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RANDOM MATRICES AND RANDOM GRAPHS ∗

Mireille Capitaine1, Simon Coste2, Franck Gabriel3, Pascal Maillard4 and
Cecile Mailler5

Abstract. We collect recent results on random matrices and random graphs. The topics covered are:
fluctuations of the empirical measure of random matrices, finite-size effects of algorithms involving
random matrices, characteristic polynomial of sparse matrices and Voronoi tesselations of split trees.

Résumé. Nous rassemblons des résultats récents sur les matrices et graphes aléatoires. Les su-
jets abordés sont : fluctuations de la mesure empirique de matrices aléatoires, effets de taille finie
d’algorithmes impliquant des matrices aléatoires, polynôme caractéristique de matrices diluées et dia-
grammes de Voronöı d’arbres de fragmentation (split trees).

Introduction

We present here some recent results on random matrices and random graphs. These results were presented in
the session “Random matrices and random graphs” of the Journées MAS 2021, which consisted of four talks by
Mireille Capitaine, Simon Coste, Franck Gabriel and Cécile Mailler. The talks covered a wide range of topics,
reflecting the diversity in these fields. The present article contains extended abstracts of these talks. We now
give an overview of their content.

In Section 1, Mireille Capitaine reports on a central limit theorem [7] for the Stieltjes transform of the
empirical spectral measure of random matrices which are of the form XN := P (WN , DN ), where WN is a
complex Wigner matrix, DN is a real diagonal matrix and P is a self-adjoint polynomial in two non-commuting
variables. The section starts by recalling basic concepts in random matrices and free probability and includes
many references, making it accessible to non-experts. It then presents previous works on central limit theorems
for random matrices of the form WN + DN . In order to pass to random matrices of the form P (WN , DN ),
the authors of [7] make use of a so-called linearization procedure, which converts a general noncommutative
polynomial with complex coefficients into a linear polynomial with matrix coefficients, and which is briefly
presented. In order to work with this, one requires an extension of the notion of freeness, called freeness
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with amalgamation, which is briefly outlined. The statement of the central limit theorem obtained using these
methods concludes the section.

In Section 2, Franck Gabriel reports on two works concerning algorithms using random matrix approximations
in order to calculate certain infinite-dimensional objects. The first one [38] concerns the so-called Kernel
Regression Method — a least-square regression method involving a kernel K and a regularization parameter λ.
A Monte-Carlo algorithm for this method has been proposed in [50], based on a finite-dimensional random
approximation of the kernel K. The authors of [38] show that this algorithm creates in fact a bias, leading to an
effective regularization parameter λeff ̸= λ. They also propose an algorithm to overcome this bias. In the second
part, based on [3], Gabriel presents the notion of freeness with amalgamation over the diagonal and explains
how it can be used to express the limiting spectrum of an additive perturbation of a large permutation-invariant
random matrix. An effective Monte-Carlo algorithm can be deduced from this relation. Numerical simulations
illustrate the quality of this algorithm compared to näıve density estimates based on the empirical spectrum.

In Section 3, Simon Coste reports on a convergence result [21] for the characteristic polynomial of the
adjacency matrix of a large sparse Erdős-Rényi digraph, i.e. the random n×n matrix An with iid Bernoulli(d/n)
entries, with d fixed or going to infinity slower than no(1). He proves that the reverse characteristic polynomial
Pn = det(In − zAn) almost surely converges to a certain random holomorphic function in a disk around
the origin. This limit is called the Poisson holomorphic chaos and admits an infinite product representation
involving Poisson-distributed random variables. As a byproduct, results on the extremal eigenvalues are derived.
In the limit d → ∞, one recovers the so-called Gaussian holomorphic chaos, previously defined and studied in
the dense case.

In Section 4, Cécile Mailler reports on results on Voronoi cells in random split trees [29]. Given a graph G
on n vertices and k vertices v1, . . . , vk in G, the Voronoi tesselation of G centered on v1, . . . , vk is a partition
(V1, . . . , Vk) of the vertices such that for every v ∈ Vi, the distance of v to vi is not larger than to any other
vertex vj , j ̸= i, breaking ties according to an arbitrary rule. An influential conjecture of Chapuy [19] states
that for a large family of random planar maps, i.e. planar graphs embedded in a compact surface, the vector
(|V1|/n, . . . , |Vk|/n) of the rescaled sizes of the Voronoi cells converges in law to a Dirichlet(1, . . . , 1) random
vector. Weak forms of this conjecture have subsequently been proven, but the full conjecture remains open
to this date. As so often, trees provide an interesting playground for testing the scope of this conjecture, and
indeed, it has been proven [1] that the conjecture is true for random trees converging to the so-called Brownian
continuous random tree. The authors of [29] explore whether the result still holds in the case of split trees.
These have a quite different shape, for example, their height is typically logarithmic in n. The results of [29]
are described precisely in this article, including a brief sketch of the proof techniques.

1. Fluctuations of the Stieltjes transform of the empirical spectral
measure of a selfadjoint polynomial in a Wigner matrix and a

deterministic diagonal matrix

Mireille Capitaine

This is based on a recent joint work with Serban Belinschi, Sandrine Dallaporta and Maxime Février [7].

The question of fluctuations of linear statistics
∑N

i=1 φ(λi) of eigenvalues λ1, ..., λN of N×N Hermitian random
matrices, associated to test functions φ : R → C, has attracted a lot of attention in the past decades. Authors
established CLT under various assumptions on the matrix and on the test function φ. A line of attack to
study linear spectral statistics, based on Stieltjes transforms, has been developed in [6] (for Wigner matrices)
and [5] (for sample covariance matrices); this approach has its roots in the works [35] and [44]. So this approach
corresponds to test functions φz, z ∈ C \ R, φz : x 7→ 1

z−x . CLT could possibly be then extended to a wider

class of test functions by Shcherbina’s extension density argument [54], Cauchy’s theorem [6]...
In this note, we investigate this line of attack of Stieltjes transform for general polynomial matrix models in a

Wigner matrix and a real deterministic diagonal matrix. We first present a gradual build-up of the works in the
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lineage of our results and then explain the methodology based on a linearization procedure and operator-valued
free subordination properties that allowed us to establish our CLT.

1.1. Presentation of the Model

The complex algebra C⟨t1, . . . , tn⟩ of polynomials with complex coefficients in n noncommuting indeter-
minates t1, . . . , tn becomes a ∗-algebra by anti-linear extension of (ti1ti2 · · · til)∗ = til · · · ti2ti1 , i1, . . . , il =
1, . . . , n, l ∈ N. We consider, on a probability space, a sequence of random matrices

XN := P (WN , DN ), N ∈ N,

where:

(1) P ∈ C⟨t1, t2⟩ is a selfadjoint polynomial in two noncommuting indeterminates that really involves both
indeterminates;

(2) entries {Wij}1≤i≤j≤N of the N ×N Hermitian matrix WN are independent random variables;
(3) off-diagonal entries {Wij}1≤i<j≤N of WN are identically distributed complex random variables such

that, for some ε > 0, E[|
√
NWij |6(1+ε)] ≤ C6. We assume that E[Wij ] = 0 and that

σ2
N := E[|Wij |2] ≥ 0, θN := E[W 2

ij ] ∈ C, κN := E[|Wij |4]− 2σ4
N − |θN |2 ∈ R,

satisfy
lim

N→+∞
Nσ2

N = σ2 > 0, lim
N→+∞

NθN = θ ∈ R, lim
N→+∞

N2κN = κ ∈ R.

The assumption θ ∈ R means that correlations between the real and imaginary parts of off-diagonal
entries of WN are negligible.

(4) diagonal entries {Wii}1≤i≤N of WN are identically distributed real random variables such that, for

some ε > 0, E[|
√
NWii|4(1+ε)] ≤ C4. We assume that E[Wii] = 0 and that σ̃2

N := E[W 2
ii] ≥ 0 satisfies

limN→+∞ Nσ̃2
N = σ̃2 > 0;

(5) DN is a N ×N deterministic real diagonal matrix. We assume that supN∈N ∥DN∥ < ∞ and that, for
some Borel probability measure ν on R, νN := 1

N

∑
λ∈sp(DN ) δλ weakly converges towards ν. Here, we

use the notation sp(A) for the (multi)set of eigenvalues (counted with their algebraic multiplicity) of a
square matrix A.

