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Thi-Van-Anh Nguyen∗ and Ngoc-Hiep Tran

School of Electrical and Electronic Engineering, Hanoi University of Science and Technology

∗Corresponding author. E-mail: anh.nguyenthivan1@hust.edu.vn

Received: Jun. 08, 2023; Accepted: Jul. 31, 2023

This paper addresses the challenging control problem of stabilizing an inverted pendulum on a cart. The
inherent nonlinearity, instability, and underactuation of the system pose significant difficulties in achieving
simultaneous pendulum stabilization and cart movement. To overcome these challenges, we propose an
integrated approach that combines Linear Quadratic Regulator (LQR) and fuzzy logic control methods. This
integrated control strategy effectively stabilizes the pendulum and controls the cart’s position. Notably, the
integrated control outperforms the LQR control in terms of convergence speed. Furthermore, we explore the use
of observers for state estimation, specifically the high-order integral-chain differentiator and the extended state
observer, to accurately estimate pendulum angular velocity. Simulation results, along with detailed discussions,
are presented to validate the accuracy and effectiveness of the proposed control methods and observers.
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1. Introduction

The inverted pendulum is a fascinating area of research that
has garnered significant attention from many scholars [1, 2].
This is a classic example of a challenging control problem in
the field of control systems engineering due to its inherent
nonlinearity, instability, and underactuation. It has prac-
tical applications in a variety of fields, including human
balance modeling [3] and the design of self-balancing two-
wheeled electric vehicles [4]. In this paper, we focus on
studying the control technique for the inverted pendulum
on a cart. The system is described as Fig. 1 where a cart
moves along a track and the goal is to keep the pendulum
balanced in a vertical position while the cart moves.

There are multiple challenges associated with control-
ling an inverted pendulum. Firstly, the system’s inherent
nonlinearity and instability imply that even minor varia-
tions in initial conditions or external disturbances can cause

the pendulum to collapse. Secondly, the system is under-
actuated, meaning that there is only one control input (the
horizontal force applied to the cart) but two degrees of
freedom (the position of the cart and the angle of the pen-
dulum). This makes designing a control system that can
stabilize the pendulum while simultaneously moving the
cart a difficult task. There are several control methods that
can be used to stabilize an inverted pendulum system, in-
cluding: proportional-integral-derivative (PID) control [5],
model predictive control (MPC) [6], sliding mode control
(SMC) [7], linear quadratic regulator (LQR) [8], fuzzy logic
control [9] ... LQR, a simple control method that requires a
detailed understanding of the system dynamics, has a fast
response that enables quick stabilization of the pendulum
and prevents it from falling over. Fuzzy logic control [10]
is a nonlinear control method so that it can handle the non-
linear dynamics of an inverted pendulum system. It is also
a robust control method that can handle uncertainties and
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Fig. 1. Model of inverted pendulum on a cart.

disturbances in the system. This allows the controller to ad-
just to changes in the system dynamics and maintain stable
control of the system. Therefore, we combine both of these
control techniques. By combining these two controllers,
not only did we aim to achieve pendulum stability, but we
also sought to enhance performance. The integration of
these controllers resulted in faster stabilization and setup
times for the pendulum, thus improving overall system
performance.

Building on the strengths of both control methods, the
combination of LQR and Fuzzy Logic Control (FLC) has
been a subject of research and development. In a recent
paper [11], the inverted pendulum system is represented
using a Takagi-Sugeno (TS) fuzzy model, converting the
nonlinear system into multiple linear subsystems. Each of
these subsystems is then controlled using LQR controllers.
The control signals from these LQR controllers are com-
bined using a parallel distribution compensator (PDC) to
control the entire system. Another approach, presented in
references [12], involves combining Mamdani fuzzy control
with LQR. In this method, the LQR controller’s value is
computed first and then used to design the Linear Fusion
Function (LFF). However, determining the appropriate lan-
guage variables for the control signals in this approach
can be challenging and relies heavily on the designer’s
experience. Even though the systems studied in the afore-
mentioned articles differ from the inverted pendulum on
the cart, the combination of control methods demonstrated
its efficacy and feasibility, suggesting its potential appli-
cability to the inverted pendulum system on the cart as
well. To improve upon these methods, we propose a novel
combination in which the LQR and Fuzzy controllers are
independently calculated, and the final control signal is
synthesized based on the outputs of both controllers. This

new approach aims to harness the benefits of each method
effectively and achieve superior control performance for
the inverted pendulum system.

