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RNA-seq transcriptomic analysis
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Wen Chen4, Lawrence Hale2 and Xiang Li1*

1Charlottetown Laboratory, Canadian Food Inspection Agency, Charlottetown, PE, Canada, 2Biology
Department, University of Prince Edward Island, Charlottetown, PE, Canada, 3Temperate Tree Fruit
and Vegetable Research Unit, USDA-ARS, Wapato, WA, United States, 4Ottawa Research and
Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
Introduction: Candidatus Liberibacter solanacearum (CLso) is a regulated plant

pathogen in European and some Asian countries, associated with severe diseases

in economically important Apiaceous and Solanaceous crops, including potato,

tomato, and carrot. Eleven haplotypes of CLso have been identified based on the

difference in rRNA and conserved genes and host and pathogenicity. Although it

is pathogenic to a wide range of plants, the mechanisms of plant response and

functional decline of host plants are not well defined. This study aims to describe

the underlying mechanism of the functional decline of tomato plants infected by

CLso by analyzing the transcriptomic response of tomato plants to CLso

haplotypes A and B.

Methods: Next-generation sequencing (NGS) data were generated from total

RNA of tomato plants infected by CLso haplotypes A and B, and uninfected

tomato plants, while qPCR analysis was used to validate the in-silico expression

analysis. Gene Ontology and KEGG pathways were enriched using differentially

expressed genes.

Results: Plants infected with CLso haplotype B saw 229 genes upregulated when

compared to uninfected plants, while 1,135 were downregulated. Healthy tomato

plants and plants infected by haplotype A had similar expression levels, which is

consistent with the fact that CLso haplotype A does not show apparent

symptoms in tomato plants. Photosynthesis and starch biosynthesis were

impaired while starch amylolysis was promoted in plants infected by CLso

haplotype B compared with uninfected plants. The changes in pathway gene

expression suggest that carbohydrate consumption in infected plants was more

extensive than accumulation. In addition, cell-wall-related genes, including

steroid biosynthesis pathways, were downregulated in plants infected with

CLso haplotype B suggesting a reduction in membrane fluidity, cell signaling,

and defense against bacteria. In addition, genes in phenylpropanoid metabolism

and DNA replication were generally suppressed by CLso infection, affecting plant

growth and defense.

Discussion: This study provides insights into plants’ defense and functional

decline due to pathogenic CLso using whole transcriptome sequencing and
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qPCR validation. Our results show how tomato plants react in metabolic

pathways during the deterioration caused by pathogenic CLso.

Understanding the underlying mechanisms can enhance disease control

and create opportunities for breeding resistant or tolerant varieties.
KEYWORDS

Candidatus Liberibacter solanacearum, zebra chip, transcriptomics, gene
expression, bioinformatics
1 Introduction

Candidatus Liberibacter solanacearum (CLso) is a phloem-

limited pathogen associated with diseases in many Apiaceous and

Solanaceous plants, including potato, tomato, carrot, pepper,

eggplant, celery, and leek (Hansen et al., 2008; Liefting et al., 2008;

Sumner-Kalkun et al., 2020). This pathogen is associated with foliar

dieback in susceptible plants, and causes zebra chip disease of potato

(Li et al., 2013). The CLso has a wide range of psyllid vectors,

including Bactericera cockerelli, B. trigonica, and Trioza apicalis

(Munyaneza et al., 2007b; Sumner-Kalkun et al., 2020). Also, it has

been suggested that non-solanaceous psyllids might be the potential

vectors of CLso, and therefore more plant hosts might carry the

bacteria (Borges et al., 2017; Swisher Grimm and Garczynski, 2019).

CLso is categorized into haplotypes based on single nucleotide

polymorphisms (SNPs) in ribosomal RNA and housekeeping genes.

