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Wave Propagation In A Hygrothermoelastic Half-space Along With
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This particular work is an effort to investigate the propagation of wave in hygrothermoelastic medium in
the light of Eringen’s nonlocal theory of elasticity. The coupled wave equations in terms of displacement,
temperature and moisture concentration are solved in an analytical way. The phase velocities of longitudinal
displacement wave, transverse displacement wave, diffusion wave and thermal wave, under the influence of
nonlocal variable, moisture concentration, and diffusion coefficient, in the medium are obtained analytically
and presented graphically to show the effect of these parameters on the wave velocities.
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1. Introduction

Eringen [1] was one of many developers of nonlocal theory.
The theory explained the dependency of stress at a point
in a continuum body on strain at specific point and on its
surrounding points. In problems related to waves nature
of material is influenced by the extrinsic (e.g., wavelength)
and intrinsic (e.g., atomic size) characteristic length. The rel-
evance of this theory is prominent in case of proportionate
external and internal characteristic lengths. The micropolar
elastic setup is appropriate in light of the nonlocal theory
due to equivalent characteristic lengths in the micropolar
solids.

The dispersion relation for the nonlocal micropolar elas-
tic solids representing the dipolar materials was derived
by Eringen [2]. Further, the reflection of plane longitudinal
waves from the stress-free boundary surface of a nonlo-
cal micropolar solid half-space was examined by Khurana
and Tomar [3]. They revealed the existence of two waves,
which are dilatational waves and transverse waves. The
dilatational waves are uncoupled in scalar potentials and

the transverse waves are coupled in vector potential. In
light of Eringen’s nonlocal theory of elasticity, Sarkar and
Tomar [4] explained time-harmonic plane waves in an in-
finite thermoelastic solid with voids. dilatational waves
and thermal properties but nonlocality affect all the types
waves present in the medium. In recent times, Singh [5]
studied the Rayleigh waves propagation in an isotropic
and homogeneous nonlocal generalized thermoelastic solid
half-space with voids. Sarkar et al. [6], Biswas [7], Mondal
et al.[8], Das et al. [9] are other contributors in this area of
research. Lata [10] investigated the effect of energy dissipa-
tion on plane waves in sandwiched layered thermoelastic
medium. Lata and Kaur [11] discussed plane wave prop-
agation in transversely isotropic magneto-thermoelastic
rotating medium. Recently Lata and Singh [12] studied
plane wave propagation in a homogeneous isotropic non-
local magneto-thermoelastic medium under the effect of
Hall current.

Diffusion is the process in which of atoms and molecules
moves region lower concentration from that of higher con-
centration till the condition of equilibrium is achieved in
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solids. This movement of atom and molecules causes mi-
gration to occupy a definite position in this situation. The
migration in result produce disturbance.

Further, non-uniform moisture distribution will develop
the concentration gradient which will lead to the move-
ment of moisture. Movement of moisture will alter tem-
perature and moisture present in the material with refer-
ence to time and position. Hence, theories of heat transfer
and moisture transfer can be considered equivalent. The
temperature and moisture distribution may be changed
to a considerable amount when mechanical stresses are
applied. The interdependency of mechanical deformation
and diffusion due to this change provides a thrust for in-
vestigation. Many engineering problems with practical
interest show this relationship of moisture, heat, and defor-
mation. Any problem involving the study of solids under
the effects of moisture and heat falls within the domain
of hygrothermoelasticity. Szekeres [13, 14] investigated
problems on the coupling of heat transfer and moisture.
Gasch et al. [15] compared the damages caused by temper-
ature and moisture variation with mechanical loadings in
which he concluded that temperature and moisture causes
more damage than the later. Szekeres and Engel Brecht
[16] developed fundamental equations governing coupled
hygrothermoelasticity by setting fundamental analogy be-
tween heat and moisture. Gigliotti et al. [17] explored the
cyclical and transient hygrothermoelastic stress in lami-
nated composite plates. A mathematical model was set
up by Gawain et al. [18] for analysing the behaviour of
concrete in hygrothermal medium. Raja et al. [19] carried
out piezohygrothermoelastic analysis by developing a for-
mulation for this problem via finite element method. A
micro-macro mechanical method was given by Aboudi and
Williams [20] to record the response of hygrothermoelastic
composites. Rao and Sinha [21] carried out analyses on
how moisture and temperature influences free vibrations
for multidirectional composites in three dimensions. Vlase
et al. [22] presented a method to simplify the calculus of
the eigenmodes of a mechanical system with bars concern-
ing the deformations and the loads in the elements of the
system.