We will also assume that all entries of WN are almost surely bounded by δN , where (δN )N∈N is a sequence
of positive numbers slowly converging to 0 (at rate less than N−ϵ for any ϵ > 0); this may be assumed without
loss of generality to establish our CLT by truncation-centering-homogeneization arguments.

Throughout this note, for p ∈ N, Mp(C) is the set of p× p matrices with complex entries, Ip is the identity
matrix, Trp denotes the trace on Mp(C) and idp : Mp(C) → Mp(C) is the identity map. Moreover, for a
probability measure µ on R, supp(µ) denotes the support of µ and gµ : z ∈ C \ supp(µ) 7→

∫
1

z−xdµ(x) is the
Stieltjes transform of µ.

1.2. Previous results

1.2.1. CLT for the trace of the resolvent of a Wigner matrix

The following theorem comes as a result of the work of several authors [35], [44], [6], [4], although these
authors made additional assumptions on the entries of the Wigner matrix.

Theorem 1.1. Let WN be as defined in Section 1.1. For any z ∈ C \ R, when N goes to infinity, the random
variable TrN (zIN − WN )−1 − E

(
TrN (zIN −WN )−1

)
converges in distribution towards a centered Gaussian

variable N , such that

E
(
|N |2

)
= C(z, z̄), E

(
N 2

)
= C(z, z), C(z1, z2) :=

∂2

∂z1∂z2
γ(z1, z2), z1, z2 ∈ C \ R,
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γ(z1, z2) = − log
[
1− σ2T{z1,z2}

]
− log

[
1− θT{z1,z2}

]
+

κ

2
T 2
{z1,z2} + (σ̃2 − σ2 − θ)T{z1,z2},

with T{z1,z2} := gµσ (z1)gµσ (z2), where gµσ is the Stieltjes transform of the so-called semi-circular distribution:

dµσ

dx
(x) =

1

2πσ2

√
4σ2 − x2 1[−2σ,2σ](x).

The strategy of the proof of [4, 6] consists in writing the centered trace of the resolvent of a Wigner matrix
as the sum of martingale differences with respect to the filtration generated by the upper left corners of the
Wigner matrix and then in using a classical CLT for martingale differences (e.g. Theorem 35.12 in [14]).

1.2.2. CLT for the trace of the resolvent of deformed Wigner matrices

It turns out that the so-called free probability theory allows for the extension of Theorem 1.1 to deformed
Wigner matrices. We refer to [46] and [62] for an introduction to free probability theory and to [11, 43, 56] for
the definitions and main properties of the additive free convolution of two probability measures µ and ν on R,
denoted by µ⊞ν. The free convolution of probability measures has an important property, called subordination,
which can be stated as follows [13,58]: there exists an analytic map ωµ,ν : C+ → C+ such that

∀z ∈ C+, gµ⊞ν(z) = gν(ωµ,ν(z)).

Free probability theory and random matrix theory are closely related. Indeed the purely algebraic concept
of free relation of noncommutative random variables can be also modeled by random matrix ensembles if the
matrix size goes to infinity. In the lineage of Voiculescu’s [57] pioneering work, Dykema [31] and Ryan [53]
established the asymptotic freeness of (WN )N and (DN )N defined in Section 1.1, that is, for any polynomial Q
in two noncommutative variables,

E
(

1

N
TrN (Q(WN , DN ))

)
−→N→+∞ ϕ(Q(x, d)),

where x, d are free selfadjoint noncommutative variables in a C∗-algebra (A, ϕ), the distribution of x (resp. d)
is the semicircular distribution µσ (resp. ν). In particular the limiting mean empirical spectral distribution
of WN + DN is µσ ⊞ ν. Moreover, we have this free subordination property: ∀z ∈ C+, gµσ⊞ν(z) = gν(ω(z)),
the subordination function ω being given explicitly by ω(z) = z − σ2gµσ⊞ν(z) [12]. The following result follows
from [26], [42].

Theorem 1.2. Let WN and DN be as defined in Section 1.1. For any z ∈ C \ R, when N goes to infinity, the
random variable TrN (zIN −WN −DN )−1 − E

(
TrN (zIN −WN −DN )−1

)
converges in distribution towards a

centered Gaussian variable N such that

E
(
|N |2

)
= C(z, z̄), E

(
N 2

)
= C(z, z) with C(z1, z2) :=

∂2

∂z1∂z2
γ(z1, z2), z1, z2 ∈ C \ R,

γ(z1, z2) = − log
[
1− σ2T{z1,z2}

]
− log

[
1− θT{z1,z2}

]
+

κ

2
T 2
{z1,z2} + (σ̃2 − σ2 − θ)T{z1,z2},

T{z1,z2} =
∫ ν(dx)

(ω(z1)−x)(ω(z2)−x) and ω is the subordination function ω(z) = z − σ2gµσ⊞ν(z).

1.3. CLT for traces of resolvents of polynomials in WN and DN

Denote by H(C \R) the space of complex analytic functions on C \R, endowed with the topology of uniform
convergence on compact sets. We equip it with the topological Borel σ-field. The aim of our work is to extend
Theorem 1.2 by studying the convergence of the following centered H(C \ R)-valued random variable

ξN (z) = TrN
(
(z −XN )−1

)
− E

(
TrN

(
(z −XN )−1

))
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where XN = P (WN , DN ) is the polynomial matrix model defined in Section 1.1. This investigation is achieved
by a methodology based on a linearization procedure and operator-valued free subordination properties.

A powerful tool to deal with non-commutative polynomials in random matrices or in operators is the so-
called linearization trick that goes back to Haagerup and Thørbjornsen [37] in the context of operator algebras
and random matrices. Roughly speaking, the idea is to relate the spectral properties of a general polynomial
in operators to a linear polynomial but with matrix coefficients. Here, we use the procedure introduced by
Anderson in [2].

Definition 1.3. Let P be in the complex algebra C⟨t1, . . . , tk⟩ of polynomials with complex coefficients in k
noncommuting indeterminates t1, . . . , tk.

LP :=

(
0 u
v Q

)
∈ Mm(C)⊗ C⟨t1, . . . , tk⟩,

where m ∈ N, Q ∈ Mm−1(C) ⊗ C⟨t1, . . . , tk⟩ is invertible, u is a row vector and v is a column vector, both
of size m − 1, is called a linearization of P, if there are matrices γ0, γ1, . . . , γk ∈ Mm(C), such that
LP = γ0 ⊗ 1 + γ1 ⊗ t1 + · · ·+ γk ⊗ tk and P = −uQ−1v.

Proposition 1.4 (Anderson [2]). Any polynomial P ∈ C⟨t1, . . . , tk⟩ admits a linearization LP . If P is selfad-
joint then P admits a selfadjoint linearization LP . There is no uniqueness but there exists an explicit algorithm
for finding one that we will call canonical.

Note that for any selfadjoint polynomial P ∈ C⟨t1, t2⟩ and any selfadjoint linearization LP = γ0 ⊗ 1 + γ1 ⊗
t1 + γ2 ⊗ t2 ∈ Mm(C⟨t1, t2⟩),

TrN
(
(z − P (WN , DN ))−1

)
= Trm ⊗ TrN

[
((ze11 − γ0)⊗ IN − γ1 ⊗WN − γ2 ⊗DN )

−1
(e11 ⊗ IN )

]
(1)

where e11 denotes the m by m matrix whose only nonzero entry equals 1 and occurs in the first row and first
column. Thus, this linearization trick converts our initial general noncommutative polynomial with complex
coefficients into a linear polynomial with matrix coefficients and thus allows adapting the strategy based on
CLT for martingale differences and Schur’s inversion formula previously used for additively deformed Wigner
matrices in [26].
This investigation requires a so-called matrix-valued free probability theory. There exists an extension, operator-
valued free probability theory, in which, roughly speaking, scalars are replaced by elements of a subalgebra B,
the linear form is replaced by a B-valued conditional expectation and freeness is replaced by the so-called freeness
with amalgamation over B. We refer to [59], [61], [10]. Let x, d be free selfadjoint noncommutative variables
in a C∗-algebra (A, ϕ) such that the distribution of x (resp. d) is µσ (resp. ν). According to [48], γ1 ⊗ x and
γ2 ⊗ d are free with amalgamation over Mm(C). Moreover, it turns out that the Mm(C)-valued subordination
function defined for β ∈ Mm(C), ℑm(β) > 0, by

idm ⊗ ϕ
(
(β ⊗ 1A − γ1 ⊗ x− γ2 ⊗ d)−1

)
= idm ⊗ ϕ

(
(ωm(β)⊗ 1A − γ2 ⊗ d)−1

)
,

is explicitly given by

ωm(β) = β − γ1idm ⊗ ϕ
[
(β ⊗ 1A − γ1 ⊗ x− γ2 ⊗ d)−1

]
γ1 ∈ Mm(C) (2)

and extends as an analytic map z 7→ ωm(ze11 − γ0) to C \ supp(µP (x,d)).

