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Abstract — Tudor-SN (Tudor staphylococcal nuclease), also known as p100 or SND1 (Staphylococcal nuclease and
Tudor domain containing 1), is a structurally conserved protein with diverse functions. Emerging evidence indicates
that Tudor-SN plays an essential role in both physiological and pathological processes. Under physiological conditions,
Tudor-SN regulates DNA transcription, RNA splicing, RNA stability, RNA interference, and RNA editing, and it is
essential for a series of cellular biological events, such as cell cycle progression, cell metabolism, and cell survival,
in response to harmful stimuli; thus, Tudor-SN functions as a “friend” to the body. However, Tudor-SN is highly
expressed in most tumor cells. As an oncoprotein, Tudor-SN is closely associated with the initiation, development,
and metastasis of tumors; thus, Tudor-SN functions as a “foe” to the body. What is the potential mechanism by which
Tudor-SN switches from its role as “friend” to its role as “foe”? In this study, we review and summarize the available
evidence regarding Tudor-SN protein structure, expression, modification, and mutation to present a novel model of
Tudor-SN role switching. This review provides a comprehensive insight into the functional significance of the
Tudor-SN protein under physiological and pathological conditions as well as corresponding therapeutic strategies that
target Tudor-SN.
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Introduction

Cells function as the basic units of an organism and perform
normal physiological functions; these functions depend on the
close cooperation of intracellular nucleic acids, proteins, and
other molecular substances. Some cellular biomolecules are
vital regulators of normal physiological functions and home-
ostasis. However, when these molecules undergo abnormal
changes in structure, expression, modification, localization,
and macromolecule activity, they may promote a transition to
pathological conditions and disease development. For instance,
the well-known p53 protein is widely considered to be a genetic
regulator in cells due to its essential role in regulating multiple
aspects of physiological function and in protecting against
stress. However, when the p53 gene is mutated, the protein
becomes a critical factor that promotes tumorigenesis [1, 2].
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Herein, we introduce a similar multifunctional protein,
namely, Tudor-SN, which plays distinct roles under different
cellular conditions. The underlying molecular mechanisms war-
rant attention. We summarize the available evidence regarding
the function of Tudor-SN in order to understand the potential
mechanism by which this protein switches from its role as a
“friend” to its role as a “foe” as well as potential strategies
for treating tumors by targeting Tudor-SN.

Discovery and preliminary study

The Tudor-SN protein, also known as p100, SND1, or TSN
(Tudor staphylococcal nuclease), shows a certain conservation
across different species [3-9]. In 1995, Tong and colleagues
first reported that Tudor-SN serves as a transcriptional coactiva-
tor of human Epstein—Barr virus nuclear antigen 2 (EBNA2)
and has a molecular weight of approximately 100 kDa
(originally termed “p100”) [10]. Subsequently, scholars
explored the structure and function of Tudor-SN from different

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


https://www.edpsciences.org/
https://doi.org/10.1051/vcm/2023001
https://vcm.edpsciences.org
https://creativecommons.org/licenses/by/4.0/

2 X. Gao et al.: Vis Cancer Med 2023, 4, 5

perspectives. In 1997, Callebaut and Mornon used hydro-
phobic cluster analysis to show that Tudor-SN includes four
repetitive SN-like (staphylococcal nuclease-like) domains in
its N-terminus and a Tudor domain in its C-terminus [11].
Our research group has been paying attention to the Tudor-SN
protein for a long time and found for the first time that the
C-terminus of Tudor-SN contains a TSN domain that is com-
posed of Tudor and two truncated SN5 (SN5a, SN5b) fragments
[12]. Preliminary studies highlighted the role of this protein in
gene transcription activation. As a transcriptional coactivator,
the fragment (449-554) of the Tudor-SN protein can be phos-
phorylated by PIM1 kinase, and the PIM1/ Tudor-SN complex
is essential for the enhancement of c-Myb transcriptional activity
[13]. Through a series of experiments, we confirmed that the
Tudor-SN protein can function as an essential transcriptional
coactivation factor during gene transcription via its SN domain
[14-17], and it can also participate in the splicing of pre-mRNAs
via its TSN domain [12, 18, 19].

