
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Juan Pablo de Rivero Vaccari,
University of Miami, United States

REVIEWED BY

Orlando Torres-Rodrı́guez,
University of Puerto Rico, Puerto Rico
Akhilesh Kotiyal,
Indian Institute of Technology (BHU), India

*CORRESPONDENCE

Hongliang Luo

ndefy13028@ncu.edu.cn

Wenjun Zhang

ndefy22057@ncu.edu.cn

†These authors have contributed
equally to this work and share
first authorship

RECEIVED 28 November 2023
ACCEPTED 16 January 2024

PUBLISHED 02 February 2024

CITATION

Zheng H, Liu Q, Zhou S, Luo H and Zhang W
(2024) Role and therapeutic targets of P2X7
receptors in neurodegenerative diseases.
Front. Immunol. 15:1345625.
doi: 10.3389/fimmu.2024.1345625

COPYRIGHT

© 2024 Zheng, Liu, Zhou, Luo and Zhang. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Review

PUBLISHED 02 February 2024

DOI 10.3389/fimmu.2024.1345625
Role and therapeutic targets
of P2X7 receptors in
neurodegenerative diseases
Huiyong Zheng1†, Qiang Liu1†, Siwei Zhou1†, Hongliang Luo2*

and Wenjun Zhang3*

1Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, China,
2Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang
University, Nanchang, China, 3Department of Rehabilitation Medicine, The Second Affiliated Hospital,
Jiangxi Medical College, Nanchang University, Nanchang, China
The P2X7 receptor (P2X7R), a non-selective cation channel modulated by

adenosine tr iphosphate (ATP), local izes to microglia, astrocytes,

oligodendrocytes, and neurons in the central nervous system, with the most

incredible abundance in microglia. P2X7R partake in various signaling pathways,

engaging in the immune response, the release of neurotransmitters, oxidative

stress, cell division, and programmed cell death. When neurodegenerative

diseases result in neuronal apoptosis and necrosis, ATP activates the P2X7R.

This activation induces the release of biologically active molecules such as pro-

inflammatory cytokines, chemokines, proteases, reactive oxygen species, and

excitotoxic glutamate/ATP. Subsequently, this leads to neuroinflammation,

which exacerbates neuronal involvement. The P2X7R is essential in the

development of neurodegenerative diseases. This implies that it has potential

as a drug target and could be treated using P2X7R antagonists that are able to

cross the blood-brain barrier. This review will comprehensively and objectively

discuss recent research breakthroughs on P2X7R genes, their structural features,

functional properties, signaling pathways, and their roles in neurodegenerative

diseases and possible therapies.
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1 Introduction

P2X7 is a microglial protein highly expressed in the central nervous system (CNS) and

functions as an ATP-gated ion channel (1). It plays a crucial role in mediating ATP-driven

hazardous signaling, as its activation leads to the opening of pores and non-selective

transport of Ca2+, Na+, and K+ (2). The expression of P2X7R in immunocompetent cells of

the central and peripheral nervous system has been extensively described (3). It is expressed

in microglia, astrocytes, and oligodendrocytes in the CNS (4). However, there is an ongoing

discussion regarding its expression in neurons (5, 6). The P2X7-EFGP BAC transgenic
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mouse model overexpresses functional fluorescently labeled P2X7,

which is located at the protein level and provides stronger signaling.

However, neuronal P2X7 protein expression is not induced under

pathological conditions (7). The study notes that P2X7 is

predominantly found in microglia and oligodendrocytes.

Recently, researchers generated humanized P2X7R (hP2RX7) by

inserting human P2RX7 cDNA into the mouse P2RX7 locus. They

found that P2X7R is specifically expressed in glutamatergic

pyramidal neurons in the hippocampus (8). P2X7R expression

was also found on neuronal progenitor cells and mature neuronal

cells of human hiPSC origin. This study also indicated that P2X7R is

not localized to the cell membrane of neurons and may not directly

mediate neurotoxicity (9). The presence of P2X7R in neurons and

glial cell populations is supported by the P2RX7-EGFP reporter

mouse, which expresses enhanced green fluorescent protein

(EGFP) (10).

ATP is a co-transmitter released by neurons and can be influx

into the extracellular space from glial cells (astrocytes,

oligodendrocytes, microglia) in the CNS to regulate neuronal

activity (11). P2X7 is extensively expressed in microglial cells

within the CNS (12). Activating P2X7 initiates the assembly of

NLR family pyrin structural domains containing NLRP3 in

microglia. This results in the activation of cysteinyl asparagine-1,

which increases cellular metabolism by boosting both glycolysis and

oxidative phosphorylation. In turn, this causes the secretion of IL-

1b, IL-6, TNF-a, and IL-18, thereby initiating a neuroinflammatory

response (13, 14). Stimulation of P2X7 also induces the discharge of

different pro-inflammatory substances like TNF-a (15), IL-6 (16),

CCL2 (17), excitotoxic glutamate (17), and reactive oxygen species

(ROS) (18). These mediators result in neuroinflammation,

proliferation of reactive glial cells, and cell death. It is important

to note that these substances cause neuroinflammation and cellular

damage. The main pathogenic alterations in neurodegenerative

disorders, like Alzheimer’s disease (AD), Parkinson’s disease

(PD), Huntington’s disease (HD), Multiple sclerosis (MS), and

Amyotrophic lateral sclerosis (ALS) that are prevalent globally,

consist of several neurodegenerative reactions, leading to
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substantial ATP release through permeable plasma membranes of

neural tissues (19). This results in high ATP concentration

activating the P2X7R, causing neurological damage. Therefore,

extensive research explores the modulation of P2X7R-mediated

pathways as a possible treatment for neurodegenerative diseases,

aiming to slow or remedy their progression. Our review

concentrates on the P2X7R signaling pathway, the extent of its

participation in neurodegenerative disorders, and available

therapeutic interventions.
2 Overview of purinergic
receptor P2X7R

2.1 Genes encoding for P2X7R

The P2X7 gene, which codes for the P2X7R, is situated on the

long arm of chromosome 12 at 12q24.31 with a length of 53 kb

along with 13 exons (Figure 1). P2RX4 (12.q24.32) is located in

proximity to a mitophagosome. (Source: www.ncbi.nlm.nih.gov/

gene/5027).
2.2 Structure of the P2X7R

P2XR is a trimeric ion channel composed of three subunits.

Each subunit contains two structural domains: the extracellular

cysteine-rich structural domain and the C- and N-termini that

enhance channel function (20). P2X7R belongs to the P2XR family

and is extensively expressed in body cells, particularly in

macrophages and microglia (21). Furthermore, the P2X7R has

ATP-gated ion channel activity (22). The P2X7R requires higher

levels of ATP to activate compared to other P2XR (23). P2X7

encodes a 595-amino acid protein, which forms a trimeric ion

channel assembly (23). The P2X7R protein comprises cellular

extracellular, transmembrane, and cytoplasmic components (24).

The ligand binding site is formed through subunit interactions
FIGURE 1

Location of the P2RX7 gene. The P2RX7 gene is situated on chromosome 12 at q24.31, extending 53 kb, and situated next to the P2RX4 gene.
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among three extracellular structural domains, totaling 282 amino

acids (13, 25). Six alpha subunits form two 24 amino acid

transmembrane helices, consisting of three TM1 and three TM2

units (26). The cytoplasmic cap is composed of two N-terminal b
strands, which converge proximally at the C-terminus with b15 and
a8 (25). The N-terminus starts about 26 amino acids earlier and

includes a conserved protein kinase C (PKC) phosphorylation

consensus site [TX (K/R)] (13). Following this, TM1 is the first

transmembrane structural domain that ranges from a26 to 46 and

contains the ATP-binding pocket (27). It is then followed by the

voluminous extracellular structural domain that maintains

conformational stability through a highly conserved protein fold

constructed with multiple disulfide bonds between cysteine residues

(28). The second transmembrane structural domain following the

extracellular area is TM2 (amino acid 330 to 349), which contains

numerous essential pore-lining residues (28). These residues

regulate channel gating: S342 is situated at the narrowest segment

of the channel, and Y343 is phosphorylated to modify gating (29).

