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Rare diseases (RDs) are rare complex genetic diseases affecting a conservative
estimate of 300 million people worldwide. Recent Next-Generation Sequencing
(NGS) studies are unraveling the underlying genetic heterogeneity of this group of
diseases. NGS-based methods used in RDs studies have improved the diagnosis
and management of RDs. Concomitantly, a suite of bioinformatics tools has been
developed to sort through big data generated by NGS to understand RDs better.
However, there are concerns regarding the lack of consistency among different
methods, primarily linked to factors such as the lack of uniformity in input and
output formats, the absence of a standardized measure for predictive accuracy,
and the regularity of updates to the annotation database. Today, artificial
intelligence (AI), particularly deep learning, is widely used in a variety of
biological contexts, changing the healthcare system. AI has demonstrated
promising capabilities in boosting variant calling precision, refining variant
prediction, and enhancing the user-friendliness of electronic health record
(EHR) systems in NGS-based diagnostics. This paper reviews the state of the
art of AI in NGS-based genetics, and its future directions and challenges. It also
compare several rare disease databases.
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1 Introduction

Collectively, rare diseases (RDs) are a diverse group of heterogeneous diseases with
approximately 7,000 distinct clinical entities. These diseases are commonly a result of genetic
aberrations with early onset in children (Amberger et al., 2015; Wright et al., 2018; Tatiana
and Tarailo-Graovac, 2019). Despite their rarity, RDs are emerging as a priority in global
public health policy. An estimated 3.5%–5.9% of the world’s population (263–446 million
persons) is burdened by RDs (Taruscio et al., 2010; Khosla and Valdez, 2018; Nguengang
Wakap et al., 2020). RDs collectively affect a significant number of people worldwide. While
each individual rare disease may impact only a small number of patients, when considered as
a group, rare diseases have a substantial impact on public health. Furthermore, patients with
RDs’ are challenged by: 1) the struggle to locate knowledgeable clinicians to diagnose and
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manage their conditions, resulting in delay-, under-or misdiagnosis,
2) costly disease-specific medications, 3) the struggle faced by
clinicians to improve their competencies in managing RDs,
which depends proportionately on the availability of the cases,
and 4) difficulties in assembling cohorts of patients for clinical
study, availability of drugs or devices, and a lack of funding to
understand RDs better. Nevertheless, the emergence of various
advocacy organizations and emerging genomics technologies have
sped up the efforts to find cures and amelioration for this group of
diseases (Elliott and Zurynski, 2015; Austin et al., 2018; Stoller, 2018;
Liu et al., 2019a; Maroilley and Tarailo-Graovac, 2019; Baynam
et al., 2020).

Rare diseases are inherently uncommon, there are typically
severe constraints on available knowledge, research, medical
expertise, and treatment options for each specific rare disease.
Sharing clinical and genetic data on rare diseases can be
challenging due to concerns about patient privacy and data
security. Moreover, the rarity of the diseases causes the data
available for each specific condition is limited. This scarcity of
data makes it challenging to develop comprehensive databases
and reference datasets. Rare diseases, by definition, have low
prevalence. This means there is often a lack of reference data and
comprehensive databases specific to these conditions.
Consequently, it can be difficult to assess whether a specific
genetic variant is pathogenic or benign. Variants of unknown
clinical significance are common in rare diseases. These are
genetic variations that are not clearly associated with disease
or health. Interpreting VUS accurately is crucial for making
informed clinical decisions and research advancements. As
technology progresses, both public and scientific awareness
has been increasing, and the accumulation, combination, and
sharing of extensive data are set to greatly enhance our
understanding of rare diseases (Hartley et al., 2020).

