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Effect Of Cracks On The Vibration And Bending Behavior Of Steel And
Aluminum Bars Using Finite Element Analysis

Rajib Karmaker1*, Md. Rashedul Islam2, and Ujjwal Kumar Deb3

1Department of Mathematics, University of Chittagong , Chattogram, Bangladesh
2Department of Computer Science and Engineering, International Islamic University Chittagong, Chattogram, Bangladesh
1,2,3Department of Mathematics, Chittagong University of Engineering and Technology, Bangladesh
*Corresponding author. E-mail: rajibcumath@gmail.com

Received: May 14, 2023; Accepted: Aug. 25, 2023

Complex structures can develop cracks and defects over time, which can compromise their long-term perfor-
mance and safety. Structural Health Monitoring (SHM) systems are essential for detecting and measuring these
defects by monitoring the load and deformation of the solid materials. This paper presents a simulation study
of the frequency and strength of solid cylindrical bars made of aluminum and steel under different loads and
crack conditions. Finite Element Method (FEM) and COMSOL Multiphysics software are used to perform the
simulation, and a resonance model is used to analyze the results. The study investigates how cracks affect the
frequency and deformation of the bars, and how different materials respond to load and bending. The results
show that frequency varies linearly with load, cracks decrease the stiffness and increase the frequency at the
crack location, and aluminum bars deform more than steel bars. The paper concludes that steel bars are more
resistant to load and bending than aluminum bars for both cracked and uncracked case. Finally, it is found that
steel bars are more resistant to load and bending than aluminum bars for both cracked and uncracked case.
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1. Introduction

Structural Health Monitoring (SHM) is a growing research
area that deals with the assessment of large and critical
structures. These structures can suffer from various types
of damage over time, which affect their local stiffness and
flexibility [1]. SHM can provide reliable information about
the structural integrity after extreme events such as earth-
quakes or heavy stress. The main benefit of SHM is that it
can estimate the service life of structures and detect and
locate structural anomalies. Cracks and deformation are
common structural defects that cause local changes in stiff-
ness and flexibility, which influence the dynamic behavior.
In addition to cracks, another type of load-induced damage
in structures is bending, which requires deflection analysis.
The presence of cracks can be detected by using the differ-

ences in local stiffness, which have a significant impact on
natural frequency and mode [2]. There are three types of
vibration-based solution methods: analytical, numerical,
and experimental [3]. Lee and Chung [4] proposed a new
method to determine the first four natural frequencies of a
cracked material using FEM, and to estimate the crack loca-
tion using optimization. Later, Owolabi et al. [5] performed
an experimental study on the effects of cracks and damages
on the reliability of structures. Karmaker et al. [6] devel-
oped a computational approach using vibration analysis
for the crack detection in structures such as beams. Various
analytical, computational, and experimental methods are
now used for crack detection in fiber-reinforced materials,
laminated composites, and non-composite structures for vi-
brational analysis. In the same context, Goda et al. [7] used
a simulation-based solution with finite elements to inves-
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tigate the harmonic vibration response of fiber reinforced
beams.

They used an eigenvalue analysis to perform dynamic
modeling of the laminated beams, using an eight-node
layered shell element to simulate vibrations. The main ob-
jective of their study was to assist mechanical designers
in designing and developing composite structures subject
to dynamic loadings. Rizos et al. [8] suggested a method
for identifying crack location and depth by monitoring am-
plitudes at two different locations of a vibrating cantilever
beam. They studied the flexural vibrations of a rectangular
shaped beam structure with a longitudinal surface crack
modeled as a rotational spring with low mass. They also as-
sumed that the crack was fully open and constant in depth.
They used a harmonic exciter to force the beam to vibrate
at one of the natural modes of vibration and measured
the amplitudes at two different locations in an experiment.
The vibrational properties of a cracked Timoshenko beam
were investigated by Kisa’s research group [9]. In their
study, FEM and component mode synthesis were used.
The beam was divided into two parts and connected by a
flexibility matrix that includes the interaction forces. The
forces were derived from fracture mechanics expressions
because the inversion of the stiffness matrix was done us-
ing stress intensity factors and strain energy release rate
expressions.[10] developed a method for using a 1D FEA to
locate structural damage in a beam. However, most stud-
ies have only focused on the effect of a single crack and
undesirable behavior of various structural bodies. There
is no effective mathematical model to detect the damages,
evaluate the stability and behaviors of different materials.
Therefore, this research aims to develop a mathematical
model using the vibration analysis method to detect cracks,
measure the deformation and frequencies in specific loca-
tion of intact or cracked aluminum and steel bodies. The
research also tries to analyze the complex behavior of sim-
ple crack systems in a systematic way. The Vibration Based
Inspection (VBI) method is used as a potential tool for mon-
itoring and identifying defects in machines and equipment.
The Finite Element Method is used as the computational
numerical method to provide detailed insights on crack
models and stiffness matrices. The Euler- Bernoulli beam
theory is used to describe the dynamic properties of beams
with transverse cracks. The theoretical formulas for natural
frequencies and mode shape for the bar are derived using
appropriate boundary conditions due to the presence of
a crack. The results are obtained numerically. The main
advantage of this research is to provide a better interface
for detecting hidden or explicit cracks in structural con-
struction using minimum time and cost.

