robotics and autonomous systems. The

Cartographer algorithm mainly establishes a series of submaps

based on LiDAR data, inserts point cloud data into the submap

through scan matching, and forms a complete map through loop

closure detection and optimization, eliminating the cumulative

error between submaps. The software framework of the adaptive

filtering point cloud projection (AF-PCP) SLAM system based on

the Cartographer algorithm is shown in Figure 2.

The LiDAR driver releases 3D point cloud data/rsldiar_points

and performs z-axis threshold filtering based on the point cloud by

setting the LiDAR perception region of interest (ROI). The key

parameters of the algorithm are as follows: min_height represents

the minimum height of the z-axis involved in point cloud

compression, and the unit is m; max_height represents the

maximum height involved in point cloud compression, and the

unit is m; range_min and range_min represent the minimum and

maximum measurement ranges of the output point cloud,

respectively, and the units are both m; and scan_time represents

the scanning time, and the unit is s. The data format of the input

point cloud is sensor_msgs/PointCloud2, and the message format of

the processed point cloud is sensor_msgs/LaserScan. The pose of

the robot is estimated by a two-wheel differential kinematics model,

and the odometer data are published in the message format of

nav_msgs/Odometry.

The greenhouse tomato plant is taken as an example, and the

height of the tomato plant is 1.5–2 m. First, the ROI of the
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greenhouse robot is set, and the ROI is selected based on the

LiDAR coordinate system to delineate a three-dimensional ROI.

The motion speed of the greenhouse robot, the braking distance,

and the reserved space between the body and the crops are

considered in determining the area. The specific parameters are

set as follows: min_height is set to 0.5 m, max_height is set to 1.5 m,

scan_time is set to 0.1 s, range_min is set to 0.2 m, and range_max is

set to 15 m. Based on the above parameter settings, the adaptive

projection process for the greenhouse crop point clouds is designed,

as shown in Figure 3.

After receiving a frame of complete multiline LiDAR data, the

greenhouse map construction system filters the point cloud data

outside the perceived ROI area. The filtered point cloud data p =

p1, p2, p3 … pnf g are stored in the array points_range. For the

adaptive vertical projection of the point cloud, the specific

processing steps are as follows: First, the kth scanning frame of the

LiDAR pk is selected, each point in the frame is represented pk(x, y,

z, i), and an iterator is used to record the starting position of the

point. The x coordinate information of the point cloud is obtained;

the y and z information and intensity value i corresponding to the

point are obtained using the offset pointers offset_y, offset_z, and

offset_i; the point pk(xk, yk, zk, ik) is represented in the LiDAR

Cartesian coordinate system. The points are converted to the polar

coordinate representation of the x–y plane by vertical projection. The

Euclidean distance rk, angle qk, and index indexk of the point in the

polar coordinate system are calculated, and the calculation formulas

are shown in Formulas 1–4.

pk = pk, qk, ikf g (1)

rk =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2k + y2k

q
(2)

qk = arctan
yk
xk

(3)

indexk =
arctan yk

xk
+ p

r
(4)

where rk qk are the distance and angle of the laser point in the

polar coordinate system, ik is the corresponding intensity value, xk
and yk are the corresponding coordinate values, and r is the angular
FIGURE 2

AF-PCP SLAM algorithm framework. AF-PCP, adaptive filtering point cloud projection.
TABLE 1 Greenhouse map construction and localization system
equipment model.

No. Equipment Specification

1 Encoder HTS-5008 encoder

2 LiDAR RS-LiDAR-16LiDAR

3 Battery 24 V 40AH lithium iron phosphate battery

4 Motor drive BLDH-750 brushless motor drive

5 Controller STM32F103zet6 computer on a chip

6 Industrial computer AMD Ryzen3 3200G

7 Chassis Autolabor Pro1
frontiersin.org
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resolution of the LiDAR system. The selected LiDAR angle beam

contains 1,800 lines, and the angular resolution calculation formula

is r = 2p
1800 ≈ 0.00349.

Similarly, the point distances at this angle for the remaining 15-

beam LiDAR data are calculated. The minimum distance obtained

by the sorting algorithm is stored in the scan_ranges container as

the distance value of the point.

