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Morels (Morchella, Ascomycota) are an extremely desired group of edible 
mushrooms with worldwide distribution. Morchella eohespera is a typical black 
morel species, belonging to the Elata clade of Morchella species. The biological 
and genetic studies of this mushroom are rare, largely hindering the studies of 
molecular breeding and evolutionary aspects. In this study, we performed de 
novo sequencing and assembly of the M. eohespera strain m200 genome using 
the third-generation nanopore sequencing platform. The whole-genome size 
of M. eohespera was 53.81  Mb with a contig N50 of 1.93  Mb, and the GC content 
was 47.70%. A total of 9,189 protein-coding genes were annotated. Molecular 
dating showed that M. eohespera differentiated from its relative M. conica at 
~19.03 Mya (million years ago) in Burdigalian. Evolutionary analysis showed 
that 657 gene families were contracted and 244 gene families expanded in M. 
eohespera versus the related morel species. The non-coding RNA prediction 
results showed that there were 336 tRNAs, 76 rRNAs, and 45 snRNAs in the M. 
eohespera genome. Interestingly, there was a high degree of repetition (20.93%) 
in the M. eohespera genome, and the sizes of long interspersed nuclear 
elements, short interspersed nuclear elements, and long terminal repeats were 
0.83  Mb, 0.009  Mb, and 4.56  Mb, respectively. Additionally, selection pressure 
analysis identified that a total of 492 genes in the M. eohespera genome have 
undergone signatures of positive selection. The results of this study provide 
new insights into the genome evolution of M. eohespera and lay the foundation 
for in-depth research into the molecular biology of the genus Morchella in the 
future.
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1 Introduction

Morchella is a member of the Morchellaceae family in the Pezizales order of the 
Pezizomycetes class (Du, 2019). The genus Morchella species has a beauteous cap with a 
honeycomb-like structure and a brown, yellow, black, or pale color that looks similar to open 
lamb tripe, giving it the name “morels.” According to the color and shape characteristics of the 
fruit body, the genus Morels can be divided into four major groups: black, yellow, red, and 
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half-open morels (Bunyard et al., 1995) The results of recent molecular 
systematic studies showed that Morels can be  divided into three 
branches, namely Esculenta Clade, Elata Clade (including two groups 
of black and half-open morel), and Rufobrunnea Clade support 
(Bunyard et al., 1995; Guzmán and Tapia, 1998). Among them, the 
Esculenta Clade and Elata Clade branches are sister groups and 
constitute the main group of the Morel genus (Min et al., 2017). There 
are currently 32 species identified in the Elata Clade branch (Du, 
2019). True morels (Morchella) are supposed to have evolved in the 
early Cretaceous in the northern hemisphere, where they now show a 
high degree of continental endemicity (Murat et  al., 2018). 
Biogeographical studies have shown that the species of the Elata Clade 
branch were mainly distributed in Europe, North America, South 
America, and Asia (Du et al., 2012; Du, 2019). There are at least 16 
species of black morels in China (Du, 2019). Some species, such as 
Mel-14 (Sichuan), Mel-33 (Gansu), and Mel-34 (Yunnan), showed 
regional geographic distribution characteristics. It is reported that 
Morchella has a high edible value because it contains enough basic 
amino acids, vitamins, mineral elements, and proteins (Irfan et al., 
2017; He et  al., 2018). Furthermore, the Morchella species has 
important medicinal values for its multiple pharmacological effects, 
including anticarcinogenic (Hu et al., 2013), antioxidant (Cai et al., 
2018; Li et al., 2018), and immunomodulatory activities (Su et al., 
2013; Yang et al., 2019).

Genomics research is a window to understanding a concrete 
species. Some species in the genus Morchella were sequenced and 
analyzed. The genome study of Morchella septimelata M. Kuo is the 
first example of the Morchella genome, the size of which was 
49.81 Mb (Li et  al., 2018). The genome sequence deepened our 
understanding of the mechanisms of secondary metabolite 
biosynthesis and provided some insights into the growth, 
development, and carbohydrate degradation of this species. 
Subsequently, the genome sequence of another cultivated species, 
Morchella sextelata M. Kuo, has also been published (Mei-Han et al., 
2019). The genome of M. sextelata is larger than that of 
M. septimelata, with a size of 52.93 Mb. The M. sextelata genome 
facilitates the study of gene components, protein-coding genes, 
annotated biological functions, and secondary metabolite gene 
clusters. Two different polar monospore strains of Morchella 
importuna, M. Kuo, O’Donnell, and T.J. Volk, were used for 
genomics research (Masaphy, 2010; Liu et  al., 2018), further 
expanding our understanding of morel biology and evolution and 
facilitating the molecular genetic analysis and breeding of 
M. importuna.