The P2X7R has the lengthiest C-terminal among all P2XR (30).

Moreover, in the P2X7 subunit, the carboxyl-terminal tail (amino

acid 356-595) is the most remarkable structural domain, stabilizing

macropore opening, distinct to this receptor subtype. The initial

region of the C-terminal tail has a cysteine-rich area and is

palmitoylated on at least five residues, specifically C362, C363,

C374, C377, and S360. The palmitoylated residues serve as hinges,

thus enabling each C-terminal tail to form a binding site for

guanosine diphosphate or triphosphate (GDP/GTP) and two zinc

bins (31).

Multiple motifs that bind lipids and proteins are present in this

structural domain. Specifically, the region 436-531 shares homology

with a segment of tumor necrosis factor receptor 1 (TNFR1) that

includes the death domain, while residues 573-590 exhibit

homology with the endotoxin- binding region of the serum LPS-

binding protein (LBP). Additionally, there are multiple regions that

share homology (32) (Figure 2).
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2.3 Features of P2X7R

The P2X7R is notable within the P2XR family for its distinct

characteristics. Structurally, it consists of 3-6 homologous subunits

(33) that commonly combine to form a trimeric complex in order to

create a functional P2X7R. The C-terminus of the P2X7R is

lengthier compared to that of other P2X7R. It plays a role in

regulating the receptor’s functions, which include signaling

pathways, cellular localization, protein-protein interactions, and

post-translational modifications (34, 35). As an ATP-gated non-

selective cation channel, the P2X7R mediates the inward flow of

Na+ and Ca2+ and the efflux of K+, resulting in inward current/

depolarization (36, 37). Normal physiological conditions are

maintained by extracellular divalent cations such as calcium,

magnesium, zinc, and copper ions (38–40), protons (41), and

anions (42), which keep receptor activity at low levels. There are

two potential reasons for the expansion of P2X7R. One is its binding

to the agonist-binding pocket over an extended period, which

causes the channel to expand gradually (43). The other is that

P2X7R is able to transport large organic cations directly (44) or

form a large conductance pore (45). P2X7R has a different

conductance than other P2XRs in terms of its response to

activation. In comparison, other receptors show a fast and brief

response that diminishes within a few seconds. On the other hand,

P2X7R do not typically exhibit desensitization and allow for

continued inward flow of Ca2+ (39).

The stimulation of P2X7R leads to neurodegeneration through

the release of several bioactive substances, including pro-

inflammatory cytokines (IL16, IL1b, IL18, TNF-a) (46–48),

chemokines (CCL3, CXCL2) (49, 50), proteases (Rac1, NADPH

oxidase 2) (48), reactive oxygen species (ROS) (51, 52), and NO (53,

54), as well as excitotoxic glutamate (55, 56) or ATP (19). P2X7R

acts as a crucial initiator of inflammation since microglia recognize

pathogen-associated molecules (PAMP), such as lipopolysaccharide

(LPS), or danger-associated molecular patterns (DAMP), like ATP
FIGURE 2

The figure illustrates the structure of P2X7R, which consists of transmembrane structural domains TM1 and TM2. The extracellular structural domain
is represented by an orange line, which maintains the conformational stability through a disulfide bond. The carboxyl-terminal tail is very long and
contains two homologous region sequences. Additionally, the figure shows the location of single nucleotide polymorphisms (SNPs) in the P2X7
receptor, with gain-of-function SNPs represented by blue dots and loss-of-function SNPs represented by green dots.
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(57). Upon exposure to these substances, P2X7R stimulates the

release of the cytokine interleukin-1b (IL-1b) that facilitates the

inflammatory response. Conversely, the inability of astrocytes to

release IL-1b is attributed to NLRP3 deficiency (58).
3 P2X7-mediated signaling pathway

3.1 P2X7/MAPK

MAPKs, or mitogen-activated protein kinases, are serine/

threonine kinases that regulate gene expression. This includes

p38MAPK, ERK (extracellular signal-regulated kinase), and JNK

(c-jun N-terminal kinase). They respond to extracellular stimuli

and regulate various physiological processes, such as gene

expression, mitosis, metabolism, cellular differentiation and

motility, stress response, and cell survival or death (59, 60).

LPS can cause inflammation in microglia by activating the

phosphorylation of three vital MAPK pathways - p38, JNK, and

ERK - resulting in the secretion of pro-inflammatory cytokines (61).

Researchers observed that inhibiting P2X7R antagonist brilliant

blue G (BBG)and treating BV2 cells with LPS can halt MAPK

activation by preventing the phosphorylation of p38MAPK, JNK,

and ERK. This treatment decreased the secretion and expression of

pro-inflammatory cytokines, such as IL-16, IL-1b, and TNF-a
mRNA. Remarkably, using a MAPK inhibitor further intensified

the inhibitory effect on MAPK. The findings indicate that BBG can

effectively alleviate the neuroinflammatory response triggered by

LPS in BV2 cells by inhibiting the MAPK signaling pathway (46).

Inhibiting MAPKs led to significant neuroprotection in models of

subarachnoid hemorrhage, cerebral hemorrhage, and PD (62, 63).

ATP activates JNK, p38, and ERK. While JNK and ERK contribute

to the production of TNF mRNA, p38 does not affect elevated TNF

mRNA levels. Instead, it inhibits TNF mRNA transport from the

nucleus to the cytoplasm and stimulates TNF release from

microglial cells. The release is dependent on P2X7R, which may

play a role in activating JNK and p38. Downstream from P2X7R,

members of the tyrosine-protein kinase SRC (SRC) family (possibly

PTK) are involved in activating JNK and p38 (15, 64). TNF release

from microglia treated with 2’(3)-omicron-(4-Benzoylbenzoyl)

adenosine-5’-triphosphate (BzATP) in neuron-microglia co-

cultures reduced glutamate-induced neuronal cell death. P38 and

JNK activation appears to be independent of inward Ca2+ flow (64),

while a different study suggests a potential relationship between the

inward flow of Ca2+ through P2X7R and the activation of p38 and

JNK (65).

In a rat model of PD, the administration of LPS triggers an

inflammatory response that results in the degeneration of

dopaminergic neurons in the nigrostriatal pathway (66, 67).

Microglial activation and the loss of dopaminergic neurons in the

nigrostriatal system have been linked to enhanced expression of

P2X7R in microglia and elevated levels of p38MAPK

phosphorylation. The inhibition of P2X7R with BBG reduces

microglial activation and prevents p38MAPK-induced

degeneration of dopaminergic neurons (68). P2X7R antagonists

effectively prevented the depletion of striatal dopamine stores
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induced by 6-hydroxydopamine (69, 70). Nonetheless, other

studies found that P2X7R deficiency or inhibition did not impact

dopaminergic neuron loss induced by 1-methyl-4-phenylpyridine

or rotenone in chemical PD models (71). This lack of consistency

might be ascribed to the extent of nigral damage induced by

different models or the duration of P2X7R antagonist treatment.

Activation of P2X7 is associated with the AKT and ERK

pathways, leading to cell death. However, it is not linked to the

release of IL-1 family cytokines (IL-18, IL-1b, IL-1a) (47). In cortical

astrocytes of rats, P2X7 activation induces AKT phosphorylation

(72). However, the stimulation of P2X7 with BzATP in microglial

cells results in ERK and AKT dephosphorylation (47), which might

be attributed to their different cell types (73).