High throughput sequencing technologies are becoming an
armamentarium for clinicians and researchers in modern
medicine, especially in RDs (Grosse et al., 2010; Soon et al.,
2013; Frésard and Montgomery, 2018; Amorim et al., 2019;
Nguyen, 2019; Field, 2021). Next-generation sequencing
(NGS) has been instrumental in discovering many underlying
genetic aberrations of RDs. Such understanding has greatly
improved the diagnosis and management of RDs (Jia and Shi,
2017; Fernandez-Marmiesse et al., 2018; Liu et al., 2019b; Rey
et al., 2019; Vinkšel et al., 2021). Three NGS-based methods have
exponentially identified disease-associated genes in the last
10 years, for example, the discoveries of novel genetic variants
associated with age-related hearing loss (ARHL) (Girotto et al.,
2019), Ménière’s disease (MD) (Gallego-Martinez et al., 2019)
and severe congenital myasthenic syndrome with episodic apnea
(CMS-EA) (Liu et al., 2019a) by targeted sequencing. It is
becoming clear that genetic defects defining RDs are as
heterogeneous as the disease (Liu et al., 2019b; Posey, 2019).
Furthermore, the rapid accumulation of NGS-generated genomic
data would challenge traditional sampling-based statistical
methods’ ability to identify genetic pattern. Hence, more
advanced computational techniques are in order, and artificial
intelligence (AI) is fast becoming a method of choice (Cai et al.,
2020). This paper summarizes the current uses of AI in NGS-
based genetics and its future directions and challenges.

1.1 Targeted sequencing panels

Gene panels are used to anticipate the presence of pathogenic
mutations associated with specific illnesses or disease groups by
identifying specific genes or coding regions within genes (Rehm,
2013). Sequences can be sequenced to deeper levels than WES and
WGS using targeted panels at a lower cost. In contrast to WES and
WGS, detected variants are limited to a limited set of genes. And
produce a minimal amount of data; as a result, the interpretation
workload is reduced, and there is much less concern about incidental
findings. However, panels need to be updated regularly in light of
new knowledge and gene discoveries. WES and targeted panels have
limitations in identifying structural variants, repetitive elements, and
mitochondrial genetic variations (Miller et al., 2017).

1.2 Whole exome sequencing

The whole-exome sequence examines protein-coding regions of
the genome, the regions of the genome that account for 1%–2% of
the whole genome and are responsible for 95% of all diseases. It
allows for identifying variants in genes that have not yet been linked
to human genes (Rabbani, Tekin, and Mahdieh, 2014). An
interpretation of WES can be provided with a preselected panel
or a specific set of genes. Using bioinformatics panels, the laboratory
can choose from gene lists associated with phenotypes of patients. It
is also possible to compare the phenotype associated with these
genes with the patient’s phenotype by looking at all rare and
potentially damaging variants, (Yang et al., 2013). This approach
enables the discovery of novel genes (novel gene association) by
detecting previously undiscovered variants. Among WES’s
limitations are the insufficient coverage of different regions, the
limited ability to detect variations in repetitive elements, and
variants in cases of somatic mosaicism. Further limitations
include structural and deep intronic variants. Despite this,
technology has continued to advance, enabling the method to
cover exons more accurately and all disease-causing intronic
variants, (Vinkšel et al., 2021).

1.3 Whole-genome sequencing

Human genomes can be largely mapped using whole-genome
sequencing. The information obtained through genome sequencing
promotes the discovery of new genes associated with diseases and
gene modifiers that helps to answer complicated genetic inheritance
questions (van El et al., 2013). Through this powerful tool, the
genetic cause of many diseases can be discovered with only one test,
which means it may become the most preferred genetic test in the
future. WGS can detect several categories of genetic variation,
including single-nucleotide variations (SNVs), insertions and
deletions (indels), copy number variations (CNVs) and
translocations (TLs) (Vinkšel et al., 2021). The potential benefits
are unfortunately limited by the genome’s inaccessibility, cost, and
complexity, as well as the current limitations of bioinformatics for
interpreting non-coding genomic variants (Ormond et al., 2010).
The WGS and WES methodologies have great potential for
diagnosing rare diseases. They can analyze multiple genes in a
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single test while producing variants of unknown significance (VUS)
and incidental findings. Hence, they pose additional challenges to
clinicians and patients (Vinkšel et al., 2021).