In recent years, the cultivation of several Morchella species has 
been successfully commercialized in China. However, Morchella 
eohespera Beug, Voitk, and O’Donnell (Mel-19), as a wild morel, is 
still harvested from the wild at sites distributed in Qinghai, 
Xinjiang, Yunnan, and Gansu Provinces, as well as in other places 
in China. There is no cultivation record or genomic analysis of this 
species (Du et  al., 2017). M. eohespera is a typical black morel 
species with a black pileus, honeycomb-like surface, conical to 
widely conical, and a white hollow stalk. The main habitats are 
moist, sandy, calcareous soil, or calcareous bedrock under grass or 
trees (Voitk et al., 2016).

To investigate the genetic organization and provide data for 
further studies of the biological functions of M. eohespera, a de novo 
whole-genome sequence analysis was conducted, and the genome was 

assembled. Additionally, the protein-coding genes, gene components, 
and related biological functions were analyzed. At the same time, a 
comparative study was carried out with the genomes of other closely 
related fungi, aiming to provide genomic data for further research on 
the evolutionary aspects and biological functions of M. eohespera.

2 Materials and methods

2.1 Strain selection and molecular 
identification

In this study, the fruiting body of wild M. eohespera strain m200 
was collected from Makehe Forest Farm in Qinghai Province, China 
(E 100°86′70″, N32°69′74″). The mycelium of the m200 strain was 
cultured on potato dextrose agar (PDA) medium for 2 weeks at a 
temperature of 25 ± 1°C. The Ezup column Fungal Genomic DNA 
Extraction Kit (Sangon Biotech, Shanghai, China) was used to 
extract genomic DNA from the m200 strain. The integrity of the 
DNA was assessed by electrophoresis on a 0.7% (w/v) agarose gel. 
The quality of the extracted genomic DNA was determined from 
the A280/A260 ratio using a NanoDrop One spectrophotometer 
(NanoDrop Technologies, Wilmington, DE, United States) and a 
Qubit 3.0 fluorometer (Life Technologies, Carlsbad, CA, 
United  States). The genes for the m200 strain’s rRNA internal 
transcribed spacer (ITS), translation elongation factor 1-alpha (ef1-
α), RNA polymerase II subunit 1 (rpb1), and RNA polymerase II 
(rpb2) were amplified and sequenced to aid species identification 
by comparing this sequence with known fungal sequences in the 
NCBI GenBank database with BLASTX (Supplementary Table S1). 
DNA sequences were aligned, and species were identified. 
Molecular Evolutionary Genetic Analysis (MEGA) version 7.0 was 
used for species evolutionary distance analysis (Wattam et al., 2014; 
Kumar et al., 2016; Wattam et al., 2017).

2.2 Genome sequencing and assembly

The genome of the m200 strain was sequenced using the third-
generation Nanopore Sequencing Technology on the Oxford 
Nanopore platforms at Goalgene (Wuhan, China) (Lu et al., 2016). A 
library comprising >1 kb fragments met the requirements for 
sequencing. Finally, after the sequencing data of Nanopore were 
obtained, the high-quality nanopore reads were corrected and 
assembled using Canu v1.5 (Koren et  al., 2017) software. The 
minimap  2 2.17 (Li, 2018) comparison method and racon v1.3.1 
(Chen et al., 2020) error correction method were used to paste the 
original third-generation off-machine data back to the assembled 
genome for error correction analysis. The software purge haplotigs 
(Roach et al., 2018) were used to de-redundant the genome after initial 
assembly error correction and identify and remove redundant 
heterozygous contigs based on the depth distribution of reads and 
sequence similarity.

The genome is compared with the second- and third-generation 
data in the NCBI nucleotide (NT) database. Additionally, the 
completeness of the genome was assessed using BUSCO v5.1.2 
(Benchmarking Universal Single-Copy Orthologs) with fungi_odb10 
(Simão et al., 2015).
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2.3 Genomic prediction and genome 
annotation

2.3.1 Repeat sequence prediction and annotation
After obtaining the whole-genome data of the m200 strain, 

transposon sequence analysis was carried out for the assembled gene 
sequences with the transposon Repbase database (Bao et al., 2015), 
using RepeatMasker (Tarailo-Graovac and Chen, 2009) and 
RepeatProteinMasker software. Meanwhile, based on its own sequence 
ratio [Software: RepeatModeler (Zeng et  al., 2018)] and repeat 
sequence characteristics [Software: Trf (Benson, 1999) and 
LTR-FINDER (Ou and Jiang, 2019)] were used for de novo prediction 
(Saha et al., 2008). Default parameters were used.