Structure resolution

With the continuous improvement in protein structure
analysis techniques, the structural characteristics of different
Tudor-SN protein species are becoming clear. As shown in
Figure 1, the human Tudor-SN protein is currently believed
to consist of N-terminal SN1 ~ SN4 and C-terminal TSN
(SN5a-Tudor-SN5b) domains. Based on its different domains,
the Tudor-SN protein plays different biological roles in DNA
transcription, RNA splicing, RNA stabilization, RNA interfer-
ence, and RNA editing.

In 2007, we determined the crystal structure of the TSN
domain for the first time (Fig. 1), and we observed that it
includes an aromatic cage with four conserved residues
(Tyr721, Tyr738, Tyr741, and Phe715), which can bind to
the methylation groups of U snRNPs (uracil-rich small nuclear
ribonucleoprotein bodies) [12]. In 2008, Li et al. [20] observed
a crescent-like structure containing SN3/4/5 and Tudor domains
and a concave basic surface, which may mediate the specific
capture and degradation of highly edited IU- and Ul-containing
dsRNA (Fig. 1). In 2014, Guo et al. [21] further resolved the
high-resolution crystal structure of the human Tudor-SN/
MTDH (metadherin) complex and demonstrated that eleven
amino acid residues (DWNAPAEEWGN) of MTDH are
located in the protein groove between SN1 and SN2; in this
region, the W394 and W401 sites of MTDH are critical for
the interaction of Tudor-SN with MTDH (Fig. 1). This also pro-
vides the molecular basis for functional links between the
Tudor-SN/MTDH interaction and breast cancer, liver cancer,
colon cancer, and glioma (Table S1).

In addition to the human Tudor-SN protein, researchers
have also analyzed the structure of the Drosophila Tudor-SN
protein. In 2009, Friberg and colleagues resolved the crystal
structure of the Tudor domain in D. melanogaster and observed
the existence of a similar aromatic cage consisting of Phe760,
Tyr767, Tyr783, Tyr786, and Asn788; this ring specifically
binds to sDMA (symmetric demethylation)-modified Sm pro-
tein ligands [22]. In 2010, another crystal structure analysis
by Liu, H. et al. further confirmed the binding characteristics

of the Drosophila Tudor domain with an sDMA-modified
Piwi family member, Aubergine protein [23]. In the same year,
Liu, K. et al. resolved the mode by which the Drosophila Tudor
domain binds to another member of the sSDMA-modified Piwi
family, namely, the PIWILI1 protein [24]. These structural find-
ings indicate a conserved binding pattern of the Tudor domain
with sDMA-modified protein ligands in humans and
Drosophila.

Functional exploration

The structural characteristics of the Tudor-SN protein are the
basis of its function. Increasing evidence shows that different
functional fragments of the Tudor-SN protein are essential for
DNA transcription and RNA metabolism, and Tudor-SN partic-
ipates in modulating cell proliferation, cell cycle progression,
differentiation, apoptosis, stress, metabolism, and other cell bio-
logical events. Tudor-SN serves as a “friend” of the body to
modulate cellular homeostasis, and this function is essential
for cellular growth and survival. Here, we focus on the func-
tional links between Tudor-SN and DNA transcription, RNA
splicing, RNA stability, RNA interference, and RNA editing.

DNA transcription

The Tudor-SN protein acts as a coactivator of several tran-
scription factors, including STAT6 [14-16], STATS [17],
PPARY [25], E2F1 [26], and EBNAZ2 [10], to promote down-
stream gene transcriptional activation.

We confirmed the transcriptional regulation of DNA by
Tudor-SN through a series of experiments (Fig. 2). For
instance, as a transcriptional coactivator of STAT6 (signal
transducer and activator of transcription 6), the Tudor-SN pro-
tein binds the TAD domain of STAT6 via its SN domain and
mediates interactions between STAT6 and RNA polymerase
II, promoting IL-4/STAT6-mediated Ige gene transcription. In
addition, Tudor-SN can influence the chromatin modification
of IL-4-dependent downstream target gene regions of STAT6
by recruiting acetyltransferase CBP/p300 and RNA helicase
A (RHA) [14-16]. We also reported that Tudor-SN can act
as a coactivator to enhance the transcriptional activity of
STATS (signal transducer and activator of transcription 5)
and the prolactin-induced transcription of milk protein genes
[17]. Cdk 2/4/6 can mediate the phosphorylation of the human
Tudor-SN protein at Ser-426/Thr-429, and this phosphorylated
form functions as a coactivator of E2FI to facilitate the G1/S
transition during the cell cycle [26]. Tudor-SN also acts as a
transcriptional coactivator of PPARY, a key transcription factor
in adipocyte differentiation, and assists PPARy in promoting
adipocyte differentiation and lipid droplet formation by enhanc-
ing histone acetylation [25]. In addition to binding to transcrip-
tion factors, Tudor-SN can affect chromatin conformation and
regulate gene transcription by recruiting the histone acetyltrans-
ferases GCNS and CBP/p300 or the ATP-dependent chromatin
remodeler SMARCAS [16, 25, 27-31].