2 NGS-based genetic diagnosis:
challenges and opportunities

NGS offers several advantages in the clinical setting for
elucidating predictive or prognostic biomarkers. NGS has
advanced significantly over the last decade, with considerable
improvements in throughput, quality, cost, and sequencing time.
State-of-the-art algorithms, along with their capacity to process vast
and intricate datasets, present novel possibilities for precision
medicine treatments. As depicted in Figure 1, sequencing plays a
significant role in precision medicine. At present, targeted
sequencing stands as the preferred approach for clinical
applications due to its advantages, such as increased sensitivity,
broader coverage, and cost-effectiveness. However, it has
limitations, such as the inability to identify significant genomic

rearrangements or potentially pathogenic mutations in non-targeted
genes. The benefit of whole-genome sequencing is that it allows for
mutations and alterations throughout the genome (Huang et al.,
2019).

3 Artificial intelligence for enhancing
NGS-based diagnosis

Ng et al. (2009) first demonstrated the use of NGS-based
methods in RDs as a proof-of-concept that WES could identify
candidate genes responsible for monogenic disorders like Freeman-
Sheldon syndrome (FSS). Comparing their results to WGS, the
group demonstrated high concordance, low false discovery rate,
and equivalent sensitivity for cSNP detection of WES. In research
related to rare diseases (RDs), WES has become the preferred
method due to its cost-effectiveness and efficiency in collecting
and analyzing genomic data compared to WGS and its superior
ability to detect novel disease-causing genes than targeting
sequencing. As the number of genes that NGS can sequence

FIGURE 1
The use of sequencing in precision medicine.
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increases, more candidate genes will likely be found. One of the
challenges faced by the increasing number of associated RDs genes is
the bioinformatic tools currently used in the alignment, variant
calling, and annotation of NGS-generated genomic data. The use of
various software packages will yield distinct final interpretations,
different statistical significance thresholds, and variant calling,
ultimately resulting in a diverse final list of potential genes
(Fernandez-Marmiesse et al., 2018).

A suite of computational software is currently available for each
step in identifying a diseasing-causing mutation in patients’
genomes. The use of bioinformatics in NGS-based genetic testing
is essential. There are five key stages in the NGS bioinformatics
pipeline that must be completed before suitable analyses can be
performed. Figure 2 illustrates a framework of WES/WGS data
analysis from individual patients with rare diseases, while Figure 3
illustrates the workflow for NGS data analysis. Recently, GIAB,
together with the Global Alliance for Genomics and Health
(GA4GH), has been actively creating benchmarking data to set a
standard reference for adopting the most effective methods for NGS
data analysis (Krusche et al., 2019; Zook et al., 2019).

Artificial intelligence (AI) has a worldwide and
interdisciplinary influence. Today, AI, particularly deep
learning, is widely used in various biological contexts,

changing the healthcare system and other disciplines outside
the scope of this paper. AI has significantly contributed to the
analysis of next-generation sequencing (NGS) data. AI
algorithms play a crucial role in automating and enhancing
various facets of NGS data analysis, thereby increasing
efficiency and precision. One prominent application of AI in
NGS data analysis involves the alignment of sequences to a
known reference genome. Alignment, which entails matching
NGS-generated sequences to a reference genome, is a critical step
in detecting genome variations and mutations. AI algorithms
excel at streamlining this process by identifying the most suitable
matching sequences and compensating for data errors or
variations. AI also plays important role in the development of
novel NGS data analysis tools and methodologies. For instance,
AI can be harnessed to create algorithms capable of predicting the
performance of various NGS assays or to discover innovative
approaches to NGS data analysis that enhance accuracy and
efficiency. The substantial role of AI in NGS data analysis lies
in its capacity to automate and optimize numerous aspects of the
process, ultimately rendering it more efficient and precise. The
ability of AI algorithms to swiftly and accurately process vast
quantities of data positions them as indispensable tools in the
field of NGS data analysis.