Since the acquisition of laser point cloud data is not

instantaneous, the robot distorts the motion of the point cloud

data in the motion state. To eliminate this motion distortion, in this

paper, the wheel odometer data calculated by the encoder are used
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to increase the pose update frequency, reflecting the pose change of

the greenhouse robot during the laser data acquisition process. By

calculating the odometer pose in the coordinate system

corresponding to each point cloud in the current frame of the

point cloud data, the coordinates of each point cloud are

transformed into the same coordinate system, with the point of

the first laser serving as the origin according to the obtained pose.

It is assumed that the robot accelerates uniformly in the process

of collecting a frame of point cloud data. To ensure the accuracy of

the data, a double-ended queue is used to save the point cloud data

and ensure that there are at least two data points in the queue to

prevent the data time of the wheel odometer from being less than

the time of receiving the point cloud data. The start time and end

time for a frame of point cloud data are tstart and tend , respectively,

and the corresponding starting position and end position of the

origin of the LiDAR coordinate system in the odometer coordinate

system are expressed as pstart and pend , respectively. A total of n pose

information data points Pstart , Pstart+1, Pstart2,,…, Pstart+n−1, Pend
� �

are obtained. Linear interpolation is performed based on the LiDAR

pose information to obtain the approximate odometer pose

corresponding to the timestamp for the point cloud data. By

transforming the point cloud data into the odometer coordinate

system, LiDAR point cloud data based on the robot coordinate

system can be obtained in cases with distortion. The method for

calculating the coordinates of point ox , oy in the odometer

coordinate system is shown in Formula 5:

ox

oy

" #
= R

x1

y1

" #
+ l (5)

R =
cos q − sin q

sin q cos q

" #
(6a)

l =
xt

yt

" #
(7a)

where (ox , oy) are the coordinates of the odometer coordinate

system after conversion, (x1, y1) are the point cloud data points

before the transformation, and R (Formula 6a) is a rotation matrix

that describes two coordinate systems. l (Formula 7a) is a

translation vector that describes two coordinate systems, q is the

polar coordinate system angle corresponding to the point cloud,

and (xt , yt) is the translation amount from the odometer coordinate

system to the LiDAR coordinate system.

The laser point cloud data are transformed from the odometer

coordinate system to the reference coordinate system of the data

frame, and the starting point in the coordinate system of the current

frame of the point cloud data is the reference coordinate system of

the data frame. The method for calculating the coordinate of the

transformed point (o
0
x , o

0
y) in the reference coordinate system is

shown in Formula 6b:

o
0
x

o
0
y

" #
= R−1

ox

oy

" #
− R−1

x0

y0

" #
(6b)
FIGURE 3

Flowchart of the greenhouse crop point cloud adaptive
projection algorithm.
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where (x0, y0) are the coordinates of the origin of the reference

coordinate system in the odometer coordinate system and R−1 is the

inverse matrix that describes the rotation matrix of two

coordinate systems.

Finally, the frame head timestamp, intensity value, and other

information for each frame of the LiDAR point cloud data are

supplemented, and the LiDAR data after the adaptive vertical

projection process are output in the sensor_msgs/LaserScan

format with a release frequency of 10 Hz. The effect of the point

cloud processing is shown in Figure 4.
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The scan-to-map matching method was used to construct the

map, as shown in Figure 5. First, we used a submap to organize the

whole map. Each submap consists of several LiDAR scanning

frames {Scan(n)}, and the complete global map is composed of all

the submaps. Assuming that the initial pose of the robot is x1 = (0, 0,

0), the LiDAR scanning frame is denoted as Scan1 (1). At this pose,

the first submap (1) is initialized by Scan1 (1). The robot pose x2
corresponding to Scan1 (2) is calculated by the scan-to-map

matching method, and Scan1 (2) is added to Submap (1) based

on pose x2. The scan-to-map matching method is continuously
BA

FIGURE 4

Point cloud processing results. (A) Before processing point cloud. (B) After processing point cloud.
FIGURE 5

Schematic diagram of the map construction process.
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executed, and the newly obtained LiDAR frames are added until the

new LiDAR frame is completely included in Submap (1); that is,

when the new LiDAR frame does not contain new information

other than that included in Submap (1), the creation of Submap (1)

is completed. The above process is performed to create all the

submaps (m). Finally, all the local subgraphs {Submap(m)} are used

to form the complete global map.