Different haplotypes vary in pathogenicity to different host plants

(Mendoza-Herrera et al., 2018; Swisher Grimm et al., 2018;

Harrison et al., 2019; Harrison et al., 2020; Sumner-Kalkun et al.,

2020). Until now, 15 haplotypes of CLso have been identified

around the world, including A, B (Wen et al., 2009), C

(Munyaneza et al., 2010b), D (Nelson et al., 2013), E (Teresani

et al., 2014), F (Swisher Grimm and Garczynski, 2019), G (Mauck

et al., 2019), H (Haapalainen et al., 2020), H(Con) (Contreras-

Rendon et al., 2020), U (Haapalainen et al., 2018), Cras1, Cras2

(Sumner-Kalkun et al., 2020), Aph1, Aph2, and Aph3 (Grimm

et al., 2022). Haplotypes A, B and F are pathogens of ZC in the

United States, with haplotypes A and B also occurring in Mexico

and New Zealand (Hansen et al., 2008; Liefting et al., 2009;

Munyaneza et al., 2009; Antolinez et al., 2017; Haapalainen et al.,

2020). Haplotype C was found in carrots in Finland, Sweden and

Norway (Nelson et al., 2013). Haplotype D was found in carrots and

celeries in Spain, the Canary Islands, Southern Europe and Morocco

(Nelson et al., 2013; Alfaro-Fernández et al., 2017). Haplotype E was

found in Southern Europe, including Spain and Morocco, in carrot

and celery (Alfaro-Fernández et al., 2017; Ben Othmen et al., 2018).

Haplotype G was discovered and recovered in herbarium specimens

of wild species (Solanum elaeagnifolium, S. americanum, and S.

umbelliferum), indicating that CLso has been in South America

since at least 1970 (Mauck et al., 2019). Haplotype U was found in
02
Urtica dioica in Finland (Haapalainen et al., 2018). Cras1 and Cras2

were found in psyllid vectors in Scotland (Sumner-Kalkun et al.,

2020). Aph1, Aph2 and Aph3 were identified in psyllid vectors

collected from yellow sticky cards near potato farms in southern

Oregon of the United States; the impact of Aph1 to Aph3 on crops

is not known (Grimm et al., 2022)

In general, CLso is injected into the phloem through the

psyllids’ saliva. If infected, plants cannot offer an effective

immune response, resulting in CLso reproduction in the phloem.

This blocks the nutrition transmission in the phloem, inducing

erectness and stunting of new foliage, basal cupping of leaves with

chlorosis and purpling, upward curving or scorching of all leaves,

compressed and enlarged terminal internodes leading to resetting,

hypertrophic nodes, axillary branches or tubers on the ground,

breach of fruit set, and production of plenty of tiny, misshapen, and

bastard fruits (Munyaneza et al., 2007a; Munyaneza et al., 2007b;

Liefting et al., 2009; Secor et al., 2009; Crosslin et al., 2010;

Munyaneza et al., 2010a; Munyaneza, 2012).

The underground symptoms in infected potatoes include folded

stolons, browning of vascular tissue accompanying necrotic flecking

of internal tissues, and dark medullary rays, all of which deteriorate

throughout the tuber. Upon frying, the tuber-related symptoms are

more evident, and chips and crisps present grey blotches and stripes

which lead to loss of business value and privation of farmers

(Munyaneza et al., 2007a; Munyaneza et al., 2007b; Secor et al.,

2009; Crosslin et al., 2010; Miles et al., 2010; Goolsby et al., 2012;

Munyaneza, 2012). The term “Zebra Chip disease” generally refers

to those symptoms of potato tuber (Munyaneza et al., 2007a;

Munyaneza et al., 2007b; Munyaneza, 2012). In carrots with

infection of CLso, symptoms include leaf twist and discoloration,

stunting of shoots and roots, and proliferation of secondary roots

(Munyaneza et al., 2010a; Munyaneza et al., 2010b; Alfaro-

Fernandez et al., 2012a; Alfaro-Fernandez et al., 2012b).