The dynamics of the system can be characterized by
the cart’s position and velocity, the pendulum’s angle and
angular velocity, and the applied force. However, in prac-
tical applications, direct measurement of all these states,
particularly the angular velocity of the pendulum, may not
be feasible. To address this limitation, observers [13] are
employed to estimate the unmeasured states. By providing
accurate estimations, these observers enhance the perfor-
mance of the control system. In this study, we utilize the
high-order integral-chain differentiator and extended state
observer as the chosen observers. Through a comparison
of the results obtained using both observers for pendulum
angle velocity estimation and stability control, the high-
order integral-chain differentiator demonstrated superior
performance compared to the extended state observer in
terms of error estimation and peak overshoot.

This article presents several significant contributions in
the field of inverted pendulum control:

• Designing an integrated control approach by combin-
ing Linear Quadratic Regulator (LQR) and Takagi-
Sugeno (T-S) fuzzy control methods. This integration
enhances control performance and facilitates faster
convergence of control signals.

• The high-order integral-chain differentiator and ex-
tended state observer are utilized to accurately esti-
mate the angular velocity of the pendulum. This al-
lows for precise state estimation with small error.

• Demonstrating the efficacy of the composite controller
on both the pendulum and cart position. The results
indicate that the proposed control approach achieves
successful stabilization and control of the inverted
pendulum on a cart system.

• Validation of the obtained results through simulation
results of the inverted pendulum on a cart, confirm-
ing the practical applicability and effectiveness of the
proposed control methods.

2. Inverted pendulum modeling

In the model of an inverted pendulum on a cart shown in
Fig. 1, the mass of the pendulum is denoted by mp (kg),
the mass of the cart is denoted by mc (kg), the length of
the connecting rod is denoted by l (m) and the rotation
angle of the pendulum from the Y-axis is denoted by ϕ. The
force affecting the cart in the X-axis is denoted by u and g

represents the acceleration due to gravity. The coordinates
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of the pendulum are defined as (x̃,ỹ), where xd represents
the distance traveled by the cart.

x̃ = xd + lsinϕ, ỹ = lcosϕ (1)

With the potential energy is EP = mpglcosϕ and the ki-
netic energy is EK = 1

2 mc ẋ2
d +

1
2 mp( ˙̃x2 + ˙̃y2), the Lagrange

equation can be derived as:

L = EK − EP =
1
2
(mc + mp)ẋ2

d +
1
2

mpl
2ϕ̇2 + mplϕ̇ẋdcosϕ

− mpglcosϕ.
(2)

To construct a model of an inverted pendulum on a cart,
the Euler-Lagrange equation is required:

d
dt

(
δL
δẋd

)− δL
δxd

= u,
d
dt

(
δL
δϕ̇

)− δL
δϕ

= 0. (3)

Using the Euler-Lagrange equation as above, the kine-
matic equation is derived:

{ (
mc + mp

)
ẍd + mpℓϕ̈ cos ϕ − mpℓϕ̇2 sin ϕ = u,

ℓϕ̈ + ẍd cos ϕ − g sin ϕ = 0.
(4)

The angle of the pendulum and cart distance dynamics
are obtained by merge and transform those set of Eq. (4):

ϕ̈ =
(mc+mp)g sin ϕ−mpℓϕ2 sin ϕ cos ϕ−u cos ϕ

ℓ[mp(1−cos2 ϕ)+mc]
,

ẍd =
−mp g sin ϕ cos ϕ+mpℓϕ2 sin ϕ+u

mp(1−cos2 ϕ)+mc
.