2.2.2 Layout of the test site
In this paper, a simulated greenhouse scene was built, which

included 30 mm * 30 mm aluminum profiles, fixed bases, and

simulated plants. The simulated crop has three rows; each row is

4 m long, the row height is 1.3 m, and the row spacing is 1.2 m. The

test scene is shown in Figure 6. In the crop row, aluminum profiles

were used as support rods every other distance, a set of simulated

crops was arranged every 0.2 m, and the number of leaves per crop

was counted.
2.3 Test scheme

2.3.1 Different sparse degree mapping tests
To verify the mapping effect of the algorithm for different sparse

canopy crops in the greenhouse, based on the robot platform built

in Section 2.1 and the simulated greenhouse scene constructed in

Section 2.2.2, the crops were randomly pruned five times, and 10%

of the leaves were pruned each time. A total of six simulated

environments with different degrees of sparseness were generated.

The experiment was carried out at the National Agricultural

Information Demonstration Test Base in Xiaotangshan town,

Beijing, in May 2023. In this experiment, the AF-PCP SLAM

algorithm was used for SLAM mapping, and the Cartographer

algorithm was used for the control group. The remote control robot

moves between the crop rows to construct a map of the entire

environment. The specific mapping operation was performed

as follows:
Fron
1 The ROS core node, chassis control node, and LiDAR

mapping node are started.
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2 The robot movement speed is set to 0.2 m/s, and the remote

control operation is performed according to the running

track for the interrow operation.

3 The visualization tool Rviz is used to monitor the robot

mapping results in real time, and the map is saved after map

construction is completed.
The canopy biomass, leaf area (LA), leaf area index (LAI), and

leaf area density (LAD) are the main indicators of canopy density.

The distribution of leaf density in the canopy is random and

unpredictable in three-dimensional space, which complicates the

quantitative analysis process (Gu et al., 2021). In this paper, the

LAD was used as a measure of canopy density to divide the six

experiments. A YMJ-G leaf area meter (Shandong Fangke

Instrument Co., Ltd., Shandong, China) was used to measure the

leaf density 10 times. The average leaf area was 21.203 cm2, and

environments with six LAD values were constructed. The number

of crop row pixels, the crop row length, and the maximum gap

length for each LAD were used as evaluation indicators. The actual

length of the crop row was 3.985 m, and the actual value of the crop

row spacing gap was 0.08 m. The method for counting the number

of pixels involved counting the number of pixels in the middle crop

row in the PGM image via the two algorithms. The crop row length

and maximum gap length were calculated by importing the

Pbstream file calculated by the two algorithms into the cost map

tool under the ROS open source function package Movebase; the

scale measurement tool in Rviz was used to measure the crop row

length in the middle row, and the maximum gap length

was determined.

2.3.2 Localization system performance test
To verify the localization accuracy of the proposed method at

different speeds, the robot was controlled to move along the crop

row by setting different robot motion speeds, namely, a low speed of

0.2 m/s, a medium speed of 0.4 m/s, and a high speed of 0.6 m/s.

The ROSBag tool was used to record the real-time data of the sensor

and the localization algorithm output results. The starting position

in each test was aligned with a laser pen to ensure that the initial

pose in each test was the same, as shown in Figure 7A.
BA

FIGURE 6

Simulated greenhouse test scene. (A) Physical display of simulated test scenarios. (B) Schematic diagram of simulation test scenario.
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In this paper, according to the localization evaluation

equipment selected in Reference (Zhang et al., 2022), the Starter

Set Super-MP-3D ultrasonic localization device from the

Marvelmind Company was selected to determine the true value to

evaluate the localization accuracy of the robot. The device consists

of four fixed labels, a mobile vehicle label, and a localization route.