Stimulating P2X7R activates MAP kinases, leading to increased a

disintegrin and metalloproteases (ADAM) phosphorylation. These

ADAMs, specifically ADAM9, -10, and -17, facilitate the non-

amyloidogenic deformation a-processing of the amyloid precursor

protein (APP) (74–76). Furthermore, a separate ADAM-independent

process for APP a processing has been observed in mouse and

human neuroblastoma cells, primary mouse astrocytes, and neural

precursor cells. This process differs from the a-secretase activity of

ADAM9, -10, and -17 in response to APP, primarily leading to a-
cleavage. Moreover, it promotes the release of the soluble ectodomain

of APP (sAPPa) while inhibiting the production of sAPPb and

amyloid b (A-b) peptides. This process involves the Erk1/2 and JNK

pathways and is dependent on P2X7R (77). Another study on glioma

U251 cells also reported the joint involvement of Erk1/2 and JNK in

APP a-cleavage (78). Furthermore, stimulation of P2X7R leads to

ERM (Ezrin/Radixin/Moesin) phosphorylation, which relocates to

the plasma membrane and interacts with P2X7R. This interaction

causes APP processing and subsequent protein hydrolysis, resulting

in sAPPa shedding dependent on P2X7R. Additionally, P2X7R

signaling triggers ERM phosphorylation in Neuro2a cells via

upstream Rho kinase and MAPK activation, while downstream

PI3K activity is stimulated (79) (Figure 3).
3.2 P2X7/ROS

Mitochondrial damage from inflammation and metabolic stress

not only impairs energy production but also triggers the

accumulation of ROS. This ultimately causes neuronal cell death

and exacerbates the progression of neurodegenerative conditions

(80, 81). The primary cause of progressive neuronal death is

thought to be the inflammatory response that results from the

activation of microglia, which causes ROS to accumulate (82, 83).

ATP-induced neurodegeneration and oxidative stress are significant

contributors to neurodegenerative diseases due to P2X7R-mediated

mitochondrial dysfunction and inward Ca2+ flow into neurons

(84–86).

Mitochondrial dysfunction results in decreased ATP

production, Ca2+ dysregulation, and the generation of ROS.

Mitochondria produce superoxide, a significant source of reactive

oxygen species during ischemic and hypoxic conditions at the

respiratory chain’s origin (85). Reactive oxygen species can

damage macromolecules in the plasma membrane of neurons
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through oxidative modifications and harm (87). Activation of

P2X7R by a-synuclein causes a reduction in mitochondrial

membrane potential and an increase in the production of

mitochondrial ROS (84). Subsequently, ROS stimulate the

mitochondria-dependent intrinsic apoptotic pathway and activate

pro-apoptotic proteins (88), which cause mitochondrial

dysfunction, decreased cellular energy production, and cell

death (89).

Oxidative stress is mainly characterized by increased levels of

ROS and reduced antioxidant system capacity to combat free

radicals (90–92). Oxidative stress can modify the inflammatory

response in multiple ways, activating transient receptor potential

(TRP) channels, specifically TRPV1, and signaling pathways (93).

Additionally, stress can activate other mechanisms that increase the

secretion of pro-inflammatory mediators (94), resulting in neuronal

damage (95). Both oxidative stress and mitochondria significantly

impact triggering apoptosis, where mitochondria serve as a source

and target of ROS (96).

NADPH oxidase 2 (NOX2 or phagocytic oxidase PHOX) is a

significant contributor of extracellular and intracellular ROS in

microglia (97). The generation of ROS is a natural byproduct of

cellular metabolism and plays a role in intracellular and

extracellular signaling (98). Extracellular ROS are harmful to

neurons, while intracellular ROS function as signaling

mechanisms in microglia, activating p38 and ERK1/2 to prompt

the production of various pro-inflammatory and neurotoxic
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cytokines, such as tumor necrosis factor-a, prostaglandin E2, and

IL-1b (99). In SOD1-G93A mice, the absence of NOX2 enhances

disease progression and survival (48).

In SOD1-G93A microglia, BzATP stimulates P2X7R, activating

Rac1 (48, 98). Rac1 is a crucial activator of NOX1 and NOX2 from

the Rho GTPase family (100). The activation of Rac1 enhances

NOX2 activity, leading to an increase in ROS generation (48).

P2X7R-mediated activation of NOX2 and consecutive ROS

generation in microglia relies entirely on Rac1 (48). Additionally,

phosphorylation of ERK1/2 increased in ALS microglia triggered by

ATP stimulation of P2X7R. There exists an interdependence

between the NOX2 and ERK1/2 pathways that combine to

produce ROS. NOX2 activation results in further ERK1/2

phosphorylation, causing excessive ROS production (48, 101).

Intrathecal injection of BzATP results in spinal ROS production

and oxidative DNA damage in dorsal horn neurons (98).

Activation of P2X7R induced ROS production and IL-6 release

in spinal cord astrocytes. Both releases partially passed through

NADPH oxidase. The P2X7R antagonist A438079 inhibited ROS

increase, whereas the P2X7R scavenger N-acetylcysteine (NAC)

partially inhibited BzATP-mediated IL-6 release (52). Meanwhile,

P2X7 activation induced ROS formation in EOC13 cells, leading to

subsequent cell death (102, 103). ROS formation occurs through a

mechanism independent of Ca2+ inward flow and K+ efflux (104). In

contrast, P2X7-induced ROS formation in primary rat microglia

depends on Ca2+ inward flow (105).
FIGURE 3

Overview of the P2X7-mediated signaling pathway. P2X7R triggers the activation of P38/ERK/JNK MAPK, leading to the build-up of TNF mRNA in the
cytosol, which contributes to neuroinflammation. Moreover, sAPPa, released due to non-amyloid a cleavage of APP, is also impacted by P2X7R,
following two distinct pathways, one ADAM-dependent and the other ADAM-independent. ROS can be toxic to neurons both inside and outside the
cell, leading to neuronal death and promoting neurodegenerative disease progression. P2X7R mediates NOX-2 activation, resulting in the
accumulation of ROS. P2X7R also stimulates the production of NLRP3 inflammatory vesicles and IL-1b secretion, resulting in pro-inflammatory
effects outside of the cell.
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ROS-induced oxidative stress is a significant factor in the

development of AD (106). ATP released from microglia,

stimulated by A-b, activates NADPH oxidase-mediated ROS

production through P2X7R (105). The upregulation of P2X7R

activation and ROS production coincides with A-b growth, and

increased levels of oxidative stress are strongly linked with synaptic

loss in the AD mouse model mediated by A-b (51). This potentially

explains the microglia-induced neuronal damage in the brain

affected by AD.
3.3 P2X7/NLRP3 inflammasome

The production of pro-inflammatory cytokines has been

associated with several neurodegenerative diseases, such as AD, PD,

and MS (107). In animal models, the evidence suggests that

inflammation may contribute to disease progression but not

necessarily be the primary initiator of neurodegenerative diseases

(108). The NLRP3 inflammasome comprises the sensory protein

NLRP3, the junction protein (ASC), and effector proteins (caspase-1)

(109). The activation of the NLRP3 inflammasome occurs through a

two-step process consisting of “initiation” and “activation” (110). The

process that ignites the activation of inflammatory vesicles is called

“initiation.” Initiation is instigated by Toll-like receptors (TLRs) that

recognize PAMPs, DAMPs, environmental stress, or by NF-kB which

is activated by TNF-a (111). Moreover, ROS are indispensable for NF-

kB activation (112). Following this, NF-kB induces the upregulation of

expression levels of NLRP3, pro-IL-1b, and pro-IL-18 (113). However,
NLRP3 remains inactive (114). The second signal is called “triggering”

or “activation”. NLRP3 and ASC form a complex with Pro-caspase-1

under certain conditions, leading to the conversion pro-caspase-1 to

caspase-1. The activated caspase-1 converts pro-IL-1b and pro-IL-18

to their active forms, which are then released extracellularly to promote

pro-inflammatory effects (115). IL-1b is produced in response to

stimulation from various inflammatory vesicle activators, such as

ATP, Nigericin, and alum. Furthermore, microglia release IL-18 and

IL-1a. However, functional NLRP3 inflammatory vesicle formation

and IL-1b secretion are unique to microglia in the mouse brain and do

not occur in astrocytes (58).
4 P2X7R and
neurodegenerative diseases

With an aging population, the worldwide prevalence and rates of

disability associated with neurodegenerative diseases are increasing,

significantly impacting societal development and progress. This

section provides a detailed analysis of the major neurodegenerative

diseases, including AD, PD, HD, MS, and ALS. Neuronal damage is

the main pathological feature of the above-mentioned

neurodegenerative diseases (116). While the five disorders have

diverse origins (Table 1), they share a common characteristic:

chronic inflammatory damage in the CNS, which results in the

persistent activation of innate immune cells. This includes the

infiltration of peripheral immune cells across the blood-brain
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barrier (BBB), which is observed in MS (116). Moreover, there is

no doubt that P2X7R, which is present in high densities in microglia

(12), astrocytes (134), and oligodendrocytes (135), largely determines

changes in neuronal function and activity in the CNS. Furthermore,

in addition to amplifying inflammatory damage through glial cells

(19), P2X7R receptors on the surface of neurons themselves can

actively induce autophagy in neurons (136).
4.1 P2X7R and Alzheimer’s disease

AD is a neurodegenerative disorder characterized by neuronal

fibrillary tangles and senile plaques. Neuronal fibrillary tangles

result from accumulations of hyperphosphorylated tau protein

inside neurons, while extracellular A-b peptides lead to the

formation of senile plaques (137). Nevertheless, the degree of

cognitive impairment in AD does not correlate with the presence

of amyloid plaques or neuroprotective fibril tangles (138). Most

animal disease models are transgenic mice resulting from random

mutations in genes that encode proteins associated with AD

pathology or rodents injected with A-b into their brains (139).

