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Interactions between CNS
and immune cells in
tuberculous meningitis
Quan Ma, Jinyun Chen, Xingxing Kong, Yuqin Zeng,
Zhanpeng Chen, Huazhen Liu, Lanlan Liu,
Shuihua Lu* and Xiaomin Wang*

National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen,
Guangdong, China
The central nervous system (CNS) harbors its own special immune system

composed of microglia in the parenchyma, CNS-associated macrophages

(CAMs), dendritic cells, monocytes, and the barrier systems within the brain.

Recently, advances in the immune cells in the CNS provided new insights to

understand the development of tuberculous meningitis (TBM), which is the

predominant form of Mycobacterium tuberculosis (M.tb) infection in the CNS

and accompanied with high mortality and disability. The development of the CNS

requires the protection of immune cells, including macrophages and microglia,

during embryogenesis to ensure the accurate development of the CNS and

immune response following pathogenic invasion. In this review, we summarize

the current understanding on the CNS immune cells during the initiation and

development of the TBM. We also explore the interactions of immune cells with

the CNS in TBM. In the future, the combination of modern techniques should be

applied to explore the role of immune cells of CNS in TBM.
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1 Introduction

Tuberculosis (TB) is one of the communicable diseases and the leading causes of health

problems, which causes more deaths from a single agent of infection [ranking above human

immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS)] (1). TB patients

suffered from bacillus Mycobacterium tuberculosis (M.tb) infection when exposed to air

containing M.tb after coughing by TB patients. Although approximately a quarter of the

world’s population is supposed to be infected withM.tb, most people will not develop TB (2).

TB is the first cause of death by a single infectious agent and ranks as the 13th leading cause of

death worldwide. However, theMycobacterium bovis bacille Calmette–Guérin (BCG), which is

the only licensed vaccine in clinical practice, is applied to prevent tuberculosis. Notably, in

global TB deaths among HIV-negative or HIV-positive people, 54% or 51% were men, 32% or
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38% were women, and 14% or 11% were children, respectively. In

summary, approximately 90% of the TB patients are adults, with the

number of men bigger than that of women in adult TB patients (3). In

TB patients, M.tb mainly affects the lungs (pulmonary TB), and

extrapulmonary sites including the central nervous system (CNS),

lymph nodes, and pleura could also be affected (4–6). Diffusion of

M.tb to the brain may induce the most severe form of extrapulmonary

TB, tuberculous meningitis (TBM), which is the predominant form of

M.tb infection in the CNS and accompanied with high mortality and

disability. Moreover, TBM is the most serious extrapulmonary form of

TB with high mortality up to 50% in the HIV co-infected patients (7,

8). Although the morbidity of TBM in TB patients is approximately

1%, TBM causes a higher rate of mortality and morbidity in young

children compared to that in adults (9).

A retrospective, descriptive study in Beijing Children’s Hospital

revealed that approximately 50% of the TB patients had

extrapulmonary TB and approximately 39% had TBM in

extrapulmonary TB (10). An investigation of national surveillance

data of Germany from 2002 to 2009 showed that of the pediatric TB

patients, approximately 3.9% of those younger than 5 years, 2.2% of

those aged 5–9 years, and 1.3% of those aged 10–14 years had TBM

(11). In the referral center for infectious diseases in Thessaloniki, 43

children aged 7 months to 13 years, of whom 14 children (33%) were

identified as having an extrameningeal site of infection, 14 children

(33%) were identified as having pulmonary tuberculosis, and 1 child

was diagnosed with spondylitis, had been diagnosed with TBM from

1984 to 2008 with a gradually decreasing trend over the years (12).