Upon X-ray or laser irradiation, Tudor-SN can interact with
PARP-1 and be recruited sites of DNA damage in a poly(ADP-
ribosyl)ation modification-dependent manner. Subsequently,


https://vcm.edpsciences.org/10.1051/vcm/2023001/olm

X. Gao et al.: Vis Cancer Med 2023, 4, 5 3

[ Guo, F., etal. 2014 ]

[Shaw, N., et al. 2007]

‘4

[Li, C. L. et al. 2008 ]

SN3/SN4/TSN domain

e

g.ldor

SN1/2 domain

* DNA transcription (cofactor)
* RNA stability (SGs) N:

* RNA interference (RISC) «— SN
Human Tudor-SN (SND1, p100) protein

* RNA editing

Figure 1. Structural characteristics of the human Tudor-SN protein.
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Figure 2. Regulation of DNA transcription by the Tudor-SN
protein.

Tudor-SN can recruit SMARCAS and GCNS to sites of DNA
breaks and regulate the histone modification of the damaged
site, resulting in chromatin relaxation and the activation of
ATM kinase and downstream DNA repair pathways, which
contribute to cell survival [30]. In addition, we found that in
SKOV3 cells, Tudor-SN activates SLUG transcription by
recruiting the acetyltransferases GCN5 and CBP/p300 to the
SLUG promoter proximal region to increase chromatin accessi-
bility, and this process is involved in the regulation of epithe-
lial-mesenchymal transformation in ovarian cancer cells [29].
This evidence indicates that the transcriptional coactivation role
of Tudor-SN is essential for IL-4/STAT6 signal transduction,
cell cycle progression, adipose differentiation, DNA damage,
and other biological events and is one of the key factors in
the growth and survival of cells under physiological or even
pathological conditions.
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Our findings first highlighted the role of p100 in RNA splic-
ing. Moreover, we reported that the TSN domain of human
Tudor-SN can interact with the core protein of U5 snRNP and
sDMA (symmetric dimethylation)-modified Sm proteins to
facilitate snRNP assembly and pre-mRNA splicing [12, 18, 19].

In eukaryotic cells, pre-mRNAs become mature mRNA
molecules through splicing by the spliceosome. The spliceo-
some is mainly composed of U snRNP, which includes Ul,
U2, U4/U6, U5 snRNA (small nuclear RNA), and a set of pro-
teins. During the splicing process, the spliceosome functions as
a dynamic complex unit. During the process of splicing, the
snRNA and protein components of the spliceosome constantly
change. For each splicing reaction, the spliceosome must be
recombined and activated before the next reaction can be per-
formed. According to the dynamic changes in snRNP compo-
nents, the spliceosomes at different periods can be named
complexes A, B, and C. [32]. In addition to its gene transcrip-
tion coactivator role, we demonstrated for the first time that the
Tudor-SN protein is involved in regulating the splicing of pre-
mRNA, promoting complex A formation and the transition of
complex A to complex B [12, 18, 19] (Fig. 3a). Tudor-SN
can interact with SmB/B’/D1/D3 proteins undergoing symmet-
ric dimethylation through its TSN domain to promote the
recruitment of Sm protein to Ul and U2 snRNA to form
spliceosome complex A [12, 18, 19]. Tudor-SN also interacts
with several U5 snRNP-specific proteins (e.g., U5-116, Prp8)
to participate in the cytoplasmic assembly of U5 snRNP and
may be involved in promoting the transformation from complex
A to complex B [12, 18, 19]. This splicing effect of Tudor-SN
can be influenced by mutations in conserved aromatic amino
acids in its TSN domain [12, 19] or by caspase-3-mediated
Tudor-SN truncation [33]. After the point mutation of four con-
served amino acids in the aromatic cage structure of TSN,
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Figure 3. Functional links of Tudor-SN protein and RNA splicing. (a) Pre-mRNA splicing; (b) alternative splicing.