We are now in position to state our result.

Theorem 1.5. Let P ∈ C⟨t1, t2⟩ be a selfadjoint polynomial in two noncommuting indeterminates, that really
involves both indeterminates. Let LP = γ0 ⊗ 1 + γ1 ⊗ t1 + γ2 ⊗ t2 ∈ Mm(C⟨t1, t2⟩) be the selfadjoint canonical
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linearization of P and ωm defined by (2). Let WN and DN be defined as in Section 1.1 and define for any z ∈
C\R, ξN (z) = TrN

(
(z − P (WN , DN ))−1

)
−E

(
TrN

(
(z − P (WN , DN ))−1

))
. The sequence (ξN )N∈N of H(C\R)-

valued random variables converges in distribution towards a complex centred Gaussian process {G(z), z ∈ C \R}
defined by G(z) = G(z̄) and E (G(z1)G(z2)) = ∂2

∂z1∂z2
γ(z1, z2), z1, z2 ∈ C \ R,

γ(z1, z2) = −Trm ⊗ Trm
{
log

[
idm ⊗ idm − σ2T{z1,z2}

]
(Im ⊗ Im)

}
− Trm ⊗ Trm

{
log

[
idm ⊗ idm − θT{z1,z2}

]
(Im ⊗ Im)

}
+

κ

2
Trm ⊗ Trm{T 2

{z1,z2}(Im ⊗ Im)}+ (σ̃2 − σ2 − θ)Trm ⊗ Trm{T{z1,z2}(Im ⊗ Im)},

where T{z1,z2} : Mm(C)⊗Mm(C) → Mm(C)⊗Mm(C) is defined for u ∈ Mm(C)⊗Mm(C) by

T{z1,z2}(u) =

∫
R
((ωm(z1e11 − γ0)− tγ2)

−1γ1 ⊗ Im)u(Im ⊗ γ1(ωm(z2e11 − γ0)− tγ2)
−1)dν(t).

Note that a highly non-trivial first task is to prove that the logarithms involved in the definition of γ(z1, z2)
are well defined, making use of the contractivity of analytic self-maps on hyperbolic domains to establish the
following

Proposition 1.6. For any z1, z2 ∈ C \ R, the spectrum of the operator

T{z1,z2} : Mm(C)⊗Mm(C) → Mm(C)⊗Mm(C)

is included in the open disk of radius σ−2.

2. Tweaking Algorithms in Finite-Size Random Matrix Approximations

Franck Gabriel

Discrete approximations (e.g. Riemann sum approximation, Euler method or Monte Carlo methods) are
essential when sampling or calculating various quantities on a computer. In this note, we consider two situations
where a random matrix approximation can be used to estimate quantities of interest.

Given a family of “large” objects A = (ak)k∈K about which we wish to compute some observables O(A), we
approximate A using some families of random matrices AN = (aNk )k∈K of smaller size or rank. A naive approach
consists in approximating the observables O(A) by O(AN ), i.e. using the same algorithm, but implemented
on the random matrix approximation. This may lead to some bias which we study in two distinct settings: in
kernel methods (Section 2.1) and in the computation of limits of empirical eigenvalue distributions (Section 2.2).
Understanding the bias provides us with alternative algorithms whose underlying motivation is to suppress the
bias created by the finite-size random matrix approximation.

The results presented in Section 2.1 on Gaussian features are taken from [38] with C. Hongler, A. Jacot, B.
Şimşek and F. Spadaro. Section 2.2 on permutation invariant random matrices is based on the collaborative
work [3] with B. Au, A. Cébron, A. Dahlqvist and C. Male.

2.1. Kernel Method: Gaussian Random Features and Effective Ridge

We explain how one can implement approximations of kernel methods (Section 2.1.1) using random features
(Section 2.1.2), by essentially approximating the Gram matrix of the kernel by a smaller rank random matrix.
This creates an implicit bias (Section 2.1.2) which can be partially corrected (Section 2.1.3).
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2.1.1. Kernel Regression Method: from Kernel and Gram Matrix to Predictor

Given N distinct data points (xi)
N
i=1 ∈ Rd with respective labels (yi)

N
i=1, a kernel K and a ridge λ ≥ 0, the

kernel regression method with kernel K and ridge λ provides an explicit function fK
λ such that fK

λ (xi) ≃ yi for
i = 1, . . . , N . Specifically, let K : Rd ×Rd → R be a positive semi-definite kernel: for any finite subset Z ⊂ Rd,
the Gram matrix KZ,Z = (K(zi, zj))zi,zj∈Z of K is a symmetric positive semi-definite matrix. We assume that

λ > 0. The predictor fK
λ ∈ Span (Kxi , i = 1, . . . , N), where Kxi : x 7→ K(xi, x), minimizes over a = (ai)

N
i=1 the

cost:

C(fa) =
1

N

N∑
i=1

(fa(xi)− yi)
2 +

λ

N
aTKX,Xa,

with X = {x1, . . . , xN} and fa =
∑N

i=1 aiKxi . From the first-order condition, we get the following.

Lemma 2.1. The Kernel regression predictor with kernel K and ridge λ is fK
λ (x) = Kx,X [KX,X + λId]

−1
y,

where Kx,X = (K(x, xi))i=1,...,N , KX,X is the Gram matrix and y = (yi)i=1,...,N is the column vector of labels.

Although kernel predictor has a simple expression, its use in practice is usually challenging, especially if the
cardinality of the data set is large, since one has to invert the N ×N matrix KX,X +λId. Actually, if the kernel
has finite-dimensional feature space, the computation of the kernel predictor is much simpler.

Remark 2.2. The so-called kernels with finite-dimensional feature space can be obtained by considering a
feature map ϕ : Rd → RP with ϕ(x) = (ϕ1(x), . . . , ϕP (x)), and defining K(x, x′) = ϕ(x)Tϕ(x′). One can express

the quantities involved in the definition of fK
λ (x) using the N×P data matrix (ϕX)i,j = ϕj(xi): Kx,X = ϕ(x)ϕT

X ,

and KX,X = ϕXϕT
X . In this setting, the predictor fK

λ (x) = ϕ(x)ϕT
X [ϕXϕT

X + λId]−1y is also equal to:

fK
λ = ϕ(x)

[
ϕT

XϕX + λId
]−1

ϕT
Xy. (3)

One has then to invert a P ×P matrix: the computation complexity is independent of the number of data points
and yields an efficient way to compute fK

λ when P ≪ N . Note that, in this setting, fK
λ can also be obtained by

minimizing C(fθ) = 1
N

∑N
i=1(fθ(xi)− yi)

2 + λ
N θT θ, over the space of functions of the form fθ =

∑P
i=1 θiϕi.

2.1.2. Random Features Method: implicit bias and effective ridge.

Given a general kernel K, the random features models of Rahimi and Recht in [50] consist of considering
random approximations of K by kernels with finite-dimensional feature space, i.e. considering a P dimensional
random process ϕ = (ϕ1, . . . , ϕP ) on Rn such that limP→∞ ϕ(x)Tϕ(y) = K(x, y). The random features predictor
fRF
λ,P is the kernel estimator obtained from the kernel KP (x, y) := ϕ(x)Tϕ(y), and with ridge λ. The random
features models are thus randomized approximations of the kernel methods aimed at easing the computational
challenges. Using the law of large numbers, one can exhibit a simple example of such random approximation:

Theorem 2.3. Let φ1, . . . , φP be i.i.d. centered random processes, each with covariance K. Let fRF
λ,P be the

predictor obtained with the random features φ1/
√
P , . . . , φP/

√
P . As P → ∞, for any x ∈ Rd, fRF

λ,P (x) → fK
λ (x).

By approximating the Gram matrix KX,X by a random matrix of the form ϕXϕT
X (and similarly for Kx,X),

we obtain an efficient way to approximate the kernel predictor. Yet, as advertised in the introduction, using
the same algorithm for ϕXϕT

X as for KX,X might not be the best option. Indeed, since the algorithm is not a

linear transformation of ϕxϕ
T
X and ϕXϕT

X , the predictor might be biased: E[fRF
λ,P (x)] ̸= fK

λ (x).