2.3.2 Gene prediction and function annotation
Two strategies were used for gene prediction: (1) based on Ab 

initio gene prediction, with GlimmerM (Majoros et al., 2003) and 
Augustus v 3.3.1 (Nachtweide and Stanke, 2019) software, the gene 
model was predicted ab initio and (2) based on homology-based 
prediction (Hamp et al., 2013), where we selected five closely related 
species (Ascobolus immersus Pers, Choiromyces venosus (Fr.) Th. Fr., 
Sphaerosporella brunnea (Alb. & Schwein.) Svrček & Kubička, Terfezia 
boudieri Chatin, and Tuber magnatum Picco) to predict the genomic 
genes of the M200 strain. Then, with the help of MAKER2 (Campbell 
et al., 2014) software, we integrated the gene sets predicted by the two 
methods into a non-redundant and more complete gene set. 
Additionally, the results of CEGMA v2.5 was also integrated (Parra 
et al., 2007).

Several complementary methods were used to annotate the 
assembled sequences. The genes were annotated by aligning the 
sequence with those previously stored in different protein databases 
including the Gene Ontology (GO) (Ashburner et al., 2000), Kyoto 
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al., 2006), 
Nr (Non-Redundant Protein Database) (Yu and Zhang, 2013), Swiss-
Prot (Magrane and Consortium, 2011), TrEMBL (O’Donovan et al., 
2002), and KOG (Eukaryotic Orthologous Groups) (Tatusov et al., 
2003). Transcription factors were annotated according to their 
InterPro IDs in the Fungal Transcription Factor Database (Wilson 
et al., 2008).

2.3.3 Non-coding RNA annotation
The tRNA sequences in the genome were identified using the 

tRNAscan-SE software (Chan and Lowe, 2019). Since rRNA is highly 
conserved, we chose the rRNA sequence of a closely related species as 
the reference sequence and utilized BLASTN (Rivas and Eddy, 2001) 
comparison to search for rRNA in the genome. Rfam (Kalvari et al., 
2018) predicted other non-coding RNAs, such as microRNA 
(miRNAs) and small nuclear RNAs (snRNAs).

2.4 Gene family construction

The sequences of proteins ≥30 aa (amino acids) of 
M. eohespera and 14 other fungi were employed to compute 
pairwise similarities using BLASTP 2.7.1 (Altschul et al., 1990) 
(E-value ≤10−5). Using the OrthoMCL v2.0.9 pipeline with an 
inflation value of 2.0, gene families were constructed. Default 
parameters were used.

2.5 Phylogeny reconstruction and 
divergence time estimation

The m200 strain was analyzed with 13 Ascomycota Morchella 
conica Pers. (Lütkenhaus et al., 2019), Morchella crassipes (Vent.) Per. 
(Liu et  al., 2020), Morchella eximia Boud. (Liu et  al., 2020), 
M. importuna (Du et  al., 2017), M. septimelata (Liu et  al., 2018), 
M. sextelata (Masaphy, 2010), Ascodesmis nigricans Tiegh. (Liu et al., 
2020), Beauveria brongniartii (Sacc.) Petch (Shang et  al., 2016), 
Neurospora crassa Shear & B.O. Dodge (Baker et  al., 2015), 
Parastagonospora nodorum (Berk.) Quaedvl., Verkley & Crous 
(McDonald et  al., 2019), Rhynchosporium agropyri Zaffarano, 
B.A. McDonald & A. Linde (Penselin et al., 2016), Tuber melanosporum 
Vittad. (Martin et al., 2010), and Aspergillus niger Tiegh. (Gebru et al., 
2020). One Basidiomycota [Gloeophyllum trabeum (Pers.) Murrill 
(Floudas et al., 2012)] was added to root the phylogenetic trees. Based 
on orthoMCL clustering, single-copy ortholog gene groups from 15 
fungal species were selected randomly and aligned separately using 
MUSCLE v3.8.31.1 Gblocks were used to identify and remove poorly 
aligned regions.2 Then, maximum-likelihood tree estimation and 
bootstrap analyses were performed with RAxML v8.0.24 (Stamatakis, 
2015) (m: GTRGAMMA). The maximum-likelihood (ML) analysis 
uses the default settings, and statistical support values were obtained 
through 100 replicates using non-parametric bootstrapping.