Tudor-SN was found to have a reduced ability to bind to its Sm
B protein-ligand, which inhibited its function in promoting pre-
mRNA splicing [19]. In addition, there is evidence that Tudor-
SN can preferentially interact with exon regions that flank
introns with high splicing efficiency [34]. Cappellari et al. also
reported that Tudor-SN is involved in regulating the selective
splicing of CD44 pre-mRNA in prostate cancer cells by inter-
acting with the SAM68 protein [35] (Fig. 3b). The unique
TSN domain allows the Tudor-SN protein to play an important
role in cellular RNA splicing, and it is an important domain by
which Tudor-SN maintains cell homeostasis.

RNA stability

Cells have evolved various adaptive protective mechanisms
to achieve a balance between survival and death when they
encounter complex and variable adverse environmental stimuli.
SGs (stress granules) and PBs (processing bodies) are two RNA
metabolism-related cytosolic granular structures that form
during stress [36-38]. Upon cellular stimulation, mRNAs that
exist in a translational repression state are released from poly-
somes and then maybe sorted and recruited into SGs for protec-
tion or selectively delivered to PBs for degradation [36-38].
Increasing evidence shows that the Tudor-SN protein is func-
tionally related to SGs and PBs in different species (Fig. 4).
In Arabidopsis, Tudor-SN localizes in both SG and PB struc-
tures to improve stress tolerance and promote the growth and
survival of cells under adverse environmental conditions
[7, 39]. Unlike in plant cells, Tudor-SN is localized only to
SGs, but not PBs, in animal cells [40—42]. Video 1 shows the
SG assembly of RFP-Tudor-SN fusion protein in HeLa cells
upon the oxidative stress.

Our findings showed that human Tudor-SN physically binds
the G3BP protein via its SN domain and regulates the efficiency
of SG assembly [40]. We also reported an essential role of
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* CD44 alternative splicing

JNK-mediated Tudor-SN phosphorylation at the Thr-103 site
in SG assembly [43]. Furthermore, as a poly(A)" mRNA-bind-
ing protein, human Tudor-SN can bind and stabilize ATIR
mRNA in SGs for protection during stress [41, 44]. Weissbach
and Scadden et al. also reported that Tudor-SN binds to the
ADAR protein [42] and colocalizes with IU-dsRNA in cellular
SG structures, contributing to the inhibition of transcriptional
initiation of specific mRNAs under stress conditions [45].
These results suggest that the Tudor-SN protein contributes to
cellular survival under stress conditions by binding to specific
nucleic acids and proteins to form complexes that affect the sta-
bility of specific RNA transcripts.

RNA interference

In 2003, Caudy et al. reported for the first time that
the Tudor-SN is a component of the RISC (RNA-induced
silencing complex) [46]. Subsequently, there have been several
lines of evidence that in multiple species, the Tudor-SN protein
can interfere with target mRNA by participating in RISC
assembly, but its calcium-dependent nuclease activity is differ-
ent [9, 46-54]. For instance, the Tudor-SN protein in the RISC
of Arabidopsis and African trypanosomes possess no or only
minor nuclease activity [49-52, 55]. However, in mammals,
Drosophila, Caenorhabditis elegans, ticks, and Toxoplasma
gondii, the Tudor-SN protein has an enzymatic activity similar
to that of other staphylococcal nucleases [8, 9, 46, 47, 54, 56].

RNA editing

During viral infection, Dicer mediates the processing of
cytoplasmic dsRNA into siRNA, while Drosha RNase III and
Dicer are responsible for the conversion from pri-miRNA to
pre-miRNA and then mature miRNA [57, 58]. In the presence
of ADAR, dsRNA, and pri-miRNA undergo A to I RNA edit-
ing and become [U-dsRNA and IU-pri-miRNA, respectively
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Figure 4. Association between Tudor-SN and cellular stress.
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Video 1. Tudor-SN SG assembly in HeLa cells. https://vem.
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[57, 59, 60]. The Tudor-SN protein participates in the degrada-
tion of certainly edited pri-miRNAs, dsRNAs, and specific
miRNAs [20, 61-65]. For example, Tudor-SN can mediate
the decay of A to I highly edited pri-miR-142 [61]. Tudor-
SN specifically binds to and cleaves I-dsRNAs enriched with
IU base pairs [62], which is consistent with crystal structure
data [20]. The Tudor-SN protein interacts with and mediates the
decay of [U-dsRNA and IU-pri-miRNA through its nuclease
activity [20, 61-63]. Furthermore, Elbarbary et al. reported that
Tudor-SN can directly degrade CA- and UA-rich miRNA
substrates through its nuclease activity during the G1/S transi-
tion of the cell cycle [64, 65]. These results suggest that
Tudor-SN may modulate the steps upstream of the siRNA/
miRNA RISC pathway through its RNA editing ability.