The device can theoretically obtain an accuracy of up to ±2 cm. In

addition, in this paper, the dead reckoning localization method was

used as a comparison method to evaluate the performance of the

AF-PCP SLAM algorithm comprehensively. Four localization labels

were strategically placed in the greenhouse, and four vertices in the

test area were selected for placement. To reduce the interference of

crop occlusion on ultrasonic signals and ensure maximum signal

coverage, four positioning labels were placed at the vertices of two

outer crop rows. Fixing labels at the same height can improve

positioning accuracy. Each label was fixed on a beam 1.4 m above

the ground, as shown in Figure 7B.

To prove the effectiveness of the AF-PCP SLAM algorithm, the

localization accuracy was evaluated using EVO (https://github.com/

MichaelGrupp/evo, accessed on June 28, 2022). To verify the

results, the ultrasonic localization data were used as the ground

truth to analyze the localization effect. The relative pose error (RPE)

describes the accuracy of the two-frame pose difference between the

estimated pose and the real pose at a fixed time difference t, which is

equivalent to the error of directly measuring the pose results. The

RPE for frame i is shown in Formula 7b:

Ei = (Q−1
i Qi+Dt)

−1(P−1
i Pi+Dt) (7b)

where Ei represents the RPE of the ith frame, Qi represents the

true ultrasonic pose value, Pi represents the estimated pose value,

and Dt represents a fixed interval time coefficient.

Assuming that there are n pose frames, the n − DtRPE values

can be calculated, and the total value is obtained using the root

mean square error (RMSE) statistics, as shown in Formula 8:

RMSE(E1 : n,Dt) = (
1
mo

m

i=1
‖ trans(Ei) ‖ 2)

1
2 (8)

Here, m = n − Dt and trans(Ei) represent the translation of the

RPE. To comprehensively evaluate the performance of the

algorithm, the average RMSE is calculated, as shown in Formula 9:
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RMSE(E1 : n) =
1
n o

n

Dt=1
RMSE(E1 : n,Dt) (9)
3 Results

3.1 Mapping performance

To verify the wide applicability of the AF-PCP SLAM algorithm

for different crop densities, six tests were carried out in the same

environment. The localization trajectory and surrounding

environment information of the different methods are displayed

in real time in Rviz, as shown in Figure 8.

Figure 8 shows that the Cartographer algorithm accurately

constructs structured walls and glass into grayscale grid maps.

However, these maps are still not perfect. Unstructured

suspended crops occupy most of the space in the greenhouse

environment. However, based on the mapping results, the

Cartographer algorithm results in a large loss of crop row

mapping, whereas the AF-PCP SLAM algorithm yields more

accurate mapping results. To better show the effect of the AF-

PCP SLAM algorithm on crop row mapping under different degrees

of sparseness, Figure 9 shows the map construction results of the

two methods for six degrees of sparseness.

Figure 9 shows the crop mapping results of the Cartographer

algorithm and AF-PCP SLAM algorithm for six degrees of

sparseness. According to the LAD calculation method presented

in Section 2.3.1, the LADs corresponding to the six sparsities are

5.301 m2/m3, 4.830 m2/m3, 4.358 m2/m3, 3.887 m2/m3, 3.416 m2/

m3, and 2.945 m2/m3. The quantitative statistical results, including

the number of pixels, the crop row lengths, and the maximum gap

lengths, for the six LADs were calculated, as shown in Figure 10.

According to the results shown in Figure 10, as the LAD

increased, the number of pixels in the crop row generally

increased. The AF-PCP SLAM algorithm outperforms the

Cartographer algorithm in terms of the number of pixels. The

number of pixels in the crop row reflects the effective area of

the grid map, and the results indicate that the AF-PCP SLAM

algorithm is better at constructing the map of the crop row.

Specifically, the number of pixels in the AF-PCP SLAM algorithm
BA

FIGURE 7

Pose alignment and test environment localization equipment construction. (A) Using a laser pointer for pose alignment. (B) test environment
localization equipment construction.
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increased by 63.3%, 144.4%, 160%, 100%, 350%, and 116.7%, with

an average increase of 155.7%.