(5)

Let the state variables as x = [ xd ẋd ϕ ϕ̇ ]⊤ and the
Eq. (5) can be expressed as:

ẋ = Ax +Bu, (6)

where

A =


0 1 0 0

0 0 −mp g sin ϕ cos ϕ

ϕ[mp(1−cos2 ϕ)+mc]
mpℓϕ̇ sin ϕ

mp(1−cos2 ϕ)+mc

0 0 0 1

0 0 (mc+mp)g sin ϕ

ϕℓ[mp(1−cos2 ϕ)+mc]
−mpℓϕ̇ sin ϕ cos ϕ

e[mp(1−cos2 ϕ)+mc]

 ,

B =


0
1

mp(1−cos2 ϕ)+mc

0
− cos ϕ

ℓ[mp(1−cos2 ϕ)+mc]


(7)

Once the system of kinematic equations for the pendu-
lum on the cart has been established, the subsequent step
involves designing controllers to achieve stable control of
the pendulum.

3. Control design for enhanced system perfor-
mance

In this section, we will discuss a control design approach
aimed at improving the performance of a stable controller
for an inverted pendulum on a cart system. Specifically,
two control techniques will be combined: Linear Quadratic
Regulator (LQR) and Takagi-Sugeno (T-S) fuzzy control.
The proposed fuzzy controller will be designed to enhance
the stability of the pendulum angle, which is the main objec-
tive of controlling the inverted pendulum on the cart. In or-
der to calculate the control signal using LQR, the state vari-
ables of the system need to be defined as x = [ xd ẋd ϕ ϕ̇ ]⊤.
However, since the fuzzy logic controller is only concerned
with stabilizing the pendulum angle, we can simplify the
system model by using a reduced state variable vector, de-
noted by x̄ = [ϕ ϕ̇ ]⊤. xre f , ϕre f denote the reference of
cart position and pendulum angle, respectively. The total
control signal is presented as:

u = ū+ ũ. (8)

where ũ, ū is LQR and T-S control signal, respectively.

3.1. Linear Quadratic Regulator

While the inverted pendulum system is nonlinear, it is pos-
sible to use linear control techniques such as LQR (Linear
Quadratic Regulator) to stabilize it. LQR is a control strat-
egy designed for linear systems, but it can be applied to
nonlinear systems like the inverted pendulum by lineariz-
ing the system dynamics around an operating point. This
involves approximating the nonlinear system by a linear
one within a small region around the equilibrium point. In
the context of linearization around the equilibrium point
and employing the LQR controller for nonlinear systems,
findings from the article [14] have provided valuable in-
sights. The study showcased that within the active region
surrounding the equilibrium point, the approximated lin-
ear model exhibits a response closely resembling that of
the original nonlinear model. Moreover, the LQR controller
effectively governs the system within this active region,
demonstrating its capability in controlling the nonlinear
dynamics of the system. These results affirm the feasibil-
ity and efficiency of using LQR-based control techniques
for stabilizing nonlinear systems within their operational
regions. Given a system in state-space form:

ẋ = Ax(t) +Bũ(t) (9)

where ũ is the LQR control signal. A finite-horizon cost
function is define as:

Q =
∫ ∞

0
(x⊤Mx+ ũ⊤Nũ)dt, M = M⊤ ⪰ 0, N = N⊤ ≻ 0.