Switching from the role of “friend” to the role
of “foe”

Expression balance

The orderly temporospatial expression of Tudor-SN is
crucial for the normal physiological function of cells. Herein,

I-dsRNA complex /

* RNA stability

Translation initiation A

)
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mRNA decay

mRNA storage

we attempt to explore the fine-tuned process of Tudor-SN
expression regulation through the mechanisms of “coming”
and “going”. Regarding the “coming” mechanism, the tran-
scriptional activity, DNA methylation, RNA stability, protein
translation, and stability maintenance of Tudor-SN are ana-
lyzed. Regarding the “going” mechanism, the degradation
and truncation of Tudor-SN are analyzed at both the mRNA
and protein levels.

In terms of the “coming” mechanism, in response to speci-
fic stimulation, Tudor-SN is transcriptionally regulated by
different transcription factors, such as NF-kB, Smad2/3, SP1,
NF-Y, c-Myb, CEBP/B, and SREBP-1/2 [25, 66-75]. Tudor-
SN is expressed at high levels in most tumor cells, but no
DNA hypomethylation is observed in the Tudor-SN promoter
region [4]. The potential G-quadruplex structure of the proxi-
mal promoter may be involved in the delicate regulation of
Tudor-SN expression in both space and time [66]. We observed
a TOP structure in the 5’ terminal region of Tudor-SN mRNA,
and the translation activity of Tudor-SN can be regulated by the
mTOR signaling pathway [76]. In addition, some protein bind-
ing partners (e.g., MTDH) may maintain Tudor-SN protein
stability under stress conditions [77, 78].

In terms of the “going” mechanism, multiple miRNAs (e.g.,
miR-184, miR-361-5p, and miR-320a) [79-81] and the potential
G quadruplex structure within the 3'UTR (untranslated region)
of Tudor-SN [66] may be implicated in the mRNA decay of
Tudor-SN. Caspase 3 can mediate the truncation of the Tudor-
SN protein between the Tudor and SN5 domains by recognizing
the DAVD790 motif [33]. In human embryonic diploid cells,
overexpression of PIM1 can induce Tudor-SN degradation,
which can be blocked by MG132, suggesting the occurrence
of ubiquitination-mediated Tudor-SN protein degradation [82].
Additionally, we performed experimental assays to observe
the presence of ubiquitination in the Tudor-SN protein and iden-
tified ubiquitination signals at multiple sites in Tudor-SN by
mass spectrometry (data not shown). Tudor-SN has been
reported to directly bind to the ubiquitin-like protein-modified
molecule SUMO-2 in vitro [83], suggesting that the regulation
of Tudor-SN protein stability may involve SUMO modification.
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Based on these “coming” and “going” regulatory mecha-
nisms, intracellular expression of Tudor-SN reaches a state of
dynamic equilibrium, which matches the functional coordina-
tion and effectiveness of Tudor-SN. For instance, the precise
caspase 3-mediated truncation of Tudor-SN in time and space
may be essential for programmed cell death during normal
organismal development [33]. However, when this equilibrium
is disrupted, the functional abnormality of Tudor-SN con-
tributes partly to the change in cellular status from physiological
to pathological, which is accompanied by the switching of the
Tudor-SN protein from its role as “friend” to its role as “foe” of
the body. Activation of tumor-associated signaling pathways
(TGFB, NF-xB, TNF-o) can cause the high expression of
Tudor-SN through the action of related transcription factors,
which facilitate the excessive proliferation and migration of
tumor cells.