Despite the development and application of many methods for

detecting M.tb , the diagnosis of TBM and some other

extrapulmonary TB continues to face a huge challenge. Nicholas

et al. found that a caseating focus existed in brain parenchyma or

meninges in TBM patients (13). Moreover, modified Ziehl–Neelsen

(ZN) staining in the cerebrospinal fluid (CSF), GeneXpert, and culture

of cerebrospinal fluid were applied to improve the microbiological

diagnosis of TBM (14). High levels of CSF volume and lactate and

lower blood glucose ratio were independently related with

microbiological confirmation of TBM. M.tb infects the CNS from

the lungs through hematogenous transmission. Briefly, the deposition

of M.tb in the brain is known as “Rich foci” during bacteremia in the

early stage of TB. In the CNS, the “Rich foci” existed in the subpial or

subependymal areas of the brain, bacilli, and meninges kept in a

dormant state for a long time. The initiation of TBM was made by the

growing and rupturing of those “Rich foci” into the ventricular system

or subarachnoid space (15). Generally, primary infection in the brain

may lead to the occurrence of TBM from 6 to 12 months (16). The

M.tb has the potential to invade and migrate into the CNS by crossing

the blood–brain barrier (BBB) and blood–CSF barrier (BCSFB) with

the existence of virulence and immune factors, exocytosis, and longer

intracellular survival (17, 18). Although the role of immune system in

the diffusion of M.tb to the peripheral system has been well studied,

the role of immune cells in the CNS has not been well reviewed. Here,

we summarize the role of immune cells in the CNS during the

progress of TBM with an aim of helping to understand the

interaction between TBM and immune system in the CNS.

The brain had been regarded as “immune privileged” by

wrapping with some barriers in the early twentieth century. This
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hypothesis had been supported by two experiments that injection of a

dye in peripheral blood did not enter the brain (19) and the survival of

tissue grafts was prolonged by transplantation of the brain tissue

compared to transplantation of peripheral tissues (20). These may

lead to a conclusion that the brain is an independent immune system

isolated from the peripheral immune system. Otherwise, microglia,

the major brain-resident immune cell in the brain, is considered as an

argument to support the brain as an independent immune system.

However, the fact that the lymphatic system had been found in the

brain as early as the early twentieth century has been ignored and did

not apply to oppose the “immune privilege” of the brain (21).

Moreover, some adaptive immune cells have been identified in CNS

in some studies that have been carried out in mammal models of

neuroinflammatory diseases (22–25). The interaction between the

brain and peripheral immune system has been suggested to be

achieved in some mammal models, in which bone-marrow-

produced T cells (26) and macrophages (27) exert a protection and

repair role in the CNS. In addition, T cells play a critical role in

maintaining brain function by recognizing brain self-antigens (26).

Thus, these studies demonstrate that the protective autoimmunity in

the CNS can enhance brain repair and maintain brain homeostasis by

self-recognizing immune cells. The adaptive immune cells are thought

to support the formation of new neurons in the CNS (28, 29). Thus,

adaptive immune cells in the CNS are involved in social behavior (30–

33), emotional stress (34, 35), and cognition (36, 37). In this review,

we aim to summarize the role of immune cells in the CNS during the

initiation and development of TBM and then explore the interaction

of immune cells with the CNS in TBM.
2 Biological roles of CNS
macrophages in TBM

The development of CNS requires the protection of immune

cells, including macrophages and microglia, during embryogenesis

to ensure the accurate development of CNS and immune response

following pathogenic invasion (38, 39). Therefore, macrophages

exert their immune functions in the brain very early during

embryogenesis and development. The differentiation in CNS

needs a highly integrated process during the embryogenesis and

development by genetic and extrinsic factors. Macrophages act as

the main reservoir forM.tb, and its survival depends on its ability to

evade the killing mechanisms of macrophages (40, 41). Some

macrophages infected with M.tb act as a “Trojan horse”, which

carry M.tb across the BBB (42). It is difficult for the anti-

tuberculosis drugs to cross the BBB and target the CNS

macrophages, which cannot effectively eliminate M.tb, bringing a

great challenge to the treatment of TBM (43).

Neuroinflammation in the CNS caused by pathogenic infections

recruits macrophages and releases chemokines and cytokines in the

parenchyma, which then opens the BBB (44). TBM patients who

received a 7-day course of standard first-line anti-tuberculosis

therapy showed excellent improvement, with increased numbers

of macrophages and lymphocytes in the CSF capable of engulfing

M.tb (45, 46). Then, the macrophages induced the host innate

immunity after M.tb infection through inducing inflammatory
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response and pathogen recognition (47). Shao et al. demonstrated

that detection of mycobacterial antigens in the CSF macrophages by

using immunocytochemical staining had a sensitivity or specificity

of 73.5% or 90.7%, respectively, and could be applied in diagnosing

TBM in clinical practice (48).