In [38], we consider as random features P i.i.d. Gaussian random processes φ1, . . . , φP , which are centered
and each with covariance K. We then show that there is an implicit regularisation due to the finite sampling:

Theorem 2.4 (Theorem 4.1 of [38]). For N,P > 0, x ∈ Rd, and λ > 0, E[fRF
λ,P (x)] ≃ fK

λeff
(x) where the effective

ridge λeff > λ is the unique positive solution of

λeff = λ+ λeff
1

P
Tr

[
KX,X (KX,X + λeffId)

−1
]
.
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Figure 1. Left: Effective ridge as a function of γ := P/N for different values of λ. Right:
Comparison of the test errors of E[fRF

λ,P ] and fK
λeff

.

Hence, as illustrated in Figure 1, while the random feature method was intended to approximate fK
λ , we are

actually approximating fK
λeff

. The connection between fRF
λ,P and fK

λeff
can be further refined. First we obtain an

explicit bound on the difference between E[fRF
λ,P (x)] and fK

λeff
(x). Besides, assuming that the labels y1, . . . , yN

were obtained from an existing but unknown function f∗, i.e. f∗(xi) = yi for i = 1, . . . , N , and that x1, . . . , xn

and future datapoints are i.i.d. samples of a probability measure D on Rd, the difference between the test errors
of E[fRF

λ,P ] and fK
λeff

can also be bounded (see an illustration of this in Figure 1). At last, by showing an upper

bound on the variance of fRF
λ,P , we can control the difference between expected test errors of fRF

λ,P and fK
λeff

.

2.1.3. Improved Algorithm

From the previous discussion, we propose an algorithm to partially correct the regularization bias of the finite
sampling in the Gaussian random features method.

Algorithm for an approximation of fK
λ (x)

(1) Sample φ1, . . . , φP i.i.d. centered Gaussian processes on {x1, . . . , xN , x} with covariance kernel K.
(2) Consider µ = λ− λ

P Tr[KX,X(KX,X + λId)−1].

(3) Return fRF
µ (x) = ϕ(x)

[
ϕT

XϕX + µId
]−1

ϕT
Xy where ϕ(x) = (φ1(x)/

√
P , . . . , φP (x)/

√
P), the data matrix

is (ϕX)i,j = φj(xi)/
√
P , and y = (y1, . . . , yN ) is the vector of labels.

2.2. Large permutation invariant random matrices

We now illustrate how the same idea developed in the previous section can be implemented in the setting of
large random matrices. Permutation-invariant symmetry leads to a “rigidity” property in the large size limit
of mixed observables: independent random matrices become asymptotically free with amalgamation over the
diagonal (Section 2.2.2). When sampling finite size randommatrices, this freeness property is only approximately
satisfied and a fixed-point algorithm can be implemented in order to correct this bias (Section 2.2.3).

2.2.1. Eigenvalue distribution, symmetries and notions of freeness

When we speak of a family of Hermitian random matrices A = (AN )N∈N, we assume that for any N ∈ N,
AN is a random N × N Hermitian matrix in MN (L∞−), i.e. a matrix for which all moments of the form

E[
∏n

k=1 Ai1,j1 ] exist and are finite. The empirical eigenvalues distribution of AN is µAN
= 1

N

∑N
i=1 δλi

, where
(λi)i=1,...,N are the eigenvalues of AN . Given a family A which, for example, plays the role of a signal, it is
natural to investigate the effect of an additive perturbation. If B is a family of Hermitian random matrices,
independent of A, assuming that both limN→∞ µAN

and limN→∞ µBN
exist as N → ∞, how can we obtain

numerically limN→∞ µAN+BN
(if it exists)? A naive, yet natural algorithm consists in: (1) selecting a large N ,
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(2) sampling one or many realizations of AN and BN , (3) computing the spectral distribution of AN +BN for
each sample (or average the spectral distributions over the samples if needed).

In Section 2.2.3, we provide an algorithm which allows to correct a bias in the previous algorithm which
appears due to the finite size of the samples. To explain this bias, we review some theoretical results about the
limit of µAN+BN

when one of the families satisfies some symmetry: unitary and permutation invariance.

Unitary invariant matrices. When one of the two families is invariant under conjugation by the unitary group,
for example, if for any unitary matrix UN , the matrix UNANU∗

N has the same law as AN , the fact that the limit
of µAN+BN

exists (in expectation, probability or almost surely depending on some technical assumptions), is a
consequence of a line of works, e.g. [18, 20, 25, 46, 49, 57, 60], related with free probability theory. The measure
µAN

can be encoded using the so-called moments of AN since for any k ≥ 0,∫
zkdµAN

(z) = tr
[
Ak

N

]
,

where tr = Tr/N is the normalized trace. Hence, the study of µAN+BN
can be reduced to the study of the

moments tr
[
(AN +BN )k

]
, or more generally of the mixed moments tr [

∏
i Pi(AN )Qi(BN )] where Pi and Qi are

polynomials in C ⟨X⟩. If A is invariant under conjugation by the unitary group and if A and B are independent,
then the mixed moments of AN and BN converge and the matrices AN and BN are asymptotically free:

Theorem 2.5. Assume that for any k, tr
[
Ak

N

]
and tr

[
Bk

N

]
converge almost surely and that A is invariant by

conjugation by the unitary group, then, the matrices AN and BN are almost surely asymptotically free in the
following sense: for any monomials P1, . . . , Pn ∈ C ⟨X⟩, for any CN,1, . . . , CN,n ∈ {AN , BN},

tr

[
n∏

i=1

[Pi(CN,i)− tr [Pi(CN,i)] Id]

]

converges to zero almost surely whenever CN,i ̸= CN,i+1 for i = 1, . . . , n− 1.

Remark 2.6. Note that the asymptotic freeness of AN and BN allows one to recover the asymptotic moments of
µAN+BN

from the asymptotic moments of AN and BN . For example, applying the asymptotic freeness property
with P1(X) = P2(X) = X, yields

∫
z2µAN+BN

(dz) = tr[(AN +BN )2] ∼ tr[A2
N ]+ tr[B2

N ]+2tr[AN ]tr[BN ]. More
generally, as a corollary of Theorem 2.5, there exists a universal function F such that(

lim
N→∞

tr
[
(AN +BN )k

])
k≥0

= F

[(
lim

N→∞
tr
[
Ak

N

])
k≥0

,
(

lim
N→∞

tr
[
Bk

N

])
k≥0

]
.

The function F can be obtained as followed. First, tr((AN + BN )k) =
∑

n1,...,nℓ
m1,...,mℓ

tr
(∏ℓ

i=1 A
ni

N Bmi

N

)
where the

sum is over the non-negative integers n1, . . . , nℓ and m1, . . . ,mℓ such that
∑ℓ

i=1(ni + mi) = k. The freeness

property allows then to compute by induction the limit of tr
(∏ℓ

i=1 A
ni

N Bmi

N

)
in terms of the limit of the moments

of AN and BN . Indeed, tr
(∏ℓ

i=1 (A
ni

N − tr (Ani

N )) (Bmi

N − tr (Bmi

N ))
)

−→
N→∞

0, thus, by expanding the product,

the limit of tr
(∏ℓ

i=1 A
ni

N Bmi

N

)
can be computed as a linear combination of terms of the form

lim
N→∞

u∏
i=1

tr
(
Aℓi

N

) v∏
i=1

tr
(
Bki

N

)
tr

 ℓ′∏
i=1

Api

NBqi
N


where

∑ℓ′

i=1(pi + qi) < k. By induction, the limit of tr
(∏ℓ′

i=1 A
pi

NBqi
N

)
can itself be written as a function of the

limiting moments of AN and BN . This shows the existence of the function F and allows one to compute it by
induction.
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For finite size N , the matrices are not free: the moments of AN +BN are not obtained by applying F to the
moments of AN and BN . This hints at the fact that one could actually use the asymptotic freeness theorem
to correct the “finite-dimensional” bias in the interaction between AN and BN . Doing so, one obtains a new
algorithm for the approximation of limN→∞ µAN+BN

: one should find a measure µ such that for any k,∫
zkdµ(z) = F

[(
tr
[
Ak

N

])
k
,
(
tr
[
Bk

N

])
k

]
where AN and BN are realizations of the random matrices. One is faced with two problems in order to implement
this algorithm: (1) the condition should hold for an infinite number of k, (2) one has to find the measure µ.
In fact, there exists a fixed-point algorithm (explained in a more general setting in Section 2.2.3), based on the
notion of Stieltjes transform, which allows one to handle the two difficulties raised.