Role switching model

A series of reports have successively documented the role
of Tudor-SN in clinical tumor diseases, such as liver cancer,
breast cancer, prostate cancer, and glioma. In this review, we
summarized the reported molecular mechanisms by which
Tudor-SN functions in diseases in terms of its structural prop-
erties, spatiotemporal expression, binding partners, functional
alterations, and targeted interventions (Table S1). The potential
roles of Tudor-SN in the initiation or progression of several
clinical tumors, especially hepatocellular carcinoma (HCC)
and breast cancer, have been reported in succession. Herein,
we explored the potential mechanism by which Tudor-SN
changes its functions related to tumorigenesis. Tudor-SN is
more highly expressed in most tumors than in normal control
tissues. Therefore, what is the mechanism underlying Tudor-
SN overexpression? Under normal physiological conditions,
Tudor-SN expression is maintained at equilibrium through
the abovementioned “coming” and *“going” mechanisms. How-
ever, the disruption of this balance between the “coming” and
“going” mechanisms may lead to the high expression of
Tudor-SN in tumors. For example, in tumor cells, some factors
that mediate the transcription of Tudor-SN, including transcrip-
tion factors (e.g., Smad2/3) and the protein stabilizer MTDH,
exhibit a high expression level [21, 73, 84], whereas some
miRNAs that induce the decay of Tudor-SN mRNA and are
expressed at low levels [79-81].

In addition, there is an interactive regulatory mechanism
between Tudor-SN and the TGFp, PI3K-AKT-mTOR, and
NF-xB signaling pathways. Tudor-SN is transcriptionally
activated by the TGFp and NF-xB pathways [70, 73, 85] but
also participates in the regulation of the gene transcription of
TGFp and NF-kB pathway-related members [28, 86-89]. The
PIBK-AKT-mTOR pathway can regulate the translation of the
Tudor-SN protein [76], and components of this pathway can
also be induced and activated by high Tudor-SN expression
[87, 90, 91]. It is thus hypothesized that activation of the TGF,
NF-xB, and PI3K-AKT-mTOR pathways in tumor cells
mediates the overexpression of Tudor-SN by regulating the
processes of RNA transcription and protein translation, and
the upregulation of Tudor-SN expression, in turn, facilitates

the activation of these signaling pathways. Thus, a positive
feedback mechanism is formed.

Emerging evidence suggests functional links between high
expression of Tudor-SN and the proliferation, invasion, and
migration of tumor cells (Table S1). Thus, is the high expres-
sion of Tudor-SN related to tumorigenesis? It was reported that
hepatocyte-specific Tudor-SN transgenic mice (Alb/Tudor-SN
mice) exhibited partially spontaneous tumor formation after a
long period of feeding [87]. In addition, compared with control
mice, more aggressive HCC tumors formed in Alb/Tudor-SN
mice after exposure to carcinogenic chemicals [87]. Tudor-
SN is highly expressed in the tissues of precancerous colon
cancer and at the early stages of colon cancer [92]. These results
suggest a potential impact of Tudor-SN overexpression on
tumorigenesis.

The promoting influence of Tudor-SN on tumor-initiation
cell (TIC) formation may partially explain the protumorigenic
effect of Tudor-SN [78, 87]. In HCC, high Tudor-SN expres-
sion activates the Akt and NF-xB signaling pathways and facil-
itates TIC formation [87]. In breast cancer, the Tudor-SN/
MTDH complex is implicated in the formation, expansion,
and activity maintenance of TICs and tumor metastasis [78].
Thus, we propose a model by which Tudor-SN switches from
its role as “friend” to its role as “foe” of the body (Fig. 5); this
model includes four stages, namely, “physiological function”,
“stress protection”, “tumorigenesis” and “tumor progression”.

The first stage is the “physiological function” stage. Based
on the “coming” and “going” mechanisms described above, the
expression of Tudor-SN is maintained at intracellular equilib-
rium. The specific structural properties and spatiotemporal
expression patterns contribute to the crucial role of Tudor-SN
in normal cellular physiological processes, especially DNA
transcription and RNA metabolism. Tudor-SN promotes cell
proliferation, differentiation, and tissue development and partic-
ipates in the maintenance of homeostasis.

The second stage is the “stress protection” stage. When
exposed to a certain degree of adverse stimulation, Tudor-SN
plays a protective role against the stress through a series of
adaptive mechanisms to increase the viability of normal cells.
For instance, when Tudor-SN is phosphorylated at the
Thr-103 site, it aggregates into the SG structure to protect
against stress by interacting with different stress-related proteins
and translationally repressed mRNA transcripts. Poly(ADP-
ribosyl)ated Tudor-SN binds to PARP-1 and participates in
the DNA damage repair process through the ATM signaling
pathway.

