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The paper presents three position controller designs for a mobile robot. The first is a position controller using a
classic PID controller. The second is the position controller is designed based on optimal three coefficients for
PID controller by fuzzy logic control (FLC). The last, the mobile robot is moved according to the trajectories
set by the FLC controller. All three controllers have two state variables (position error and position deviation
derivative and one output variable, velocity) and one velocity output variable of the robot. The robot is moved
according to the trajectories set based on the PID-FLC controller flow fuzzy rules with a 7x7 matrix to the optimal
three coefficients of the PID controller. Meanwhile, the FLC controller is done by a 9x9 matrix rule. Evaluated
the efficiency of PID-FLC and FLC controllers are compared to classical PID controllers. The correctness of the
three controllers is proven through MATLAB/Simulink simulation. The PID-FLC controller has the result better
than the other two controllers.
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1. Introduction

The mobile robot is an innovative solution for the future in
the era of digitization and industry 4.0. The Self-propelled
robot ensures the certainty and flexibility of the product. At
the same time, it makes it easier to move goods inside fac-
tories and warehouses. Besides, Autonomous Robots also
improve automation and solve production continuity prob-
lems [1, 2]. In the world, in recent decades, autonomous
robot control has received extensive research and develop-
ment attention, and many methods, from classical control
to modern management, have been proposed to apply to
self-propelled robots. Previously, most of the publications
used the structure of two control loops: the outer kinematic
loop uses the Lyapunov function to synthesize the position
tracking controller, and the dynamic inner circle controls
the speed tracking. Many dynamic loop control methods
have been proposed, such as slip control [3–6] and back-
stepping control [7–9]. When the emotional equation has
uncertain parameters, adaptive management is included

in the design [10–13], and adaptive control combines with
neurons to approximate the result. Unpredictable parts [14–
16] or adaptive control combined with fuzzy logic [17–20]
gave reasonable control quality, compensating for model
error and system input noise.

Although many advanced controllers have been re-
searched and developed, traditional PID controllers are
still chosen to be used in the problem of controlling orbital
self-propelled robots because of their effectiveness of the
controller. This ensures stability and traction. However,
the accuracy achieved is not high [21]. Another problem
affecting the accuracy of orbital tracking for self-propelled
robots is the robot’s parameters, such as weight, cargo vol-
ume, and motion. Moreover, wheel and environmental
friction can change and affect the operation of the whole
system, where the PID controller no longer maintains trac-
tion control. Therefore, this paper presents the analysis,
comparison, and evaluation of Fuzzy control algorithms
and the Fuzzy-PID auto-tuning algorithm to find the opti-
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mal Kp, Kd, and Ki values to compare with classical PID
controller [22, 23] to get better. The PID controller has the
advantage of a simple design, but the system is not stable
when the noise affecting the system is always changing
while the controller parameters are fixed. Independent
fuzzy will overcome the system noise change, but it is very
difficult to determine the fuzzy rule to eliminate noise com-
pared to the PID set. From that, the author group came
up with the idea of designing a Fuzzy-PID controller, tak-
ing a Fuzzy set to adjust parameters for PID, to ensure
stable performance of the closed-loop system. Research
methods are tested by MATLAB/Simulink software and
experiment. The PID controller on the self-propelled robot
model controls the movement along a predetermined line.

This paper is organized into six main parts. Part 1 and
part 2 present the introduction to the target study and kine-
matics and dynamics model. The fuzzy logic controller is
designed in section 3. Part 4 expressed PID-Fuzzy logic con-
troller design Part 5 the simulation and simulation results.
The last section is the conclusion.

2. Kinematic and dynamic model

2.1. Kinematic Model

In the plane of the moving medium attach a fixed frame of
reference as depicted in Fig. 1.

The equation describing the kinematics of the mobile
robot is expressed in Eq. (1) [1].
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Where: r is right and left wheel radius; 2a is distance be-
tween the actuated wheels and the symmetry axis; φ̇r, φ̇l

are angular velocity of the right and left wheels; v, ω are
Angular velocity of the right and left wheels; q is linear and
angular velocities of robot; θ is orientation angle; q̇ is robot
speed.