FIGURE 2
A framework of WES/WGS data analysis from individual patients with rare diseases. (GATK-Genome Analysis Toolkit, VQSR-Variant Quality Score
Recalibration, BWA-Burrows-Wheeler Alignment, SAMtools-Sequence Alignment/Map tools, VEP-Ensembl Variant Effect Predictor, HGC-Hierarchical
Graph-based Clustering, GTEx-Genotype Tissue Expression, IGV-Integrative Genomics Viewer).
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Machine learning, a subfield of artificial intelligence (AI) and
computer science, revolves around leveraging data and algorithms to
emulate human learning and continuously enhance its accuracy. This
technology holds the potential to revolutionize disease identification
and treatment, significantly impacting clinical decision-making. As
genomic data grows exponentially, conventional statistical sampling-
based approaches face difficulties in identifying genetic patterns. This is

where advanced algorithms like deep learning and AI become highly
advantageous. By utilizing deep neural networks as an end-to-end
method, complex feature patterns can be automatically extracted, and
prediction models can be built with minimal manual feature
engineering. Table 1 shows the advantages and disadvantages of
clinical NGS analysis. Table 2 summarises the recent studies that use
machine learing algorithms in NGS data analysis.

3.1 Variant calling

The task of detecting variants from sequencing data is referred to
as variant calling. Despite the existence of several variant calling
algorithms, many of them still require improvement, especially in
clinical settings. Machine learning-based algorithms offer an
alternative approach for variant calling.

3.2 Variant prediction

The clinical implementation of NGS-based diagnosis faces a hurdle
in distinguishing pathogenic mutations from benign genetic variations.
Despite the creation of various variation effect prediction tools to bridge
this gap, it still constitutes a limiting factor that necessitates further
validation in the decision-making process (Xu et al., 2019).

3.3 EHR

Connecting genetic testing to EHR systems is essential to
integrating genomics into clinical practice (Abul-Husn and
Kenny, 2019). Meanwhile, the electronic health record (EHR)
system has served as a centralized platform for integrating
diverse digital health data, leading to improved clinical decision-
making and precision medicine. The difficulty lies in integrating
data profiles of different complexities within the EHR system to

FIGURE 3
General workflow for NGS data analysis.

TABLE 1 Advantages and disadvantages of clinical NGS analysis.

Type analysis Advantages Disadvantages

Variant calling - Essential for identifying genetic variants associated with
diseases

- Can be complex, involving the analysis of large volumes of data generated by
next-generation sequencing technologies

- A valuable tool for studying population genetics

Variant Filtering - Allows researchers to focus on the most relevant and high-
confidence variants

- Risk of Excluding True Positives

- Can reduce the number of false-positive variants - May inadvertently filter out variants of interest, leading to potential data loss

- Making the subsequent steps of analysis faster and more
manageable

Variant Annotation and
Prioritization

- Provides detailed information about the functional
consequences of variants

- Variant annotation and prioritization can be complex

- Helps researchers or clinicians focus on the most biologically
relevant variants

- Require substantial computational resources

Phenotype-genotype
association

- Can capture data from all over the genome, providing a
comprehensive view of genetic variations

- Require large sample sizes for robust associations

- Enables the detection of rare and novel variants
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TABLE 2 Summarises the recent studies that use machine learning algorithms in NGS data analysis.

Models Algorithms Notes Refs

Variant Calling

Deep Variant Deep convolutional neural network (CNN) The process of variant calling through short-read sequencing
involves creating a representation of DNA alignments in the form of
an image

Poplin et al. (2018)

Clairvoyante Deep Convolutional neural network (CNN) A CNN model with multitasking capabilities and adaptable for long
sequencing data

Luo et al. (2018)

DeepNano Deep recurrent neural network (RNN) An advanced RNN for conduct base calling on MinION nanopore
reads, yielding outcomes comparable to the performance achieved
by Oxford Nanopore’s Nanonet base caller

Boža et al. (2017)

N/A Logistic regression model The creation of a deterministic machine-learning-based model
aimed at distinguishing between two types of variant calls

van den Akker et al.
(2018)

