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Nonlinear mathematical models are widely used better to reflect the stochastic structure of financial investment

problems and to express them numerically. However, in some real-life situations, it is necessary to consider

not only one purpose but many purposes simultaneously. Therefore, we have to define these models with

multi-objective programming. This study defines a multi-objective nonlinear Eurobond investment portfolio

and showecases the normal distribution of purchase and selling prices. The study then proposes a mechanism to

convert the stochastic constraint into an equivalent deterministic form and provides near-optimal solutions in

reasonable times.
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1. Introduction

Financial management enables to generate and implement
ideas about where to find financial resources to achieve
goals and objectives in an organization. A finance man-
ager’s primary task is to measure organizational efficiency
through appropriate allocation, purchasing, and manage-
ment. Guidance in financial planning and the use of several
scientific methods are essential. It is also essential to obtain
funds from different sources, make quality and efficient
production with cheap resources, and deliver these prod-
ucts to the user or consumer the shortest and fastest way.

The "'why’ behind financial models is to depict various
real business situations to enable the audience to under-
stand the potential or actual financial results and their de-
pendence on various inputs. The goal here is to simulate or
model a real business scenario or economic phenomenon
and be able to play with various inputs and observe their
effect on results. Once such a relationship is established
between inputs and outcomes, financial models will likely

be used to predict the most likely financial outcomes based
on probability distributions of various input parameters.
The predicted results are then used as inputs for making
business decisions.

Eurobond is lesser known compared to usual invest-
ment tools. It is generally a long-term debt instrument that
states or companies offer for sale in foreign currencies in
international markets in order to obtain funds outside their
own countries [1].

In Turkey, Eurobonds are generally issued by the Trea-
sury of the Republic of Turkey in USD or EURO in inter-
national markets. However, they can be exported in other
well-known foreign currencies as well. They are usually
long-term investments that pay back the initially invested
amount in 5 to 40 years. They work like a regular interest-
based investment. Once the investor makes the payment,
it provides a regular cash flow to the investor. It is less
known in Turkey because it operates on foreign currency,
and awareness among investors is low, limited to 30-50
thousand investors in total. In addition, since the payment
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structure is similar to a common interest, people do not
seek an alternative in foreign currencies. The main differ-
ence between Eurobonds is that they make payments either
in 6 months or annually, depending on whether they are
Euro-based or USD based.

We choose Eurobond for our study because their pur-
chasing and selling prices are stochastic, and it showcases
the stochastic structure we need in our mathematical model.
In particular, they may change based on inflation, deflation,
and other governmental policies, and it is impossible to
estimate their prices accurately. Second, it is convenient
to choose Eurobond as an investment tool as the Turkish
currency lost significant value in the last five years against
Euro and US dollar. An investment should have meaning
in terms of the inflation rate if an investment is made. Since
Eurobond offers a regular payback period in foreign cur-
rency, using it in our financial investment model makes
sense.

In addition to these factors, we assume that Eurobond
portfolio profits are higher than those from local currency
interest rates and those from foreign currency exchange.
These two conditions provide a basis for our Eurobond
model because otherwise, there is no need for Eurobond
investment, and investors are better off by regular interest
investments. The stochastic behavior of purchasing and
selling prices of Eurobond coupons brings us to the central
issue of utilizing chance constraints in our model. The
main purpose of writing the chance constraints is to express
mathematically the situations where some constraints do
not need to be met 100%, especially in complex models.
Mathematically, a chance constraint is given in the form in

Eq. (1):

P{]ii ajxj < b} >a (1)
Here, the left side inside the probability parenthesis is the
original constraint. We convert it into a chance constraint
by writing it as in Eq. (1), meaning that the probability that
the constraint will be less than or equal to b will be «.

The mathematical formulation of this constraint is incon-
sistent with the linear programming assumptions. How-
ever, assuming that the parameter b, which is the right-
hand side of the constraint, is normally distributed such
that b N(yb,ag), the new constraint becomes as stated in

Eq. (2).

n
2 a;jxj < py +za0p )
j=1

Therefore, this constraint becomes compatible with lin-
ear programming assumptions. Here, the value indicated

by z, represents the z score corresponding to the & probabil-
ity value in the normal distribution table. In summary, if a
parameter has a stochastic and normally distributed struc-
ture, a mathematical program constraint for this parame-
ter, expressed as a probabilistic equation, can be written
linearly. While providing this, the following three assump-
tions are made:

1. The right-hand side of the constraint, that is, the b
values, are independent of each other.

2. Due to the nature of probabilities and chance con-
straints, the constraint will not be taken as pure equal-

ity.
3. These independent b values fit the normal distribution.