In this work, we have developed the governing equa-
tions for hygrothermoelastic medium within the scope of
nonlocal theory. The chances of propagation of plane waves
are studied along with its various characteristics features.
The effect of various parameters on the phase velocities of
components of waves is displayed graphically. Numeri-
cal calculations are carried out on MATLAB software for a
given material and the derived outcomes discussed with
the help of graphical results. This article is an effort to

through light on effect of nonlocal variable on hygrother-
moelastic problems.

2. Basic equations

The constitutive equations, heat equation, field equations
and moisture diffusion for homogeneous, isotropic hy-
grothermoelastic solid, in absence of incremental body
forces and heat sources given by Hosseini et al. [23] and
Montanro [24] are:

σji,i = ρ(1 − ϵ2∇2)üi (1)

DτT,ii + Dm
T m,ji − Ṫ −

βijT T0

ρc
u̇j,j = 0 (2)

Dmm,ji + DT
mT,ii − ṁ −

βm
ij T0

km
u̇j,j = 0 (3)

where
βT

ij = βTδij, βT = (3λ + 2µ)αT , (4)

βm
ij = βmδij, βm = (3λ + 2µ)αm, (5)

σij = Cijkl òkl − βm
ij − βT

ij, (6)

Cijkl =
2Gv

1 − 2v
δijδkl + Gδikδjl + Gδilδjk, (7)

εij =
uj.i + ui,j

2
, (8)

Here, σij denotes components of stress, εij strain and
ω̄ij displacement, respectively. Further, ρ is density, Km

is moisture diffusivity, Dm is diffusion coefficient of mois-
ture, DT is temperature diffusivity, T is temperature, m is
moisture concentration, Dm

T , Dm
T are coupled diffusivities,

T0 is the reference temperature, P is the initial pressure, c
denotes heat capacity, m0 is initial moisture, βT

ij is material
coefficients due to coupling between stresses and temper-
ature, βm

ij is material coefficients present due to coupling
between stresses moisture concentration, respectively, αT

refers to coefficient of linear thermal expansion, coefficient
of moisture expansion is αm, ϵ is non-local parameter, and
Lame’s constants are λ, µ.

3. Formulation

The Cartesian coordinate system (x, y, and z) with the z-axis
pointing perpendicularly down is taken under considera-
tion. To simplify, we have considered that the waves are
moving in the plane x-z.

Thus, in 2-D x–z plane the displacement vector in hy-
grothermoelastic medium is reduces to, u⃗ = (u, 0, w) where
u = u(x, z, t), w = w(x, z, t) which changes the equations
of motion and coupled generalized equations of heat con-
duction and moisture diffusion Eqs. (1) to (3) along with
other relations Eq. (6) in 2-D and in the absence of body
forces to following form:



Journal of Applied Science and Engineering, Vol. 27, No 5, Page 2445-2452 2447

Fig. 1. Geometry of the problem.

(λ + 2µ)
∂2u
∂x2 + (λ + µ)

∂2w
∂x∂z

+ µ
∂2u
∂z2 − βm

∂m
∂x

− βT
∂T
∂x

= ρ
(

1 − ϵ2∇2
) ∂2u

∂t2 ,

(9)

µ
∂2w
∂x2 + (λ + µ)

∂2u
∂x∂z

+ (λ + 2µ)
∂2w
∂z2 − βm

∂m
∂z

− βT
∂T
∂z

= ρ
(

1 − ϵ2∇2
) ∂2w

∂t2
(10)

DT∇2T + Dm
T ∇2m − ∂T

∂t
− βTT0

ρc
∂

∂t

(
∂u
∂x

+
∂w
∂z

)
= 0

(11)

Dm∇2m + DT
m∇2T − ∂m

∂t
− βmm0Dm

km

∂

∂t

(
∂u
∂x

+
∂w
∂z

)
= 0

(12)(
1 − ϵ2∇2

)
σxx = λ

∂w
∂z

+ (λ + 2µ)
∂u
∂x

− βmm − βTT (13)(
1 − ϵ2∇2

)
σxz = µ

∂u
∂z

+ µ
∂w
∂x

, (14)(
1 − ϵ2∇2

)
σxx = µ

∂u
∂z

+ µ
∂w
∂x

, (15)(
1 − ϵ2∇2

)
σzz = λ

∂u
∂x

+ (λ + 2µ)
∂w
∂z

− βmm − βTT (16)