2. Numerical methods for computation

Computational numerical techniques are numerical meth-
ods that use computer programs to solve partial differential
equations. Some common numerical methods for computa-
tion are- Finite Difference Method, Finite Volume Method,
Boundary Element Method and Finite Element Method.
The Finite Element Method (FEM) is the most widely used
method for solving engineering and computational model
problems. The FEM is a numerical method for solving par-
tial differential equations with two or three variables in
space [11]. FEA based simulations are valuable tools be-
cause they avoid the need for multiple physical prototype
creation and testing for different high fidelity situations
[12].

3. Mathematical model

To build analytical mathematical equations, we need to
track some variables in a physical system. Some exam-
ples are mass conservation, energy efficiency, and force or
power balance [13]. We can use this way of thinking to
derive nonlinear systems for detecting any failure. We will
see that many physical processes are modeled by the same
partial differential equations, so we can develop and apply
methods and theories for specific model problems to many
different applications. We will also create a simulation
process for the main steps of the non-destructive method
of identifying three-dimensional fractures with different
orientations in a uniform medium and detecting horizon-
tal surface fractures, based on a unified bounding method.
This includes the calculations of the load dissipation coeffi-
cient and deflection, and the generation of the asymptotic
source field. We will use large aluminum and steel cylin-
ders to study the frequencies and bending. The governing
equations for deformation according to the Euler-Bernoulli
Beam theory are,

EA
d2z
dx2 + p(x) = 0 (1)

where, p(x) = cx = Applied load [c = constant ] E =

Young’s Modulus A = Cross section area Z = Displace-
ment

Subject to: z(0) = 0 and
∣∣∣EA dz(x)

dx

∣∣∣
x=L

= 0
The release rate of strain energy at the cracked position

is,

ES =
1
E
(KI1 + KI2)

2 (2)

Where the stress concentration ratios of mode I (crack
opening) are KI1 and KI2 under load P1 and P2 accordingly.

1
Ė =

1−γ2
1

E (For plane strain condition), 1
Ė = 1

E (for plane
stress condition)
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Previous studies showed that, the expressions for stress
distribution [13] are as follows:
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WH

√
πh
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F1

(
h
H

))
and KI2 =

6P2
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√
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(
F2

(
h
H

))
Where parameters F1 and F2 can be presented as bellow,
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(4)

The incremental movement along the direction of the
applied force Pi according to Castiglione’s theorem is,

zi =
δUc

δPi
(5)

Where Uc = strain energy, so that zi =
δ

δPi

[∫ h1
0 Jc(h)dh

]
where Jc =

δUc
δh = strain energy release rate.

Estimating the Cij per unit thickness adaptability effect
co-efficient,

Cij =
δzi
δPi

=
δ2

δPiδPj

[∫ W/2

−W/2

∫ h1

0
Jc(h)dhdz

]
(6)

With the strain energy release rate,

Cij =
B
Ė

δ2

δPiδPj

[∫ h1

0
(KI1 + KI2) dh

]
(7)

The stiffness matrix becomes,

K =

[
K11 K12
K21 K22

]
×

[
C11 C12
C21 C22

]−1
(8)

4. Geometry and mesh statistics

Fig. 1 depicts solid tubular shaped steel and aluminum
bar with length 0.15 m and radius is 0.015 m, crack depth
(D) and initial crack length (cl) are 0.003 m and 0.00033 m
respectively. Fig. 2 shows the mesh design of consid-
ered domain for intact and cracked aluminum and steel bar.

Table 1 exhibit the mesh properties of the computational
domain and Table 2 show the characteristics of the simula-
tion.

Fig. 1. Computational domain with crack

(a) Mesh of uncracked bar

(b) Mesh of inlet cross section

Fig. 2. Mesh design

5. Results and discussions

Using the Finite Element Method, the frequencies of
steel and aluminum bars with semicircular twin cracks
were computed. Solid cylindrical bars of steel and
aluminum were modeled with COMSOL Multiphysics
simulation software [14] and various parameters from
COMSOL Multiphysics, which are listed in Tables 3 and 4
respectively, were applied.

The vertical loads applied to the apex of the bar are
shown in Fig. 3 and the resulting deformation of the body
is shown in Fig. 4. The dynamic properties and deflection
of bars were determined using Euler-Bernoulli beam
theory.