In addition, as the LAD increased, the length of the crop rows

constructed by the AF-PCP SLAM algorithm was close to the real

length of the crop rows. When the LAD was greater than 3.877 m2/

m3, the length of the crop row constructed by the Cartographer

algorithm was close to the real length of the crop row. However,

when the LAD was less than 3.877 m2/m3, the error between the

crop row length constructed by the Cartographer algorithm and the

real length was large. The average error in the crop row length

calculated by the Cartographer algorithm was 0.086 m, and the

coefficient of variation was 1.741%. The mean error of the crop row

length constructed by the AF-PCP SLAM algorithm was 0.019 m,

and the coefficient of variation was 0.217%. Thus, the mean error

and coefficient of variation of the crop row length were reduced by

77.9% and 87.5%, respectively, with the AF-PCP SLAM algorithm.

Moreover, as the LAD increases, the maximum gap length

decreases for both algorithms. When the LAD was 5.301 m2/m3,

the maximum gap lengths obtained by the two methods were

consistent with the true value of the set crop row spacing gap.

When the LAD was between 3.887 m2/m3 and 4.83 m2/m3, the

maximum gap length obtained by the Cartographer algorithm

changed more slowly. However, when the LAD was between

2.945 m2/m3 and 3.416 m2/m3, the maximum gap lengths

obtained by the Cartographer algorithm were 0.458 m and 1.2 m,

respectively. The maximum gap lengths obtained by the AF-PCP

SLAM algorithm were 0.125 m and 0.223 m, which were better than

those obtained by the Cartographer algorithm. The maximum gap

length obtained by the Cartographer algorithm was 1.2 m, and

the mean value was 0.456 m. The maximum gap length obtained

by the AF-PCP SLAM algorithm was 0.223 m, and the mean

value was 0.124 m, which is 72.8% lower than that of the

Cartographer algorithm.

The crop row length in the mapping results reflects the quality

of the crop row end map construction to a certain extent, and the

lack of a constructed row end map and the increase in the

maximum gap length increase the error rate of the path planning

algorithm. When the maximum gap length exceeds the width of the

robot body, the path planning algorithm chooses a closer route,
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resulting in errors in the global path planning of the robot. When

the LAD is reduced to 3.877 m2/m3, the mapping results of the

Cartographer algorithm no longer represent most of the crop

information in the environment, while the AF-PCP SLAM

algorithm can still achieve accurate mapping of crop rows; thus,

the AF-PCP SLAM algorithm has higher mapping robustness.
3.2 Localization performance

According to the localization accuracy evaluation criteria

presented in Section 2.3.2, the localization errors of the AF-PCP

SLAM algorithm and track deduction algorithm were calculated at

different speeds. Figure 11 shows the trajectories of robots operating

at speeds of 0.2 m/s, 0.4 m/s, and 0.6 m/s and the error curves in the

x, y, and z directions. The RPE was used to analyze these results, and

for each timestamp, the absolute difference between the true pose

and the estimated pose was calculated. To highlight the RPE during

the robot’s movement, Figure 12 shows the error between the AF-

PCP SLAM algorithm, the track deduction algorithm, and the real

trajectory and maps the error to the trajectory through color coding.

Figure 13 shows the curves of the RPE, mean, median, root mean

square error, and standard deviation over time. The quantitative

results of the error calculation are shown in Table 2.

Figure 11A shows different trajectories: location_pos_remap

represents the localization trajectory of the true ultrasonic value,

tracked_pose represents the pose trajectory calculated by the AF-

PCP SLAM algorithm, and Odom represents the pose trajectory

calculated by the track inference algorithm. Figure 11B shows the

time-varying pose values in the x, y, and z directions. Since the robot

moves in a two-dimensional plane, the value in the z direction is

always 0. In each experiment, three extreme values are generated,

which represent the moment when the robot turns at the end of a

row. The results of the three experiments show that the pose

trajectory calculated by the AF-PCP SLAM algorithm is closer to

the real value than that calculated by the track deduction algorithm.

The red circle in Figure 11 marks the position where the robot turns

at the end of the last row, which corresponds to the maximum

localization error.
BA

FIGURE 8

Visualization of the results of the Rviz map construction and localization trajectories. (A) The map construction results of the Cartographer algorithm.
(B) The map construction results of the AF-PCP SLAM algorithm.
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According to the test results shown in Figures 12, 13, the

average localization error is 0.026 m, and the maximum

localization error is 0.127 m when the robot moves at 0.2 m/s.