(10)
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The purpose is finding the optimal cost-to-go function
Q∗(x) which satisfy this equation:

0 = min
ũ

[x⊤Mx + ũ⊤Nũ+
∂Q∗

∂x
(Ax +Bũ)], ∀x. (11)

The optimal cost-to-go function is quadratic and chosen
as Q∗(x) = x⊤λx, λ = λ⊤ ⪰ 0. The gradient function
is ∂Q∗

∂x = 2x⊤λ. Finding the solution of ∂
∂ũ = 2ũ⊤N +

2x⊤λB = 0 is equivalent to solving Eq. (11), in which all
the terms are convex and quadratic. The control signal ũ is
derived as:

ũ = −N−1B⊤λx = −Kx. (12)

Substituting this into Eq. (11) and simplifying, we ob-
tain 0 = x⊤[M − λBN−1B⊤λ + λA +A⊤λ]x. Since this
condition must hold for all x, this means:

M − λBN−1B⊤λ + λA +A⊤λ = 0. (13)

This function can be solved by calling K =

lqr(A,B, M, N) in MATLAB’s Simulink. With the con-
trol signal in Eq. (12), the closed-loop can be expressed
as ẋ = (A −BK)x. Choose the Lyapunov function:

V(x) = x⊤λx. (14)

Take the derivative with respect to time of Eq. (14):

V̇(x) =
∂V
∂x

dx
dt

= 2x⊤λ(A −BK)x

= x⊤[λ(A −BK) + (A −BK)⊤λ]x.
(15)

From Eq. (13) and K = N−1B⊤λ in Eq. (12):

λA − λBK+A⊤λ −K⊤B⊤λ + M = −K⊤B⊤λ

⇐⇒λ(A −BK) + (A −BK)⊤λ = −K⊤NN−1B⊤λ − M

= −K⊤NK− M
(16)

We have N ≻ 0 and M ⪰ 0 then −K⊤NK− M < 0 ⇒
λ(A−BK) + (A−BK)⊤λ < 0. The derivative V̇(x) < 0
means the system is asymptotically stable with the control
signal ũ = −Kx.

3.2. Pendulum stablization with Takagi-Sugeno Fuzzy
model

Takagi-Sugeno models (T-S models) can effectively repre-
sent many nonlinear dynamics systems. There are two
main approaches to construct a T-S model: identification
based on input-output data or utilizing existing nonlinear
equations. In this paper, the latter approach is adopted.
The T-S model is formed by combining multiple linear sub-
system models, where each subsystem corresponds to an

IF-THEN rule that captures the local linear input/output
relationship.

{
˙̄x(t) = Am(z)x̄(t) +Bm(z)ū(t), m = 1, 2, . . . 2q,

y(t) = Cm x̄(t),
(17)

where q is the number of premise variables and 2q denote
the number of model rules, m is the mth rule, z is premise
variable. The membership functions of corresponding
premise variables z are defined as wm(z) = ∏q

i=1 hiη(zi),
1 ≤ m ≤ 2q, η ∈ {0, 1}, hi is the grade of membership
function. Therefore,

˙̄x(t) =
2q

∑
m=1

wm(z) {Am(z)x̄(t) +Bm(z)ū(t)} . (18)

Next, the parallel distributed compensation (PDC)
fuzzy controller for a subsystem is designed as ū(t) =

−Fmx̄(t), m = 1, 2, · · · 2q. And the overall fuzzy controller
is obtained:

ū(t) = −
2q

∑
m=1

wm(z)Fmx̄(t), (19)

where the feedback gain for mth rule is Fm . Combining
Eq. (18) with Eq. (19), the equation describing the system is
as follows:

˙̄x(t) =
2q

∑
m=1

2q

∑
n=1

wm(z)wn(z)[Am(z)−Bm(z)Fn ]x̄(t). (20)

Following the Theorem in [15], the closed-loop system
is asymptotically stable if there exist a common positive
definite matrix S and matrices Hn that satisfy the following
inequalities.