The CNS macrophages exerted its protection by equipping

nucleotide-binding oligomerization domain-like receptors (NLRs),

PRRs, and TLRs in the CNS (49–54). Clearance of invading

pathogens through phagocytosis is accompanied by the release of

proinflammatory cytokines and chemokines (55), which then activate

neighboring microglia and recruit other immune cells to treat this

infection (56–62). The cell apoptosis or programmed cell death occurs

afterM.tb infection and then reduce the viability of mycobacteria. The

level of apoptosis in alveolar macrophages after infection with

attenuated M. tuberculosis H37Ra is higher than those with the

virulent H37Rv strain infection (63). Therefore, the cell apoptosis in

macrophage may exert a protective role in M.tb infection.
3 Biological roles of microglia in TBM

M.tb, the infectious agent of TB, replicates and propagates from

the respiratory epithelium and then enters the CNS by breaking

through the BBB and causes primary infection in the meninges or the

brain. Microglia are resident macrophages and are major

components of the brain’s immune system, working with other

immune cells and neurons to maintain the brain’s homeostasis and

prevent the invasion of harmful pathogens. Microglia fulfill their

physiological roles throughout their lives, which is independent from

the blood circle, and maintain apoptosis and proliferation under

physiological conditions (64–66). Recently, studies have illustrated

that microglia only originate in the erythromyeloid progenitors

(EMPs) in the embryonic yolk sac (67, 68) and that microglia have

a long lifespan with a low-rate clonal expansion (69, 70). Microglia

are the first immune cells in the CNS when infected with M.tb, and

the activation of microglia results in the progression of infection.

However, Tucker et al. have demonstrated that microglia have been

activated in a pediatric rabbit model of TBM (71). Zhou et al. showed

that microRNA-124 modulates the proliferation of Mycobacterium

by inhibiting the signal transducer and activator of transcription 3

signaling pathway (72). Although microglia play an immune

supervisor role in the CNS, the long-lasting activation of microglia

induces hyper-neuroinflammation, which may induce neurotoxicity

and impair the cognitive ability in TB patients (73). As the main

component of myeloid cells, microglia infiltration reflects the brain

inflammatory activation status in TBM (74). The proinflammatory

cytokines and chemokines secreted by activated microglia after the

M.tb infection trigger neurotoxicity and tissue injuries in the CNS.

Microglia have both “resting” and “activated” status, and various

factors including viral infection in the peripheral nervous system and

brain trauma may alter the balance between “resting” and “activated”

state (75). Microglia are primarily involved in the maintenance of a

“resting” state and perform kinds of functions including pathogen

protection, neuron nourishment, and debris removal (76–78).

While neurons and astrocytes may be potential targets for M.tb

infection, microglia have been considered to be the first target in the
Frontiers in Immunology 03
CNS due to their properties related to macrophages (79, 80). Studies

have shown that human microglia and astrocytes have been

intracellularly infected with M.tb H37Rv strain after 24 h in vitro

treatment. Notably, most of the microglia infected with M.tb were

infected with 4.2 bacilli per cell. However, only 15% astrocytes were

infected with 1.3 bacilli per cell (80). The difference in the infection

rate of M.tb between microglia and astrocytes may be due to the

expression of CD14 receptors in microglia (81, 82).

The M.tb could be recognized by microglia via the innate

immune and neuro-specific receptors. After CNS infection,

activated microglia not only produce tumor necrosis factor-a
(TNF-a) and interleukin-8 but also express an amount of

immune-recognition molecules in the innate immunity (83, 84).

The particular pattern recognition receptors (PRRs) in microglia are

essential for initiating a fast response during the invasion ofM.tb in

microglia (85, 86). In the antigen recognition process, M.tb could

seriously damage microglia (87). The Toll-like receptors (TLRs),

intracellular PRRs, C-type lectin receptors, complement receptor 3,

triggering receptors expressed on myeloid cells (TREM), and

myeloid DAP-12-associated lectin (MDL-1) are a member of

intracellular PRRs in microglia (88). TLR co-receptors CD14,

TLR1-TLR4, and TLR5-TLR9 are mostly expressed in microglia.