Writing the constraint may become more complicated
in cases where the values taken by the parameter do not
fit the normal distribution, or where the right-hand side of
the constraint is constant and the technology coefficients
are probabilistic. Therefore, in order to benefit from this
definition, it should be tested whether the data comply
with the above assumptions.

The rest of this study is as follows: We provide previous
studies to see the methods to handle with stochastic and
nonlinear chance constraints in Chapter 2. Then we give
our chance constrained stochastic investment model and
our approximation scheme in Chapter 3. We provide the
results in Chapter 4 and then finally discuss and provide
further insights in Chapter 5.

2. Previous work

One of the benchmark studies to handle chance constraints
are conducted by [2]. The study uses a linear orthonor-
mal transformation and the resulting constraint set can be
solved both by Simplex method and Dantzig-Wolfe decom-
position.

By comparing five different widely used stochastic opti-
mization algorithms, [3] have done a study to show which
algorithm gives better results in which case. These algo-
rithms are random search, simultaneous stochastic pertur-
bation approximation, simulated annealing, evolutionary
strategies, and genetic algorithms. The authors showcase
these algorithms and provide insights into using them in
specific scenarios.

[4]also provides solution methods on nonlinear stochas-
tic models with one or more constraints. Duality is used to
create linear algebraic constraints to replace the nonlinear
stochastic ones, and many solution procedures are show-
cased n the study. The methods solve convex problems to
optimality, or they can provide good enough solutions for
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relaxed versions of stochastic nonlinear models. This study
is essential for our study as it provides many insights at
the same time to compare and select the best one.

[5] redefines a chance constraint such that it is feasible
for a stochastic problem with a certain probability. They
argue that any solution generated by their approximation
methods to the problem should satisfy the constraint set
with some probability as well. They then investigate these
probabilities and conditions for optimality under different
scenarios. More detailed studies and methodologies can be
found in the book [6].

The reader may refer to [7] for a comprehensive review
of many other models and extensions of multi-objective
stochastic programming in financial investment. They pro-
vide an extensive review on the development and recent
methods on how to solve multi-objective stochastic models.
Linear approximation of nonlinear functions is one of these
methods to handle uncertainty in real life practices.

[8] provides a linear approximation formula for chance
constraints. This formula can be used in models with multi-
objective as well as single-objective functions. The key to
the formula is that it bounds the constraint with the non-
linear value, and ensures that the constraint is met while
losing some of the feasible region.

[9] propose a method to learn from the operational
trends of power networks and pre-assign lower and upper
bounds to chance constraints to solve them in a nonlinear
modeling environment. In the constraint set they generate,
if something is impossible, it has a probability of zero, so
they remove the constraint from the model and iteratively
try to find the optimal solution.

[10] define the so-called random-rough (Ra-Ro) vari-
ables to handle the uncertainty in financial investment
decision-making. They convert the stochastic nonlinear
model into an equivalent deterministic but quadratic math-
ematical model to eliminate the uncertainty.

[11] provide a review of methods used to handle chance
constraints. They divide the methods into three categories.
They share the studies that use robust optimization, those
using scenarios, and those with sample average optimiza-
tion. They also provide methods that are based on data
that do not fit well-known discrete and continuous distri-
butions.

[12] provide a model to solve continuous time chance
constraints for calculating risk guarantees for an unstable
feedback control policy system.

[13] created a portfolio selection model with an expected
return, chance, and cardinality constraints. They produced
a data set by making use of mixed distributions and a
robust formulation, and they produced solutions to their

models with mixed integer programming containing con-
vex functions.

[14] deal with a robust model to solve a quadratic cost
function with two-sided chance constraints. They trans-
form the chance constraints into deterministic forms and
satisfy them while minimizing their function. They use
a data set with Wasserstein distance to account for data
perturbation. They ultimately transform the model into a
linear program that commercial solvers can easily solve.