NeoMutate Bayesian classifier, Bayesian model of admixture Use of seven supervised machine learning algorithms, leveraging the
advantages of various variant callers and integrating a unique
collection of biological and sequence characteristics

Anzar et al. (2019)

Heuristic methodology

GATK HaplotypeCaller
algorithm

N/A A comprehensive pipeline designed to identify the optimal method
for processing NGS data to accurately call variants for subsequent
analyses with confidence

Pirooznia et al.
(2014)

N/A Multivariate linear regression A machine learning method used to predict the quality scores of
variant calls obtained from BWA + GATK

Cosgun and Oh
(2020)

Random forest regression

Neural network regression

N/A Random forests, adaptive boosting, k-nearest
neighbors, naive Bayes, support vector machines

By combining multiple supervised machine learning techniques, the
prediction of phenotype group associations significantly improves
when relying on observed genotypes compared to using random
permutations of the exomic sequences

Kringel et al. (2018)

Variant Filtering

SNooPer Random forest A machine learning approach to call somatic variants in low-depth
sequencing data

Spinella et al. (2016)

GARFIELD-NGS N/A A tool designed to distinguish between false and true variants in
exome sequencing experiments

Ravasio et al. (2018)

Intelli-NGS Deep neural network (DNN) A tool based on deep neural networks that assists in minimizing
false positive and false negative rates while maintaining high recall
performance

Singh and Bhatia
(2019)

DeepSVFilter Convolutional neural network (CNN) A deep learning-based approach for filtering structural variants in
short genome sequencing data

Liu et al. (2021)

iEVA N/A A tool that amplifies informative features derived from NGS data
and utilizes them in a filtering process employing a Machine
Learning algorithm (ML)

Urtis et al. (2019)

DOMINO linear discriminant analysis A tool that evaluates the probability of a gene containing dominant
alterations

Quinodoz et al.
(2017)

Variant Annotation and Prioritization

Skyhawk Deep neural network (DNN) An artificial neural networks that imitators the expert review
process to detect clinically relevant genomic variants

Luo et al. (2018)

DANN Deep neural network (DNN) A DNN algorithm that surpasses state-of-the-art methods like
support vector machine in predicting the deleterious annotation of
genetic variants

Quang et al. (2015)

DeepSEA Deep Convolutional neural network (CNN) A deep CNN model utilized to predict the effects of noncoding
variants directly from the sequence data and subsequently applied to
forecast the functional impact of variants related to autism spectrum
disorder

Zhou and
Troyanskaya (2015)

eDiva N/A The framework integrates NGS data analysis, via functional
annotation, and optimized causal variant prioritization

Bosio et al. (2019)

(Continued on following page)
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enhance clinical diagnosis. AI advancements offer a potential
solution to this challenge.

3.4 Phenotypes and genetic testing
association

The main objective of a genetic association study is to
investigate whether a particular sequence, such as a
chromosomal region, haplotype, gene, or allele, plays a role in
determining specific traits, metabolic pathways, or diseases. Deep
learning has been widely used to improve diagnosis performance
in medical image diagnostic systems, outperforming radiologists
and pathologists (Yu et al., 2018). For example, DeepGestalt
proposed by Gurovich et al. (2019) included over 17,000 pictures
for over 200 rare diseases and reached 91% accuracy.

4 Databases for rare diseases

AI and NGS complement each other exceptionally well since
AI thrives on extensive data while NGS generates vast amounts
of data. Alongside the massive NGS data, other diagnosis-
related testing data is also being produced, presenting the
challenge of adequate data storage. To securely manage this
data, a sophisticated informatics infrastructure is necessary.
Measures have been taken to ensure that cloud-based services
adhere to health privacy regulations, allowing for the secure
storage of NGS data and the establishment of standardized data
privacy practices among various stakeholders (Langmead and
Nellore, 2018).

Although AI holds promise for improving clinical diagnosis in
rare diseases, its effectiveness can be hindered by the intricate and
diverse profiles of clinical data. Constructing an AI model for
diagnosing rare diseases requires a substantial training dataset
comprising patients with documented clinical outcomes. This
paper reviews a few currently available databases for rare disease
diagnosis. Table 3 summarises the available databases for rare
diseases. Table 4 shows comparison between available databases
for rare diseases.