Growth experiments show CLso-A-infected tomato plants were

stunted after three weeks of infection, but the heights of plants were

not significantly less than the negative control group (Harrison

et al., 2022). The CLso-B-infected tomato plants’ growth was

considerably impaired (Harrison et al., 2022).

Analysis shows that most of the differentially expressed genes

were down-regulated in the CLso samples; those genes were
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generally involved in plant defense against stressors, growth, plant

metabolism, transport and signaling and transcription/translation

(Levy et al., 2017; Harrison et al., 2022).

Among the genes for enzymes involved in cellulose synthesis in

the cell wall, cellulose synthase-like A1, transferase (transferring

glycosyl groups), UPA15, glycosyltransferase (CAZy family GT2),

and cellulose synthase decreased in transcript abundance (FPKM) in

CLso-infected samples comparing to CLso-free samples (Levy et al.,

2017). Cell wall modification genes, expansin, XTH3, xyloglucan

endotransglycosylase, and xyloglucan endotransglucosylase, were also

down-regulated with CLso-infection (Levy et al., 2017).

Although pathogenicity variation is observed, the host response

mechanism to the pathogen has not been well studied. This study

aims to describe the underlying mechanism of the functional decline

of plant hosts infected by CLso by analyzing the transcriptomic

response of tomato plants to CLso haplotypes A and B.
2 Materials and methods

A total of 30 ‘Moneymaker’ tomato plants were planted for four

weeks, with each plant treated with five male psyllids carrying the

same CLso haplotype for 5-7 days in a whole plant cage. The

psyllids were vectors of CLso haplotype A or B. Four weeks after

inoculation, the DNA of stems and leaves was extracted and

purified using the MagneSil KF, Genomic kit according to the

manufacturer’s protocol. All tomato plants were tested with CLso

PCR primers CLipoF/OI2c (Liefting et al., 2009; Secor et al., 2009)

(16S rRNA), and the positive plants were also tested with the 50s

rplJ/rplL primers [CL514F/CL514R (Munyaneza et al., 2009)]. PCR

gel products of positive samples were extracted using QIAquick Gel

Extraction Kit according to the manufacturer’s protocol and sent

out for Sanger sequencing at the Ottawa Hospital Research

Institute. The raw sequences were trimmed using a 0.01 quality

score in CLC Genomics Workbench 20.0.2. Clasnip (the alpha

version) was used to confirm CLso haplotypes using the trimmed

sequences (Chuan et al., 2023). Grafting was also performed using

the branches of tomato plants infected by CLso, which had a

probability of producing newly infected plants. The new plants

were tested CLso with the same primers as well. Grafted plants were

used to maintain the unculturable pathogen, and they were not

included in the RNA-Seq samples.

Four weeks after inoculation, total RNA of stem and leaves was

extracted from tomato plants infected by CLso haplotype A, tomato

plants infected by haplotype B, and healthy tomato plants. NGS

sequencing libraries were generated from total RNA using the

Illumina TruSeq Library Preparation Kit (300 bp×2) and then

sequenced using the Illumina MiSeq Platform. The tomato SL4.0

genome and ITAG4.1 annotation reference were downloaded from

the Sol Genomics Network (https://solgenomics.net/). Atria v2.1.0 was

used to trim adapter sequences and low-quality reads (Chuan et al.,

2021). Salmon v0.12.0 was used for transcript quantification (Patro

et al., 2017). The ITAG4.1 coding sequence reference contained

hypothetical proteins. However, these proteins lacked experimental

evidence to confirm that they could be expressed in vivo. Therefore,

coding sequences were removed if they had less than 10x coverage in
Frontiers in Plant Science 03
half of the samples. DESeq2 was used to find differentially expressed

genes (DEGs) (Love et al., 2014). DEGs were calculated while

controlling for plant and batch variables (Table 1). The ITAG4.1

coding sequences were annotated with Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) databases using

Blast2GO v1.1.0 (Gotz et al., 2008) and InterPro v70.0 (Paysan-Lafosse

et al., 2023). After that, GO and KEGG pathways were enriched using

DEGs and visualized with ClusterProfiler v4.2.1 (Wu et al., 2021).