[15] provide a simple convex optimization problem by
approximating model predictive control with stochastic
constraints. They do not have distribution information,
so they enforce the chance constraints as robust in their
model.

[16] deal with multiple uncertain factors in their model
by introducing a mixed integer programming model with
robust chance constraints to model uncertain charging de-
mands. They produce a bi-level programming model to
solve the mixed integer problem and provide experimental
design on three factors affecting real-life situations.

[17] solve a two-stage stochastic program by linear pro-
gram rules and show that stochastic structure can be re-
duced to linear structure and chance constraints can be
eliminated by Wasserstein metrics.

[18]suggest a purpose-based investment model for per-
sonalized and lifelong financial planning. The model as-
signs priority coefficients for different purposes in each
period and shows how chance-based risk constraints are re-
solved for optimum investment with uncertain situations.

Another Wasserstein ambiguity set based formulation
of an energy optimization problem is provided by [19].
They provide a bilinear program out of a stochastic nonlin-
ear model and show that the resulting model is solved in
shorter times compared to solutions with other algorithms
in the literature. Other models and strategies to deal with
energy and electricity flow networks by chance constrained
optimization can be found in [20] and [21].

3. The eurobond model and the proposed method
for linear approximation

3.1. The Nonlinear Model with Chance Constraints

The Eurobond investment model is given as follows:
Decision Variables:
xj+: amount of bond i purchased in period t
yir: amount of bond i sold in period t
ohj;: amount of bond i on hand in period t
dy: slack variable for target income TARG
dy: excess variable for target income TARG
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Parameters:

PBj;: sale price for bond i in period t

PAj;: purchase price for bond i in period t

Aj;: periodical income for bond i

Cy: coefficient for slack variable dq

CAP: initial capital

TARG: target capital

W: coefficient of the capital in the chance constraint

T: total or the last number of periods (if there are 25
periods, T is 25)

Based on the decision variables and parameters, the
mathematical model is given in Eq. (3)-Eq. (7)

minz = c1dq 3)
N C

Iy = CAP — ) PAjxjo+ Y_ PPobpco (4)
i=1 c=1

N
Iy = Y (—PAyxit + PBigyit + Ajohig) + I;1 vt (5)
i=1

IT —+ dl — d2 = TARG (6)

N
W CAP— Y (—pulxir + pbByis + Arohir) + Iy >
i=1

N
20 Y/ (B 2+ (efPyir)?
i=1

@)
Eq. (3) denotes the objective function and tries to mini-
mize the penalty resulted from failing to reach the target
income. Eq. (4) and Eq. (5) are the balance constraints for
the money flow in each period. The objective is defined as
a goal programming model by making it possible to have
an income less or more than a predefined target in Eq. (6).
Eq. (7) is the chance constraint stating that the total income
at the end should be larger than or equal to W times the
target income by a probability that corresponds to z, in the
normal table. The index T is the number of the final period
considered. To illustrate the use of this constraint, consider
the following probability for the total income:

P(Ir > 1.10CAP) > 0.9 8)

Eq. (8) states that with the probability 0.9, the total in-
come at the end of the last period T is greater than 1.10
times the initial capital. Since we assume normal distribu-
tion for Eurobond prices, the stochastic constraint in Eq. (8)
conveniently transforms to the constraint in Eq. (7), having
the W equal to 1.10 and z, equal to 1.28.

To explain Eq. (8), the multiplicative value of 1.10 and a
probability value of 0.9 are used. The value 1.1 corresponds
to around 2-3% interest rate and is a global value offered
by many banks in developed countries. On the other hand,
the value 0.9 corresponds to a risk of 10% which is taken
by many investors especially in high risk investments. The
probability value can be made 80%, 95% or even 100% to
demonstrate no risk situation. However, since we aim to
include risk in our calculations, we showcased values less
than 100%.

3.2. Approximation to the Chance Constraint and a Solu-
tion Algorithm

The linear approximation of a differentiable function L(x)
at some point a is given by

L(x) = f(a) + f'(a)(x —a) ©)

Since the derivative is needed in Eq. (9), we reduce
the constraint in Eq. (7) by subtracting the right side from
both sides, and take the derivative. Doing this for all x;r
variables, yields Eq. (10):

0 (* SN (—uPAxir + plByi + Airohir) + IT—l)
BxiT

9 (Za £ (0Brr) + (‘E%ByiT)z)

ax,‘T

>0 Vi

(10)
Since all other variables are treated as numbers in the
partial derivatives, Eq. (10) further reduces to

1 PA..
(o) 20 Ay
(it xir)” + (07 yir)

PA
HiT _Z“\/

By incorporating Eq. (9) into Eq. (11), and applying
the approximation scheme at point a yields the following
inequality in Eq. (12).