When the robot moves at 0.4 m/s and 0.6 m/s, the initial fluctuation

in the ultrasonic signal affects the maximum localization error; the

average localization errors are 0.029 m and 0.046 m, respectively,

which indicates that the localization accuracy is relatively stable. In

contrast, the track deduction algorithm has a serious error

accumulation problem. The average localization error of the track

deduction algorithm is generally greater than 0.12 m, and the
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average localization error reaches as high as 0.233 m at a speed of

0.6 m/s. The AF-PCP SLAM algorithm is based on the localization

of laser matching, which is not sensitive to error accumulation or

the environment, so it has higher localization accuracy. The

experimental results in Table 2 show that the AF-PCP SLAM

algorithm proposed in this paper can achieve high-precision

localization of robots at movement speeds of 0.2 m/s, 0.4 m/s,

and 0.6 m/s. The average localization error of the AF-PCP SLAM

algorithm is reduced by 79.8%, 78.9%, and 80.3% at these three

speeds compared with the error of the track deduction algorithm,

and the average localization error is reduced by 79.9%.
3.3 The actual greenhouse
environment performance

To verify the ability of the AF-PCP SLAM algorithm to

construct maps in actual greenhouse scenes, a greenhouse

experiment was carried out at the “Doctor” farm base in Pinggu

District, Beijing. The cucumber cultivar Yutian 156 was planted in

this field, with a row width of 1.2 m. In the experiment, the

Cartographer algorithm and AF-PCP SLAM algorithm were used

to construct the map of the greenhouse. The robot walked along the

crop rows at a speed of 0.2 m/s, and a map of the three rows of crops

was constructed. The experimental environment and the map

construction results of the two algorithms are shown in Figure 14.

Figure 14A shows the greenhouse test scenario, and

Figures 14B, C are the map construction results of the

Cartographer algorithm and AF-PCP SLAM algorithm,

respectively. Figure 14A shows that due to the larger leaves of the

actual greenhouse crops, the difference between the two algorithms

in the actual greenhouse scene is more obvious. Figures 14B, C show

that, compared with the Cartographer algorithm, the AF-PCP

SLAM algorithm has a larger mapping area for crop rows.

Accurate mapping of crop row contours can effectively control

the moving trajectory and range of motion during robot navigation

and effectively avoid damaging crops during robot operation.

Moreover, row2 and row3 in Figure 14B exhibit obvious drifts

because uneven ground reduces the mapping accuracy of crop rows

and leads to map drift compared with that in the laboratory scene.

The corresponding row2 and row3 drifts in Figure 14C are small,

which also reflects, to some extent, that the AF-PCP SLAM

algor i thm has higher mapping robustness in actua l

greenhouse scenes.
4 Discussion

4.1 Discussion of the mapping results

Suspended plant patterns are widely used in greenhouses and

agricultural environments. In this experiment, mobile robots

walked along crop rows in greenhouses. However, the robot is in

a repeated scene when walking between crop rows. Because crop

rows usually have highly repetitive structures, with long, narrow,

and tall rows, this poses a challenge in map construction. When
B
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FIGURE 9

Results of the mapping of the two algorithms. The map construction
results of the Cartographer algorithm under sparsities of (A) 100%,
(C) 90%, (E) 80%, (G) 70%, (I) 60%, and (K) 50%. The map
construction results of the AF-PCP SLAM algorithm under sparsities
of (B) 100%, (D) 90%, (F) 80%, (H) 70%, (J) 60%, and (L) 50%. AF-
PCP, adaptive filtering point cloud projection.
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FIGURE 10

Map quantitative indicators under different LADs. The black, red, and blue symbols represent the number of pixels in the crop row, the length of the
crop row, and the maximum gap length, respectively. LADs, leaf area densities.
BA

FIGURE 11

(A) A comparison of the absolute localization errors between the AF-PCP SLAM algorithm and Odom and the real trajectory. (B) A comparison of the
error curves in the x and y directions over time. AF-PCP, adaptive filtering point cloud projection.
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constructing a map in a low-density canopy environment, crop

rows may have missing content, such as voids and gaps. There are

two reasons for this. First, when the laser beam passes through a gap

in the leaves, another row of crops may be detected, or the wall may

be directly detected, resulting in inconsistent observation results.