2.2. Dynamic Model

The kinetic energy of the self-propelled robot is calculated
by:
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Where: Tc is the kinetic energy of the DWMR without
the wheels, TωR is the kinetic energy of the actuated wheels

Fig. 1. Kinetic relationship of mobile robots. Where: P is
Intersection of the symmetry axis with the axis of the

wheels; C is mass center or guidance point; d is distance
between C and P; r is right and left wheel radius; 2a is

distance between the actuated wheels and the symmetry
axis; mc is mass of the robot without wheels and motors;

mω is mass of each wheel and motor assembly; mt is total
mass of the DWMR; mt is a moment of inertia of the

DWMR without wheels and motors about the vertical axis
through P; Ic is moment of inertia of the DWMR without

wheels and motors about the vertical axis through P; Iw is
Moment of inertia of each wheel and motor about the

wheel axis; I is Total inertia moment of the robot; φ̇r, φ̇l are
angular velocity of the right and left wheels; v, ω are

Angular velocity of the right and left wheels; q is linear
and angular velocities of robot; θ is orientation angle.

in the plane and TωL is the kinetic energy of all the wheels
considering the orthogonal plane ; mc is mass of the robot
without wheels and motors; mω is mass of each wheel and
motor assembly; mt is total mass of the DWMR; Ic is mo-
ment of inertia of the DWMR without wheels and motors
about the vertical axis through P; Iw is Moment of inertia
of each wheel and motor about the wheel axis; I is Total
inertia moment of the robot; φ̇r, φ̇l are angular velocity of
the right and left wheels; v, ω are Angular velocity of the
right and left wheels; θ is orientation angle.

Mobile robot speed is calculated by:

ϑ2
i = ẋ2

i + ẏ2
i (5)

The coordinates of the wheels are therefore determined
as follows: {

xωr = x + a sin θ
yωr = y + a cos θ

(6)

{
xωl = x − a sin θ
yωl = y + a cos θ

(7)

From Eq. (2)to Eq. (7), the total kinetic energy:
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Where: mt = mc + 2mω ; I = mcd2 + Ic + 2mω
(
d2 + a2)+

2Im and θ̇ = ω

The robot’s equation of motion is described by the sys-
tem of equations:


mẍ − mcdθ̈ sin θ − mdθ̇2 cos θ = F1 − C1
mÿ − mcdθ̈ cos θ − mcdθ̇2 sin θ = F2 − C2
−mcd sin θẍ + mcd cos θÿ + Iθ̈ = F3 − C3

Iω φ̈r = τr − C4
Iω φ̈l = τl − C5

(9)

The matrix linking the kinematic constraints:

ΛT(q) =


C1
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C4
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 (10)

From Eqs. (9) and (10) The motion of the robot can be
represented by the equation:

M(q)q̈ + V(q, q̇) + F(q̇) + G(q) + τd = B(q)τ − ΛT(q)λ

(11)
Where: M(q) is positive inertia matrix; V(q, q̇) is centripetal
Matrix; F(q̇) is surface friction; G(q) is gravity acceleration
matrix; τd is noise component; B(q) is input matrix; ΛT(q)
is binding matrix; λ is Lagrange multiplier vector

2.3. Kinematic Model

The kinematic error model qe of a self-propelled robot is
a mathematical equation describing the deviation of the
robot’s position and posture, when the motion-controlled
robot follows a desired trajectory ξd and is defined as fol-
lowing in the original coordinate system:

qe =
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The derivative of Eq. (11) combined with the kinematic
equation of the mobile robot Eq. (1). The system of error
function equations as follows:
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ẏe
θ̇e

 =

 cos (θe) 0
sin (θe) 0

0 1

 [
ϑr
ωr

]
+

 −1 ye
0 −xe
0 −1

 [
ϑ
ω

] (13)

3. Pid - fuzzy logic controller design

Fuzzy controller structure diagram for robot is showed at
Fig. 2. A fuzzy logic controller is used to set parameters for
the PID controller. And the PID controller will control the
robot. The input to the fuzzy controller is still the model
error and the model error derivative, but the output here is
the coefficient for the PID controller. Use the normalized
formula for all 3 parameters, Kp, KI , KD, assuming all 3
parameters are bounded:

Kmin
P ≤ Kp ≤ Kmax

P ; Kmin
I ≤ KI ≤ Kmax

I ; Kmin
D ≤ KD ≤ Kmax

D

KP =
Kp − Kmin

P
Kmax

P − Kmin
P

; KI =
KI − Kmin

I
Kmax

I − Kmin
I

; KD =
KD − Kmin

D
Kmax

D − Kmin
D

(14)

Fig. 2. Fuzzy controller structure diagram for robot

Then the Mallesham - Rajani fuzzy tuner will be calcu-
lated by blurring two inputs (e, de/dt) and three outputs(
Kp, KI , KD

)
(see Figs. 3 and 4 and Table 1).