The third stage is the “tumorigenesis” stage. As the intensity
of external adverse stimulation increases or the time of stress
increases, the physiological status of cells gradually transforms
into a pathological status. The positive feedback transcriptional
mechanisms of the TGFf, NF-«kB, and PI3K-AKT-mTOR path-
ways and the inhibition of specific miRNA-mediated Tudor-SN
decay may disrupt the “coming” and “going” equilibrium and
result in high expression of Tudor-SN, which partly contributes
to the survival of cells under pathological conditions. Further-
more, the genetic mutation of Tudor-SN and the effect of
Tudor-SN in facilitating tumor-initiating cell formation are con-
sidered drivers of tumorigenesis for specific tumors as well.
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Figure 5. Model of Tudor-SN role switching.

The fourth stage is the “tumor progression” stage. Tumor
cells with high Tudor-SN expression are hyper-functional and
exhibit enhanced resistance to strong external stress pressure.
The effects of Tudor-SN on promoting the proliferation, inva-
sion, migration, metastasis, angiogenesis, and immune escape
of tumor cells significantly contribute to the implication of
Tudor-SN in tumor progression. When exposed to repeated
stimulation by certain chemotherapeutic agents, some tumor
cells may also acquire the fusion mutation of Tudor-SN: BRAF,
which is accompanied by the activation of the MAPK pathway.
This adaptive change protects the tumor cells from the killing
effect of the drugs.

Of note, Tudor-SN tends to promote the survival of cells
in either the “Health” (physiological health) status of the first/
second stages or the “Disease” (pathological disease) status of
the third/fourth stages. The synergistic abnormalities in the
expression or protein structure of many biomolecules (e.g.,
p53, Tudor-SN) contribute to the carcinogenesis of cells.
Tudor-SN may help to enhance the stress resistance and prolif-
eration of cells with cancerous tendencies. This may be the
crucial link in the switching of Tudor-SN from its role as
“friend” to its role as “foe”.

Exploration of targeted interventions

Considering the potential mechanism underlying the role-
switching of Tudor-SN, the exploration of possible Tudor-
SN-targeting intervention strategies may benefit the diagnosis
and treatment of Tudor-SN-related clinical diseases, particularly
tumors. Tudor-SN exerts an anti-apoptotic effect, and Tudor-
SN depletion enhances cellular sensitivity to chemotherapeutic
agents and radiation [93-95]. A small molecule called suramin
can inhibit the RNA binding ability of Tudor-SN and then

Disease

Foeﬁ/%

enhance the miR-1-3p expression level, leading to an increased
sensitivity of colon carcinoma cells to navitoclax [96]. The
expression of different types of Tudor-SN:BRAF fusion
proteins was observed in pancreatic alveolar cell carcinoma,
lung adenocarcinoma, prostate cancer tissues, thyroid cancer,
and c-Met inhibitor-resistant gastric cancer strain GTL16
(Table S1). Thus, the specific tumor characteristics and muta-
tion patterns should be fully considered in the development
of synergistic personalized treatment approaches that include
Tudor-SN-targeting treatments and related radiotherapy.
Herein, we will summarize the available evidence and describe
potential Tudor-SN-targeting intervention strategies from four
aspects, including enzyme activity, Tudor-SN/MTDH, Tudor-
SN/HLA-A, and Tudor-SN/ATIR (Fig. 6).

Enzyme activity inhibition

The potential nuclease activity of Tudor-SN may con-
tribute to the regulation of RNA metabolism and be reported
to be inhibited by a drug called pdTp (3',5 — deoxythymidine
bisphosphate, 3',5" — deoxythymidine bisphosphate) [8, 97, 98].
Evidence from HCC cell and mouse models suggests a link
between pdTp treatment and tumor inhibition [87, 99], suggest-
ing that the inhibition of Tudor-SN nuclease activity by pdTp
can be considered a potential treatment strategy for HCC.

Tudor-SN/HLA-A

Several lines of evidence suggest functional links between
Tudor-SN and the immune response of organisms [4, 87,
100-103]. Our findings showed that in tumor cells, highly
expressed Tudor-SN cells could target nascent HLA-A for
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Figure 6. Tudor-SN-targeting tumor intervention strategies.

endoplasmic reticulum-associated degradation [100]. The sub-
sequent reduction in HLA-A expression on the surface of tumor
cells suppresses tumor antigen presentation, leading to
decreased recognition and killing abilities of CD8* T cells
[100]. Further screening of potential inhibitors that interfere
with the binding of Tudor-SN and HLA-A will be helpful for
suppressing tumor immune escape and investigating possible
synergistic therapeutic effects with other immune checkpoint
drugs.