PA 2
WiT AT — Za (UiPTA“iT) +

1
(P‘IPTA —Za 3 > (UiPTAaiT)> (x—a)=0
V(etan)® + (ohyir)
(12)
Thus, the nonlinear chance constraint in Eq. (7)becomes

linear. Here, we used the advantage that our chance con-
straint is differentiable and is easy to provide an approxi-
mate value for the given sets of optimization problem.
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4. Designed experiments and findings

We solve the resulting linear model using different val-
ues of W, confidence level &, and different numbers of
Eurobonds. Then we compare the results with the solu-
tions obtained from solving the original nonlinear problem.
SNGP and LGP denote the original nonlinear goal program-
ming model and the linearized goal programming model,
respectively. We start with a rate of return of 2% and grad-
ually increase it to 20% to compare the results. The results
are summarized in Table Table 1 below.

Based on the table, the solutions worsen as we increase
the target income from 1.02 to 1.2. The linearized and
non-linear models give worse solutions, and the objective
function value no longer becomes zero after the rate of 1.08
for the linearized model.

Both models converge to a total income as we continue
to increase the rates of return in our experimental design.
The LGP converges to a total income of 1,080,086 at the
rate of 1.1, and increasing the rate of return further only
worsens the objective function value as the model cannot
find any solution that reaches the target value and is still
feasible. For the SNGP, convergence exits at the value of
1,096,104 when we increase the rate of return to 1.12. In
other words, the LGP converges to a value sooner than the
SNGP with a return rate of 8% and does not provide any
better solution, while the SNGP converges to a final total
income at the value of 1.12 with a rate of 9.6%. Thus, the
LGP gives values 1.6% worse than the original solution.
The total income values of LGP and SNGP are provided in
for the different significance values of 0.9, 0.95, and 0.99.

5. Result and further discussion

Regardless of whether they are borrowing or have the
funds in possession, if a company or individual investor
is preparing to allocate capital for various projects, it is
necessary to measure and compare the financial results
of various projects using financial models as a decision
maker. Through these financial models, decision-makers
can better prioritize the allocation of capital that will help
the company or themselves achieve their financial goals.

As mentioned above, since the steps to be taken regard-
ing money and finance in many areas require financial anal-
ysis, the ability to create financial models and the presence
of financial modeling in daily life are inevitable.

In this paper, we first provided a Eurobond invest-
ment model that incorporates uncertainty and multiple
purposes at the same time. Further, we showcased the situ-
ation where the purchase and selling prices of Eurobonds
are normally distributed. Then, we introduced a mecha-
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Fig. 1. Objective Function Values for LGP and SNGP for
Three Different Confidence Levels

nism to convert the nonlinear stochastic goal programming
model into a linear goal programming equivalent. Since
the constraint structure allowed for using linear solvers, we
reached a solution quickly. At the same time, we observed
that the linearized constraint first showed better total in-
come results at lower values of rates of return. However,
as we increased the rates of return higher and higher, the
original problem started to show better results as the linear
constraint made the feasible region tighter compared to the
chance constraint. Considering the structure of the feasi-
ble region of the linear equivalent, this is entirely logical
because the feasible region becomes restricted and does
not allow taking any risks in investments. Furthermore,
even though the linear equivalent can represent the whole
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Table 1. Designed Experiment Results