Furthermore, previous studies have shown that TLR1, TLR2, and

TLR4 are mainly presented on the surface of microglia, whereas

TLR3, TLR7, and TLR8 are predominantly located intracellularly

(49, 52, 88). Although studies have found that the TLR mechanisms

in neurodegenerative disorders [Alzheimer’s disease (AD), spinal

cord injury, amyotrophic lateral sclerosis, and Parkinson’s disease

(PD)], pathogenic infections (HIV, Japanese encephalitis virus

(JEV), and Neisseria meningitidis), and ischemic brain injury have

been well studied (89–95), the TLR mechanisms in TBM remain

unclear. Previous findings revealed that the TLR4 binds to CD14 on

the surface of microglia through lipopolysaccharides (LPS) in the

internalization of M.tb (82). On the other hand, TLR2, TLR4, and

TLR9 pathways activated their downstream phosphorylation and

cytokine production during the internalization of M.tb in

macrophages (96–98). Understanding the mechanism of the role

of PRRs on macrophages in M.tb pathogenic infection and damage

recognition will help to explore the mechanism of PRRs in

microglia during the progress of TBM. Another report has shown

that both murine microglial TLR2 and dectin-1 were not

participated in inflammatory responses induced by M.tb (99).

Consequently, the mechanism by which microglia recognize M.tb

after infection remains unclear.

Mycobacterium marinum has been applied to explore the role of

microglial autophagy in TBM. Mycobacterium marinum infection

induces the formation of granulomas in the zebrafish brain. It also

induces the microglial autophagy in response to its replication

(100). However, the production of interleukin-6 (IL-6) from

macrophages inhibits interferon-gamma (IFN-g)-induced
autophagy and then combats innate immunity after M. marinum

infection and increases the intracellular persistence (101).

Recently, a macrophage-inducible C-type lectin (Mincle), which

belongs to the C-type lectin receptor family, may be become a

potential target for Mincle agonist (102). Trehalose-6,6-dibehenate

(TDB), a novel adjuvant for TB vaccines and a synthetic analog of
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trehalose6,6-dimycolate (TDM), was applied in human clinical

studies. Both TDM and TDB induce inflammatory gene expression

in macrophages and dendritic cells by binding to Mincle (103, 104).

Although the expression of Mincle is limited in the primary microglia,

TDB reduces the TLR4-mediated neuroinflammation in Mincle-

knockout microglia and mice. Notably, these results in Mincle-

knockout microglia and mice differed from their performance in

macrophages. However, the mechanism of TDB in modulating C-

gamma 1 (PLC-g1) signaling pathway remains unclear. TheM.tbmay

persist and multiply intracellularly after being internalized by

microglia (81, 105). In the development of TBM, M.tb leads to

microglial accumulation and activation and then triggers the

granulomatous formation (106, 107). Three distinct granuloma

types including non-necrotizing, necrotizing gummatous, and

necrotizing abscess were distinguished. All types of granulomatous

were observed in each patient and mainly located in the perivascular

areas of the leptomeninges. The size of non-necrotizing granuloma

(0.1–0.5 mm) was smaller than the necrotizing gummatous (≥ 5 mm)

and necrotizing abscess (10 mm). In TBM patients, granulomas were

wrapped with a blood vessel and then damaged by vasculitis in a

later stage.