To simplify numerical calculations, few dimensionless
quantities are introduced as given below:

x′ =
x
l

, z′ =
z
l

, u′ =
u
l

, w′ =
w
l

, ϵ′ =
ϵ

l
, t′ =

Dm

l2 t,

m′ = m, T′ =
T
T0

, σ′
ii =

σii
λ

,
(17)

where the quantity l has the dimension of length.
With the help of quantities in Eq. (17) Eqs. (9) to (12),

reduces to the following non-dimensional equations (after
dropping the primes):

(λ + 2µ)
∂2u
∂x2 + (λ + µ)

∂2w
∂x∂z

+ µ
∂2u
∂z2 − βm

∂m
∂x

− βTT0
∂T
∂x

=
ρD2

m
l2

(
1 − ϵ2∇2

) ∂2u
∂t2

(18)

µ
∂2w
∂x2 + (λ + µ)

∂2u
∂x∂z

+ (λ + 2µ)
∂2w
∂z2 − βm

∂m
∂z

− βTT0
∂T
∂z

=
ρD2

m
l2 (1 − ϵ2∇2)

∂2w
∂t2 ,

(19)

DTT0∇2T + Dm
T ∇2m − DmT0

∂T
∂t

− βTT0Dm

ρc
∂

∂t

(
∂u
∂x

+
∂w
∂z

)
= 0,

(20)

Dm∇2m + DT
mT0∇2T − Dm

∂m
∂t

− βmm0D2
m

km

∂

∂t

(
∂u
∂x

+
∂w
∂z

)
= 0.

(21)

We use potential functions φ and ψ to represent dis-
placement components u and w by following relation
(Helmholt’z representation)

u =
∂ϕ

∂x
− ∂ψ

∂z
, w =

∂ϕ

∂z
+

∂ψ

∂x
(22)

Using Eq. (22) in Eqs. (18) to (21), we get

(λ + 2µ)∇2ϕ − βmm − βTT0T =
ρDm

2

l2

(
1 − ϵ2∇2

) ∂2ϕ

∂t2
(23)

µ∇2ψ =
ρDm

2

l2

(
1 − ϵ2∇2

) ∂2ψ

∂t2 (24)

DTT0∇2T + Dm
T ∇2m − DmT0

∂T
∂t

− βTT0Dm

ρc
∂

∂t
∇2ϕ = 0,

(25)

Dm∇2m + DT
mT0∇2T − Dm

∂m
∂t

− βmm0Dm
2

km

∂

∂t
∇2ϕ = 0

(26)

4. Analytic solution

The Method of Normal mode analysis is used
to decompose the solution of the physical vari-
ables under consideration as

(
ϕ, ψ, T, m, σij

)
=(

ϕ∗, ψ∗, T∗, m∗, σ∗
ij

)
eik(x Sin θ+y Cos θ−vt) where v is phase

velocity and ϕ∗, ψ∗, T∗, m∗ and σ∗
ij are the amplitudes of

field quantities. Thus from Eqs. (23) to (26), we get(
a11 − a12v2

)
ϕ∗ + a13T∗ + a14m∗ = 0, (27)

{
µ −

ρD2
m
(
1 + ϵ2k2)
l2 v2

}
ψ∗ = 0, (28)

a21ϕ∗ +
(

a22 + a23v2
)

T∗ + a24m∗ = 0, (29)

a31ϕ∗ + a32T∗ +
(

a33 + a34v2
)

m∗ = 0, (30)
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Where

a11 = (λ + 2µ), a12 =
ρD2

m
(
1 + ϵ2k2)
l2 , a13 =

βTT0

k2 , a14 =
βm

k2 ,

a21 =
βTT0Dmiω

ρc
, a22 = DTT0, a23 =

DmT0
iω

, a24 = Dm
T ,

a31 =
βmm0D(m)

2iω
)

k(m)
, a32 = DT

mT0, a33 = Dm, a34 =
Dm

iω
.

(31)

Solving equation Eqs. (27), (29) and (30), we obtain

∣∣∣∣∣∣
(
a11 − a12v2) a13 a14

a21
(
a22 + a23v2) a24

a31 a32
(
a33 + a34v2)

∣∣∣∣∣∣ = 0

(32)

On solving the determinant Eq. (32), the following sixth
degree equation is obtained,

B1v6 + B2v4 + B3v2 + B4 = 0 (33)

where,

B1 = −a12a23a34

B2 = a11a34a23 − a12a22a34 − a12a33a23,

B3 = a11a22a34 + a11a33a23 − a12a22a33 + a12a24a32−

a13a21a34 − a14a31a23,

B4 = a11a22a33 − a11a24a32 + a13a24a31 + a14a32a21−

a14a31a22 − a13a21a33.