According to the ML tree, the species differentiation time 
provided by the TimeTree database3 was referred to as the fossil time 
(Kumar et  al., 2017), and the BEAST v1.8.0 (Drummond and 
Rambaut, 2007) software was used to estimate the differentiation time 
of these eight species. We applied a general time reversible (GTR) 
model for nucleotide substitution and the “Yule process” tree prior 
model with three calibration points. The divergence time was 
estimated by Markov Chain Monte Carlo (MCMC) analysis for 
80,000,000 generations. Based on fossil calibrations at the two 
calibrated nodes, including the divergence time of Morchella and the 
Tuberaceae, black morels (Elata clade) and yellow morels (Esculenta 
clade) (O’Donnell et  al., 2011). According to the molecular clock 
theory, this study used the coding sequence (CDS) alignment of 1,220 
single-copy gene family sequences to estimate the differentiation time 
(Liu et al., 2019). The orthologous genes of T. melanosporum were 
used as the outgroup.

2.6 Analysis of expansion and contraction 
of gene families and positive selection 
gene analysis

Using the cluster analysis results from gene families, the CAFE 
v4.2.1 software (Lu et al., 2017) was employed to examine gene family 
expansion and contraction with a significance level of 0.05.

To detect whether a gene family is affected by positive selection, 
the PAML software package’s CODEML PAML4.9/CODEML (model 
4, kappa 0, codon2, blen 0) tool was utilized for each gene family 
(Yang, 2007).

1 http://www.drive5.com/muscle/

2 http://molevol.cmima.csic.es/castresana/Gblocks.html

3 http://www.timetree.org/home

https://doi.org/10.3389/fmicb.2023.1309703
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://www.drive5.com/muscle/
http://molevol.cmima.csic.es/castresana/Gblocks.html
http://www.timetree.org/home


Li et al. 10.3389/fmicb.2023.1309703

Frontiers in Microbiology 04 frontiersin.org

2.7 Synteny analysis

The software minimap2 2.17 was utilized for conducting pairwise 
genome comparisons (Li, 2018) and for visualizing the comparison 
outcomes. We initially created an index, subsequently compared it, 
and ultimately obtained the comparison result in the same format. 
After comparing the results, it was determined that the R package 
‘pafr’ was best suited for visualization purposes, and a collinear point 
diagram was consequently drawn.

2.8 Large fragment copy analysis and 
genome-wide replication

The lastz 1.04.004 software (Gao and Miller, 2020) developed by 
rsharris/lastz was utilized to search for the syntenic segments within 
the genome and to compare the repetitive fragments contained within 
it with the statistics of the genome.

Two analytical methods were chosen for genome-wide replication. 
One is synteny analysis (4DTV, Fourfold Degenerate Synonymous Site 
Synteny), while the other is grounded on the Ks distribution map 
(Huang et al., 2009). The MCscanX software was utilized to search for 
gene pairs in the syntenic region of the genome for synteny analysis 
(Wang et al., 2012), followed by MUSCLE for gene comparison, which 
eventually calculated its 4DTV value and generated a distribution 
map. Another approach involved identifying gene pairs within the 
genome through homologous clustering. MUSCLE was employed to 
perform gene comparison, calculate the Ks value, and generate a 
distribution map.

3 Results

3.1 Species identification

We identified the fungal species by analyzing the sequences of 
four nuclear gene fragments of the m200 DNA: ITS, ef1-α, rpb1, and 
rpb2. Species identification was performed by comparing the sequence 
with the sequence of known fungi in the NCBI GenBank. Finally, 
combined with the morphological analysis, the Morchella strain m200 
was confirmed as M. eohespera.

3.2 Molecular sequencing and de novo 
assembly

In this study, whole-genome sequencing was performed for 
M. eohespera, based on third-generation nanopore sequencing 
technology. After filtering out the low-quality reads, a total of 64.19 Gb 
of Oxford Nanopore long reads was obtained (Supplementary Table S2). 
The largest read length was 191,615 bp. The average read length is 
12,668.38 bp, and the N50 read length is 27,302 bp.