P2X7R is involved in various processes, such as APP processing

to produce A-b (140), synaptic dysfunction, oxidative stress (51),

and neural inflammation (105). Specifically, in the production of A-

b, P2X7R may be involved in the cleavage of APP, which has three

different secretases - a-, b-, and g-, cleaving at different sites on

APP. The b segment produces A-b and g-secretases present in

amyloid plaques in AD patients’ brains. When a-secretase
processes APP in a non-amyloidogenic manner, it leads to

hydrolysis of A-b peptide sequences and shedding of sAPPa,
which has neuroprotective and neurotrophic effects (141).

Stimulation of P2X7R activates ADAM9, -10, and -17, which

have a-secretase activity (74, 75). They mediate the non-

amyloidogenic processing of APP (76). Additionally, P2X7R

triggers a new non-amyloidogenic pathway independent of

ADAM9, -10, and -17 (77), promoting a significant shift in APP

processing towards a-cleavage. This process increases the release of
sAPPa while inhibiting the production of sAPPb and A-b peptides

(77). Stimulation of P2X7R-induced release of sAPPa was observed

in human APP-expressing mouse and human neuroblastoma cells,

mouse primary astrocytes, and neural progenitor cells. The

knockdown of P2X7R could inhibit this release through a P2X7R

antagonist or specific small interfering RNAs (siRNAs). It was not

observed in neuronal cells from P2X7R-deficient mice (77).

Inhibitors of b- and g-secretase have been extensively researched,

but therapy using these inhibitors is limited by associated side

effects resulting from reduced b-secretase 1 and g-secretase activity.
Therefore, alternative approaches to treating AD, such as

modulation of a-secretase activity, are being explored (142).

When extracellular particles, specifically A-b peptides (143), are

present, ATP is released from damaged neurons, microglia, and

astrocytes (144). High levels of extracellular ATP activate P2X7R,

which is expressed at significantly higher levels during

microgliocytosis and significant cognitive and motor impairment

(145). A similar phenomenon was observed in microglia

surrounding A-b in patients with Alzheimer’s disease (AD), and
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ADmouse models (146), and the increase in P2X7R levels mirrored

the progression of AD (147). Additionally, activating P2X7R

boosted microglia migration towards senile plaques while

simultaneously inhibiting phagocytosis (147). In familial

Alzheimer’s disease (FAD), the aggregation of A-b peptide

occurred prior to P2X7R expression in microglia. This was found

by investigating a new transgenic mouse model - P2X7R-EGFP/J20

mice. Furthermore, microglia expressing P2X7R were closer to

emerging plaques than those without P2X7R expression133.
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P2X7R produces chemokines induced by A-b peptides and recruits
CD8T cells in brain parenchyma. Chemokines are expressed

excessively in vitro and AD mouse models in response to A-b
peptides, leading to the inflammatory process and recruitment of

immune cells (148). Furthermore, this overexpression of chemokines

contributes to the subsequent neurodegenerative process (149).

In the Neuro-2a cell line expressing APP, activation of the

P2X7R receptor results in decreased a-secretase activity, whereas

activation of the P2Y2 receptor leads to the opposite effect. In
TABLE 1 Overview of common neurodegenerative diseases.

Disease Pathogeny Immune
response

Neuropathological
features

Clinical
manifestation

Incidence
(number/
100 000)

Forecast
growth
rate

References

AD AD –

misfolded and
aggregated tau

and APP

↑TNF‐a, ↑IFN‐g,
↑chemokines,
↑complement,

↑TLRs, ↑antibody ,
↑T‐cells ,

↑activated microglia

Extracellular amyloid
plaques, intracellular

neurofibrillary tangles and
nerve cell death

Language, visual space
and

executive dysfunction

9330 ↑3.3% per
year (triple
by 2050)

(117–121)

PD Selective loss of
dopaminergic
neurons in

substantia nigra
due to a‐syn‐
intraneuronal
inclusions

↑TLRs, ↑CD14, ↑IL‐
1b, ↑IL‐6,

↑TNF‐a,↑T‐cells,
↑antibody ,

↑activated NK cells,↑
activated microglial

neural inclusions in the
form of Lewy bodies and
Lewy neurites with cell loss
in the substantia nigra and

other brain areas

Bradykinesia,rigidity,
tremor,gait alterations

100–200 Double in
25 years

(119, 122–124)

HD Autosomal
dominant

genetic disease,
expansion of
CAG (Q) in

huntingtin gene
induces
aberrant

toxic protein

↑microglial
proliferation,
↑complement

General atrophy of the
brain and degeneration of
the striatum (caudate
nucleus and putamen),

accompanied by specific loss
of efferent spinous
neurons (MSN)

Motor defects (chorea ,
loss of coordination),
Mental symptoms
(depression, mental
illness and obsessive-
compulsive disorder)

0.02–9.71 ↑15–20%
per decade

(119, 125, 126)

MS Autoimmune
viral

↑ROS,↑HSPs,
↑neurotrophins,
↑complement,

↑innate
receptors,↑cytokines,

↑chemokines,
↑activated microglial

, ↑activated
macrophage,

↑antibodies , ↑T‐cells

Demyelination and
axonal degeneration

Optic neuritis (optic
nerve inflammation),
Uhthoff phenomenon

(MS symptoms
fluctuate or worsen
briefly as body

temperature increases)
and Lhermitte
phenomenon

(abnormal shock-like
sensation of the spine

or limbs during
cervical flexion)

9.64 ↑2.4%
per year

(119, 127–129)

ALS Aberrant
aggregated

proteins due to
mutations

SOD1, TDP;
C9orf72 or
FUS genes

↑Complement,
↑CD14,

↑macrophages, ↑IL‐
6, ↑TNF‐a

Extensive loss of lower
motor neurons in the

anterior horn of the spinal
cord and brainstem,

degeneration and loss of
Betz cells (macropyramidal
neurons) in the primary

motor cortex, degeneration
of the lateral corticospinal
tract, and reactive gliosis

Leg and arm distal
progressive unilateral

weakness, no
remission or

recurrence. Atypical
manifestations include
emotional instability,
frontal lobe cognitive
impairment, weight
loss, muscle bundle
tremor and painful
spasm, and no

muscle weakness.

1.9 ↑69% in
25 years

(119, 130–133)
“↑” implies an upward adjustment.
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cultured cerebellar granule neurons, activating P2X7R inhibits and

neuroprotects glycogen synthase kinase 3 (GSK-3), the less active

form of a-secretase (150). In J20 mice, a transgenic model of FAD

that expresses the human mutant APP protein, inhibiting P2X7R in

vivo, reduced the number and size of hippocampal A-b
significantly. This reduction was facilitated by an increase in the

phosphorylated form of GSK-3, which, in turn, enhanced the a-
secretase-induced non-amyloidogenic degradation of APP (150).