In addition, we used qPCR analysis to validate the gene

expression levels estimated from NGS sequencing. We selected 54

(including two internal control) genes to design primers using CLC

Genomics Workbench 20.0.2. Those genes were DEGs or enriched

in GO or KEGG pathways. Up to three primer sets were designed

for each gene. The primers were preliminarily tested with normal

PCR using extracted total DNA of tomato samples. Suitable primers

were then used to quantify the gene expression levels between three

CLso haplotype B infected tomato plants and three healthy tomato

plants using SensiMix II Probe Mix and Eva Green dye. Each

reaction had two technical replications. A reaction would be re-run

if the Ct values of technical replications were not in a reasonable

range, such as the Ct difference greater than two. Delta-delta Ct

value was used to compute the gene’s expression levels. The

expression levels using qPCR and RNA-Seq analyses were tested

using Pearson correlation.
3 Results and discussions

A total of 27 samples were successfully sequenced (Table 1).

Three samples failed library preparation because of low RNA

concentration. The number of clean read pairs ranged from 1.9 to

7.1 million (Table 1). The average read length is around 135 bp

(Table 1). The mapping rates of tomato transcriptome varied from

5.3% to 63.3% (Table 1), which might be a result from diverse

pathogen to host ratio and rRNA tomRNA ratio. The mean coverage

of transcripts ranged from 10.6 to 413.6 (Table 1), indicating all

samples had enough sequencing depth for RNA-Seq analysis.
3.1 Differentially expressed gene analysis

In total, the expression levels of 9,888 genes in tomato plants

were quantified in RNA-Seq analysis. The volcano plot

illustrated the statistical significance (adjusted P value) versus

the magnitude of change (fold change) of DEG results (Figure 1).

We selected the differentially expressed genes using adjusted P

value (<0.05) and fold change (≥3) (Figures 1–3; Supplementary

Table 1). Thus, comparing haplotype B to the negative control,

1,364 DEGs were selected, among which 229 genes were

upregulated and 1,135 were downregulated (Figures 2, 3). The

Principal Component Analysis (PCA) shows that the principal

component 1 (PC1) comprised 68% variance and could be used

to differentiate CLso haplotype B and other groups (Figure 2),

implying that the expression level of tomato plants infected by

haplotype B varied from healthy tomato plants and those

infected by CLso haplotype A.
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Healthy tomato plants and plants infected by haplotype A had

similar expression levels, consistent with observations that CLso

haplotype A does not show apparent symptoms in tomato plants

(Figures 2, 3). In the hosts infected by CLso haplotype B, the

expression levels were generally in a distinct cluster compared to

healthy plants and plants infected by CLso haplotype A, despite the

fact that T5 and T14 had relatively different patterns in gene

expression compared with other haplotype B samples, which was

likely the result of batch effect or latent infection (Figures 2, 3).

Figure 4 illustrates the symptoms observed in tomato plants four

weeks post-inoculation. The two plants on the left belong to one batch,

while the three plants on the right are from a different batch (Figure 4).

Notably, the growth patterns of the healthy plants varied between
Frontiers in Plant Science 04
batches (Figure 4). The first healthy plant, despite having larger leaves,

was shorter in stature compared to the second healthy plant (Figure 4).

The plants with haplotype B also exhibited distinct symptoms

(Figure 4). The entirety of the first haplotype B plant’s leaves were

curled and displayed yellowing (Figure 4). In contrast, the second

haplotype B plant had one stunted stem with scorched leaves, while

its other stems appeared healthier, showing no severe curling or

yellowing of the foliage (Figure 4).