Permutation invariant matrices. The unitary invariance is a powerful symmetry, but which is not satisfied by
simple models such as random permutations or adjacency matrices of random graphs. A weaker symmetry
was proposed and studied in [45]: permutation invariance. The family A is permutation invariant if for any
permutation matrix SN , the matrix SNANS−1

N has the same law as AN . It was then shown in [45] using graph
observables and in [33,34] using a dual point of view, i.e. partitions observables and cumulants, that:

• two families of random matrices A and B which are independent and permutation invariant are not
necessarily asymptotically free in expectation,

• there exist families of observables O(AN ), O(BN ), and O(AN + BN ) which generalize the notion of
expected moments E[tr(Ak

N )], E[tr(Bk
N )] and E[tr((AN +BN )k)], and a universal function T such that

limN→∞ O(AN +BN ) = T [limN→∞ O(AN ), limN→∞ O(BN )],
• one can understand the limit of the expected eigenvalues distribution using observables in AN and
observables in BN , but, in general, one cannot do so using only the moments E

[
tr(Ak

N )
]
and E

[
tr(Bk

N )
]
.

The fact that asymptotic freeness is lost when one weakens the symmetry seems to hinder us from using a fixed-
point algorithm, as in the unitary invariance case, in order to obtain an approximation of limN→∞ µAN+BN

using samples of AN and BN . Besides, the observables cannot be naturally indexed by integers, hence it seems
complicated to define a version of the Stieltjes transform suited to these observables: this impedes us from using
the analytical tools necessary to obtain such fixed-point algorithm. In fact, in [3], we show that asymptotic
freeness can be recovered, at the cost of having to consider non-commutative conditional expectation and the
notion of freeness associated with it. As a result, using the operator-valued Cauchy transform, we propose a
fixed-point algorithm in order to approximate the limiting eigenvalues distribution of AN +BN .

2.2.2. Large permutation invariant random matrices and freeness over the diagonal

Asymptotic freeness appears when one considers random matrices in the space of matrices MN endowed
with the non-commutative expectation tr : MN → C with M 7→ 1

NTr (M). Actually, MN can be endowed
with another interesting structure: the structure of operator-valued probability space. If DN ⊂ MN is the
space of diagonal matrices, the map ∆ : MN → DN such that M 7→ D = (δi,jMi,j)i,j satisfies that for any

D1, D2 ∈ DN , and any M ∈ MN , ∆(D1MD2) = D1∆(M)D2.

Remark 2.7. The map ∆ can be regarded as a non-commutative conditional expectation. Note that tr (∆(M)) =
tr (M), hence the knowledge of the family of diagonal matrices ∆(Mk) is sufficient in order to recover the
moments of the eigenvalues distribution of M as tr(∆(Mk)) = tr(Mk) =

∫
zkdµM (z).

Hence, the limit of µAN+BN
can be deduced from the study of ∆((AN +BN )k) whose asymptotic behaviour

can fortunately be derived from those of ∆(Aℓ
N ),∆(Bℓ

N ) for ℓ ≤ k. Indeed, Theorem 2.5 essentially holds for
permutation invariant matrices if one replaces the non-commutative expectation tr by the conditional non-
commutative expectation ∆.

Theorem 2.8 (Theorem 1.3 of [3]). Let A and B be independent families of permutation invariant random
matrices. Under some technical assumptions on A and B, the families A and B are asymptotically free with
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amalgamation over DN : for any monomials P1, . . . , Pn ∈ DN ⟨X⟩, any CN,1, . . . , CN,n ∈ {AN , BN}, the matrix

ϵN = ∆

[
n∏

i=1

[Pi(CN,i)−∆ [Pi(CN,i)]]

]
,

converges to zero in normalized Schatten p-norm for any p ∈ [1,∞[ (i.e limN→∞ E[tr[(ϵN ϵ∗N )
p
2 ]] = 0) whenever

CN,i ̸= CN,i+1 for i = 1, . . . , n− 1.

Remark 2.9. Note that the asymptotic freeness with amalgamation over DN allows one to recover the as-
ymptotic moments of µAN+BN

from ∆(AN ) and ∆(BN ). For example, ∆ [(AN −∆(AN ))(BN −∆(BN ))] ≃ 0
implies that ∆(ANBN ) ≃ ∆(AN )∆(BN ), hence tr [ANBN ] = tr [∆(ANBN )] ≃ tr [∆(AN )∆(BN )]. This yields:∫

z2µAN+BN
(dz) ∼ tr

[
A2

N

]
+ tr

[
B2

N

]
+ 2tr [∆(AN )∆(BN )] .

More generally, there exists a function F∆ such that
(
∆
[
(AN +BN )k

])
k
≃ F∆

[(
∆

[
Ak

N

])
k
,
(
∆
[
Bk

N

])
k

]
.

For finite size N , the matrices are not asymptotically free with amalgamation. This hints at a new algorithm
in order to obtain an approximation of limN→∞ µAN+BN

: given a realization of AN , BN , find µ such that∫
zkdµ(z) = tr

[
F∆

[(
∆
[
Ak

N

])
k
,
(
∆

[
Bk

N

])
k

]]
,

holds for any k. Again, one is faced with the same two problems as in the unitary invariance setting. In order
to handle the two difficulties raised, one can use the operator-valued Cauchy transform:

Definition 2.10. The operator-valued Cauchy transform of a N ×N Hermitian matrix M is the function

GM : D+
N → D−

N , Z 7→ ∆
[
(Z −M)−1

]
,

where D±
N = {Z ∈ DN : ±ℑ(Z) = ±Z−Z∗

2i > 0}. The H-transform of M is HM : Z 7→ GM (Z)−1 − Z.

Remark 2.11. Note that tr[GM (zIdN )] is the Stieltjes transform at z of µM . Hence, the measure µM can be
obtained by applying the Stieltjes-Perron inversion formula (Theorem X.6.1 of [30]) to z 7→ tr[GM (zIdN )].

2.2.3. Fixed-point algorithm

If AN and BN were actually free with amalgamation over DN , then one could compute GAN+BN
as follows

(see [10]). For any Z ∈ D+, we consider the unique solution Ω(Z) to

Ω(Z) = HBN
(HAN

(Ω(Z)) + Z) + Z

which can be computed by iterating the map M 7→ HBN
(HAN

(M) + Z) + Z. Then GAN+BN
= GAN

◦ Ω.
Since the measure µAN+BN

can be obtained from GAN+BN
(Remark 2.11), we get the following algorithm

that enables the correction of the “finite-dimensional” bias in the interaction between AN and BN and provides
an approximation of limN→∞ µAN+BN

. For the sake of simplicity, we provide the algorithm when the limiting
measure has a density at x; the general case can be obtained using the Stieltjes-Perron inversion formula.

Algorithm for an approximation of the density of limN→∞ µAN+BN
at x.

(1) Consider a large N , small ϵ > 0, a small threshold t > 0, and sample AN and BN .
(2) Set Ω0 = (x+ iϵ)IdN = Z.
(3) Compute Ωn+1 = HBN

(HAN
(Ωn) + Z) + Z until ∥Ωn+1 − Ωn∥ < t for some n = n0.

(4) Return − 1
πℑ

(
1
NTr[(Ωn0 −AN )−1]

)
.
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In Figure 2, the matrix AN is a block variance GUE and BN is a corrupted permutation (details in Section 3.2
of [3]). The histogram is consistent with the blue line, thereby illustrating the fact that they are asymptotically
free with amalgamation over DN , while the red line confirms that they are not asymptotically free.

Figure 2. Example of limiting eigenvalues distribution of AN +BN . Histogram: eigenvalues
histogram of AN +BN . Blue: Fixed-point algorithm. Red: limiting eigenvalues distribution
of AN + CN when CN ∼ BN is asymptotically free from AN .