Due to the unavailability of reference information about the 
genome of Morchella, a de novo assembly strategy was used to 

4 http://www.bx.psu.edu/

assemble the M. eohespera genome. The result shows that the size 
of the assembled genome is approximately 59.66 Mb; after 
correction, it is approximately 53.81 Mb, and the GC content of the 
sample genome is approximately 47.70% (Table 1). In addition, 
based on the second-generation and third-generation data of the 
M. eohespera genome, we constructed a complete genome map of 
M. eohespera (Figure 1).

By comparing with the genome data of other species of Morchella, 
we obtained a high-quality genome sequence through the Nanopore 
sequencing platform, with a sequencing depth of 1,193× with the N50 
length reaching 1.93 Mb (Table 2).

3.3 Repeat sequence prediction annotation

In this study, de novo prediction and comparison of 
homologous sequences were used to annotate the repetitive 
sequences of M. eohespera. There are 11.26 Mb of repetitive 
sequences in M. eohespera, accounting for approximately 20.93% 
of the genome (Table 3). The type and content analysis results of 
transposable elements (TEs) in the genome of M. eohespera showed 
that almost all plant genome transposons exist in the genomes of 
M. eohespera, with long terminal repeats (LTRs) being the main 
type of TE. The M. eohespera genome contains approximately 
4.56 Mb long terminal repeats, accounting for approximately 8.48% 
of the whole M. eohespera genome, indicating that the expansion 
of LTR may have caused the expansion of the genome of 
M. eohespera (Table 4).

3.4 Gene prediction and function 
annotation

Finally, 9,189 genes were annotated in the genome. The average 
gene length of the predicted genes of M. eohespera is 1,822 bp, the 
average CDS length is 1,317 bp, and the average exon length is 
402.77 bp (Supplementary Table S3).

The whole genome of M. eohespera was annotated using the 
InterPro, GO, KEGG_ALL, KEGG_KO, Swiss-Prot, TrEMBL, Pfam, 
Nr, and KOG databases. The total number of M. eohespera genes with 
predicted functions was found to be 7,825, accounting for 85.16% of 
the total number of M. eohespera genes through functional cluster 
analysis (Table  5). Among them, there were 4,266 GO-annotated 
genes, accounting for 46.43% of the total. KEGG annotated 7,335 
genes, accounting for 79.82% of the total. The remaining 15% of the 
genes could not be found in the currently known databases and belong 
to the unique genes of M. eohespera. These genes are likely to play an 
important role in the growth of M. eohespera.

TABLE 1 De novo genomic assembly results of Morchella eohespera.

Morchella eohespera Length/%

Total length (bp) 53,808,214

Max length (bp) 3,806,699

N50 (bp) 1,933,924

N90 (bp) 1,385,344

GC Content (%) 47.70
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3.5 Non-coding RNA

Non-coding RNA (ncRNA) plays a vital role in biological 
processes. The non-coding RNA prediction results showed that a total 
of 336 tRNAs were predicted in the M. eohespera genome, accounting 
for 0.053% of the entire genome. Compared with the amount of tRNA, 
the numbers of rRNA and snRNA were much lower, only 76 and 45, 
respectively. However, miRNA and snRNA were not predicted 
(Supplementary Table S4). The total number of ncRNA was 457, 
representing 0.94% of the genome assembly; this suggested that 
ncRNA formed only a small proportion of the overall genome size.

3.6 Identification of specific gene families 
and specific genes of Morchella Eohespera

Based on the sequence similarity of genes, the orthologous and 
paralogous relationships of 15 fungal genomes (M. eohespera, 
M. conica, M. crassipes, M. eximia, M. importuna, M. septimelata, 
M. sextelata, A. nigricans, B. brongniartii, N. crassa, P. nodorum, 
R. agropyri, T. melanosporum, A. niger, and G. trabeum) gene families 
were constructed. A total of 9,189 genes of the predicted genes of 
M. eohespera were clustered into 7,996 families, of which 48 gene 
families were unique to M. eohespera (Supplementary Table S5).