These observations align with the latent CLso infection

previously reported in grafted tomato plants (Li et al., 2013). It’s

worth noting that the batch of T5 and T14 differed from the other

haplotype B plants, and they could be latent CLso carriers with no

severe symptoms at the time of RNA extraction.
TABLE 1 RNA-seq sample statistics.

Sample Plant Batch Pathogen

Total
Clean

Read Pairs

Average
Read

Length
Mapping
Rate (%)

Transcriptome
Coverage

A10-EricLib A10 EricLib HA 6,895,357 130 62.3 395.2

A3-1807 A3 1807 HA 7,062,307 144 21.4 139.9

A3-1809 A3 1809 HA 6,482,136 125 21.4 128.4

A3-EricLib A3 EricLib HA 2,133,652 139 45.1 87.4

A5-1807 A5 1807 HA 3,493,851 146 14.5 46.8

A5-1809 A5 1809 HA 3,204,197 126 15.6 42.9

A5-EricLib A5 EricLib HA 2,823,550 131 64.8 168.4

A6-1807 A6 1807 HA 3,500,041 143 41.7 134.8

A6-1809 A6 1809 HA 3,228,682 124 41.5 123.7

A6-EricLib A6 EricLib HA 2,364,243 129 58.6 129.0

A7-1807 A7 1807 HB 4,058,312 130 5.4 18.9

A7-1809 A7 1809 HB 2,263,510 120 5.3 10.6

B4-1807 B4 1807 Negative 4,894,465 154 42.5 192.2

B4-1809 B4 1809 Negative 4,516,132 130 42.2 176.2

B5-1807 B5 1807 HB 5,381,256 120 13.7 64.0

B5-1809 B5 1809 HB 4,980,824 112 13.7 59.2

B6-1807 B6 1807 Negative 2,772,633 145 21.5 55.5

B6-1809 B6 1809 Negative 2,552,139 125 21.7 51.3

B7-1807 B7 1807 Negative 4,614,647 142 10.1 43.1

B7-1809 B7 1809 Negative 2,546,351 126 10.1 23.7

B9-1807 B9 1807 Negative 7,686,752 161 57.7 413.6

B9-1809 B9 1809 Negative 4,245,862 135 56.9 225.1

Healthy-1807 Healthy1 1807 Negative 3,526,381 149 53.5 175.7

Healthy-1809 Healthy1 1809 Negative 1,956,855 130 53.0 96.5

Healthy-EricLib Healthy2 EricLib Negative 2,602,756 135 60.7 145.7

T14-EricLib T14 EricLib HB 2,135,158 132 61.4 122.4

T5-EricLib T5 EricLib HB 2,071,019 136 63.3 121.3
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3.2 Enrichment analyses of GO and
KEGG pathways

Gene set enrichment analysis of gene ontology (GO) identified

genes in three categories: cellular component, molecular function,

and biological process (Supplementary Table 2). The enrichment

map and associations between GO terms are illustrated in Figure 5.

The gene ratio within each GO term is shown in Figure 6. The

connection between GO terms and genes is depicted using a gene

concept network (Figure 7), and the heatmaps of GO terms and

detailed gene annotation are plotted (Supplementary Figures 1–8).

KEGG pathways were enriched using the over-representation

and gene set methods (Supplementary Table 3). The pathways of

steroid biosynthesis, phenylpropanoid biosynthesis, flavonoid
Frontiers in Plant Science 05
biosynthesis, DNA replication, and hormone signal transduction

are shown and enriched genes are colored with expression levels

(Supplementary Figures 10–13).

3.2.1 Photosynthesis and
carbohydrate metabolism

Plants absorb energy from sunlight to synthesize glucose in the

chloroplasts, and this process is called photosynthesis. Some glucose

is further processed to form starch for energy storage. The energy

metabolism of plants can be altered when they are exposed to biotic

stress, including bacterial pathogen invasion (Berger et al., 2004).

