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We derive a bound for entropy production in terms of the mean of normalizable
path-antisymmetric observables. The optimal observable for this bound is shown
to be the signum of entropy production, which is often easier determined or
estimated than entropy production itself. It can be preserved under coarse
graining by the use of a simple path grouping algorithm. We demonstrate this
relation and its properties using a driven network on a ring, for which the bound
saturates for short times for any driving strength. This work can open a way to
systematic coarse graining of entropy production.
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1 Introduction

A common way of analyzing complex systems is observation of particle trajectories, e.g.,
via microscopy [1–3] in biological systems [4–8] or complex fluids [9, 10]. Detecting and
quantifying the deviation from equilibrium, i.e., the violation of detailed balance, based on
trajectories is, however, a challenging task, especially if relevant degrees of freedom are
hidden, and non-equilibrium processes are random [11–17]. Several methods for such
detection have been developed.

The fluctuation dissipation theorem (FDT) connects fluctuations and response
functions [18], and it is violated out of equilibrium [19–21]. How far away from
equilibrium a system is, e.g., has been quantified by using the so-called effective
temperatures or effective energies [22–27].

Another way of detecting broken detailed balance is via entropy production, which has
been found to obey a variety of theorems including the fluctuation theorems [28–31]. A
number of important relations have been found that bound entropy production, such as the
thermodynamic uncertainty relation (TUR) [32–38]. The TUR bounds mean and variance
of currents by entropy production or vice versa. It has been extended and refined, including
path antisymmetric observables (FTUR) or to more general path weights [39–42] and has
been applied to experiments and numerical data [43–46]. Little is, however, known about
how bounds behave under coarse graining.

In this paper, we derive an entropy bound in terms of the mean of path-
antisymmetric observables, based on an integrated fluctuation theorem. In contrast
to the TUR and FTUR, it does not involve the variance of the observable. We determine
the optimal observable, i.e., the observable that maximizes the bound, to be the signum
of entropy production so that a relation between entropy production and its sign
appears. As this relation saturates for a binary process at short times, we argue that no
better relation between entropy production and its sign can exist with the same range of
validity. The sign of entropy production, and hence the bound for entropy production,
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can be preserved under coarse graining with a simple path
grouping rule. We apply these results for a discrete network
on a ring. For this network, the signum of entropy production is
coarse-grained under preservation to the signum of the traveled
distance, demonstrating how a bound for microscopic entropy
production is obtained from a macroscopic observable. Under
such coarse graining, entropy production can at most reduce to
the original bound.

2 Setup and fluctuation theorem

A path observable O[ω] is considered, with path ω in the phase
space, with path probability p[ω], and the average is formally given
by the sum over paths [47] 〈O〉 � ∫Dω O[ω]p[ω]. To construct a
marker for path reversal, the sum is reordered [48]

2〈O〉 � ∫Dω O ω[ ]p ω[ ] + O θω[ ]p θω[ ]{ }. (1)

We introduced notation for path reversal, θω, including reversal
of time and of kinematic reversal of momenta [49]. Validity of Eq. 1
requires the sum of paths to include θω for any included ω. Adding a
zero yields

2〈O〉 � ∫Dω O ω[ ] + O θω[ ]( )p θω[ ]{
+ O ω[ ] p ω[ ] − p θω[ ]( )}, (2)

where the term O[ω] + O[θω] in the first line of Eq. 2 is the path
symmetric part of O:

O ω[ ] + O θω[ ] ≡ 2O+ ω[ ]. (3)

With detailed balance obeyed, i.e., p[ω] = p[θω], antisymmetric
observables average to zero, and

〈O〉 �d.b.〈O+〉. (4)

Violations of Eq. 4, thus, indicate the breakage of detailed
balance [50, 51]. Although the symmetric part O+ does not
appear in the final result, Eq. 12 below, for the derivation, it is
useful to start with O+ finite.

To quantify the path reversal properties of cases that break
detailed balance, we introduce the stochastic change in entropy
defined as the log ratio of path probabilities (kB = 1) [52–54].

s � log
p ω[ ]
p θω[ ]. (5)

For simplicity, we will, in the following, refer to s as the entropy
production despite some caveats regarding this term1. The
thermodynamic relevance of s is a topic of its own, which has been
discussed in various works [52–54]. Substituting s into Eq. 2 yields

2〈O〉 � 2〈O+〉 + ∫Dω O ω[ ] 1 − e−s( )p ω[ ]. (6)

Reordering the terms yields a fluctuation theorem including O:

〈O 1 + e−s( )〉 � 2〈O+〉. (7)

Equation 7 may be found equivalently from the so-called strong
detailed fluctuation theorem [48] and has been stated in the
similar form [50].