Tudor-SN/MTDH

Both Tudor-SN and MTDH are highly expressed in tumor
tissues, and MTDH contributes to the stabilization of the
Tudor-SN protein under stress conditions. Decreased expres-
sion of MTDH may lead to the loss of the anti-apoptotic and
pro-survival effects of Tudor-SN [78, 104]. Additionally,
Tudor-SN/MTDH exerts a protumorigenic effect by modulating
the formation of tumor-initiating cells for breast cancer [78]. Li
et al. identified a small peptide called CPP-4-2 through a phage
display screening approach, and this peptide can interfere with
the Tudor-SN/MTDH interaction and trigger Tudor-SN degra-
dation and breast cancer cell death [77]. Another small-
molecule compound, C26-A6, was shown to disrupt the
binding of Tudor-SN and MTDH, leading to increased immune
surveillance and a synergistic effect with anti-programmed cell
death protein 1 treatment in metastatic breast cancer [105].
Additionally, Tudor-SN/MTDH degrades mRNAs that are
associated with the tumor inhibition response in HCC cells
(e.g., PTEN, p57, p21, etc.) through the nuclease activity of
RISC [99, 106]. The use of Tudor-SN/MTDH blockers in con-
junction with pdTp may yield a better synergistic antitumor
effect for the treatment of HCC.

@ CD8* T cell response ¥

SN3
* Tudor-SN/HLA-A

--—-AGAAAATGCATTATGTGGAC---
AT1IR mRNA
0.0 ®
¢ TARGETED
INTERVENTION

Tudor-SN/AT1R

As described above, Tudor-SN can bind to the 3’URT of
ATIR mRNA and promote its stability [107, 108]. With the
assistance of Tudor-SN, AT/IR mRNA is transported into the
SG structure and protected under stress conditions [44].
Furthermore, Tudor-SN reportedly enhances the invasion and
migration of HCC cells by increasing the stability of ATIR
mRNA and activating the downstream ERK and TGFf
signaling pathways [109]. Considering the potential antitumor
efficacy of AT1R blockers and angiotensin-converting enzyme
inhibitors [110], it would be interesting to investigate a treat-
ment strategy that combines Tudor-SN/ATIR-targeting drugs.

Nontumor clinical diseases

In addition to tumors, there are other Tudor-SN-related
clinical diseases, such as autism, autosomal dominant polycys-
tic kidney disease, burn skin keloids, and septic sweat glands
(Table S1). For instance, the small de novo copy number vari-
ants of Tudor-SN may be linked to the risk of autism [111].
Under specific stress conditions, the nucleic acid variation of
Tudor-SN may lead to changes in the protein structure or in
the physiological function of Tudor-SN, which may contribute
to the pathogenesis of these nontumor clinical diseases. These
may also partly contribute to the switching of Tudor-SN from
its role as “friend” to its role as “foe”.

Conclusions

Tudor-SN acts as a “friend” of the body, and it is important
for cellular physiological function and stress defense; however,
it also acts as a “foe”, and it is implicated in or facilitates


https://vcm.edpsciences.org/10.1051/vcm/2023001/olm

X. Gao et al.: Vis Cancer Med 2023, 4, 5 9

tumorigenesis or tumor progression. In this study, we summa-
rize the available evidence and examine the potential mecha-
nism by which Tudor-SN changes its functional role in terms
of four stages. Nevertheless, some issues remain unresolved.
For instance, are there differences or similarities in the possible
mechanisms underlying the protumorigenic effects of
Tudor-SN in different tumors? Are relatively low-frequency
Tudor-SN mutations involved in its role-switching mechanism?
What kind of Tudor-SN interaction network exists in the tumor
microenvironment? How can appropriate Tudor-SN-targeting
intervention and synergistic treatments with other antitumor
agents be developed for different tumors? All these possibilities
warrant more in-depth investigations by more scholars.

Supplemental material

Supplementary material is available at https://vem.edp-
sciences.org/10.1051/vem/2023001/0lm
Table S1. Tudor-SN-associated clinical diseases.
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