Yang et al. found that inhibiting secretory phospholipase A2

(sPLA2) could attenuate the ROS and various inflammatory

mediators production after M.tb infection in murine microglial

BV-2 cells. Inhibition of the Ras/Raf-1/MEK1/ERK1/2 signaling

pathway diminished sPLA2 activity after M.tb infection in BV-2

cells (108). Mitochondrial ROS, potassium efflux, and lysosomal

proteases cathepsin B promote activation of nucleotide binding and

oligomerization of the domain-like receptor family pyrin domain

containing 3 protein (NLRP3) inflammasome activation in

response to M.tb infection (109).
4 Biological roles of B and T
lymphocytes in TBM

Activated T and B lymphocytes have been found in the CSF of

TBM patients from the clinical onset of disease. In addition, T and B

lymphocytes were involved in the adaptive cellular immune response

in TBM patients (106). Meningeal B lymphocytes were present in

secondary progressive multiple sclerosis (SPMS) and were responsible

for inducing pathology by producing inflammatory mediators and

participating in antigen presentation (110–112). Anti-CD20 may be a

potential therapeutic target for meningeal B-lymphocytes aggregation

(113). During the development of TBM, the humoral response was

sustained for approximately 2 months and the cellular immune

response was maintained for another 3 months (114). Zhang et al.

illustrated that the distribution of lymphocyte subpopulations and the

ratio of CD4:CD8 in CSF were different in patients with anti-N-

methyl-D-aspartate receptor AE (NMDAR-AE), herpes simplex virus

encephalitis (HSVE), and TBM (115). After clinical therapy of TBM,

the number of CD4- and CD45RO-positive T cells increased

significantly in CSF (116). Therefore, the levels of CD4 and

CD45RO positive T cells were useful biomarkers for diagnosing

TBM. The T lymphocytes and CD4-positive helper T (Th) cells

play a key role in granuloma formation in TBM patient, and the
Frontiers in Immunology 04
interactions between CD4+ Th cells and T lymphocytes induce the

IFN-g production and then activate the macrophages to engulf and

digest M.tb (117–120). Another report indicated that IL-2-positive T

lymphocytes in the CSF of TBM patients can produce specific and

reactive antigen when stimulated with IL-2, antigen-presenting cells

(APC), or Muromonab CD3 (OKT3) antibody (121). Xu et al. found

that the expression levels of Th1, Th2, Th 17, TNF-a, and TNF-b
were elevated in TBM patients compared to those without the CNS

infections in HIV-infected persons (122). Moreover, the expression

levels of IFN-g, regulated upon activation normal T cells expressed

and presumably secreted (RANTES) and interferon-inducible protein

(IP-10) in TBM patients were higher than in non-TBM with HIV

infection. The cytokines/chemokines of Th1, Th2, and Th17 exerted a

critical role in the pathogenesis of TBM. The upregulation of IL-17a,

TNF-b, IL-5, IL-12p40, and IL-1Ra in CSF has been demonstrated to

be related with meningitis. Thus, Kösters et al. have developed a

valuable diagnostic tool for the diagnosis of neurotuberculosis

including TBM by using a T-cell IFN-g release assay in clinical

practice (123). More diagnostic tools for measuring cytokines/

chemokines in TBM should be developed in clinical practice.
5 Biological roles of neutrophil in TBM

Neutrophils do not exist in the border zone encephalitis areas of

parenchyma under physiological conditions. The absence of

neutrophils in the brain is due to the protection of CNS against

the aggressive cells, including neutrophils, across the BBB.

Neutrophils have a large number of enzymes in their membrane-

bound granules that produce reactive oxygen species and thereby

affect the cellular environment. In the early stage of TBM, the BBB

prevents neutrophils from entering the CNS and avoids the neural

damage (106). In TBM patients, the number of CSF neutrophils and

M.tb-positive presentation were considered for the characterization

of the immune reconstitution inflammatory syndrome (IRIS) (124).

Additionally, CSF neutrophil mediators, including S100A8/9, were

significantly increased in patients with TBM-IRIS compared to

those without (125, 126). Marais et al. illustrated that neutrophil-

abundant transcripts increased in the progression of developing

IRIS until the onset of TBM-IRIS by performing longitudinal

microarray analysis of the blood (127, 128). After the diagnosis of

TBM was confirmed, TBM patients received first-line anti-

tuberculosis treatment. After 7 days treatments of anti-TB, all

patients showed excellent improvement, with 82% lymphocytes

and macrophages in CSF participated in engulfing M.tb. Then,

the number of neutrophils and the protein level were increased in

CSF after reducing the dose of dexamethasone during the first-line

therapy of anti-TB; those findings indicated a relapse of TBM.