3 Entropy bound

Equation 7 can be used to find bounds for s, and we, therefore,
restrict to positive observables, O[ω] ≥ 0. This allows Jensen’s
inequality [55, 56] to be applied for the average 〈O . . . 〉/〈O〉, to
obtain from Eq. 7,

2〈O+〉 − 〈O〉
〈O〉 � 〈Oe−s〉

〈O〉 ≥ e−
〈Os〉
〈O〉 . (8)

As expected from Jensen’s inequality, Eq. 8 saturates for small s,
as seen by expanding it in this limit,

〈Oe−s〉
〈O〉 � 1 − 〈Os〉

〈O〉 +O s2( ) � e−
〈Os〉
〈O〉 +O s2( ). (9)

Taking the logarithm of Eq. 8 yields a lower bound for the
correlation 〈Os〉:2

log
〈O〉

2〈O+〉 − 〈O〉( )≤
〈Os〉
〈O〉 . (10)

Because the conjugate observableO*[ω] =O[θω] is non-negative
if O is non-negative, Eq. 10 is also valid for O*. The bounds for 〈Os〉
and 〈O*s〉 may, thus, be added to arrive at a bound for 〈sO+〉, the
correlation of s, and the symmetric part O+:

2〈sO+〉≥ 〈O〉 − 〈O*〉( )log 〈O〉
〈O*〉( ). (11)

Notably, when adding Eq. 10 for 〈Os〉 and 〈O*s〉, the linear term in
Eq. 9 drops out so that Eq. 11 does, in general, not saturate for small
s. As will be discussed below, it saturates for a binary process for
short times, for any value of s.

A direct way to extract a bound for 〈s〉 from Eq. 11 is by
considering O+ = 1, i.e., path-independent. In order for O to be
positive, the antisymmetric part, 2O−[ω] = O[ω] − O[θω], must be
normalized to |O−[ω]|≤ 1. This yields the following equation:

〈s〉≥ 〈O−〉log
1 + 〈O−〉
1 − 〈O−〉

( )≥ 0. (12)

Equation 12 is a main result of this paper, a bound for entropy
production 〈s〉 in terms of the average of the antisymmetric
observable O−. This relation is, thus, fundamentally different
from uncertainty relations, which bound entropy production in
terms of mean and variance [40].

The condition of |O−[ω]|≤ 1 may seem to be a strong restriction
of validity of Eq. 12. However, a bound between 〈s〉 and 〈O−〉 can

1 The entropy defined in Eq. 5 corresponds to the total change in entropy in

overdamped stationary systems. In underdamped or non-stationary

systems, the boundary terms differ [54].

2 A similar relation was derived in [57], however, with the left hand side

always negative.
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only be useful if O− is normalizable, i.e., if a maximum value of
max
ω

|O−|<∞ exists. Whenever this maximum exists, O− can be
normalized to fulfill |O−[ω]|≤ 1. Eq. 12 is, thus, applicable for any
normalizable antisymmetric observable. We also note that the right
hand side of Eq. 12 is non-negative so that any non-zero 〈O−〉 yields
a positive bound for 〈s〉.

Equation 12 can be read in the following two ways: (i) a given
〈s〉 yields a bound for how far the mean of (any)O− can deviate from
zero. Using, e.g., a time interval from −t0 to t0, O− can be the time-
moment at which a certain event occurs, which is then bound by 〈s〉
via Eq. 12. This will be investigated in future works. (ii) A given non-
vanishing value of 〈O−〉 yields a lower bound for entropy
production. We will analyze this below.

The form of Eq. 12 is illustrated in Figure 1. For small 〈O−〉, the
bound grows quadratically in 〈O−〉, while it diverges logarithmically
for 〈O−〉 → 1.

4 Optimal observable: signum
of entropy

Equation 12, as mentioned, is valid for any normalizable
antisymmetric observable, and, naturally, the observable that
maximizes the right hand side of it yields the best estimate for
〈s〉. Which observable is it? Answering this important question has
been found non-trivial for entropy bounds [58, 59], while it has a
clear answer for Eq. 12. To see this, rewrite3

〈O−〉 � ∑
ω

O− ω[ ]p ω[ ] � 1
2
∑
ω

O− ω[ ] p ω[ ] − p θω[ ]( )
≤ 〈sign s( )〉.

(13)

In the second step, we used the anti-symmetry of O−. The
inequality in the last step of Eq. 13 follows by noting that the

sum is maximized ifO−[ω] = 1 for p[ω] > p[θω] andO−[ω] = −1 for p
[ω] < p[θω]. This is the definition of O− = sign(s)4.