Multiple lines of evidence suggest that the inhibition of a-secretase
by BzATP is dependent solely on P2X7R. To prevent the inhibitory

effects of BzATP on a-secretase activity, both the pharmacological

blockade and the synthesis inhibition of P2X7R with RNA

interference be effective (142). Several studies demonstrate that a

lack of P2X7R restores hippocampal synaptic integrity and

plasticity, rescues memory deficits in APPPS1 mice, and reduces

A-b pathology. However, the effects are not modulated by the

sAPPa pathway, IL-1b treatment, microglial activation, or

phagocytosis (12).
4.2 P2X7 and Parkinson’s disease

PD is the second most common neurodegenerative disorder

globally, affecting over 6 million individuals (151). It is also a

leading contributor to neurological disabilities. Typical symptoms

of PD consist of bradykinesia, resting tremor, tonus, and changes in

posture and gait, significantly impacting patients’ quality of life (95).

The pathological characteristics of PD involve the creation of neural

inclusion bodies that comprise eosinophilic material, Lewy vesicles,

and the demise of dopaminergic neurons with injury to the central

region of nigrostriatum (122). Misfolded a-synuclein aggregates

predominantly constitute the Lewy bodies among these

characteristics (122).

After an extensive investigation, it was found that postmortem

PD patients have an elevated number of reactive microglia with

phagocytic activity in their brains (152). Furthermore, similar

results as well as high expression of P2X7R were observed in a

mouse model of PD (153), emphasizing the strong correlation

between microglia-induced neuroinflammation and PD in this

disease. P2X7R plays a significant role in the pathogenesis of PD,

as it produces a profoundly pronounced facilitatory effect. When

neuroinflammation occurs, dying neurons release a significant

amount of ATP, which then activates the P2X7R located on the

surface of glial cells. The P2X7R induces a positive feedback loop of

Ca2+ influx, promoting the opening of P2X7R and pannexin-1

channels on the membrane surface, which then releases more ATP

(154). This increased ATP release also boosts the exocytosis of K+

ions and triggers the assembly of NLRP3 inflammasomes.

Subsequently, the activation of caspase-1 cleaves pro-IL-1b to IL-

1b, thus facilitating its release (155). As a result, neuroinflammation

worsens, and this ultimately accelerates neuronal death.

Several studies have identified the interaction between the

pathological protein a-Syn and microglia as a crucial factor in the

neuroinflammatory process of PD. Alpha-synuclein not only binds

to microglial NOX2, thereby activating the NOX complex and

triggering oxidative stress in vivo (156) but also directly activates
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P2X7R on its surface to exert its effects; this activation persists in the

presence of exogenous ATP withdrawal (157). During this process,

activated microglia release excitotoxic glutamate, which damages

dopaminergic neurons through ATP/glutamate secretion on the

one hand (158), and destroys dopaminergic neurons through the

release of ROS on the other hand, leading to the extensive

destruction of dopaminergic neurons and degeneration, thus

triggering the development of PD (159). In addition, the

pathological changes in PD are closely related to excessive Ca2+

inward flow due to P2X7R activation, and the high intracytoplasmic

calcium environment also directly induces apoptotic necrotic loss of

dopaminergic neurons (160). Moreover, other studies have

demonstrated that Ca2+ binds to the C-terminus of a-Syn to

increase its localization in presynaptic terminals and synaptic

vesicles (161).

A study demonstrated that BBG, a P2X7R antagonist,

successfully reduced neuronal apoptosis in rat subarachnoid

hemorrhage by inhibiting p38MAPK (162). Peroxisome

proliferator-activated receptor-g (PPARg) coactivator 1a (PGC-1a)
is a protein that interacts with nuclear receptors like PPARg, which
negatively regulates the transcription of the NF-KB pathway, a pro-

inflammatory pathway, thereby inhibiting inflammatory responses.

In contrast, PGC-1a regulation is accomplished through

phosphorylation at multiple sites by several phosphokinases, such

as MAPK and AKT (163). Another experiment simulating PD

treatment observed that attenuation of DA neuronal damage in an

LPS rat model of PD was achieved by inhibiting the P38MAPK

pathway with a P2X7R antagonist. The criterion for efficacy was

counted using tyrosine hydroxylase-immunoreactive (TH-ir)

neurons in the substantia nigra. The study revealed a significant

reduction in TH-ir levels in the LPS-treated group. After 15 days of

treatment with BBG, the LPS group witnessed an effective reversal of

the reduction in TH-ir levels (68). The studies above highlight the

critical role played by P2X7R-mediated stimulation of oxidative stress

via the MAPK pathway in promoting neuroinflammation during the

pathogenesis of PD. In PD animal model experiments, the

nigrostriatal region of rats was damaged with 6-OHDA to induce

PD. Apomorphine caused the rats to exhibit rotating behavior,

confirming the establishment of the animal model of PD damage.

In batches, the rats were treated with BBG. The number of rotations

per minute of the saline-treated rats remained unchanged from seven

days prior. However, the BBG-treated rats significantly decreased the

number of rotations, providing further evidence that BBG treatment

alleviates motor deficits in lateralized parkinsonism (163). Additional

studies suggest that the P2X7R-mediated neuronal cell swelling and

necrosis may be linked to abnormal functioning of the substantia

nigra striatal region in PD. When the SN4741 neuronal cells derived

from transgenic mouse embryos were exposed to high concentrations

of ATP, their cell volume increased dramatically and in a

concentration-dependent manner within twenty minutes.

Subsequently, the cells exhibited necrotic manifestations typical of

cellular necrosis, such as nuclear swelling, DNA leakage, ER integrity

loss, and cytoplasmic vacuole formation (164). Furthermore, prior

research has indicated that the sensitivity of P2X7R to ATP activation

amplifies with decreasing levels of extracellular divalent cations. This

implies that a positive feedback loop occurs when there is
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neuroinflammation in the substantia nigra striatal region, as lower

concentrations of ATP activate P2X7R, worsening the lesion. In

summary, ATP binding to the P2X7R stimulates microglia and

recruits peripheral immune cells through a variety of complex

pathways. These pathways include induction of calcium influx,

activation of NLRP3 inflammatory vesicles that induce cell death

and tissue damage, and release of more ATP (19). The ATP release/

P2X7R activation/apoptosis axis then acts in a positive feedback loop,

which contributes significantly and continuously to the

neurodegenerative process of PD (19).
4.3 P2X7 and Huntington’s disease

HD is an autosomal dominant neurodegenerative disorder

characterized by motor, cognitive, and psychiatric deficits (165).

Commonly observed motor symptoms include chorea and

coordination difficulties (166). The primary cause of HD is

believed to be the amplification of a CAG repeat in the first exon

of the huntingtin gene (HTT), leading to the production of the

mutant Huntington’s protein (mHTT) (167). The expansion of a

bundle of polyQ in the N-terminal segment of the encoded protein,

due to CAG repetition, causes abnormal folding of mHTT and its

accumulation in brain cells (168). Subsequently, earlier

transcriptional dysregulation occurs, along with abnormalities in

synaptic and axonal transport, disruption of the protein

homeostasis network, aggregation pathology, compromised

function of the nuclear pore complex, oxidative damage,

mitochondrial malfunction, and extrasynaptic excitotoxicity

(169, 170).

There is now extensive direct evidence suggesting that pathways

mediated by the P2X7R contribute to the development of

Huntington’s chorea. This makes it a potentially interesting target

for HD patient treatment. It is worth noting that the increase in the

number of CAG triplet repeats is not related to either

the transcriptional process of P2X7 gene expression or the role of

the P2X7R (171). However, research has suggested that the

expression of HTT mutant genes may render neurons more

vulnerable to P2X7R-mediated apoptosis, effectively increasing

susceptibility (171). In this experiment, it was observed that Tet/

HD94 mutant mice showed a significant decrease in the survival of

their cortical and striatal neurons when exposed to 10 Mm BzATP,

whereas this ATP analogue had no discernible effect on wild-type

mice (171). Administration of BBG, a P2X7R receptor antagonist,

was discovered to slow or prevent the negative impacts of ATP

analogues on neuronal viability in mice with the HTT mutant

phenotype (171). The administration of BBG to R6/1 HD gene

mouse models also had a similar effect, improving motor

parameters and alleviating weight loss after treatment (171).