3. Sparse matrices: convergence of the reverse characteristic polynomial

Simon Coste

Spectral properties of non-Hermitian random matrices can have different behaviors depending on their degree
of sparsity. These properties are now well understood for dense matrices with iid entries; a well-known example
is the Circular Law [16], for which the optimal sparsity threshold is known [8,52]. However, when the matrices
in question are very sparse, with a fixed number of non-zero entries on each row, possibly with dependencies,
the problem becomes different and more challenging. In this contribution based on Coste [21], we show how
the limiting spectral objects in this sparse regime are no longer Gaussian, but Poisson.

3.1. Random, sparse matrices and their characteristic polynomial

The random matrix model we consider in this note is as follows: An is a square n×n matrix whose n2 entries
are independent Bernoulli(d/n) random variables, where d is a fixed positive number. This non-Hermitian
matrix arises, for example, as the adjacency matrix of a directed Erdős-Rényi graph G with mean in-degree and
mean out-degree d. Its empirical spectral distribution is the atomic measure defined by

µn =
1

n

n∑
i=1

δλi(An) (4)

where |λi(An)| ⩾ · · · ⩾ |λn(An)| are the complex eigenvalues of An ordered by decreasing modulus. Not much
is known on the asymptotic behaviour of µn. However, it turns out that the reverse characteristic polynomial of
An has a tractable asymptotic behaviour. More precisely, we study qn(z) = det(I−zAn), a sequence of random
complex polynomials with real coefficients. The k-th coefficient of qn, say ∆k, is given by

∆k =
(−1)k

k!
Pk(tr(A

1
n), . . . , tr(A

k
n)) (5)

for some polynomial Pk — its expression involves the Bell polynomials. A natural method to study the as-
ymptotic behaviour of qn, inspired by [9, 17] who studied the dense case, consists in identifying the limiting
distribution of the traces of powers of An, which will directly prove the convergence of the coefficients of qn
towards the corresponding limit. This first step can be performed thanks to combinatorial methods which are
of great use in trace methods: in short, the trace of Ak

n counts the number of directed closed paths in the graph
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G, of length k. It turns out that the dominant contribution to this counting comes from the paths that are
simple cycles of length h, possibly crossed multiple times (consequently, h must divide k); and the number of
these small cycles is asymptotically Poisson thanks to a rare-events-theorem type analysis. The limit of tr(Ak

n)
is given in the following definition and theorem.

Definition 3.1. Let d > 0, and let (Yℓ : ℓ ∈ N∗) be a family of independent random variables, with Yℓ ∼
Poi(dℓ/ℓ). We define a family of (non-independent) random variables by

Xk :=
∑
ℓ|k

ℓYℓ (k ∈ N∗) (6)

where a|b means that b is a nonzero multiple of a.

Theorem 3.2 (trace asymptotics). For every integer k, the following joint weak convergence holds:

(tr(A1
n), . . . , tr(A

k
n))

law−−−−→
n→∞

(X1, . . . , Xk). (7)

This settles the limiting behaviour of the coefficients ∆k of qn: thanks to (5), we see that ∆k converges
towards ck := (−1)kPk(X1, . . . , Xk)/k! and it is tempting to infer that qn converges towards the random
function F (z) :=

∑
n cnz

n, in some topology like the natural topology of uniform convergence of compact sets.
This is true, but with a caveat: even if the qn are polynomials, hence entire functions, the function F is not
entire.

Theorem 3.3. The random series

F (z) =

∞∑
n=0

cnz
n (8)

is almost surely uniformly convergent in the disk D(0, 1/d) and can be analytically extended to the disk D(0, 1/
√
d),

in which it almost surely has exactly one zero at the location zd = 1/d. This zero is simple.

We endow the set H1/
√
d of analytic functions on D(0, 1/

√
d) with the topology of uniform convergence over

compact sets. Then, the sequence of random polynomials (qn) weakly converges in this topology towards F .

This mode of convergence is strictly stronger than the convergence of coefficients (aka, finite-dimensional
convergence) displayed before, and its proof needs an extra ingredient. A classical argument coming back to
Shirai [55] reduces this mode of convergence to (i) the convergence of coefficients and (ii) the tightness of (qn).
This tightness can be hard to prove. In general, it is sufficient to prove uniform bounds on the L2 norm of
the coefficients of qn: typically, if one wants to prove that (qn) is tight in Hd−1/2 , one can simply prove that
E[|∆k|2] ⩽ c/dk for some c not depending of k and n. This was almost trivial to check in the dense, centered case
studied in [17]; but for non-centered, sparse models, there is no general recipe. For the moment, the simplest
way to do this is to use an alternative expression to (5), which is

∆k =
∑
I

det(I)

where the sum is over all principal sub-matrices of An of size k × k. In the model under investigation for An,
with independent Bernoulli(d/n) entries, it turns out that certain determinant identities naturally appear in
this expression, that allowed for a simple proof of this tightness. In another model of sparse random matrices
(sums-of-permutations), a technical analysis of this expression could also lead to a proof of tightness [23]; but
there is, for the moment, no general method.

There are various paths for exploring Theorem 7. The first one is to see to which extent does this theorem
provide information on the asymptotic behaviour of the eigenvalues λi(An); the second one is on a better
understanding of F .
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Figure 3. An illustration of Theorem 3.3 when d > 1. The color scheme used for these
domain colourings is depicted in the small inset of the right picture. Note that in both cases,
the depicted function has real coefficients, hence the apparent skew-symmetry with respect to
the real axis: we have f(z̄) = f(z). Left is the domain colouring of z 7→ det(I − zA), where
A is an n × n random matrix with independent entries equal to 1 with probability d/n and 0
otherwise (n = 500 and d = 2). The inverse eigenvalues of A are in white and the two circles

have radius 1/d and 1/
√
d. Right is the colouring of the random analytic function F in (8).

What we see inside D(0, 1/
√
d) in the left picture converges in distribution towards what we

see in the right picture.

3.2. Asymptotic behaviour of eigenvalues

The convergence of qn towards F does not imply the convergence of µn towards some measure. Indeed, this
convergence qn → F is only proved inside the disk D(0, 1/

√
d), and the roots of qn in this set are the inverses

of the eigenvalues of An outside D(0,
√
d), the ‘extremal’ eigenvalues. But obtaining the asymptotic behaviour

of these eigenvalues is in itself an important topic in random matrix theory. These extremal eigenvalues often
capture deep properties of the underlying matrix (or, in this case, directed graph): we refer for example to the
celebrated Alon-Friedman theorem for context [15,32].

In our case, the convergence mode of Theorem 7 implies the convergence of the zeroes, another simple result
from [55]. As mentioned, since F has almost surely one zero at 1/d, it implies the following result: for every ε,
with probability going to 1 as n → ∞,

(1) The largest eigenvalue λ1(An) is within distance ε to d = 1/(1/d);

(2) All the other eigenvalues of An are contained in the disk D(0,
√
d+ ε).

This theorem implies that if µn converges towards some measure, this measure will have support inside the disk
D(0,

√
d). It is supposed that this result is sharp, in that there is at least one eigenvalue of An with modulus

greater than
√
d − ε; but for the moment, this is not proved. This result was previously known from the

papers [17,24], where it was used in various statistical contexts; but the proof therein was extremely technical.
The new proof method shown in this note is considerably simpler and elegant.
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3.3. The Poisson Holomorphic Chaos

The random analytic function F , pictured in the right panel of Figure 3, is defined as a random series;
however, a few alternative representations are shown in [22], notably the infinite product representation

F (z) =

∞∏
ℓ=1

(1− zℓ)Yℓ

where Yℓ was defined in Definition 3.1, and the exponential representation

F (z) = exp

{
−

∞∑
n=1

Xn
zn

n

}
. (9)

For comparison, the limiting functions when An is a matrix with iid entries (not sparse), studied for example
in [17, 47, 51], are typically like (9) but with the Xk being iid Gaussian random variables, real or complex
depending on the model. What happens at the border of the radius of convergence is crucial; in all these cases,
this border is entirely composed of singularities, so that the trace of F on it cannot be defined as a function,
but only as a generalized function. When the Xn are complex Gaussians as in [47], this distribution is called
the Gaussian Holomorphic Chaos; in our case, this trace, noted PHCd and formally defined thereafter, is called
Poisson Holomorphic Chaos. That this object is really a Poisson analog of the GHC bears no doubt, and it was
recently checked in [23] that when d → ∞, PHCd converges towards the GHC.

Definition 3.4. The Poisson Holomorphic Chaos of index d > 1, noted PHCd, is the random distribution on
Td−1/2 almost surely defined by

(PHCd, φ) = lim
r→d−1/2

1

2π

∫ 2π

0

F (reit)φ(reit)dt (10)

where φ is any trigonometric polynomial on Td−1/2 .