FIGURE 1

Morchella eohespera whole-genome map. From outside to inside, in order: (A) genomic information; (B) GC content distribution; (C) second-
generation reads depth distribution; (D) depth distribution of three generations of reads; (E) outer circle is a homozygous SNP distribution, and the 
inner circle is a heterozygous SNP distribution; (F) outer circle is a homozygous InDel distribution, and the inner circle is a heterozygous InDel 
distribution; and (G) complete comparison of BUSCO gene distribution on the genome: blue is single-copy BUSCO and red is duplicated BUSCO.
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3.7 Phylogenetic analysis and divergence 
time estimation

A total of 1,220 single-copy orthologous genes were identified in 
the 15 fungal species (Morchella eohespera, Morchella conica, 
Morchella crassipes, Morchella eximia, Morchella importuna, 
Morchella septimelata, Morchella sextelata, Ascodesmis nigricans, 
Beauveria brongniartii, Neurospora crassa, Parastagonospora 
nodorum, Gloeophyllum trabeum, Rhynchosporium agropyri, 
Aspergillus niger, and Tuber melanosporum). A phylogenetic tree was 
constructed using the maximum-likelihood method and the 
GTRGAMMA model with 1,220 single-copy genes identified in the 
orthology analysis (Figure 2).

It can be seen from Figure 2 that all Morchella species are clustered 
on a single evolutionary branch, with black morel and yellow morel 
(M. crassipes) being divided into two branches. Among them, 
M. conica was the closest relative to the M. eohespera species in one 
clade. M. eohespera is phylogenetically closest to M. conica, diverging 
~19.03 million years ago (Figure 3).

3.8 Contraction and expansion of gene 
families

A phylogenetic tree was constructed using 1,220 single-copy genes 
from eight related fungi and seven species of Morchella. Among the 
15 species, the gene families of M. eximia expanded more than 
contracted, whereas the other 14 species all showed more contraction 
than expansion (Figure 4). The number (657) of contraction gene 
families in M. eohespera is greater than the number (244) of expanded 
gene families, among which there are 244 expanded gene families and 
657 contraction gene families. We performed an enrichment analysis 
on shrinkage genes (Supplementary Table S6). The contracted genes 
of M. eohespera are mostly involved in the “metabolic process” 
(GO:0008152), “cellular process” (GO:0009987), “organic substance 
metabolic process” (GO:0071704), and “primary metabolic process” 
(GO:0044238).

3.9 Enrichment analysis of positive 
selection genes

The CODEML tool in the PAML software package was used to 
select a branch-site model to detect whether a certain gene family of 
M. eohespera was subject to positive selection. A total of 492 genes in 
the M. eohespera genome displayed signatures of positive selection 
(see Figure 5).

According to the GO database, genes subject to positive selection 
were mainly distributed in four functional entries: “Binding” 
(GO:0005488), “Catalytic activity” (GO:0003824), “Metabolic process” 
(GO:0008152), and “Cellular process” (GO:0009987) 
(Supplementary Figure S1). To better understand the gene functions 
in M. eohespera, we successfully assigned putative proteins to their 
orthologs in the KEGG database. The KEGG function classification is 
shown in Supplementary Figure S2. Analysis of the M. eohespera 
species-specific genes revealed that 15 genes were significantly 
enriched in various KEGG pathways, including “Proteasome” 
(ko03050), “Autophagy-animal” (ko04140), “mTOR signaling T
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pathway” (ko04150), and “Cell cycle” (ko04110) 
(Supplementary Figure S3).

3.10 Gene synteny analysis

The synteny analysis was performed using minimap2 software. 
We  selected two related species (M. conica and M. sextelata) of 

M. eohespera based on the phylogenetic tree and performed syntenic 
analysis (Supplementary Figures S4, S5). According to the results of 
the synteny analysis of the three Mochella species, we can infer that the 
synteny between M. eohespera and M. conica is high, which is 
consistent with the phylogenetic analysis results we  constructed 
earlier, and the relationship between them is close 
(Supplementary Figure S6).

3.11 Large fragment copy analysis 
whole-genome replication

The lastz 1.04.00 software was used to count the number of 
repetitive fragment pairs contained in the synteny segment of the 
M. eohespera genome. The total number of M. eohespera SD fragments 
is 176, the median length is 2,403 bp, and the total length is 878,958 bp 
(Table 6).

We used two methods for detection, one being synteny analysis 
(4DTV distribution of gene pairs in the synteny region), and the other 
being based on the Ks distribution map (Ks distribution of best hit 
gene pairs on the whole genome). According to the 4DTV distribution 
map (Supplementary Figure S7) and the Ks distribution map 
(Supplementary Figure S8) of M. eohespera, combined with the 
statistical results of large fragment replication, it was found that no 
genome-wide replication occurred in the M. eohespera genome.

TABLE 3 Statistics of repeat sequence.