AmS −BmHm + SA⊤

m − H⊤
mB⊤

m < 0,
AmS −BmHn + SA⊤

m − H⊤
n B⊤

m

+AnS −BnHm + SA⊤
n − H⊤

mB⊤
n < 0,

(21)

where m, n ∈ {1, 2, · · · 2q} ,m < n. As a result, the control
gains Fn of the PDC controller can be deduced Fn = HnS−1.
Proof: With Q being a positive definite matrix, the Lya-
punov function is chosen as follows:

V(x̄) = x̄⊤(t)Qx̄(t). (22)

Taking derivative of V(x̄) with respect to t:

V̇(x̄) = ˙̄x⊤(t)Qx̄(t) + x̄⊤(t)(Q̇x̄(t) + Q ˙̄x(t)). (23)
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Substituting Eq. (20) into Eq. (23), we obtain:

V̇(x̄) =
2q

∑
m=1

2q

∑
n=1

wm(z)wn(z)x̄⊤(t)[
(Am −BmFn)

⊤Q + Q(Am −BmFn)
]
x̄(t)

=
2q

∑
m=1

w2
m(z)x̄

⊤(t)[(Am −BmFm)
⊤Q

+ Q(Am −BmFm)]x̄(t) + 2
2q

∑
m=1

2q

∑
m<n

wm(z)wn(z)x̄⊤(t)

× [

(
(Am −BmFn) + (An −BnFm)

2

)⊤
Q

+ Q
(Am −BmFn) + (An −BnFm)

2
]x̄(t).

(24)
Therefore, V̇(x̄) < 0, x̄ ̸= 0 is equivalent to

A⊤
m Q + QAm − F⊤

mB
⊤
m Q − QBmFm < 0,

A⊤
m Q + QAm − F⊤

n B
⊤
m Q − QBmFn

+A⊤
n Q + QAn − F⊤

mB
⊤
n Q − QBnFm < 0.

(25)

We define S = Q−1 then multiply Eq. (25) with the term
S on left and right:

SA⊤
m +AmS − SF⊤

mB
⊤
m −BmFmS < 0,

SA⊤
m +AmS − SF⊤

n B
⊤
m −BmFnS

+SA⊤
n +AnS − SF⊤

mB
⊤
n −BnFmS < 0.

(26)

For S ≻ 0 and set Hn = FnS, therefore Fn = HnS−1.
Substituting into the above inequality shows: SA⊤

m +AmS − H⊤
mB⊤

m −BmHm < 0,
SA⊤

m +AmS − H⊤
n B⊤

m −BmHn + SA⊤
n +AnS − H⊤

mB⊤
n

−BnHm < 0.
(27)

This concludes the proof.
The aim of this study is to apply the theoretical princi-

ples of Takagi-Sugeno control. In this section, a comprehen-
sive overview of the Takagi-Sugeno control theory is pro-
vided, encompassing its construction methods and model
synthesis techniques. Additionally, a state model, repre-
sented by Eq. (6), is introduced to describe the kinematic
of the inverted pendulum on a cart system. The primary
objective is to leverage the theory of model reconstruction
and formulate a T-S fuzzy model structure to effectively
control the behavior of the inverted pendulum system. Let
the premise variables as:

z1 =
1

l[mp(1 − cos2ϕ) + mc]
, z2 =

sinϕ

ϕ
,

z3 = cosϕ, z4 = ϕ̇sinϕ.
(28)

Substituting the premise variables z, we get:

ATS =

[
0 1

(mc + mp)gz1z2 −mplz1z3z4

]
,

BTS =

[
0

−z1z3

]
,

(29)

where ATS = ∑16
m=1 wm(z)Am(z) and BTS =

∑16
m=1 wm(z)Bm(z). The model of the inverted pen-

dulum system will consist of four premise variables which
will result in the creation of 16 fuzzy rules (24) to capture
the system’s behavior accurately. Each fuzzy rule will
describe a specific relationship between the inputs and
outputs, enabling comprehensive control of the inverted
pendulum. Let us define:

h0
i =

zimax − zi
zimax − zimin

, h1
i = 1 − h0

i , i = 1, 2, 3, 4. (30)