In a certain centralized investigative study of HD patients, it was

shown that there was a significant fold increase in P2X7R protein

levels (including protein bands of all four isoforms of P2X7R-A, B,

H, and J) in affected individuals (172). In addit ion,

immunohistochemistry revealed that more diffuse and intense

reactivity and a greater number of immunoreactive cells can be

observed in striatal sections of HD patients (172).
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A reported study has demonstrated that after using BzATP in

extracellular electrophysiology experiments in cortical striatal slices

from both wild-type mice (WT) and R6/2 (HD-type mice), a

decrease in FP amplitude was induced (173). Nonetheless,

BzATP’s reduction in FP proved much more statistically

substantial in transgenic mice than in WT mice (173). This

indicates that the ATP-activated P2X7R pathway hinders synaptic

transmission to a greater extent in HD genotypes. This could

contribute to the gradual impairment of neuronal viability in HD

patients. Moreover, there is evidence of mHTT mutant protein

accumulation in astrocytes of both HD patients and animal models.

This accumulation is linked to reduced astroglial potassium channel

(Kir4.1) (174). In the R6/2 mouse model of HD, it has been

demonstrated that astrocytes exhibit anomalous electrophysiology

and significantly elevated extracellular levels of potassium ions

(174). These manifestations may stem from irregular ion

exchange caused by the opening of large pores influenced by the

activation of P2X7R (174).

Regardless, the activation of P2X7R is highly significant in

initiating an expedited process of neuronal degeneration within

the striatal region during the onset and advancement of the disease

in Huntington’s patients. This could be a pivotal breakthrough in

treating individuals with HD.
4.4 P2X7 and multiple sclerosis

MS is a chronic inflammatory disease of the CNS that is

mediated by autoreactive helper T cells (Th1 and Th17 cells).

Patients with MS are typically between the ages of 20 and 40, and

it is the leading cause of disability among young people in the

United States and Europe (175). MS is characterized by

demyelination and axonal degeneration (176). Neurological

symptoms may happen during seizures, including weakness,

altered sensation, balance disturbances, visual impairment, and

color vision or diplopia (127). The critical pathological

characteristic of MS is the emergence of inflammatory plaques,

causing damage to the myelin sheaths and specialized cells (e.g.,

oligodendrocytes) in both the white and gray matter of the brain

and spinal cord, leading to neuronal loss. Upon initial exposure to

unfamiliar antigens, Th1 cells produce pro-inflammatory cytokines

IL-1 and IFN-g, while Th17 cells produce IL-17 (127).

The pathology of MS is primarily driven by the interaction of

neuroglial cells and autoreactive immune cells. Activation of P2X7R

on astrocytes and microglia, which mediates purinergic signaling, has

been suggested as a significant causative factor in these pathologic

processes (4). Some experimental studies have indicated a significant

presence of P2X7-immunoreactive microglia/macrophages in the

spinal cord of patients with MS, particularly in the dorsolateral

white matter region of the degenerating corticospinal tracts (177).

Additionally, inflammation-related substances such as IL-b and

COX-2 are also heightened in the affected areas (177).

Cell death is thought to raise extracellular ATP levels (178),

boosting P2X7R expression in microglia, which sequentially releases

IL-1b, COX-2, and PGE2, ultimately leading to additional cell death

and ATP release. This cascading cyclic mechanism could play a
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significant role in the demyelination process observed in MS

patients (177). In a study conducted on SP(Secondary

progressive)-type MS patients, researchers found that astrocytes

in the frontal cortical region had an increased expression of P2X7R

and promoted neuroinflammation in a manner similar to microglial

cells. Additionally, they discovered that direct activation of P2X7R

by BzATP increased MCP-1 (Monocyte chemoattractant protein-1)

levels in astrocytes, a protein that is responsible for leukocyte

recruitment during MS progression (179). In astrocytes, P2X7

activation induces phosphorylation of ERK1/2 and activation of

the PI3/AKT signaling pathway, both of which contribute to

promoting neuroinflammatory responses (180). Moreover,

exposure to high concentrations of ATP or the selective agonist

BzATP acting on P2X7R stimulates the shedding of MPs

(microparticles) from particulate vesicles on the surface of

microglia or astrocytes. Exocytosis of MP results in the release of

significant quantities of pro-inflammatory factors, including IL-1b,
which expedites the neuroinflammatory process in MS

development (181). As previously stated, MS is a demyelinating

disease that centers on the death of oligodendrocytes. According to

a study, ATP accumulation triggers Ca2+ signaling in

oligodendrocyte progenitor cells (OPCs), leading to the activation

of the P2X7R and P2Y1R pathways. This impacts the cells’ growth,

development, differentiation, and other processes, potentially acting

as a mechanism for the onset of demyelination (182).

There are numerous immune cell types that participate in the

development of pathogenic neuroinflammation in MS. Among

them, the monocyte macrophage lineage expresses the P2X7R at

the highest level. Activated monocytes are often one of the first

phenotypes to arrive at the site of CNS neuropathy (183). In a

particular study on patients with MS, it was discovered that despite

a significant increase in P2X7R mRNA in total cell extracts from the

frontal cortex in SPMS (Secondary progressive multiple sclerosis)

patients, there was an unexpected decrease in P2X7R expression on

the surface of monocytes (184). It is hypothesized that monocytes

decrease P2X7R protein expression when the efficiency of excess

toxic ATP removal reduces, efficiently preventing diminished

viability caused by calcium overload. This sustains their activity

for better participation in neuroinflammation (184).

Although definitive studies have not confirmed the inevitability

of MS occurrence with the presence of P2X7R, many experiments

have shown that deleting P2X7R can significantly reduce the

incidence of EAE disease in mice. One study discovered that

P2X7-deficient mice had significantly lower mean scores of

clinical symptoms in comparison to WT mice, notwithstanding

the insignificant alteration of the mean number of days of disease

onset. This finding effectively implies that the deletion of P2X7R

reduces the incidence of EAE (encephalomyelitis) (184).High levels

of astrocyte activation were detected in various areas of white

matter in WT EAE mice as well as in Bergman’s radial glial

fibers. However, the level of activation was not significant in the

P2X7null group (184).

Furthermore, related studies have identified a twofold function

of P2X7R in the development of MS. The studies have

demonstrated that the activation of P2X7R on erythrocytes can

disrupt the regulation of cation fluxes, which are responsible for
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maintaining extracellular K-ion homeostasis and removing

excessive toxic glutamate. These findings contribute to the

intricate nature of the relationship between P2X7R and MS (185).
4.5 P2X7 and amyotrophic lateral sclerosis

ALS is a long-term neurological disorder defined by the invasion of

lesions, mainly in the anterior horn cells of the spinal cord, brainstem

motor nerve nuclei, and the pyramidal tract. This can lead to the loss of

upper and lower motor neurons in the motor cortex, brainstem nuclei,

and anterior horn of the spinal cord (186). This condition primarily

affects themotor system and presents accompanying symptoms, such as

skeletal muscle atrophy, progressive paralysis, respiratory failure, and

death within 2-5 years (187). The pathophysiology of ALS is

characterized by neuromuscular junction loss in both the upper and

lowermotor neurons, axonal retraction, subsequent cell death, astrocytic

hyperplasia, and an increase in microglia around the lesion (188).

Neuroinflammation is a key pathological mechanism in ALS,

resulting from the activation of P2X7R and leading to chronic

microglial activation (189). This is considered a mechanism that

contributes to the death of motor neurons (190). In addition,

impaired autophagy can also lead to the damage and death of motor

neurons (191). Activation of P2X7 in vitro exacerbates pro-

inflammatory responses, including NOX2 activation in microglia,

elevated levels of TNF-a, COX-2, MAPK, and neuronal toxicity (48).

Stimulating P2X7R using the P2X7R-specific agonist BzATP before the

onset of pathological neuromuscular symptoms in SOD1-G93A mice

resulted in enhanced muscle fiber innervation and metabolism,

preserved neuromuscular junction morphology, and stimulated

satellite cell proliferation and differentiation. This intervention

effectively prevented skeletal muscle denervation in SOD1-G93A

mice (192). During the presymptomatic stage of ALS disease,

administering BzATP via intramuscular injection improved

locomotor activity in mice by revitalizing muscle cells and infiltrating

macrophages. The treatment not only protected the retrograde

propagation of skeletal muscle to the CNS but also enabled direct

and immune-mediated protection. Additionally, it reduced

neuroinflammation and promoted spinal motor neuron survival (193).