4.1 National organization for rare disorders
(NORD) rare disease database

Since its inception in the early 1980s, coinciding with the
implementation of the Orphan Drug Act, the National Organization
for Rare Disorders (NORD) has been functioning as a support and
advocacy organization for those individuals impacted by rare diseases.
The database subscribers are granted entry to extensive monographs
containing detailed information about the causes, symptoms, standard
and investigational treatments, as well as support organizations related to
various rare diseases. The level of detail offered in these monographs
exceeds that of other resources, making it highly valued by patients and
their families.

The Rare Diseases Database presently comprises data on over
1,200 diseases, Organized in alphabetical sequence or capable of
being searched by disease name or synonym. It is important to note
that NORD clarifies this database is not exhaustive, given that there
are nearly 7,000 acknowledged rare diseases. As a non-profit
advocacy organization, NORD’s resources for this informational
database are limited, and it chooses to rely on volunteer specialists to
contribute material.

4.2 NIH genetic and rare diseases
information center (GARD)

The NORD Rare Diseases Database has a limited scope, so the
website provides links to additional resources, especially the NIH
Genetic and Rare Diseases (GARD) Information Center. The
main objective of GARD is to provide up-to-date, precise, and
easily understandable information regarding rare or genetic
diseases in both English and Spanish. The GARD Information
Center database contains approximately 6,700 specific diseases,
and the data is generated by “information experts” with genetics
degrees, according to the GARD Operations Manager (Hogan
Smith, 2017).

Some information on the listed diseases is sourced from external
databases like Orphanet, a European rare disease database. While
GARD covers more rare diseases than the NORD Database, some
entries require additional information.

TABLE 2 (Continued) Summarises the recent studies that use machine learning algorithms in NGS data analysis.

Models Algorithms Notes Refs

RENOVO Random forest An algorithm for reclassification of germline variants of unknown
significance

Favalli et al. (2021)

Phenotype-genotype association

DeepGestalt Deep Convolutional neural network (CNN) A sophisticated convolutional neural networkmodel can distinguish
rare diseases by analyzing patient face images and it can effectively
discriminate different genetic subtypes

Gurovich et al.
(2019)

DeepPVP Deep neural network (DNN) A Deep Neural Network model used for prioritizing variants by
incorporating patients’ phenotype information

Boudellioua et al.
(2019)

Xrare N/A A method to prioritize causative gene variants in the diagnosis of
rare diseases

Li et al. (2019)

SQUIRLS Random forest An algorithm in classifying splice variants Danis et al. (2021)

N/A represents that the information is not reported in the paper.
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GARD also allows users to ask questions to a GARD information
professional. The responses are akin to a librarian’s helpful response
to consumer health information queries, often pointing to general
material available on the site rather than addressing individual users’
specific circumstances. Since its establishment in February 2002,
GARD has answered over 22,000 requests about 6,000 rare and
genetic diseases, as reported by the NIH.

4.3 Orphanet

Orphanet is a European platform dedicated to rare diseases and
orphan drugs, led by the Institut National de la Santé et de la
Recherche Médicale (INSERM) in collaboration with various
countries and organizations, primarily within the European
Union. The main objective of Orphanet is to provide high-
quality information about rare diseases and ensure that all
stakeholders have equitable access to knowledge. The platform

also publishes a series of widely downloaded publications that
present aggregated data on topics relevant to all rare diseases.

The inventory of rare diseases on Orphanet can be searched
using disease names, gene names, symbols, or the disease’s
“functional consequences” (disabilities), as well as other
identifying numbers like the Online Mendelian Inheritance in
Man (OMIM) number. A beta tool called PhenomizerOrphanet
is also available to assist in clinical differential diagnosis through
controlled vocabulary searches. Orphanet offers an “Encyclopedia
for Patients,” an “Encyclopaedia for Professionals,” and “Emergency
Guidelines” for healthcare professionals. However, it should be
noted that the quantity of diseases addressed in the articles
within the Encyclopedias. Is generally limited. The site’s content
is accessible in multiple European languages and includes
information on 6,172 diseases and 5,835 genes (Orphanet, 2021).