This reduces the probability of obstacles in the occupied grid map

corresponding to this position, which leads to the degradation of the

map. Second, the irregular structure of the blade may cause the laser

detection results of blades at the same position to be inconsistent

under different robot poses. As the canopy leaf area density

decreases, this situation is aggravated, resulting in the absence of

crop rows on the map. To address these problems, in this paper, the

innovative AF-PCP SLAM algorithm is designed, which fully

considers the spatial characteristics of suspended crops in

greenhouses, extracts and compresses the map contour based on

16-line LiDAR data, and maps the data to a 2D plane to establish

the environment map and localize the robot. This innovative

approach addresses the abovementioned map degradation

problem, thereby improving the accuracy and robustness of the

mapping results.
4.2 Discussion of the localization results

Due to the equidistant distribution of greenhouse crop rows,

greenhouse environments have a high degree of symmetry, forming
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a “corridor scene”. The corridor problem is one of the key problems

faced by the SLAM method. Because the LiDAR detection results

are similar, they cannot reflect the actual displacement in the

forward direction, which may introduce localization inaccuracies

in the forward direction with the SLAM method. According to

Figure 11A, in this experiment, the results estimated by the Odom

localization method are accurate in the initial row. However, when

the robot moves to the end of the crop row and turns into the next

row, the localization error of the Odom algorithm in the y direction

increases with increasing distance. When the robot returns to the

starting point, the pose estimation error of the Odom algorithm is

approximately 0.2 m. According to Figure 11B, the position of the

extreme point corresponds to the trajectory in Figure 11A. The

trajectory position of the red circle in Figure 11A corresponds to the

error at the position of the red circle labeled in Figure 11B. The

three tests show that the error in the x direction is the largest at this

time. We believe that this phenomenon occurs because when the

agricultural robot turns, the deviation in the y direction increases

due to errors in the robot’s coordinate system. This is due to the

limitations of the two-wheel differential model. Even after the

odometer calibration, the deviation in the y direction increases

rapidly as the distance increases. The x-direction error in

Figure 11B is mainly caused by the y-direction error component

in the robot coordinate system, so the maximum error is generated

after the robot turns down the last row. At this moment, the

localization error of the AF-PCP SLAM algorithm proposed in
BA

FIGURE 12

AF-PCP SLAM algorithm and Odom localization error. (A) The error in the trajectory of the AF-PCP SLAM algorithm. (B) The error in Odom. AF-PCP,
adaptive filtering point cloud projection.
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this paper is much smaller than that of the track deduction

algorithm, which allows the robot to accurately navigate to the

next crop row according to the path planning algorithm, thus

reducing the risk of row-end collisions during robot navigation.

The results shown in Table 2 intuitively reflect the influence of the

three moving speeds on the localization accuracy. With increasing

moving speed, the mean, maximum, and standard deviation of the

localization error increase. The reason is that the increase in the

mechanical vibration of the robot causes additional input noise,

which affects the collection of the point cloud data and the matching

effect of the point cloud. Moreover, as the processing efficiency of

the algorithm remains unchanged, an increase in the rate of change

in the robot pose leads to a decrease in the localization accuracy.

In Figure 12, there is a certain regularity between the

fluctuations in the RPE value and the extreme point position of
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the error curve in the x direction in Figure 10B. For example, the