Type Repeat size (bp) % of genome

Trf 1,662,266 3.09

Repeatmasker 1,588,249 2.95

Proteinmask 1,032,973 1.92

De novo 9,968,180 18.53

Total 11,261,609 20.93

(a) TRF is a tandem repeat sequence in the genome sequence found by TRF software; (b) RepeatMasker is a transposon element obtained by annotating genome sequence through 
RepeatMasker software based on RepBase library; (c) ProteinMask is a transposon element obtained by annotating genome sequence through RepeatProteinMask software based on RepBase 
library; (d) de novo is the result of using the final sequence file obtained by the software RepeatModeler and LTR-FINDER as a library, and annotating the genome sequence through the 
RepeatMasker software; and (e) total is the result obtained by the above various methods, and the non-redundant result after removing the overlap between them.

TABLE 4 Statistics of transposon type.

RepBase TEs TE Proteins De novo Combined TEs

Length 
(bp)

% of 
Genome

Length 
(bp)

% of 
Genome

Length 
(bp)

% of 
Genome

Length 
(bp)

% of 
Genome

DNA 363,684 0.68 60,223 0.11 1,021,052 1.90 1,365,765 2.54

LINE 187,364 0.35 2,487 0.00 662,625 1.23 829,583 1.54

SINE 1,112 0.00 0 0.00 8,395 0.02 9,060 0.02

LTR 966,800 1.80 970,263 1.80 4,394,194 8.17 4,563,034 8.48

Satellite 25,245 0.05 0 0.00 234,673 0.44 253,386 0.47

Simple_repeat 121,226 0.23 0 0.00 430,390 0.80 534,002 0.99

Other 66 0.00 0 0.00 0 0.00 66 0.00

Unknown 6,656 0.01 0 0.00 4,038,735 7.51 4,045,313 7.52

Total 1,588,249 2.95 1,032,973 1.92 9,303,117 17.29 9,918,004 18.43

(a) RepBase TEs and TE proteins are based on the transposon elements obtained by annotating the genome through the RepeatMasker and RepeatProteinMask software, respectively, based on 
the RepBase library; (b) de novo is the repetitive sequence obtained by repeatModeler and LTR-FINDER of de novo prediction method as the library, and the result of the repetitive sequence 
in the genome obtained by the software RepeatMasker; and (c) combined TEs is the result of integrating the above three methods and removing redundancy.

TABLE 5 Gene annotation results of Morchella eohespera.

Database Number Percent (%)

InterPro 6,013 65.44

GO 4,266 46.43

KEGG_ALL 7,335 79.82

KEGG_KO 3,474 37.81

Swiss-Prot 4,364 47.49

TrEMBL 7,640 83.14

Pfam 5,877 63.96

NR 7,642 83.16

KOG 4,368 47.54

Total 10,497 91.13
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4 Discussion

The draft genome of M. eohespera (53.81 Mb) is slightly larger 
than that of the closely related species, M. conica and M. sextelata, 
which are 52.43 Mb and 52.93 Mb, respectively (Murat et al., 2018). 
The average gene length of M. eohespera (1,643 bp) is also slightly 
larger than that of M. sextelata (1,372 bp) and M. septimelata 
(1,571 bp). Furthermore, the GC content of the M. eohespera 
genome (47.70%) is also greater than that of M. sextelata (47.37%) 
and M. septimelata (47.40%) (Li et al., 2018; Liu et al., 2018). The 
M. eohespera genome was predicted to contain 699 complete 
BUSCO genes and 35 fragmented BUSCO genes, and the 
completeness of the genes was 92.2% (699/758) 
(Supplementary Table S7). Through the above comparison, we can 
see that the results of this study are true and credible. The 
differences in genome size, average gene length, and GC content 

among closely related species of M. eohespera are not very obvious. 
With the development of sequencing technology, our future 
research data will be  more authentic. The results of this study 
provide sequence data resources for the molecular biology of 
Morchella fungi and lay the foundation for further research into 
improving this genus, which is characterized by its significance in 
medicine and gastronomy.

Repetitive DNA sequences are widely distributed in the 
genomes of eukaryotes, and repetitive sequences are closely related 
to the evolution, inheritance, and variation of species (Aguileta 
et al., 2008). The genome of Morchella crassipes, representing the 
first yellow morel genome published, was slightly larger than that 
of M. eohespera, but the proportion of the genome that represented 
repeat sequences in M. eohespera (20.93%) was clearly greater than 
that of M. crassipes (15.34%) (Liu et al., 2020). Transposons are of 
great significance in the study of species formation, biological 

FIGURE 3

Evolutionary divergence time in eight species. The numbers on the branches indicate the estimated time of differentiation (million years ago, Mya), 
XXX-XXX differentiation time (X  ~  X million years ago), and the red dots indicate fossil evidence.