As the right hand side of Eq. 12 is a monotonically growing
function of |〈O−〉| (compare Figure 1), O− = sign(s) yields the
optimal bound for 〈s〉 from Eq. 12. To emphasize this, we write
explicitly

〈s〉 ≥ 〈sign(s)〉log 1 + 〈sign(s)〉
1 − 〈sign(s)〉( )

≥ 〈O−〉log
1 + 〈O−〉
1 − 〈O−〉

( ).
(14)

The first inequality of Eq. 14 bounds 〈s〉 by 〈sign(s)〉. Writing
〈sign(s)〉 � 1

2∑ωsign(p[ω] − p[θω])(p[ω] − p[θω]) shows that
〈sign(s)〉≥ 0 and that 〈sign(s)〉 � 0 only if 〈s〉 � 0, i.e., Eq. 14
yields a finite bound for any finite 〈s〉. The second inequality of Eq.
14 restates that O− = sign(s) yields the optimal bound so that any
other O− lies below it.

5 Coarse graining

A bound of 〈s〉 in terms of 〈sign(s)〉 is fundamentally
interesting, and it is also useful, as, e.g., 〈sign(s)〉 has beneficial
properties under coarse graining. Therefore, consider coarse-
grained paths Ω with probabilities P(Ω) = ∑ω∈Ωp(ω) and coarse-
grained entropy production S � log P[Ω]

P[θΩ]. Naturally, O− = sign(S)
fulfills Eq. 13 so that for any grouping of paths,

0≤ 〈sign(S)〉≤ 〈sign(s)〉. (15)

Coarse graining, thus, leads, in general, to a decrease in
〈sign(s)〉, reminiscent of the finding that 〈s〉 also decreases
under coarse graining [60]. Notably, grouping paths according to
the sign of s, i.e., with sign(s[ω]) = sign(S[Ωo]) conserves 〈sign(s)〉.

〈sign(s)〉 � 1
2
∑
Ωo

sign P Ωo[ ] − P θΩo[ ]( ) ×

× ∑
ω∈Ωo

p ω[ ] − p θω[ ]( )
� 〈sign(So)〉. (16)

Under this “optimal” (index o) coarse graining, the bound provided
by sign(s) is invariant so that the macroscopic 〈sign(So)〉 yields the
same bound as the microscopic 〈sign(s)〉. Furthermore, as the bound
must hold for s and So alike, coarse-grained entropy production So never
falls below the original, microscopic bound. This algorithm, thus,
provides a controlled coarse graining of entropy production, which
is especially useful if the bound from sign(s) is close to s.

6 Example: network on a ring

To display this in an example, consider a network on a
ring, where every state is connected to two neighbors (see inset

FIGURE 1
Illustration of Eq. 12 in terms of antisymmetric observable 〈O−〉,
with the accessible area marked in green. For 〈O−〉 →± 1, the bound
diverges logarithmically.

3 Eq. 13 holds also for −O− and thus for |〈O−〉|.
4 The terms with p[ω] = p[θω] cancel in the sum in Eq. 13 due to

O−[ω] = −O−[θω], and O−[ω] can be chosen arbitrarily in these cases.
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sketch of Figure 2). In every discrete time step, a particle jumps
to the left (right) with probability p (q). For q ≠ p, the system
violates detailed balance and shows a directed flow. After N
steps, the probability of finding a specific path with nL steps
to the left is given by the binomial distribution
p[ω] � 1

Lp
nLqN−nL , with L the number of states in the network.

With it, entropy production after N steps is given by the
following equation:

〈s〉 � N p − q( )log p

q
( ). (17)

Optimal coarse graining can be performed here in a
straightforward manner: because s = d log(p/q), the sign of
entropy production equals the sign of d = nL − nR (for p >
q), with nR being the number of steps to the right, i.e., sign(d
[ω]) = sign(s[ω]). This system, thus, allows coarse graining
toward the measurement of the net displacement d, under
preservation of the bound. We may expect that d is easier to
measure than s.

Having established that Eq. 12 is maximal for O− = sign(d[ω]),
we can test the quality of the estimate for 〈s〉 provided by it. For N =
1, 〈sign(d)〉 � p − q and

〈s〉 �N�1〈sign d( )〉log 1 + 〈sign d( )〉
1 − 〈sign d( )〉( ). (18)

For N = 1, the bound of Eq. 12, thus, meets entropy production
exactly, for any p and q, i.e., arbitrarily far from equilibrium. This is
the abovementioned case of the binary process, where a particle
either jumps right or left.