As stated on the website, all disease entries are written by
specialists and undergo evaluation by peers. However, it’s
important to acknowledge that the mentioned therapies may not

TABLE 3 Summarises the available databases.

Database Description URL Reference

NORD An organization that support individuals affected by rare diseases and the
entities that offer them assistance

https://rarediseases.org/for-patients-and-families/
information-resources/rare-disease-information/

NORD (2021)

GARD Offers the general public reliable, up-to-date, and user-friendly information
about rare or genetic diseases

https://rarediseases.info.nih.gov/diseases GARD (2021)

Orphanet The goal is to gather limited information about rare diseases in order to
improve the diagnosis, care, and treatment of patients afflicted by these
conditions

https://www.orpha.net/consor/cgi-bin/Disease.
php?lng=EN

Orphanet (2021)

OMIM An ever-evolving repository of human genes, genetic disorders, and traits,
with investigating the relationship between genes and phenotypes

https://www.omim.org/ Amberger et al.
(2015)

LORIS
MyeliNeuroGene

Natural history studies and clinical trial readiness https://myelineurogene-stg.loris.ca/ Spahr et al.
(2021)

Note: N/A represents unavailable information.

TABLE 4 Comparison of available databases for rare disease.

Database Services Advantage Disadvantage

NORD Offers detailed information on rare diseases,
patient advocacy, support groups, and
patient assistance programs

- Highly patient-centered and offers extensive
support, advocacy, and information for
individuals and families affected by rare diseases

- The focus is mainly on rare diseases, and it may
not be as comprehensive in terms of genetic and
molecular information

GARD Offers information specialists for
personalized assistance, educational
materials, and government-funded resources

- Freely accessible to the public - While it provides extensive information, it may
not have the same level of patient support and
advocacy as NORD- Comprehensive information on genetic and rare

diseases, including disease descriptions, research,
clinical trials, and expert guidance

Orphanet Offers information for both healthcare
professionals and the general public

- Provides information on rare diseases, orphan
drugs, expert centers, and research projects

- Primary focus is on Europe, and some
information may be less relevant for non-European
users

OMIM Offers extensive genetic and molecular
information, including genetic mutations
and associated clinical features

- Specializes in the genetic and molecular basis of
human diseases and disorders

- Primarily focuses on monogenic disorders and
may not provide comprehensive information on
complex genetic traits or disorders influenced by
multiple genes and environmental factors- Freely accessible to the public

LORIS
MyeliNeuroGene

Offers information on rare neurological
conditions, clinical trials, and genetic
research

- Focuses on rare neurological diseases and
disorders, particularly those affecting the central
nervous system

- Limited to rare neurological diseases, so it may not
be relevant for individuals seeking information on
other types of rare diseases

- Funding sources may not be as transparent as
those of larger, more established resources
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be evidence-based due to the limited number of cases available for
gathering evidence for or against a particular treatment.

4.4 Online Mendelian Inheritance in Man
(OMIM)

Online Mendelian Inheritance in Man (OMIM) is an authoritative
and freely accessible database containing comprehensive information
about human genes and genetic traits, which is updated on a daily basis.
The comprehensive summaries in OMIM include information about all
identified Mendelian diseases and over 16,000 genes. The database
focuses on establishing the connection between phenotype and
genotype, and its articles are regularly updated, providing numerous
links to additional genetics resources.

In the early 1960s, Dr. Victor A. McKusick launched the
database known as Mendelian Inheritance in Man (MIM),
originally intended as a catalog of Mendelian traits and disorders.
This catalog was published in twelve book versions from 1966 to
1998. Subsequently, in 1985, an online version called OMIM was
developed through a collaboration between the National Library of
Medicine and the William H. Welch Medical Library at Johns
Hopkins. It became widely available on the Internet in 1987.
Subsequently, in 1995, the National Center for Biotechnology
Information (NCBI) created the World Wide Web version of
OMIM. Dr. Ada Hamosh leads the McKusick-Nathans Institute
of Genetic Medicine at Johns Hopkins University School of
Medicine, where OMIM is authored and edited (OMIM, 2021).