Moreover, the strong relationship between neutrophils and matrix

metalloproteinase-9 (MMP-9) in CSF has been found in the TBM

after dexamethasone treatment (129–131). However, a high level of

neutrophils in CSF has a positive impact on the chance of survival in

TBI patients and was associated with the occurrence of cerebral

infarction by using head MRI in adult TBM patients (132–135). In

addition, the neutrophil proportion in the CSF is independently

associated with TBM, and doctors can use five indexes including
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neutrophil proportion, disease course, white blood cell count, serum

sodium, and total white cell count in the CSF to distinguish TBM

from bacterial meningitis (136–142).

6 Biological roles of natural killer cells
in TBM

Natural killer (NK) cells are upregulated in the CSF of TBM

patients, and the predominance of NK cells is associated with a

better outcome and survival (143). However, the function of NK

cells in TBM patients has not been well addressed. Limited literature

has reported the role of NK cells in the inflammatory process related

with TBM. NK cells have been demonstrated to be implicated in the

pathogenesis of viral and bacterial infections in the CNS. Notably,

the activity of NK cells may inhibit herpes virus’s infection (144,

145). The total number of NK cells and CD56bright NK cells in the

blood of TBM patients was less than latent TB infection (LTBI) and

pulmonary TB (PTB) patients. Cytokines produced by NK cells may

contribute to the pathogenic alterations of some CNS bacterial

infections (146). Accordingly, the reduction in the total number of

NK cells and CD56bright NK cells in the blood of TBM patients may

be responsible for the migration of NK cells to the CNS. NK cells in

the brain may release proinflammatory cytokines, which in turn

induce brain injury in TBM patients. On the other hand, the TBM

patients have a higher level of CD56dimCD16+ NK cells in

peripheral circulation. The increased number of CD56dimCD16+

NK cells in the blood of TBM patients may induce these NK cells to

enter the CNS for the purpose of controlling CNS infection. The

cytotoxicity induced by NK cells may exert a protective effect for

some neurological complications after bacterial infection (147, 148).

Meanwhile, van Laarhoven et al. illustrated that the decrease in

blood NK cells leads to the enrichment of NK cells in the CNS (143).

In addition, they also found that CD69 NK cells reflect the active

mobilization of NK cells to the CNS in TBM patients (143).

Nevertheless, more information of phenotypical characteristics of

NK cells in the CNS during TBM should be studied.

7 Interaction of the microglia with
CNS macrophages in TBM

Microglia and macrophages are thought to orchestrate the CNS

after M.tb infection. The intrinsic transcriptional programs,

differentiation, and maturation of CNS-associated macrophages

(CAMs) and microglia are triggered by environmental factors

during the embryonic and postnatal development (149). The CNS

is formed earlier than any other organs during embryogenesis with

the involvement of immune system to protect the new-born CNS

from pathogens (150), and the macrophages exist in the brain

during the embryogenesis. Microglia and CAMs are present in the

brain parenchyma and perivascular space, respectively (65, 68, 151).

Interestingly, foamy macrophages are surrounded by microglia,

lymphocytes, epithelioid histiocytes, and new blood vessels and

are involved in the formation of CNS granuloma (106, 107). M.tb

has established a strategy for survival within macrophages by

influencing phagosome–lysosome fusion and intervening normal
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host trafficking events (152, 153). The interaction network between

microglia and macrophage mediates the production of cytokines

and chemokines in response to M.tb invasion (80, 81).

Previous studies have shown expression of TNF-a, six different

interleukins (IL-1a, IL-1b, IL-6, IL-10, IL-12p40, and IL-18), C-X-C
motif chemokine ligands (CXCL8 and CXCL10), matrix

metallopeptidases (MMP-1, MMP-3, and MMP-9), granulocyte-

macrophage colony-stimulating factor (GM-CSF), macrophage

inflammatory protein-1b (MIP-1b), and granulocyte colony-

stimulating factor (G-CSF) (67, 80). Lee et al. have revealed that

the activation of primary murine microglia in conditioned media

from M.tb-infected macrophages was associated with the

maturation of caspase-1 and IL-1b in microglia during the M.tb

infection (109). Generally, M.tb could be maintained in a silencing

status by regulating the expression of interleukins in the

homeostatic immune response (154, 155). Moreover, signal

transducer and activator of transcription 1 (Stat1) and interferon

regulatory factor1 (IRF1) have been verified to be involved in the

inflammation response of macrophages and microglia after TBM

induced by attenuated M.tb (74).
8 Interaction of the microglia with
astrocytes in TBM