Then, some membership functions of the T-S fuzzy model
are:

w1 = h0
1 ∗ h0

2 ∗ h0
3 ∗ h0

4; w2 = h1
1 ∗ h0

2 ∗ h0
3 ∗ h0

4;
w15 = h0

1 ∗ h1
2 ∗ h1

3 ∗ h1
4; w16 = h1

1 ∗ h1
2 ∗ h1

3 ∗ h1
4.
(31)

In order to accomplish the objective of the original prob-
lem, an integrated controller will be formulated by combin-
ing the control signals of LQR and T-S, as discussed in this
section. The combined control signal can be expressed as
follows:

u = ū+ ũ = −
16

∑
m=1

wm(z)Fmx̄(t)−Kx(t). (32)

By examining the stability of the system under the com-
bined control signal in Eq. (32), we introduce the Lyapunov
function as follows:

Vcb = V + V. (33)

Here, V is defined in Eq. (14), and V is defined in Eq. (22).
It is evident that Vcb > 0. Calculating the time derivative
of Vcb, we obtain:

V̇cb = V̇ + V̇. (34)

The terms V̇ and V̇ have been previously proven to be
negative. As a result, V̇cb < 0, confirming the asymptotic
stability of the system under the combined control u.

4. Estimation of pendulum angular velocity: ob-
server design and analysis

Determining of pendulum angular velocity is crucial in con-
trol systems. However, directly measuring pendulum an-
gular velocity poses significant challenges. Observers pro-
vide a suitable solution to overcome this limitation. In this
paper, we propose two observers: the high-order integral-
chain differentiator and the extended state observer. These
observers enable accurate estimation of pendulum angle
velocity, facilitating effective control of the system.
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4.1. High-order integral-chain differentiator

Following the presentation of high-order integral-chain
differentiator in [16, 17], its expression for the system below
is shown as:

ẋ1 = x2,
ẋ2 = x3,

...
ẋk−1 = xk

ẋk = f + hu,
y = x1.

=⇒



˙̂x1 = x̂2,
˙̂x2 = x̂3,,

...
˙̂xk = x̂k+1,

ẋk+1 = − α1
εk+1 (x̂1 − x1)− α2

εk x̂2 − · · · − αk
ε2 x̂k −

αk+1
ε x̂k+1,

(35)
where f, h are nonlinear functions, x̂1, x̂2, x̂3, ..., x̂k , x̂k+1

are estimated values, x1 is practical value, ε is chosen suffi-
ciently small, α1, α2, ...αk+1 are positive constant such that

sk+1 + αk+1sk + · · ·+ α2s + α1 = 0 (36)

is Hurwitz. Hence, arcording to [16], it can be inferred that:

lim
ε→0

x̂i = xi , i = 1, 2, · · · , k. (37)

Using model derived from section 2 and observing state
of the system as the angular velocity of pendulum, the
observer is designed as follows:

˙̂x1 = x̂2,
˙̂x2 = x̂3,

˙̂x3 = − α1
ε3 (x̂1 − ϕ)− α2

ε2 x̂2 − α3
ε x̂3,

(38)

where x̂1 is estimated angle ϕ̂ of the pendulum, x̂2 is esti-
mated angular velocity ˙̂ϕ of the pendulum.

4.2. Extended state observer

According to [18], by regarding f as an extended state xk+1,
the extended state observer for the below system is de-
signed as:



ẋ1 = x2,
ẋ2 = x3,

...
ẋk−1 = xk ,
ẋk = f+ hu,

y = x1.

⇒



˙̂x1 = x̂2 −
β1
ε (x̂1 − y),

˙̂x2 = x̂3 −
β2
ε2 (x̂1 − y),
...

˙̂xk−1 = x̂k −
βk−1
εk−1 (x̂1 − y),

˙̂xk = hu+ x̂k+1 −
βk

εk
(x̂1 − y),

˙̂xk+1 = − βk+1
εk+1 (x̂1 − y).

(39)
where f, h are nonlinear functions. In this paper’s control
problem, the observer’s input is ϕ and the variable that
requires estimation is the angular velocity of the pendulum.