RPE value at the position indicated by the red circle in Figure 12A

decreases in all three speed tests. The position of the decrease

corresponds to the extreme point in the error curve, that is, the

moment when the robot moves to the end of the row. Although the

increase in the error is small (only 2 cm), there is a certain regularity

in the results. This phenomenon may be related to robot system

errors and may also be related to ultrasonic localization labeling

errors. Through repeated comparisons, we believe that this

phenomenon is related to the physical characteristics of the

ultrasonic localization labeling method. When the robot moves

between rows, the localization accuracy of the ultrasonic label is

reduced due to the occlusion of the canopy crop. When the robot

moves to the end of the crop row, the occlusion effect of the crop

row is reduced. At this time, the vehicle label carried by the robot is
BA

FIGURE 13

Odom and AF-PCP SLAM algorithm localization errors. (A) The curve of the relative pose error (RPE) of the AF-PCP SLAM algorithm with time.
(B) The curve of the RPE of Odom with time. AF-PCP, adaptive filtering point cloud projection.
TABLE 2 RPE values of the AF-PCP SLAM algorithm, Cartographer algorithm, and Odom.

Test ID Methods Max Mean Median RMSE Std

0.2 AF-PCP SLAM
Cartographer

Odom

0.127
0.371
0.567

0.026
0.038
0.129

0.018
0.039
0.090

0.033
0.063
0.185

0.021
0.022
0.133

0.4 AF-PCP SLAM
Cartographer

Odom

0.353
0.109
1.451

0.029
0.047
0.138

0.012
0.044
0.050

0.051
0.085
0.259

0.042
0.028
0.220

0.6 AF-PCP SLAM
Cartographer

Odom

0.540
0.842
1.524

0.046
0.035
0.233

0.020
0.031
0.095

0.074
0.087
0.397

0.058
0.020
0.322
RPE, relative pose error; AF-PCP, adaptive filtering point cloud projection; RMSE, root mean square error.
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closer to the localization label arranged in the environment, thereby

improving the localization accuracy. This study did not deploy

ultrasound tags in greenhouse scenarios. In future work, we will

deploy this module in actual greenhouse scenarios as an input to the

system for large-scale scene localization. Based on the error

characteristics of ultrasound tags, trajectory inference algorithms,

and SLAM positioning algorithms, the fusion of the three can

achieve robust localization in complex environments. This is also

another research work we are currently conducting.

For agricultural robots, real-time localization of crop rows and

turns in large-scale greenhouse environments must be achieved.

The proposed AF-PCP SLAM algorithm can accurately estimate the

trajectory, as shown in Figure 12A. The maximum average RPE is
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0.046 m. The proposed method was shown to have high robustness

and accuracy in challenging agricultural environments,

outperforming the current state-of-the-art approaches.
5 Conclusion

Aiming to address the problem that low-density canopy

environments in greenhouses affect the robustness and

localization accuracy of SLAM methods, in this paper, a spatial

downsampling map construction and localization method based on

the Cartographer framework is proposed, an adaptive filtering

spatial point cloud projection algorithm is designed, and a
B

C

A

FIGURE 14

The actual greenhouse scenario test (A) The greenhouse test scenario. (B) The map construction results of the Cartographer algorithm. (C) Tthe
map construction results of the AF-PCP SLAM algorithm.
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greenhouse map construction and high-precision pose estimation

system are developed. For greenhouse crop leaf area densities

ranging from 2.945 m2/m3 to 5.301 m2/m3, the method proposed

in this paper can accurately model the contours of sparse crop rows.

Compared with that of the Cartographer algorithm, the map area of

the AF-PCP SLAM algorithm for the crop row increased by 155.7%.

The mean error and coefficient of variation for the crop row length

were 0.019 m and 0.217%, respectively, which were respectively

77.9% and 87.5% less than those of the Cartographer algorithm. The

average maximum void length was 0.124 m, which was 72.8% less

than that of the Cartographer algorithm. Localization tests were

carried out at speeds of 0.2 m/s, 0.4 m/s, and 0.6 m/s. The average

relative localization errors of the actual motion trajectory and the

real path were 0.026 m, 0.029 m, and 0.046 m, respectively, and the

standard deviations were less than 0.06 m. Compared with those of

the track deduction algorithm, the average localization error was

reduced by 79.9%. These results show that the method can meet the

requirements of map construction and localization in greenhouse

environments. Thus, the proposed method is an effective approach

for the autonomous operation of agricultural robots, providing a

basis for localization and perception for efficient decision-making

and safe operation of intelligent agricultural machinery and

equipment in greenhouses.
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