Repeated stimulation of spinal astrocyte P2X7R with ATP or

BzATP activates it, leading to a neurotoxic phenotype that causes

motor neuron death. Conversely, inhibiting P2X7R or apyrase, an

enzyme that degrades ATP, by using BBG eliminates their toxicity

to motor neurons (194). Brief stimulation of the P2X7R initiated

autophagy activation and enhanced the expression of anti-

inflammatory biomarkers in microglia of SOD1-G93A mice (M2

microglia). In contrast, prolonged activation of P2X7R caused

disruption of autophagic fluxes, which could lead to a shift

towards a pro-inflammatory phenotype (M1 microglia). These

results indicate a dual function of the receptor in the pathway (195).

Previous research suggests that P2X7R ablation accelerates

clinical onset and worsens disease progression in mSOD1 mice

(196). In contrast, BBG-induced P2X7R antagonism suppresses

microglial proliferation, alters microglial-associated inflammatory

genes, enhances motoneuron survival, mildly delays onset, and

improves motor function but does not impact survival (197).
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In the SOD1-G93A mouse model, BBG was used to antagonize

P2X7R, resulting in reduced neuroinflammation and promotion of the

survival of lumbar medullary motor neurons. This may ultimately

delay the onset of ALS in a mouse model of ALS (198). Similarly,

AXX71 and AXX13 were found to reduce proinflammatory markers,

delay the onset of neuromuscular injury, and transiently preserve

motor function and muscle strength by antagonizing P2X7R (199).

The results indicate that P2X7R may play a role in ALS, a
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neurodegenerative disease. P2X7R antagonists have the potential to

delay the onset and reduce the clinical symptoms of ALS.
4.6 Other diseases

In addition to the five neurodegenerative diseases mentioned

above, P2X7R may also play a role in neuropsychiatric disorders,
TABLE 2 P2X7R antagonists.

P2X7R
antagonists

Type BBB-
penetrant

Efficacy References

Puerarin naturally
synthesized
compound

Yes Inhibits sepsis mediated by NLRP3-Caspase-1-GSDMD and has neuroprotective properties in
various neurological disorders such as HD, AD, epilepsy, cognitive disorders, anxiety
disorders, and depression.

(214, 215)

Chelerythrine naturally
synthesized
compound

Not found Has a noncompetitive inhibitory action on the P2X7 receptor. (207)

PPADS nonselective
antagonist

Yes Prevents the deleterious effects of BzATP-treated microglia. (216)

oxATP ATP analogues Yes Almost complete blockade of ATP and BzATP induced currents reduces demyelination and
ameliorates associated neurological symptoms.

(217)

BBG nonselective
antagonist

Yes Reduces purinergic receptor expression levels, attenuates gliosis, reduces blood-brain barrier
leakage, and prevents neuronal apoptosis.

(171, 204, 218)

calmidazolium organic cations Yes Inhibition of BzATP-evoked currents and blockade of ion channel activation.

A-438079 competitive
antagonist

Yes 1. Prevents the 6-OHDA-induced depletion of striatal DA stores. 2.reduces electrographic
and clinical seizure severity during status epilepticus and reduces seizure-induced neocortical
neuronal death.

(70, 219)

KN-62 tyrosine
derivative

Not found Prevents excitotoxicity and loss of CCDPK II activity and Glu-induced reverse
phosphorylation of endogenous proteins.

(220)

GSK-1482160 novel
synthetic
compound

Yes Novel PET reagents as targeting P2X7 receptors. (211)

GSK-314181A novel
synthetic
compound

Yes Has clinical utility as an anti-inflammatory and analgesic treatment. (221)

JNJ-54175446 novel
synthetic
compound

Yes Inhibits peripheral interleukin (IL)-1b release and attenuates dextroamphetamine-induced
amelioration of mood and (visual) motor performance in a human dextroamphetamine-
primed paradigm

(222)

JNJ-55308942 novel
synthetic
compound

Yes Regulates IL-1b release and microglia activation (223)

A-740003 novel
synthetic
compound

Yes Inhibits reactive oxygen species (ROS) production and inhibits activation of the Nod-like
receptor pyrin structural domain protein 3 (NLRP3) inflammatory vesicle and nuclear factor-
kB (NF-kB) pathway.

(37, 224)

AXX71 novel
synthetic
compound

Yes Effects on early symptoms of disease by reducing microglia-associated pro-inflammatory
markers and autophagy.

(199)

CE-224, 535 selective
antagonist

NO The clinical candidate of rheumatoid arthritis. (225)

Lu AF27139 selective
antagonist

Yes Diminishes colonic hypersensitivity and CNS prostanoid levels in a rat model of
visceral pain.

(226)

PKT100 novel
synthetic
compound

Not found Improves cardiac function and survival in pulmonary hypertension. (227)
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1345625
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zheng et al. 10.3389/fimmu.2024.1345625
including depression, anxiety disorders, and post-traumatic stress

disorder (PTSD). These disorders are a frequent cause of death in

the elderly and are characterized by behavioral changes (200).

Depression is a prevalent psychiatric disorder characterized by

persistent sadness, anhedonia, and diminished interest, which can lead

to impairment of daily functioning (201). The onset or development of

depression may be influenced by neuroinflammation (202). The

involvement of the pro-inflammatory cytokine IL-1b, released by

microglia, induces the secretion of corticotropin-releasing hormone

(CRH), which in turn secretes adrenocorticotropic hormone (ACTH)

and cortisol, along with a large number of other cytokines/chemokines,

leading to mood dysregulation. Therefore, microglia may be a potential

target for the treatment of depressive symptoms. Hyperactivation of

P2X7 leads to increased release of inflammatory cytokines, such as IL-

1b, which are involved in depression. Inhibiting P2X7R expression in

the hippocampus, spinal cord, and dorsal root ganglia may alleviate

visceral pain and depression. In a rat model of bone cancer, cancer-

complicated pain and depression-like behavior were reduced by

intrahippocampal injection of the P2X7R antagonist A438079.

Microinjection of the P2X7R antagonist A-438079 into the amygdala

significantly attenuated depressive and anxiety-like behaviors in

neuropathic pain. This effect may be attributed to the antagonist’s

inhibitory effects on microglia and astrocytes. These findings suggest

that P2X7Rmay play a role in depression complicated by various kinds

of pain. Additionally, salidroside, a bioactive extract from Rhodiola

rosea L, may mediate depression by inhibiting P2X7/NF-KB/NLRP3-

mediated focal death.

Anxiety is defined as excessive fear, anxiety, or avoidance of

perceived threats. Studies have shown that ATP/P2X7R-initiated

microglia in the ipsilateral hippocampus can drive anxiety-

depressive-like behaviors associated with trigeminal neuralgia via

IL-1b. P2X7 is also involved in brain monocyte aggregation

associated with repeated social failure, IL-1b mRNA expression in

enriched myeloid cells, plasma IL-6, and anxiety-like behavior.

Additionally, IL-1b accumulation plays a role in the

pathophysiology of PTSD. However, the relationship between

P2X7R and PTSD has not yet been definitively investigated.
5 Potential therapeutic targets for
neurodegenerative diseases:
P2X7R antagonists

P2X7R are a major therapeutic target in the treatment of

neurodegenerative diseases. To categorize common P2X7

antagonists, we have identified five groups (Table 2). The first

group comprises divalent cations like Ca2+, Mg2+, Zn2+, and Cu2+.

These cations hinder the activation of ATP-induced P2X7R.