Unlike primary data databases, OMIM aggregates and
summarizes essential information derived from expert reviews of
the biomedical literature. Consequently, OMIM has played a
pioneering role in naming and classifying genetic phenotypes
(Amberger et al., 2015). A simple search in the OMIM database
reveals numerous genes associated with various diseases, some of
which exhibit multiple inheritance patterns.

4.5 LORIS MyeliNeuroGene rare disease
database

In 2021, Spahr et al. (2021) introduced the LORIS
MyeliNeuroGene rare disease database for conducting natural
history studies and preparing for clinical trials. This online
database for rare disease and needs subscription, it is not free
access like OMIM or orphanet or GARD. Employing FDA-
compliant databases for developing clinical trials with historical
control data could significantly impact patients and families.

Spahr et al. (2021) created an accessible multi-modal database
accessible via a web browser, which included genetics, imaging,
behavioral, and patient-reported outcomes. The main goals were to
increase the size of cohorts, identify surrogate markers, and foster
international collaborations. The database contained a comprehensive
range of information, such as family, perinatal, and developmental
history, clinical examinations, diagnostic investigations, neurological
evaluations (e.g., spasticity, dystonia, ataxia, etc.), disability measures,
parental stress, and quality of life data.

Spahr et al. (2021) highlighted that their manuscript is the first to
outline the requirements for adhering to Title 21 Code of Federal

Regulations Part 11 Compliance. Subsequent studies will employ the
tools developed in this project to characterize the natural
progression of diverse rare diseases, with the goal of providing
valuable insights to clinicians and researchers globally.

In summary, the choice of resource depends on specific research
needs and interests. Each of these databases serves a unique purpose.
NORD and GARD are more patient-focused, while Orphanet
provides comprehensive European coverage. OMIM offers
specialized genetic information for professionals, and LORIS
MyeliNeuroGene is niche-focused on neurological diseases.

5 Conclusion and future perspectives

Genetic testing is becoming increasingly popular and accessible
for both individuals and clinicians in today’s world. While
challenges and obstacles persist, NGS technologies hold
significant promise as the initial stage in genetic testing for rare
disease diagnoses.

This paper focuses solely on certain aspects of NGS-based
genetic testing in clinical implementation and omits other vital
factors. These include genetic counseling to improve the patient-
physician relationship, addressing ethnic considerations in the
adoption and delivery of genetic testing, and educational
initiatives aimed at promoting the acceptance of genetic testing
in clinical settings.

The challenge of data interpretation remains a significant
obstacle when employing routine clinical NGS for diagnosis.
Dealing with large datasets and interpreting them requires
substantial resources and expertise from bioinformaticians. These
datasets contain information on variations that need to be classified
for accurate diagnosis. Although AI shows great potential in
healthcare, it faces challenges, including the increasing data
volume and associated costs from automated computing. AI
systems demand specialized computational resources for swift
data processing, making them expensive. Additionally, AI-based
solutions require proper training and understanding by intended
users before being integrated into routine clinical practice.
Addressing ethical concerns regarding patient data use is critical,
necessitating ethical standards and procedures to ensure patient
safety and privacy.

AI is beginning to tap into its potential to enhance clinical
usefulness and diagnostic capabilities by supplementing phenome-
wide and genome-wide data profiles. iBoth government agencies
and professional communities are actively supporting and initiating
efforts to standardize regulations for NGS-based testing and AI
applications. When dealing with rare diseases, further research is
needed as traditional monogenic models may not be sufficient.
Exploring the digenic/oligogenic model and investigating
polygenic causes for undiagnosed cases could provide valuable
insights (Katsanis et al., 2001; Hoefele et al., 2007; Boisson-
Dupuis et al., 2018; Posey, 2019).
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