4. Fuzzy logic controller design

Using a preprocessor, the inputs that were in the form of
crisp values generated from feedback error (e) and change
of error (de) were conditioned in terms of multiplying by
constant gains before entering into the main control block,
such as in Figs. 5 and 6. From the rule based commands, the
Mamdani-type inference engine determined the capability
of degree of employed rules and returned a fuzzy set for de-
fuzzification block where the fuzzy output data were taken
and crisp values were returned. The transformed fuzzy
block matches the data with the conditions of the given
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Table 1. Fuzzy rule table for KP/KI/KD

e/ce NB NS Z PS PB
NB VB/S/S VB/M/S S/M/VB S/M/B M/S/S
NS VB/B/S B/B/S S/B/B S/B/B B/B/S
Z B/B/S M/B/M S/VB/B S/VB/M VB/VB/S
PS M/B/M S/B/B S/B/B M/B/S VB/B/S
PB S/S/M S/S/VB S/M/VB B/M/S VB/S/S

Fig. 3. Structure of the PID - Fuzzy logic controller on
MATLAB/Simulink

Fig. 4. Structure of the PID - Fuzzy logic controller on
MATLAB/Simulink

fuzzy rule. The output of the fuzzy set is converted to the
clarity values through the centroid defuzzification method
and converted into a control signal, as in Fig. 7. The FLC
controller is controlled by rules and makes control efforts
based on several if-then statements about (e) and (de), i.e.,
if the error is equal to Negative Big (NB) and the change of
error is equal to negative medium (NM), then the change
in control (c) is positive big (PB). The numbers of these if-
then statements were determined based on the experiment
and tuning of the system. Plots of fuzzy logic membership
function for the two inputs variables (e) and (de) and the
output (c) are shown in Figs. 5 to 7, and correspond to the

rules of Table 2.

Fig. 5. Input of bias variable e

Fig. 6. Deviated variable derivative input de

Fig. 7. Output variable
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Table 2. The rule control for FLC controller

De/e NVB NB NM NS Z PS PM PB PVB
NVB PVB PVB PVB PB PM PM PS Z Z
NB PVB PVB PB PM PS PS PS Z Z
NM PVB PB PM PS PS Z Z Z NS
NS PB PM PM PS PS Z Z NS NS
Z PM PM PS Z Z Z NS NS NM
PS PM PS PS Z NS NS NM NM NB
PM PS PS Z NS NS NM NB NB NB
PB PS Z Z NS NM NM NB NVB NVB

PVB Z Z NS NM NM NB NB NVB NVB

5. Simulation results on matlab/simulink

The control structure of the self-propelled robot is ex-
pressed in Fig. 8.

Fig. 8. The control structure of self-propelled robot

The PID - Fuzzy controller is compared with FLC and
PID controllers. The parameters of the PID set are deter-
mined through the tuning simulation method on MAT-
LAB/Simulink as Kp = 0.7; KI = 0.6; KD = 0.01.

Case 1: the trajectory is a circular orbit with radius 1 , cen-
ter is origin. The results of the three controllers when the
robot follows the same circular trajectory and the simulated
response is shown in Figs. 9 to 11.

Fig. 9. x, y position and system error using PID controller

The results of the 3 controllers that respond to the sim-
ulation are shown in Figs. 9 to 11. From these figures,
it is shown that all 3 controllers satisfy the stability for
the preset trajectory tracking robot. However, the error of

Fig. 10. x,y position and system error using FLC controller

Fig. 11. x,y position and system error using PID – Fuzzy
logic controller

robot position for control method using PID controller is
the largest (0.01) with response time of 32 s, then to fuzzy
logic controller (0.006) with response time of 25 s, and the
error is at least almost zero when using the PID - Fuzzy
controller (0.004) and the response time is also very fast
10 s.

Case 2: The trajectory is simulated, which is the crackling
trajectory. The position response of the two controls is
expressed in Figs. 12 to 14. All three controls react to the sta-
bility of a moving robot following a predetermined course.
The PID controller, however, has a minor robot position
error (0.01) and a slower reaction time (3s). However, even
though the FLC controller’s system error is just 0.006, it
responds more quickly than the PID controller, which takes
2s. Much more optimal is the PID-Fuzzy logic controller
error is almost zero.
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Fig. 12. Position using traditional PID controller

Fig. 13. Position using FLC logic controller

Fig. 14. Position using PID – Fuzzy logic controller

6. Conclusion

The paper has proposed a kinematic and dynamic model
for a mobile robot with differential actuator based on the
Lagrange dynamic approach. Mobile Robot is moved ac-
cording to the trajectory set by the PID-Fuzzy logic con-
troller. This controller has the advantages of simple design
and better performance than PID and FLC controllers with
orbital error of 0.004, setting time 10s. However, in order
to improve the moving quality of robot mobile with zero
error and faster, it is necessary to use hybrid control meth-
ods such as fuzzy logic combined with neural network, or
Sliding mode control with fuzzy logic, or a combination
controller artificial intelligence image processing.
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