M.tb induces both microgliosis and astrogliosis in the CNS, and

neurobiological mechanisms are involved in the pathogenesis,

which plays a key role in modulating neuronal–glial interactions

and synaptic function after M.tb infection. The activation of

microglia and astrocytes induces neuroimmune interactions in

the CNS, producing both pro- and anti-inflammatory cytokines.

In addition, the activated microglia and astrocytes have been found

in the meningeal exudate (156). Rock et al. have found that

dexamethasone, an adjunctive therapy for TBM, could modulate

the content of proinflammatory cytokines and chemokines secreted

by the CNS macrophages while inhibiting the release of TNF and

IL-6 in microglia (80). The astrocyte–microglia lactate shuttle

(AMLS) hypothesis states that lactic acid produced by astrocytes

through glycolysis in response to the initiation of immune response

plays a key role in microglia in the development of TBM (157).

Lactic acid is a crucial energy substrate in energy metabolism, and

its upregulation contributes to the glucose metabolism in microglia

of TBM, thereby performing neuroprotective effects (158, 159).
9 Interaction of the macrophages with
other cells in the CNS of TBM

Previous studies have found that T lymphocytes and CD4+ Th

cells play a critical role in granuloma formation. IFN-g induced by

the communication of CD4+ Th cells and T lymphocytes activates

the macrophages to eliminate the M.tb (160–162). Results showed

that CD4+ and CD8+ T cells were gathered around all granuloma

types in biopsy specimens, but limited CD4+ and CD8+ T cells were

found in the post-mortem tissues. Moreover, NK cells and

monocytes (myeloid mononuclear cells) can kill extracellular M.tb
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and activate a series of signaling pathways including reactive oxygen

species (ROS) and glutathione (GSH)-related signaling pathways in

macrophages (163). The GSH in NK cells has been reported to be

involved in inhibiting the growth of M.tb. Thus, exploring the

interaction between macrophages and NK cells or lymphocytes may

contribute to understanding the infection of the M.tb during TBM.
10 Conclusions

The development of CNS requires the protection of immune

cells, including macrophages and microglia, during embryogenesis

to ensure the accurate development of CNS and immune response
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following pathogenic invasion. Microglia are resident macrophages

and the major component of the brain’s immune system, working

with other immune cells and neurons to maintain the brain’s

homeostasis and prevent the invasion of M.tb. Moreover,

activated T and B lymphocytes have been found in the CSF of

TBM patients from the clinical onset of disease, and more

diagnostic tools to measure the cytokines/chemokines secreted by

lymphocytes in TBM have been developed in clinical practice.

Moreover, the interaction of microglia between CNS macrophages

or astrocytes has been involved in TBM (Figure 1).

In sum, in the recent work, there remains some doubt about the

role of CNS immune cells for TBM. The combination of modern
FIGURE 1

Interaction of CNS with immune cells in TBM. The development of CNS requires the protection of immune cells, including macrophages and
microglia, during embryogenesis to ensure the accurate development of CNS and immune response following pathogenic invasion. Microglia are
resident macrophages and the major component of the brain’s immune system, working with other immune cells and neurons to maintain the
brain’s homeostasis and prevent the invasion of M.tb. Moreover, activated T and B lymphocytes have been found in the CSF of TBM patients from
the clinical onset of the disease, and more diagnostic tools for TBM measuring the cytokines/chemokines that are secreted by lymphocytes have
been developed in clinical practice. Moreover, the interaction of microglia between CNS macrophages or astrocytes has been involved in the TBM.
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techniques, including single-cell sequencing, multiomics

technologies, and deep transcriptomics, will contribute to

understanding the role of immune cells of CNS and explore the

interaction of immune cells in the development of TBM.
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