(34)

Rewriting Eq. (28) as

C1 − C2v2 = 0 (35)

where, C1 = µ, C2 = (ρD2
(m)

(1 + ϵ2k2))/l2.

The Zeros of Eqs. (33) and (35) i.e. vj(j = 1, 2, 3, 4)
represents the phase velocities of the P1, P2, P3, P4 waves. If
v−1

j = V−1
j + iω−1qj(j = 1, 2, 3, 4) where the phase velocity

v and wavenumber k are complex value, which can be
calculated as k = ω

V + iq s.t. V and q are real. If the Re(v) ≥
0, then the real parts of roots of Eqs. (33) and (35) indicate
propagation speed of P1, P2, P3, P4, and Img(v) ≤ 0 is the
damped wave. Hence, Vj can be called as the propagation
speeds and qj is the attenuation coefficients of the coupled
P1, P2, P3, and P4 waves.

Particular case- Wave propagation in hygrothermoelas-
tic half-space

Neglecting non-local parameter ϵ in Eq. (1), the problem
reduces to wave propagation in hygrothermoelastic half-
space discussed by Ailawalia et al. [25] as a special case
after neglecting hydrostatic initial stress in the medium.

5. Numerical results

Analytical results in the above section are confirmed by
showing a numerical example of taking wood slab as a
porous material. For this material, various physical con-
stants are given by Chang and Weng [26] and Yang et al.[27]
as per Table 1.

Fig. 2

Fig. 3

Fig. 4
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Table 1. Comparison of time performance and performance with different superpixel methods

Quantity Symbol Value with units
Lame’s constant λ 46.9 × 109 N/m2

Lame’s constant µ 24.17 × 109 N/m2

Density ρ 370Kg/m3

Poisson’s ratio v .33
Moisture reference m0 10%

Coefficient of Moisture expansion αm 2.68 × 10−3 cm/cm (H2O)
Coefficient of linear thermal expansion αT 31.3 × 10∧(−6)cm/cm(H2O)

Temperature T0 283 K
Heat Capacity c 2500j/Kg (∧0 K),

Moisture diffusivity km 2.2 × 10−8Kg/msM
Diffusion coefficient of moisture Dm 2.16 × 10−6 m2/sec

Coupled diffusivity DT
m 0.648 × 10−6 m2 (%H2O) /s

(0 K
)

Coupled diffusivity Dm
T 2.1 × 10−7 m2 (0 K

)
/s (%H2O)

Temperature diffusivity DT
k
ρc

Fig. 5

Fig. 6

6. Discussions

a. Effect of the non-local variable on phase velocities for
a fixed value of moisture concentration:
The numerical calculations are made at surface z=1.0,
for t= 1.0 and dimensionless quantity l = 1.0. The
results for penetration depth of waves at different
values of wave frequency ω are shown in Figs. 2
to 5 graphically .We have shown this variation for

Fig. 7

Fig. 8

three values of nonlocal variable i.e. ϵ =2,4,6 against
frequencyω(0 to20). We can see the increasing trends
in phase velocity for different values of ϵ(non-local
parameter) for P1, P2, and P3. Whereas, for P4 waves
the phase velocity varies for different values ϵ but
remains constant for different wave numbers ω.

b. Effect of moisture concentration on phase velocities
for a known value of the non-local variable:
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Fig. 9

Fig. 10

Fig. 11

The graphical results of Phase velocity of waves for
distinct values of wave frequency ω are shown in
Figs. 6 to 8. We have shown these variations for
three values of moisture references i.e. mo=0.0,0.3,0.5
against frequency ω. We observe that in the absence
of moisture, the phase velocities v1 and v2 keep
increasing along with frequency ω. However,in
the presence of moisture component, we can see
similar trends as in the previous case (i.e. absences
of moisture). But, at the same time, we find that the
values of phase velocities v1 and v3 are increases
as we hiked the moisture content i.e. values of mo.

Fig. 12

Surprisingly, the phase velocity v2 shows opposite
results. The variations are similar with increasing
trends both in the presence and absence of moisture
but the value of velocity v3 for a fixed frequency
decrease as moisture content increase. These values
of velocity v4 increase as the value of moisture is
increased.

c. Effect of moisture diffusivity on phase velocities for a
known value of the non-local variable and moisture
concentration:
The graphical results of Phase velocity of waves for
different values of wave frequency ω are shown in
Figs. 9 to 12. The variation for three values of the
diffusion coefficient of moisture i.e.Dm=2,4,6 against
frequency ω have plotted .Here, we have noticed de-
crease in all three phase velocities with an increase
in value of the coefficient of the diffusion coefficient
Dm. The decrease in phase velocity of all components
with the value of frequency is similar to previous cases.
For the P4 waves, the phase velocity increases for dif-
ferent values Dm diffusion coefficient of moisture but
remains constant for different wave frequencies ω.