Photosynthesis, especially in the light reactions, was

significantly compromised in CLso haplotype B infected tomato

plants (Figures 5–7). The genes in the cellular components of the

photosynthetic membrane and thylakoid were downregulated

(Figure 7). Photosystems I and II are the two protein complexes

with pigments to catalyze primary photosynthetic reactions.

Proteins in both photosystem I (PsaE, PsaF, PsaG, PsaH, and

PsaL) and photosystem II (PsbO, PsbP, PsbQ, and PsbW) were

downregulated in CLso haplotype B infected tomato (Figure 8).

Electron transport proteins (PetE, PetF, and PetH) and F-type

ATPases were also downregulated (Figure 8).

Concurrently, starch biosynthesis was significantly affected in

plants infected by the pathogenic CLso (Figures 7, 8). Core enzymes

catalyzing starch biosynthesis from glucose (AGPase [LOC543968]

and GBSSI) were downregulated (Figure 8).

Thus, the systematic under expression of both photosynthetic

and starch biosynthetic genes influenced the carbon fixation and

energy harvesting of the tomato hosts, which would potentially lead

to plant wilt and malnutrition.

On the contrary, starch degradation, was upregulated in tomato

plants infected by CLso haplotype B (Figure 8). Specifically, alpha-

amylase (LOC101257661) and beta-amylase 1 (BAM1) were

upregulated (Figure 8). Those alternations indicate that

carbohydrate consumption in infected plants was highly active.

CLso encodes a glucose/galactose transporter, so it is possible to

utilize glucose and galactose from host plants (Lin et al., 2011). This

implies that the energy production of infected plants was

insufficient for plants to grow and maintain a healthy state. The

plants had to use starch to produce disaccharides and

monosaccharides, which are uptaken by CLso.

The impact of starch metabolism is more profound in potatoes

than in tomatoes. Starch formation and accumulation affect tuber

sizes, directly influencing potato yield and profit. Potato tubers

infected by CLso caused the conversion of potato starch to water-

soluble sugars, which developed discoloration along with the vascular

tissue, causing the chips to have unsightly dark blotches, stripes, or

streaks after cooking (Pitman et al., 2011; Rashed et al., 2013).
3.2.2 Chromatin and DNA replication
Chromatin, nucleosome, protein-DNA complexes and DNA

packing complexes were enriched and clustered in cellular

components (Figure 5). Expression variation of those components

directly influences the binding factors to DNA, which are critical for

gene regulation (Ramirez-Prado et al., 2018; Ahmad et al., 2022).
FIGURE 1

Volcano plot of RNA-Seq expression analysis of CLso haplotype B
versus negative plants. FC, fold change; Padj, adjusted P value. The
fold change and adjusted P value cutoffs are displayed.
FIGURE 2

Principal component analysis of differentially expressed genes and
samples. PC, principal component. Pathogen statuses are marked
with colors and shapes.
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Histones comprise protein complexes to package genomic DNA

and form chromatin. Histones H1, H2A, H2B, and H3 were

downregulated in CLso haplotype B infected tomato plants

(Supplementary Figure 1). The six minichromosome maintenance

protein complex (MCM) proteins (MCM2 - MCM7) forming the

MCM complexes were downregulated, which affected genomic

DNA replication (Supplementary Figure 12) (Maine et al., 1984).

This indicates that biotic stress suppressed the expression of histone

genes and hindered gene transcription in plants (Yuan et al., 2013).

3.2.3 Cell wall and plant defense
The cell wall is the outer structure that prevents bacteria from

penetrating the host defense mechanisms, and is essential in growth-

regulating signal transduction (Rui and Dinneny, 2020). Tomato

plants infected by CLso haplotype B expressed lower levels of cell wall

modification and biosynthesis proteins, which might fail to prevent

the bacteria from initiating direct contact with host cells. Successful

adaptation to abiotic stress response in the cell wall is often related to
Frontiers in Plant Science 06
an increased expression of xyloglucan endotransglucosylase/

hydrolase (XTH) and expansin proteins (Le Gall et al., 2015). In

response to pathogenic CLso, the level of XTH was depressed,

implying that plant defense was suppressed by the biotic stress

(Supplementary Figures 1, 4).