FIGURE 2

Phylogenetic tree constructed from seven Morchella species and eight related fungi. The taxon with * is the research object of this research.
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evolution, gene expression regulation, and transgenic technology. 
The four most common types of transposons, namely DNA, long 
interspersed nuclear elements (LINEs), long terminal repeats 
(LTRs), short interspersed nuclear elements (SINEs), and a small 
number of other unknown types of transposons, were predicted in 
the M. eohespera genome.

Phylogenetic trees based on a single gene or several genes may 
produce inconsistent topological structures, whereas phylogenetic 
trees based on the series of available genes in the whole genome 
can provide relatively high resolution (Dooner and Weil, 2007). In 
the current study, we  used 1,220 genome-wide single-copy 
orthologous protein-encoding sequences combined with data from 
14 reference fungal species to construct the maximum-likelihood 
tree at the higher level of M. eohespera. The evolutionary tree 
showed that M. eohespera and M. conica were clustered into the 
smallest group, with synteny analysis by minimap2 showing a 
greater synteny between them.

The BEAST v1.8.0 software was used to estimate the 
differentiation time of Morchella species and related species 
(Figure 3). Based on the fossil calibration point, the divergence 
time of each species could also be calculated. Seven morel species 
were clustered in one branch, and two black morels, M. eohespera 
and M. conica, had the closest genetic relationship, with a 
differentiation time of approximately 19.03 Mya. A yellow morel 
species, M. crassipes, had a greater genetic distance from the six 
black morel species and differentiated at approximately 104.93 
Mya. The Morchellaceae (seven morel species) were differentiated 
from the Tuberaceae (T. melanosporum) at the family level at 
approximately 179.46 Mya, a finding that was consistent with 
those from a previous study (Liu et al., 2020). On the contrary, the 
number of expanded gene families was greater than the number 
of contracted gene families in the M. crassipes genome in the 
previous study. The number of expanded and contracted genes in 

the current study of M. crassipes was 149 and 2,152, respectively, 
more than were reported in previous studies.

Gene family contraction and expansion analysis showed that 
M. eohespera and M. crassipes differed markedly in gene types. It was 
calculated that 987 genes expanded in M. crassipes, sharply more than 
the 743 genes in M. eohespera (Liu et al., 2020). On the other hand, 
657 genes were contracted in M. eohespera, clearly less than 1,655 
genes in M. eohespera. The number of contracted and expanded genes 
in M. crassipes was the largest of the seven Morchella species in this 
current study. Functional enrichment analysis reflected that the main 
function of the contracted genes of M. eohespera was related to the 
“metabolic process” (GO:0008152).

The genome sequencing in this study provides the first annotation 
of the whole-genome sequence of M. eohespera. This study may provide 
important data for evaluating the species of Morchella, improving culture 
techniques, and discovering bioactive compounds. This can help meet 
the increasing demand for M. eohespera, but it is also significant for 
ongoing research into M. eohespera. To provide additional information, 
the gene annotation file generated in this study was uploaded and may 
provide useful data in the future for further research on the differences 
between various Morchella species and their biological functions.

5 Conclusion

The importance of fungi in agriculture, human health, and 
ecology emphasizes their potential for biotechnological applications. 
Third-generation sequencing technology was used to sequence a high-
quality M. eohespera genome. Using the relevant information from the 
M. eohespera genome, an accurate picture was generated of the 
phylogenetic relationship and evolution of M. eohespera and related 
species, providing a new reference genome for the evolutionary 
analysis of ascomycete fungi. The generation of the genome sequence 

FIGURE 4

Expansion and contraction of Morchella eohespera gene families. The numbers on the branches of the phylogenetic tree indicate gene deletion (red) 
and gain (green). The pie chart to the right of each species name indicates the percentage of gene family amplification (green) and shrinkage (red) of 
that species. The pie chart to the right of the developmental tree shows the percentage of families that have changed (orange) and stayed the same 
(blue) among all species.
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of M. eohespera will help us to study the phylogenetic status of 
M. eohespera at the genome level and to mine the sequence for key 
candidate genes for valuable biological traits, laying a theoretical 
foundation for the artificial cultivation of M. eohespera for high-value 
food production and herbal medicines, and to conserve wild 
populations from extinction.
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