Proposition 3.5. Let d > 1. Almost surely, the random distribution PHCd is s-Sobolev for every s < −1/2.

This gives a hint on the regularity of PHCd; it can be supposed that, just like the Gaussian Holomorphic
Chaos, PHCd is not s-Sobolev for s > −1/2; however, the simplest way to prove this fact seems to rely on
the study of the distribution of the total mass of PHCd, defined as limr→∞

∫
|F (reit)|2dt — for the Gaussian

Holomorphic Chaos, this is given by the Fyodorov-Bouchaud formula, a difficult result. It is not known if there
is a similar formula in our Poisson case.

In general, studying the properties of F requires a good understanding of the properties of the coefficients
cn (called secular coefficients, see [28]). We saw that these coefficients are polynomials in the Xk (hence of the
Yℓ), but this expression is difficult to manipulate; however, we have access to their moments by means of a
combinatorial analysis. For every integer k > 0, we note Oddk the set of nonempty subsets of [k] = {1, . . . , k}
with an odd number of elements, and Evenk the set of nonempty subsets of [k] = {1, . . . , k} with an even
number of elements.

Theorem 3.6. For any z1, . . . , zk, one has

E[F (z1) · · ·F (zk)] =

∏
S∈Oddk

(1− d
∏

s∈S zs)∏
S∈Evenk

(1− d
∏

s∈S zs)
. (11)
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To give a few examples,

E[F (z)] = 1− zd

E[F (y)F (z)] =
(1− dy)(1− dz)

1− dyz

E[F (x)F (y)F (z)] =
(1− dx)(1− dy)(1− dz)(1− dxyz)

(1− dxy)(1− dxz)(1− dyz)
.

The formula given above is our analog of the generating-function formula for the Gaussian Holomorphic
Chaos in [47]. Therein, the combinatorial interpretation of the secular coefficients was easily linked with the
enumeration of magic squares; we do not have a combinatorial interpretation for (11) at the moment.

4. Voronoi cells in random split trees

Cécile Mailler

This section is based on recent work with Alexander Drewitz (University of Cologne) and Markus Heydenreich
(Ludwig Maximilian University of Munich), see [29].

4.1. Introduction

Consider a large graph G, from which we choose k vertices uniformly at random, U1, . . . , Uk. The Voronoi
cell Vor(Uj) of Uj consists of those vertices that are closer in graph distance to Uj than to any of the other
chosen vertices {Ui : i = 1, . . . , k; i ̸= j}, with an arbitrary rule to break ties. We are studying the vector of
proportional sizes (

|Vor(U1)|
n

, . . . ,
|Vor(Uk)|

n

)
,

in the limit as n → ∞, where n = |Vor(U1)|+ · · ·+ |Vor(Uk)| denotes the total number of vertices.
In [1], Addario-Berry, Angel, Chapuy, Fusy, and Goldschmidt prove that, if G is a tree taken uniformly at

random among all n-node trees, then, in distribution as n → +∞,(
|Vor(U1)|

n
, . . . ,

|Vor(Uk)|
n

)
→ Dirichlet(1, . . . , 1). (12)

In other words, the vector of renormalised Voronoi cell sizes converges to the uniform distribution on the simplex.
Addario-Berry et al. prove in fact a stronger result since it applies to any sequence of random trees whose scaling
limit is Aldous’ continuous random tree. Guitter [36] proved that the same limiting theorem holds in the case
when G is a random planar map of genus 0 and k = 2. Both Addario-Berry et al’s and Guitter’s works were
motivated by the conjecture of Chapuy [19] that (12) holds for all random embedded graphs of fixed genus.

In [29], we look at the distribution of the Voronoi cells of k uniform nodes in a random split tree. Split trees
are a family of rooted trees introduced by Devroye [27] and later extended by Janson [41] who allowed trees
of unbounded degrees: this family includes classical random trees such as the binary search tree, the random
recursive tree, the preferential attachment tree (also called port for “plane oriented recursive tree”). In our
main result, we prove that the largest of the Voronoi cells of k uniform nodes in an n-node split tree contains a
proportion 1 of all nodes. We are also able to prove that the second, third, . . . , k-th largest Voronoi cells each
contains an order n exp(−const

√
log n) of all vertices. In [29], we also show that this result holds when edges of

the tree are given random i.i.d. lengths (of finite variance, or heavy-tailed but with finite mean), and defining
the Voronoi cells with respect to the distance induced by these edge-lengths instead of the graph distance; we
do not cover this case here.

The results of [29] are in contrast with the findings of [1] for the uniform random tree equipped with the
graph distance: the distribution of the sizes of Voronoi cells is balanced in the case of the uniform random tree



ESAIM: PROCEEDINGS AND SURVEYS 153

∅

1 2 3

11 12 31

311
312

313

32

Figure 4. The 3-ary tree {∅, 1, 2, 3, 11, 12, 31, 32, 311, 312, 313}. Node 312 is the “second child
of the first child of the third child of the root”, its parent is node 31, its siblings are 311 and
313. The last common ancestor of 32 and 313 is 3.

(and other trees whose scaling limit is the CRT), while we show a “winner takes it all” behaviour in the case of
split trees. This difference in behaviour should not be surprising since it is well-known that split trees have a
very different shape from the uniform random trees (and other random trees whose scaling limit is the CRT).
Similarly to [1] conjecturing that their result generalises to maps that scale to the random Brownian map, one
might expect that the behaviour we prove for random split trees might also be exhibited by other graphs such
as preferential attachment graphs and other scale-free models such as the configuration model. However, our
proofs cannot be straightforwardly generalised.

4.2. Trees and random split trees: definitions

In this section, we use the Ulam-Harris definition of m-ary trees: let m ∈ N and

Dm = {1, 2, . . . ,m}∗ = {∅, 1, 2, . . . ,m, 11, 12, . . . 1m, . . .},

be the set of all finite words on the alphabet {1, 2, . . . ,m}. We further consider the case of infinitary trees, where
m = ∞ and D∞ = N∗. We henceforth formulate our results for finite and infinite m in a unified fashion (unless
stated explicitly); finite tuples, such as in (13) below, should be interpreted as infinite sequences whenever
m = ∞.

Definition 4.1. An m-ary tree is a subset t of Dm such that for all w = w1 · · ·wℓ ∈ t, all the prefixes of w are
in t, i.e. for all i ∈ {0, . . . , ℓ} one has w1 · · ·wi ∈ t. (See Figure 4 for an example of a 3-ary tree.)

We now define a probability distribution on the set of m-ary trees: it is the distribution of “split trees”
first introduced by Devroye [27], but generalised to possibly infinite arity as in [41]. Let ν be a probability
distribution on the set

Σm = {(v1, . . . , vm) ∈ [0, 1]m :

m∑
i=1

vi = 1}, (13)

and (Y (w))w∈Dm be a family of i.i.d. ν-distributed random vectors. For each node w = w1 · · ·wℓ ∈ Dm, we let

Zw = Ywℓ
(
←
w), where

←
w is the parent of w, i.e.

←
w = w1 · · ·wℓ−1 and with Ywℓ

(
←
w) denoting the wℓ-th coordinate

of the vector Y (
←
w) (see Figure 5 for an example: Y (3) = (.1, .4, .5) and thus Z32 = .4).

We also let (Xn)n≥0 be a sequence of i.i.d. random variables uniformly distributed on [0, 1], and independent
from the sequence (Y (w))w∈Dm

.
Finally, given a tree t, we denote by ∂t the nodes of Dm that are not in t but whose parent is in t, and we

call the elements of this set the “leaves” of t. It is not hard to see that if t has n nodes, then ∂t has cardinality
(m− 1)n+ 1 (see Figure 5).

We can now define the sequence (τn)n≥1 of random trees recursively as follows.

• the tree τ1 is defined to consist of the root only, i.e. τ1 = {∅}.
• for n ≥ 1, given τn, we define τn+1 as the tree obtained by adding one node to τn as follows:



154 ESAIM: PROCEEDINGS AND SURVEYS

∅

3
.65 .15 .2

.75

.1 .5
.4

[0, .65] [.65, .8]

[.8, .82] [.82, .9] [.9, 1]

Figure 5. A realisation of the 3-ary split tree τ2, here we have τ2 = {∅, 3}. The labels on the
edges represent the values of (Y (w))w∈τ2 : for example, Y (∅) = (.65, .15, .2). The value of Zw

is thus the label on the edge from w to its parent: for example, Z31 = .1. The nodes that are
marked by a square are the elements of ∂τ2, underneath each leaf is written the corresponding
part in the partition used to build τ3. For example, the part corresponding to 32 is of length
Z3Z32 = .2× .4 = .08.