7. Conclusion

a. The coupled wave equations are derived in terms
of displacement, temperature, and moisture concen-
tration. Further, speed waves, namely, P1, P2, P3,
and P4, are calculated for a given material. The in-
fluence of ϵ the nonlocal Variable is reflected very
clearly in various plots for different wave frequen-
cies ω on speeds. It is observed that phase velocity for
P1, P2and P3 keeps increasing along with frequency
ω, and P4shows similar trends for different values of
wave frequencies ω.

b. The influence of moisture concentration on the phase
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velocities is depicted in the present work. We can see
an increase in the phase velocities as moisture concen-
tration is increased.

c. We may conclude that the coefficient of diffusion af-
fects the phase velocities oppositely as moisture con-
centration.

d. The change in the phase velocities is very less when
temperature changes up to 50 K but the values increase
if temperature variation is high.

e. Our results aids in the evaluation of the wave propa-
gation phenomenon in a thermoelastic medium con-
taining moisture. The results obtained are very useful
in seismology.
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coupled heat and moisture transport: part1-theory" Jour-
nal of Thermal Stresses 35(1-3): 248–268.

[15] T. Gasch, R. Malm, and A. Ansell, (2016) “A coupled
hygro-thermo-mechanical model for concrete subjected to
variable environmental condition" International Jour-
nal of Solids Structures 91: 143–156.

[16] A. Szekers and B. J. Engel, (2000) “Coupling of general-
ized heat and moisture transfer" Periodica Polytechnica
Mechanical Engineering 44(1): 161–170.

[17] G. M, J. F, M. J, and A. Vautrin, (2007) “Transient and
cyclical hygrothermoelastic stress in laminated composite
plates modelling and experimental assessment" Mechan-
ics of Materials 39(8): 729–745.

[18] G. D and P. F, (2003) “Modelling of hygro-thermal
behavior of concrete at high temperature with thermo-
chemical and mechanical material degradation and Engi-
neering" Computer methods in Applied Mechanics
192: 1731–1771.

[19] S. Raja, (2004) “Influence of active stiffening on the dy-
namic behavior of piezo-hygro-thermo-elastic composite
plates and shells" Journal of Sound and Vibration
278(1-2): 257–283.

[20] A. J and W. T. O, (2000) “A coupled micro-
macromechanical analysis of hygrothermoelastic compos-
ites" International Journal of Solids and Structures
37(30): 4149–4179.

[21] R. V. V. S and S. P. K, (2004) “Dynamic response of mul-
tidirectional composites in hygrothermal environments"
Composite Structures 64(3-4): 329–338.



2452 Vikas Sharma et. al

[22] S. Vlase, C. Nastac, M. Marin, and M. Mihalcica,
(2017) “A Method For The Study Of The Vibration Of Me-
chanical Bars Systems With Symmetries" Acta Technica
Napocensis Series Applied Mathematics, Mechan-
ics and Engineering 60(4): 539–544.

[23] S. M. Hosseini, J. Sladek, and V. Sladek, (2013) “Ap-
plication of meshless local integral equations to two-
dimensional analysis of coupled non-Fick diffusion-
elasticity" Engineering Analysis with Boundary Ele-
ments 37(3): 603–615.

[24] A. Montanaro, (1999) “On singular surfaces in isotropic
linear thermoelasticity with initial stress" The Journal
of the Acoustical Society of America 106(3): 1586–
1588.

[25] P. Ailawalia, D. Gupta, and V. Sharma, (2022) “Surface
waves in hygrothermoelastic half-space with hydrostatic
initial stress" Mechanics of Advanced Materials and
Structures 29(16): 2380–2389.

[26] W. J. Chang and C. I. Weng, (2000) “An analytical
solution to coupled heat and moisture diffusion transfer in
porous materials" International Journal of Heat and
Mass Transfer 43(19): 3621–3632.

[27] Y. C. Yang, C. Shao-Shu, L. Haw-Long, and L. Shu-
Lin, (2006) “Hybrid numerical method applied to tran-
sient hygrothermal analysis in an annular cylinder" Inter-
national communications in Heat and Mass Trans-
fer 33(1): 102–111.


	Introduction
	Basic equations
	Formulation
	Analytic Solution
	Numerical results
	Discussions
	Conclusion