Besides xyloglucan, pectin metabolism may also play an

important role in plant defense response and cell wall integrity

(Wang et al., 2023a; Wang et al., 2023b). Pectin is also vital to

intercellular communication and signal transduction (Shin et al.,

2021). Both pectinesterase and its inhibitors are down-regulated,

relating to the antagonistic action of cell-wall breakdown

(Supplementary Figure 4).

3.2.4 Steroid biosynthesis
Steroids are essential components of cell membranes, altering

membrane fluidity and functioning as signaling molecules. The

steroid biosynthesis pathway was significantly impaired in tomato

plants infected by CLso haplotype B (Supplementary Figure 9). Key
FIGURE 4

Symptoms of tomato plants infected by CLso. Healthy plants were PCR negative. HA, CLso haplotype A. HB, CLso haplotype B.
FIGURE 3

Heatmap of deferentially expressed genes of tomato hosts infected by CLso haplotypes. The column labels are in the sample-batch format, and the
rows are deferentially expressed genes (DEGs). The high expression level marks are red, and the low expression level is blue. The pathogen
information is labeled at the top. The directions of gene expression (up-regulated, down-regulated) are labeled on the left.
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proteins in the steroid biosynthesis pathway were all downregulated,

such as sterol side chain reductase (SISSR1), sterol C14-demethylase

(CPY51), and delta14-sterol reductase (FK), resulting insufficient

production of cholesterol and other phytosterols (Supplementary

Figure 9). A fungal and maize study also reports steroids are

essential components of network regulation of plant immunity

(Agostini et al., 2019).

3.2.5 Phenylpropanoid biosynthesis
Phenylpropanoids are one of the largest classes of secondary

metabolites, including flavonoids, anthocyanins, monolignols, and
Frontiers in Plant Science 07
tannins, functioning in photosynthesis, growth regulation, nutrient

process, and stress response (Pratyusha and Sarada, 2022).

Phenylpropanoids are required for plant immune response to biotic

and abiotic stresses (Bauters et al., 2021). In response toCLso haplotype

B, the gene expression levels of the tomato plants were generally

suppressed, such as cinnamoyl-CoA reductase 2 (CCR2), peroxidase

(CEVI-1) and hydroxycinnamoyl CoA quinate transferase (HQT)

(Supplementary Figure 10). Carrying the pathogen, the host cannot

produce sufficient secondary metabolites for plant development and

defense, including scopoline, coumarin, lignin, coniferin, and syringin

(Supplementary Figure 10).
FIGURE 6

Dot plot of gene set enrichment analysis of gene ontology (GO) (CLso haplotype B vs. negative). X-axis is DEG ratio. Y-axis is the GO terms. Dot size
indicates the number of DEGs. Darker dot color means lower adjusted P value.
FIGURE 5

Gene ontology enrichment map and associations between gene ontology terms (CLso haplotype B vs. negative). Dots are GO terms. Grey lines
connect adjacent GO terms. Dot size indicates number of DEGs. Darker dot color means lower adjusted P value.
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The flavonoid biosynthesis pathway was also widely suppressed,

such as chalcone synthase 1 (CHS1) and chalcone isomerase 1

(CHI1), flavanone 3-dioxygenase (F3H) and hydroxycinnamoyl

CoA quinate transferase (HQT) (Supplementary Figure 11). The

function of flavonoids spans from plant development and

pigmentation to defense and signaling between plants and

microorganisms (Mathesius, 2018).

3.2.6 Plant hormone signal transduction
Plant hormones regulate downstream signaling components

through a core pathway or independently from pathways

(Bunsick et al., 2021), and are essential in plant growth,
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development, and stress responses (Jaillais and Chory, 2010;

Ku et al., 2018).