Hence, the observer should be:
˙̂x1 = x̂2 −

β1
ε (x̂1 − ϕ),

˙̂x2 = bu+ x̂3 −
β2
ε2 (x̂1 − ϕ),

˙̂x3 = − β3
ε3 (x̂1 − ϕ),

(40)

where x̂1, x̂2, x̂3 are the states of observer, ε>0, b is equal
to cosϕ

l[mp(1−cos2ϕ)+mc ]
. β1, β2, β3 are positive constants and

polynomial s3 + β1s2 + β2s + β3 is Hurwitz. It has:

lim
ε→0

x̂1 = x1, lim
ε→0

x̂2 = x2, lim
ε→0

x̂3 = f, (41)

with x̂1 is estimated angle ϕ̂ of the pendulum, x̂2 is esti-
mated angular velocity ˙̂ϕ of the pendulum, f represent the
disturbance in the system.

5. Simulation and result

In simulation, parameters of the pendulum and the cart are
chosen as: mp = 0.2(kg), g = 9.8(m/s2), mc = 1(kg), l =

1(m). The initial conditions of state variables are xd0 =

0 (m), ẋd0 = 0 (m/s), ϕ0 = π
9 (rad), ϕ̇0 = 0 (rad/s). With

the determined parameters, zimax, zimin are fixed, see Ta-
ble 1. Following the equations Eqs. (30) and (31), h0

i , h1
i

and wm can be calculated, respectively. The coefficient of
observers are chosen as: α1 = 1, α2 = 3, α3 = 3, β1 = 6,
β2 = 11, β3 = 6, ε = 0.01. Furthermore, MATLAB’s
Robust Control Toolbox help us in solving LMI problem
to find out the feedback gain Fn . Then, the control sig-
nal ū is derived. By chosing M and N as follow: M =

50 0 0 0
0 1 0 0
0 0 50 0
0 0 0 1

 , N = 1 , the gain K can be calculated as

K = [ −7.0711 − 8.6224 − 62.6499 − 19.2600 ]. The
simulation results of the pendulum system are presented
through Fig. 2, depicting the pendulum angle and the an-
gular velocity. To assess the effectiveness of the proposed
controller, we conduct a comparative analysis with two
other controllers: the LQR controller and the controller
proposed in [11]. The controller in [11] also combines T-S
fuzzy and LQR techniques, but it differs from the proposed
controller as LQR is applied to the fuzzy subsystems in
that case. Analyzing the pendulum angle, we observe that
the proposed integrated controller achieves a settling time
of 3.6227 seconds, which is faster than both LQR and the
controller proposed in [11]. Similarly, for the angular veloc-
ity, the integrated controller demonstrates faster stabiliza-
tion compared to these controllers. These findings provide
substantial evidence supporting the superior convergence
speed of the proposed integrated controller, see Table 2.

In Fig. 3 the blue lines represent the system states: cart
position xd and pendulum angle ϕ, when utilizing the high-
order integral-chain differentiator. Conversely, the red lines
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Table 1. Maximum and minimum values of the permise
variables z.

i 1 2 3 4
zimax 1 1 1 1
zimin 0.8333 0.6366 6.1232 × 10−17 -1

Fig. 2. The pendulum angle ϕ and angular velocity ϕ̇ when
using LQR, controller in [11] and integrated controller.

depict the same state variables, but with the implemen-
tation of the extended state observer. These results are
obtained under disturbance-free conditions. For both ob-
servers, the cart position stabilizes after 5.5 seconds and the
pendulum angle takes more than 4 seconds to stabilize. The
stabilization times of the state variables are similar when
using the two observers. However, the extended state ob-
server exhibits larger overshoots in the pendulum angle
and cart position compared to the high-order integral-chain
differentiator. Considering the limitations of the track, the
high-order integral-chain differentiator outperforms when
starting with a higher initial angle ϕ0.

Fig. 3. The cart position xd and pendulum angle ϕ in the
absence of disturbance.