Experiments have demonstrated that their in vitro values of IC50

(mM) were 2900, 500, 11, and 0.5 at pH 6.1. A decrease in pH

modifies the charge on histidine residues and prevents ATP-gated

currents. In AD and PD, Mg2+ administration may be a potential

strategy to reduce the deleterious effects of Ca2+ induced

neuroinflammation.The second group, consisting of nonselective

P2XR antagonists such as sulforaphane, RB-2(Reactive Blue 2),
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PPADS (pyridoxal phosphate-6-azobenzene-2′,4′-disulfonic acid),

and iso-PPADS, exhibit lower potency and selectivity for the P2X7R

as compared to other P2Rs. Furthermore, some other P2R

antagonists display moderate selectivity for P2X7R while also

having either low potency, as seen in oxATP(oxidized ATP), or

high potency, as seen in BBG. OxATP inhibits P2X7 activation in

microglia from both AD and non-demented brains, indicating

therapeutic potential for oxATP in AD (146). BBG blocks rP2X7

at 10 nM concentration, and human P2X7R (hP7X2R) at 200 nM

concentration (203, 204). Additionally, BBG blocks voltage-gated

sodium channels at low micromolar concentrations (205). In the

J20 hAPP transgenic mouse model of AD, BBG inhibits glycogen

synthase kinase 3-b (GSK-3b) via P2X7R. This increases a-
secretase activity in hippocampal neurons, thereby reducing

amyloid-beta (Ab) and subsequent plaque production (206). In

an animal model of AD, BBG reduced levels of purinergic receptors,

decreased gliosis, and mitigated blood-brain barrier leakage.

Additionally, it exhibited neuroprotective properties and acted as

an antagonist to the inflammatory response triggered by the P2X7R

agonist 2’,3’-(benzoyl-4-benzoyl)-ATP (207). In vivo data obtained

from the administration of BBG in HD mice strongly suggests that

BBG prevents neuronal apoptosis and attenuates weight loss and

motor coordination deficits. Alterations in P2X7 receptor levels and

function are believed to contribute to the pathogenesis of HD.A

third category of organic cations, including calmidazolium and 1-

[N,O-Bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-

phenylpipera zine(KN-62) (at 10 nM), inhibits rP2X7R activation

by blocking BzATP-induced currents. However, they demonstrate

less efficacy in inhibiting hP2X7R activation (40). The piperazine

antagonist KN-62 blocks CaM kinase II, and experiments show

inhibited ionic currents in KN-62-treated cells expressing hP2X7R

or mP2X7R (206). The fourth group mainly consists of naturally

syn the s i z ed compounds . Che l e ry thr ine , among the

benzophenanthridine alkaloids tested, is the only one that can

effectively inhibit P2X7R function noncompetitively at ATP

concentrations ranging from 0 to 1,000 mM (207). Mineral oil can

also inhibit P2X7R function by reducing P2X7-dependent

multinucleated giant cell formation, thus downregulating P2X7R

expression (208). The fifth group comprises novel synthetic

compounds with varied chemical structures and conformation

types, including GSK-1482160, GSK-314181A, AZ1060612,

AXX71, JNJ-54175446, and JNJ-55308942. An example of one

such compound is 11C-GSK1482160, which exhibited high

affinity and good binding-dissociation kinetics for P2X7R, as

demonstrated by 11C-GSK1482160 in vivo PET/CT tracer

kinetics in the experimenter (209). V-T exhibited the expected

trend in lipopolysaccharide-treated mice (210). The results confirm

the potential use of 11C-GSK1482160 as a novel radioligand for

targeting P2X7R and as a biomarker of neuroinflammation, as

evidenced by the activation of microglial cells via peripheral

lipopolysaccharide treatment and the receptor-dependent regional

binding (211). Interestingly, the specific P2X7 antagonist

AZ10606120 completely blocked the ATP-induced release of

SOD1 from NSC-34 cells (212). In contrast, the SOD1-G93A

protein has recently been shown to be rapidly released into the

extracellular space upon P2X7 activation and is then re-uptaken by
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naïve NSC-34 cells or microglia cell lines to induce endoplasmic

ret icu lum stress and TNF-a re lease , which mediate

neurodegenerative disease and neuroinflammation-related ALS

events respectively (213). In the SOD1-G93A mouse model of

ALS, AXX71 treatment resulted in a significant down-regulation

of pro-inflammatory markers such as IL-1b, NOX2, and NF-kB in

the spinal cord at the end of the disease. Additionally, AXX71

treatment regulated the levels of autophagy-related proteins LC3B-

II and SQSTM1/p62 (199).
Conclusion

The P2X7R is a non-selective ATP-gated cation channel that is

widely expressed on the surface of various types of human cells. It

plays an important role in the physiology and disease mechanisms of

many human systems. For instance, the activation of P2X7R on

skeletal muscle cells is involved in the pathogenesis of osteoarthritis

(OA). Similarly, the activation of P2X7R in the cardiovascular system

can induce small-vessel vasculitis, which may stimulate the

development of hypertension and atherosclerosis. Additionally,

ocular P2X7R may be associated with diseases of the retina. Finally,

it has been demonstrated that P2X7R is inextricably involved in

hematologic malignancies.

Due to its high-density localization in the nervous and immune

systems, P2X7R plays a unique role in neuroinflammatory

processes and is a significant factor in inducing various types of

neurodegenerative diseases. When activated, P2X7R triggers the

NLRP3 inflammasome, disrupting mitochondrial function and

inducing Ca2+ influx into neurons. Elevated extracellular ATP

levels resulting from neuronal apoptosis subsequently lead to

ATP-induced oxidative stress and neurodegeneration, resulting in

neuronal apoptosis and a significant degree of microglia activation

and aggregation. Elevated extracellular ATP levels resulting from

neuronal apoptosis subsequently lead to ATP-induced oxidative

stress and neurodegeneration, resulting in neuronal apoptosis and a

significant degree of microglia activation and aggregation. This, in

turn, triggers a cascade of reactions by further activating P2X7R.

Although microglia activation initially plays a neuroprotective role,

as the disease progresses, it transitions from phagocytosis to the

production of pro-inflammatory cytokines that worsen the disease.

Activated microglia release excitotoxic glutamate, which can injure

dopaminergic neurons.

Therefore, blocking the P2X7R pathway using a variety of

approaches may be a practical and effective way to treat

neurodegenerative disease and slow down its progression. This

treatment has been shown to be effective in a number of

neurodegenerative diseases. For instance, in AD, the P2X7R

antagonist oxATP, as well as BBG and the Ca2+ efflux blocker Mg2+,

have been shown to reduce A-b protein aggregation and subsequent

plaque production. In HD, BBG has been found to prevent neuronal

apoptosis and alleviate symptoms such as weight loss and motor

coordination deficits. In ALS, the P2X7 antagonist AZ10606120 can

reduce endoplasmic reticulum stress and the release of TNF-a, thereby
counteracting the neuroinflammatory events associated with the
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disease. However, while antagonizing the P2X7R-mediated pathway

shows promise for treating neurodegenerative diseases, it has not yet

gained popularity in clinical settings. Therefore, the focus of major

pharmaceutical laboratories studying P2X7 and neurodegenerative

diseases is on refining and developing multiple forms of P2X7R

antagonists and conducting clinical trials.

The relationship between P2X7R and microglia-specific

phenotypic transformation is a controversial topic. Microglia are

distinct from macrophages, as they have two cell types: pro-

inflammatory phenotype (M1) and anti-inflammatory phenotype

(M2), which express different markers on the cell membrane

surface and play different roles. The former is involved in

neurotoxicity, while the latter is associated with inflammation

abatement and tissue repair. Environmental factors, such as LPS

and IFN-g, facilitate the conversion of microglia to the M1

phenotype. Conversely, IL-4 enables the M2 phenotype. Previous

studies have shown that the activation of P2X7R by BzATP induces

the polarization of the M1 phenotype, which promotes

neuroinflammation. Other studies have found that astragalus

polysaccharides, which are ATP-degrading agents, can enhance M2

polarization by reducing P2X7R activation. This exerts a protective

effect on the nervous system. However, a related experiment found

that P2X7R activation not only stimulates the formation of M1

markers but also promotes the production of M2 markers such as

Arg-1(arginase-1). Controlling the activation of P2X7R by a certain

amount of ATP may have neuroprotective effects. This finding is

important for further research in this area.
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