Fig. 5 shows how the load is distributed throughout
the computational domain. Neither steel nor aluminum
bars have cracks, as seen in Fig. 5 [(a)-(b)]. The stress is

Fig. 3. Load on apex of the domain
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Table 1. Mesh statistics of the domain

Particulars Value Particulars Value
Element quality(min) 0.1315 mm Element size(min) 0.022 mm
Element quality (Average) 0.6792 mm Element size(max) 0.0016 mm
Tetrahedron elements 17413 Curvature factor 0.4
Triangle elements 4182 Regional resolution 0.7
Edge elements 517 Growth rate of element 1.4
Vertex elements 20 Predefined shape Finer

Fig. 4. Deformation after applying load

(a) Uncracked Steel

(b) Uncracked Aluminum

Fig. 5. Phase of load distribution in uncracked body

Table 2. Characteristics of simulation

Particulars Value
Degrees of freedom 17687
Domain 1
Dimension 3
Edge elements 485
Boundaries 15
Boundary elements 3976
Strain reference temperature 293.17 K

Table 3. Geometry of the domain

Particulars Value
Crack’s width (cl) 0.00033 m
Crack’s depth (ch) 0.03 m
Length of domain(L) 0.15 m
Radius of domain (r) 0.015 m

absorbed and spread evenly to the ends of the body by
both bars. Aluminum has more deflection than steel, as
observed.

Fig. 6 shows how the load is absorbed at each fracture
point. The load is distributed evenly to the ends of the
fatigue point in steel. Aluminum behaves similarly to steel,
but it does not distribute the force as uniformly throughout
the whole body as steel does.

The slice of load concentration at crack locations is
shown in Fig. 7. The load is highest at the bottom, as
observed. It is also noted that the load was applied at the
apex and reached the lower part with strong vibration and
variable frequency, especially at the cracked point.

The fluctuations in frequencies at different positions
are more significant for cracked bars than uncracked ones,
as shown in Fig. 8. The frequencies are also highest at
the cracked positions. The line graph is mostly normal,
even at the relevant fracture point in the upper part
of the steel bar. Aluminum shows a fairly regular line
graph for its flexibility variation. This means that the
maximum frequency is transmitted to the closest area.
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Table 4. Properties of Materials

Particulars Steel Aluminum Unit
Young’s modulus 201 115 GPa
Density 7850 2700 kg/m3

Poisson’s ratio 0.30 0.36 1
Shear modulus 73.3e9 35.7e9 N/m2

Tensile Strength 430 240 MPa
Relative permeability 1 1.0001 1
Thermal conductivity 44.5 24.5 W/(m ∗ K)

(a) (b)

Fig. 6. Load distribution at cracked points

(a) (b)

Fig. 7. Reserved loads near the cracks

The line graph also shows a considerable difference for
uneven load distribution. The load in steel and aluminum
structures is distributed throughout the whole body, but
this distribution is more uniform in steel than aluminum.

The Fig. 9 shows that the frequencies for both bodies
increase with the increase of load. It is observed that an
inconsistent behavior where one fracture took more load
than the others after applying load. The total frequency of

an aluminum bar under different loads is higher than that
of a steel body at a fracture point, because the frequencies
increase proportionally to the stress distribution. Therefore,
it can be noted that the aluminum body has a higher risk
of damage than the steel body when we apply load to a
fatigue body.

The deformation line graph is almost the same for both
bodies, as seen in Fig. 10. The graphs have regular fluctua-
tions but no major disruptions in the curve. The bending in
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(a) (b)

(c) (d)

Fig. 8. Line graphs of frequency

Fig. 9. Different applied load vs frequency

cracked bodies is shown in Fig. 11. The line graphs show
that the aluminum bar has more deformation due to load
than the steel body. This is true for both cracked and un-
cracked situations. It is also seen that the deformation is
higher at the cracked positions.

5.1. Discussion

Compared to aluminum bars, steel bars showed greater
resistance to load and bending, as they could share the
load equally and cope with different amounts of stress and
vibration. Aluminum bars, in contrast, kept the stress at
the crack site and twisted and shook more due to their
lighter weight and higher flexibility. This could endanger

Fig. 10. Line graph of deformation of uncracked bodies

Fig. 11. Line graph of deformation of cracked bodies
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the structural quality or performance. Hence, steel bars
are more desirable than aluminum bars for their tough-
ness, versatility, and dependability. The FEA results are
confirmed by matching them with experimental data from
Khan et al. [15] and a good correlation was seen.

6. Conclusion

This study applied the Finite Element Method to simu-
late the frequency and deflection of steel and aluminum
bars with two transverse cracks under different loads. The
cracks created new boundary conditions for the structures,
which reduced the natural frequencies and modified the
mode shapes of vibrations. A method was developed to
predict the location and deflection of a crack in a steel and
aluminum bar using vibrational data, and to investigate
the mode shape bending characteristics of a composite bar
with a longitudinal open crack subject to free vibration. The
results showed that the frequency susceptibility of cylin-
drical shape steel and aluminum bars changed with crack
location for all vibration modes. The results also showed
that steel bars were more resistant to load and bending
than aluminum bars, as they could distribute the applied
weight uniformly throughout the structure and absorb var-
ied amounts of stress and induced vibration. Aluminum
bars, on the other hand, reserved the stress at any one
point, causing excessive vibration and deflection in the af-
fected region of the structure, which could lead to damage
or distortion. Moreover, aluminum is a light metal that
may not be suitable for large construction. Therefore, this
study suggests that steel bars may be more acceptable and
advantageous than aluminum bars for structural health
monitoring systems design and optimization, due to their
strong corrosion resistance, elasticity, and diverting capac-
ity.
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