Figure 2 shows 〈s〉 and the bound of Eq. 12 as a function of N.
For N > 1, the bound grows sublinear in N for an intermediate range
and, thus, falls below the value of s. For N≫ 1, it approaches a linear
asymptote, which can be found via a large deviation principle. We
find for p> 1

2 and N → ∞ [61],

〈sign(s)〉 � 〈sign d( )〉 ~ 1 − 2
1 − q

p

1
4pq( )−N

2

���
π
2N

√ , (19)

i.e., 〈sign(d)〉 approaches unity exponentially fast with N. Because
of this, the bound for s of Eq. 12 grows linear in N, and substituting
(19) into Eq. 12 yields 1

2 log( 1
4pq)N, shown as a gray line in the graph.

The ratio between this large N asymptote and 〈s〉 of Eq. 17 varies
between 1

2 for p → 1 and 1
4 for p → 1

2.
Coarse graining groups paths according to their displacement,

i.e., Ω for d > 0 and θΩ for d < 0. This way, the coarse-grained
entropy 〈So〉 can be determined, which is also shown in Figure 2.
The curve demonstrates that it, as expected, stays above the bound.
As only two coarse grained paths with finite So exist, it is
obtained from.

〈So〉 � log
P Ωo[ ]
P θΩo[ ]( )P Ωo[ ],

+ log
P θΩo[ ]
P Ωo[ ]( )P θΩo[ ]. (20)

�Nodd〈sign d( )〉log 1 + 〈sign d( )〉
1 − 〈sign d( )〉( ). (21)

Notably, the bound shown in Eq. 12 is saturated with respect to
So for odd N, as indicated. For N even, paths with zero entropy
production exist, and the second equality shown in Eq. 21 is not
valid, and Eq. 12 lies below 〈So〉. For large N, these differences
vanish so that the bound of Eq. 12 and 〈So〉 share the same
asymptote. In this system, entropy production may, thus, be
coarse-grained by a maximal loss of a factor between 2 and 4,
depending on p, using the optimal algorithm.

According to Eq. 13, any other normalizable antisymmetric
observable should yield a lower bound, which we exemplify
by using O− = tanh(d/2). Indeed, it lies lower but approaches
the optimal bound for large N because then, a typical

FIGURE 2
Network on a ringmodel: entropy production 〈s〉 as a function of
N, Eq. 17, for p =0.57, versus the bound obtained from Eq. 12 for
various observables as sign(s), sign(d) and tanh(d2) using numerical
simulations. The gray dotted line is the asymptotic limit of large
N. The graph also shows optimally coarse-grained entropy 〈So〉.

FIGURE 3
Network on a ring model, with identical parameters as shown in
Figure 2, here focusing on the comparison to FTUR. FTUR is used with
two different observables as indicated, sign(s) or s. For large N, Eq. 12
and FTUR for the sign(s) scale linearly inN, while FTUR for s scales
with log(N).
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trajectory shows d ≫ 1 so that tanh(d/2) becomes equivalent
to sign(d).

Although optimal coarse graining is possible in an exact manner
in this model, we expect an approximate preservation of sign(s) to be
possible in more complicated systems, which will be investigated in
future works.

Can we compare to other relations such as TUR? The original TUR
is not applicable to time-discrete dynamics, as used in this example.We,
thus, compare to the so-called FTUR [40], as shown in Figure 3. Not
knowing the optimal observable for FTUR, we use sign(s) and s,
analytically computing the required variances for these two.
Interestingly, for each of the three curves shown in the figure, there
exists a regime of N, where it provides the highest estimate. It is also
remarkable that FTUR used with sign(s) can provide a better estimate
compared to using s. This shows the advantage of Eq. 17, for which the
optimal observable is known, leading to the coarse-graining scheme. It
also shows that the comparison between these relations is rich and non-
trivial and needs to be studied in future works.

7 Discussion

Entropy production is bound by the mean of normalizable
antisymmetric observables. The optimal observable is identified to be
the signum of entropy production so that we determine a bound
between entropy production and its sign, sign(s). The latter may often
be estimated from simple observables, like here, the displacement on a
ring. The network example shows that measuring sign(s) (did the
particle move left or right?) is expected to require a lower experimental
resolution compared to measuring s (where did the particle move
when?). One can also estimate 〈sign(s)〉 by the use of Eq. (13), i.e., by
testing various observables O− and finding the maximum deviation
from zero. For the investigated network, 〈sign(s)〉 approaches unity
exponentially fast with the number of steps so that the bound grows
with the expected linear dependence. Grouping paths according to
sign(s) yields a coarse-graining algorithm that preserves sign(s) and the
bound. The presented analysis is not restricted to specific dynamics.
Due to this, it is, additionally to the here-discussed discrete system, also
valid for fluids and biological systems [27]. Future workmay investigate
applications to Langevin systems as well, like active Brownian particles,
or quantum mechanics [62–65].
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