W [ LGP Z SNGP Z
102 1,020, 000 0 1,019,178 | 821.52

1.04 1,040, 000 0 1,038,357 | 1643.08
1.06 1,060, 000 0 1,057,622 | 2377.69
1.08 1,080, 000 0 1,076,829 | 3170.26
11 | 99 1,080,086 | 1991354 | 1,095,473 = 452628
112 1,080,086 | 39913.42 | 1,096,104 238959
1.15 1,080,086 | 69913.42 | 1,096,104 | 538957
12 1,080,086 | 1199134 | 1,096,104 | 103897.3
102 1,020,000 0 1,018,989 | 101112
1.04 1,040, 000 0 1,037,978 | 2022.45
1.06 1,060, 000 0 1,056,966 | 3033.87
108 | o os | 1,080,000 0 1,075,954 | 404533
11 | 995 1 080,086 | 1991354 | 1,094,507 | 5492.63
112 1,080,086 | 39913.42 | 1,096,104 = 23896.1
1.15 1,080,086 | 6991342 | 1,096,104 | 538972
12 1,080,086 | 1199134 | 1,096,104 | 103897.3
102 1,020,000 0 1,018,553 | 1446.64
1.04 1,040, 000 0 1,037,107 | 28934

1.06 1,060, 000 0 1,055,659 | 4340.11
1.08 1,080, 000 0 1,084,213 | 5786.82
11 999 71,080,086 | 1991354 | 1,092,756 | 72441

112 1,080,086 | 3991342 | 1,096,104 = 23896.1
1.15 1,080,086 | 69913.42 | 1,096,104 | 53897.2
12 1,080,086 | 1199134 | 1,096,104 | 103897.3

financial model, conversion from a nonlinear model al-
ways needs assumptions. These assumptions may also
affect model accuracy if not addressed correctly. Even
though mathematically correct, the linear model may pro-
pose other investment opportunities than those proposed
by the stochastic model for the same set of available invest-
ment data.

In addition, our chance-constrained problem was solved
at three different confidence levels. As we increased the
probability of having a total net income larger than the
target income, the linearized model yielded better results,
but after reaching a certain rate of return (10% in our case),
the chance-constrained model started yielding better solu-
tions than the linearized model. Thus, our model showed
a better performance until we reached a threshold value
of the rate of return. After the threshold value, our lin-
earized model yielded results within 1.5% to 12% of the
optimal solution yielded by the chance-constrained model,
thus still performing very well and taking less time to com-
pute and find the set of solutions. This result is significant
because it shows that our model can be a helpful tool in
deciding which financial investment opportunities to select,
especially when time is limited and investor objectives are
urging many restrictions. Further, the model provides a
risk aversion mechanism to choose the threshold risk value
after which an investor is unwilling to take further invest-
ment risks. Moreover, these risk values can be combined

with investors’ past data, and a forecasting tool can be im-
plemented to incorporate more risk values into investment
policies.

Another advantage of using our linearized model is
the earlier detection of a threshold value that shows the
maximum rate of return given the set of purchase and sell-
ing prices of Eurobond stocks. This provides a forecasting
mechanism in cases where Eurobond prices assume nor-
mal or any other probability distribution. However, they
have a mean and standard deviation for expected value
and forecasting calculations. It is essential in financial plan-
ning to know and estimate how the market conditions will
exist in the planning horizon, and an accurate model will
play a crucial role in two things. First, it will help provide
a robust plan that will not be heavily affected by sudden
price changes. Second, total risk and total income value
deviation will be minimized. In this aspect, our model can
achieve both purposes.

An extension of the model would be to include more
financial instruments and not depend solely on Eurobond
stocks. This will require information on multiple probabil-
ity distributions, and they may not fit into reputable distri-
butions, but defining extra binary constraints for discrete
distributions or approximation methods for continuous dis-
tributions will assist in defining multi-commodity financial
models.

One limitation of the study is that our research is con-
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ducted and designed on the Eurobonds provided and reg-
ulated by the Turkish Treasury. The Eurobonds we con-
sidered are also issued by many other countries, such as
Lithuania or Netherlands, and they are global. This is why
they can be used to generalize an investment policy. How-
ever, they are treasury bonds, and assumptions on them
are related to the safety guarantee of the government. In
other words, not only one but many countries protect these
Eurobonds, and their risk is due to market structure.
However, some instruments may fail to be secure, which
may include higher uncertainty ultimately. Many other
mechanisms exist, such as cryptocurrency, free Bonds, and
leverage accounts. They possess a very high uncertainty,
and only specific investor profiles are authorized to deal
with them as it includes a high risk of loss at the same
time. In future models, this uncertainty may be dealt with
extended models, and more insights can be gained in the
case that other countries regulate financial instruments or
there is less control of the government on the instruments.
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