– We subdivide the interval [0, 1] in subintervals indexed by ∂τn of respective lengths
∏

∅̸=v≼w Zv,

for all w ∈ ∂τn. (Note that, by definition,
∑

w∈∂τn

∏
∅ ̸=v≼w Zv = 1; see Figure 5 for an example,

and observe that some points form part of several intervals.)
– We set ξ(n + 1) = w if Xn+1 ∈ [0, 1] belongs to the part indexed by w of this partition of [0, 1],

and finally set τn+1 = τn ∪ {ξ(n+ 1)}; note that this is well defined almost surely.

The sequence of random trees (τn)n≥1 is called the random split tree of split distribution ν (which we recall is
the distribution of the Y (w)’s).

This definition incorporates a variety of different random trees that are classical in the literature:

• If m = 2 and ν is the distribution of (Y, 1−Y ), where Y is uniform on [0, 1], then (τn)n≥1 is the random
binary search tree (see [27, Table 1]).

• If ν is the uniform distribution on the simplex Σm for m finite, then (τn)n≥1 is the random m-ary
increasing tree (see [27, Table 1]).

• If m = ∞ and ν is GEM(0, 1)1 on Σ∞, then (τn)n≥1 is the random recursive tree (see [41, Cor. 1.2]).
• If m = ∞ and ν is GEM(1/2, 1/2), then (τn)n≥1 is the random preferential attachment tree (see [41,
Cor. 1.3]).

4.3. Voronoi cells: definition

In [29], our aim is to investigate the sizes of the Voronoi cells corresponding to k nodes taken uniformly at
random in the n-node random split tree τn defined in Subsection 4.2. We consider the graph distance in the
graph whose nodes are all elements of Dm, and where there is an edge between two nodes if and only if one is
the parent of the other.

Definition 4.2. Let u1, . . . , uk be k nodes in an m-ary tree t. We define the Voronoi cells of u1, . . . , uk as
follows: for all 1 ≤ i ≤ k,

Vorit(u1, . . . , uk) = {w ∈ t : d(w, ui) ≤ d(w, uj) for j = 1, . . . , i− 1 and

d(w, ui) < d(w, uj) for j = i+ 1, . . . , n}.

We say that Vorit(u1, . . . , uk) is the Voronoi cell of ui (with respect to u1, . . . , uk).

1The GEM(α, θ) is the distribution of the random infinite vector (Pi)i≥1, where Pi = Zi
∏i−1

j=1(1−Zj) and Zj are independent

with distribution Zj ∼ Beta(1− α, θ + jα), see e.g. [41, Section 2].
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Remark 4.3. The idea of Definition 4.2 is that Vorit(u1, . . . , uk) contains all the nodes that are closer to ui

than to any of the other uj’s for the graph distance on t. The difference between ‘<’ and ‘≤’ induces a simple
rule to break ties (in case of equal distances, the vertex with smaller index is preferred). However, since the
number of boundary vertices is of constant order, the choice we make about how to break ties has no impact on
our results.

4.4. Main result

Our main result holds under the following hypothesis on the split-vector distribution ν:

(A) If (Y1, . . . , Ym) ∼ ν, U is a uniform random variable on [0, 1], and2

Ȳ =

m∑
i=1

Yi1{
i−1∑
j=1

Yj ≤ U <

i∑
j=1

Yj} (14)

is the size-biased version of the marginals of ν, then µ := E[log 1/Ȳ ] > 0 and σ2 := Var(log Ȳ ) < +∞.

The assumption that µ > 0 excludes the trivial case when the n-node split tree is almost surely equal to a
line of n nodes hanging under each other under the root. The assumption that σ2 < +∞ gives some control
over the moments of the split vectors: this assumption is used in the proof when applying laws of large numbers
and of the iterated logarithm, as well as central limit theorems to sum of independent copies of log Ȳ .

Theorem 4.4. Let ν be a probability distribution on Σm, and (τn)n≥1 be the random split tree of split distribution
ν.

For each n ≥ 1, let U1(n), . . . , Uk(n) be k nodes taken uniformly at random among the n nodes of τn; we let
V(1)(n) ≥ . . . ≥ V(k)(n) be the sizes of their Voronoi cells in τn with respect to the graph distance, ordered in
decreasing order.

Under Assumption (A), in distribution when n → +∞,

1√
log n

( log(V(2)(n)/n), . . . , log(V(k)(n)/n)) ⇒
1

2
√
µ
(Ψ(1) −Ψ(2), . . . ,Ψ(1) −Ψ(k)), (15)

where Ψ(1) ≤ · · · ≤ Ψ(k) is the order statistics of k i.i.d. random variables whose distribution is N (0, σ2).

In words, the above amounts to the fact that the second, third, . . . , kth largest component each occupies a
proportion of roughly exp{−Ψ

√
log n} of the vertices, where Ψ is some explicit positive random variable. This

implies that asymptotically and in distribution, the entire mass is allocated to the largest component (which, by
construction, belongs to the vertex closest to the root). The allocation for split trees is therefore qualitatively
very different from the allocation in the universality class of the continuum random tree, where the limit of the
proportions of the masses is known to be uniform [1].

4.5. Ideas of the proofs

To prove our main result, we prove two results that may be of independent interest because they give
information of the typical shape of a random split tree:

(1) The profile of a random tree is the distribution of the height (distance to the root) of a node taken
uniformly at random in the tree. If the tree is random then its profile is a random measure.

Proposition 4.5. Let (τn)n≥1 be the random split tree of split distribution ν, and let, for all integer n, πn =
1
n

∑n
i=1 δ|νi| be the random profile of τn, where we recall that |νi| is the height of the node inserted at time i in

(τn)n≥1. If ν satisfies Assumption (A1), then

πn( ·
√

(log n)/µ3 + (log n)/µ) → π∞ = N (0, 1), (16)

2By convention, we set
∑0

i=1 ai = 0 for each sequence (ai)i≥0 of real numbers.
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in probability as n → +∞, on the space of probability measures on R equipped with the topology of weak
convergence.

(2) Fringe trees are subtrees that are rooted at an ancestor of a node taken uniformly at random in the tree
(or at the uniform node itself). Oftentimes, this ancestor is chosen to be at constant distance of the uniform
node (see, e.g. [40] and the references therein). In [29, Proposition 2.6], we extend this definition to allow the
ancestor to be at distance to the uniform node that tends to infinity with n, the number of nodes in the whole
split tree.

The authors are grateful to two anonymous referees for detailed comments improving the exposition of the paper.
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(Orléans, 1992). Astérisque (1995), no. 232, 243–275, 1995.

[60] D. Voiculescu. A strengthened asymptotic freeness result for random matrices with applications to free entropy, Internat. Math.
Res. Notices, no. 1, 41–63, 1998.

[61] D. Voiculescu. The coalgebra of the free difference quotient and free probability, Internat. Math. Res. Notices, no. 2, 79–106,

2000.
[62] D. Voiculescu, K. J. Dykema, and A. Nica. Free random variables, American Mathematical Society, Providence, RI, 1992.

https://arxiv.org/abs/2103.09784

	Introduction
	1. Fluctuations of the Stieltjes transform of the empirical spectral measure of a selfadjoint polynomial in a Wigner matrix and a deterministic diagonal matrix 
	1.1. Presentation of the Model
	1.2. Previous results
	1.3. CLT for traces of resolvents of polynomials in WN and DN

	2. Tweaking Algorithms in Finite-Size Random Matrix Approximations 
	2.1. Kernel Method: Gaussian Random Features and Effective Ridge 
	2.2. Large permutation invariant random matrices

	3. Sparse matrices: convergence of the reverse characteristic polynomial
	3.1. Random, sparse matrices and their characteristic polynomial
	3.2. Asymptotic behaviour of eigenvalues
	3.3. The Poisson Holomorphic Chaos

	4. Voronoi cells in random split trees
	4.1. Introduction
	4.2. Trees and random split trees: definitions
	4.3. Voronoi cells: definition
	4.4. Main result
	4.5. Ideas of the proofs

	References