KEGG analysis shows that disease resistance and stomatal

closure pathways were promoted, and cell elongation,

enlargement, and division signals were suppressed in the tomato

plants infected by CLso haplotype B (Supplementary Figure 13).

Specifically, in disease resistance, NPR1 was down-regulated, while

its downstream genes TGA and PR-1 were upregulated

(Supplementary Figure 13). NPR1 is the key regulator of salicylic

acid in the systemic acquired resistance pathways (Fan and Dong,

2002). In the nucleus, NPR1 interacts with TGA transcription

factors to promote the expression of PR genes (Chen et al., 2019).
FIGURE 7

Gene concept network of gene ontology (CLso haplotype B vs. negative). Big grey dots are GO terms. Sizes of grey dots indicate the number of
DEGs. Small dots represent genes, colored with fold changes of gene expression levels.
FIGURE 8

Carbohydrate metabolism affected in tomato plants infected by CLso haplotype B.
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The proteins encoded by those PR genes triggered broad-spectrum

resistance to pathogens (Fan and Dong, 2002; Kesarwani et al.,

2007; Ding et al., 2020). However, CLso can counteract expression

of NPR1 by producing salicylate hydroxylase to degrade salicylic

acid (Wang et al., 2021; Levy et al., 2023). This explains why NPR1

was down-regulated in the CLso-B infected tomato plants.

ABF and snRK2 were promoted for stomatal closure and seed

dormancy (Supplementary Figure 13), which play a crucial role in

plant responses to environmental stresses (Nakashima and

Yamaguchi-Shinozaki, 2013; Rehman et al., 2021). The signal

transduction genes of cell enlargement and plant growth were

generally suppressed, such as AUX1, TIR1, IAA21, ARF, GH3,

and SAUR (Supplementary Figure 13). Cell elongation and division

genes BZR1, BZR2, TCH4 and CYCD3 were impaired

(Supplementary Figure 13). A-AAR and B-AAR, all of which are

related to cell division and shoot initiation, were suppressed

(Supplementary Figure 13). Those suppressed genes align with

the plant’s mechanism against pathogens, which can be seen as a

trade-off between growth and defense, where the plant reallocates

its resources from growth to defense in response to pathogen attack

(Zhang et al., 2022).
3.3 qPCR validation

In silico RNA-Seq expression was validated using qPCR analysis.

We successfully designed 150 primer sets for the 54 selected genes

(Supplementary Table 4). In the preliminary primer validation, 52

primer sets were selected for 52 genes, except that two genes,

Solyc05g052280.3.1 (PSEP7) and Solyc01g107590.3.1 (CAD1), had

no valid primer set (Supplementary Table 4). The expression levels of

47 genes were successfully generated from qPCR analysis, and five

genes failed (Supplementary Tables 4, 5). Among the five failed genes,

two [Solyc07g052510.4.1 (PSE3) and Solyc02g083490.3.1 (PSE64)]
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had no DCt value for positive samples, Solyc04g077970.5.1 (APRT)

was an unused internal control, and two [Solyc02g082930.3.1

(CHI17) and Solyc02g030170.4.1 (SISSR1)] were failed because of

primer design or low concentration (Supplementary Table 5). The

Pearson correlation coefficient between the expression levels of qPCR

and Bioinformatics was 0.62 (P value = 2.75×10-5) (Figure 9),

indicating the expression levels of qPCR and RNA-Seq were

consistent, and the differential expression analysis of RNA-Seq

was reliable.
4 Conclusion

This study provided insights into plants’ defense and functional

decline to pathogenic CLso, using whole transcriptome sequencing

and qPCR validation. Our results showed how tomato plants react

in metabolic pathways during the deterioration caused by

pathogenic CLso. Understanding the underlying mechanisms can

enhance disease control and create opportunities for breeding

resistant or tolerant varieties.
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