The estimated values in Fig. 4 correspond to the prac-

tical values. The extended state observer exhibits a faster
response than the high-order integral-chain differentiator
(0.08 seconds compared to 0.4 seconds). However, the ex-
tended state observer has a large peak at the start, resulting
in a higher root mean square observed error than the high-
order integral-chain differentiator. Table 3 provides the root
mean square value as well as the maximum and minimum
values of the errors of both observers. In Table 3, under
disturbance-free conditions, the results indicate that the
high-order integral-chain differentiator set outperforms in
terms of estimation.

Fig. 4. Observer result of pendulum angular velocity ϕ̇

using both observers in the absence of disturbance.

In the presence of disturbance which is the white noise
signal with noise power of 0.01 in Fig. 5, the state systems
of the two observers are depicted in Fig. 6. Both observers
achieve stable cart position after 5.5 seconds and the pen-
dulum angle approach zero in approximately 4 seconds.
Despite the presence of disturbance, the state variables ex-
hibit oscillations around the equilibrium point and their
stabilization times are not significantly affected. Similar to
the case without disturbance, the extended state observer
continues to exhibit larger overshoots in cart position xd

and pendulum angle ϕ compared to the high-order integral-
chain differentiator.

Both observers demonstrate efficiency in handling the
presence of disturbance. The time required for the esti-
mated values to converge to the actual values does not
show significant changes, see Fig. 7. However, in the pres-
ence of disturbance, the maximum and root mean square
of estimated errors increase. In each case, the high-order
integral-chain differentiator proves to be more suitable than
the extended state observer.
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Table 2. Performance comparison.

Cart position (xd) Pendulum angle (ϕ)
Integrated LQR Ref [11] Integrated LQR Ref [11]

Settling time (s) 3.6227 5.0289 8.0113 3.2138 4.0091 4.6497
Overshoot/ Undershoot 0.923 m 0.955 m 0.988 m -0.187 rad -0.142 rad -0.118 rad

Table 3. Comparison between observed errors.

Without disturbance With disturbance
The root mean square error (high-order) 2.1564 2.163
The root mean square error (extended) 6.5751 7.0462

The maximum error (high-order) 10.89 10.89
The maximum error (extended) 47.64 47.83

The minimum error (high-order) 1.8080 ×10−9 1.7755 ×10−9

The minimum error (extended) 4.0585 ×10−7 4.0585 ×10−7

Fig. 5. Disturbance signal.

Fig. 6. The cart position xd and pendulum angle ϕ in the
presence of disturbance.

6. Conclusion and discussion

In conclusion, this study successfully addressed the chal-
lenging control problem of the inverted pendulum on a
cart. By integrating the Linear Quadratic Regulator (LQR)
and Takagi-Sugeno (T-S) fuzzy control methods, the control

Fig. 7. Observer result of pendulum angular velocity ϕ̇

using both observers in the presence of disturbance.

performance was enhanced and faster convergence of con-
trolled signals was achieved. The utilization of high-order
integral-chain differentiator and extended state observer
improved state estimation accuracy. The proposed com-
posite controller demonstrated superior performance in
stabilizing and controlling both the pendulum and cart
position. Simulation results confirmed the effectiveness
of the proposed control methods. Overall, this study con-
tributes valuable insights and guidance for future research
and practical applications in the field of control systems
engineering.

The proposed control method faces challenges related to
robustness in handling uncertainties in system dynamics,
sensor measurements, and external disturbances. More-
over, the integration of multiple control techniques and
observers may lead to increased complexity, hindering
smooth implementation. To address these limitations, fu-
ture work should focus on enhancing robustness by incor-
porating adaptive or robust control strategies, such as on-
line parameter adaptation algorithms or real-time compen-
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sation schemes. Additionally, efforts to streamline the con-
trol system’s complexity can be pursued through advanced
control synthesis techniques, model reduction methods, or
optimization algorithms, ensuring efficient implementation
and maintenance without compromising performance and
stability.
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