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Salt stress is the second most devastating abiotic stress after drought and limits

rice production globally. Genetic enhancement of salinity tolerance is a

promising and cost-effective approach to achieve yield gains in salt-affected

areas. Breeding for salinity tolerance is challenging because of the genetic

complexity of the response of rice plants to salt stress, as it is governed by

minor genes with low heritability and high G × E interactions. The involvement of

numerous physiological and biochemical factors further complicates this

complexity. The intensive selection and breeding efforts targeted towards the

improvement of yield in the green-revolution era inadvertently resulted in the

gradual disappearance of the loci governing salinity tolerance and a significant

reduction in genetic variability among cultivars. The limited utilization of genetic

resources and narrow genetic base of improved cultivars have resulted in a

plateau in response to salinity tolerance in modern cultivars. Wild species are an

excellent genetic resource for broadening the genetic base of domesticated rice.

Exploiting novel genes of underutilized wild rice relatives to restore salinity

tolerance loci eliminated during domestication can result in significant genetic

gain in rice cultivars. Wild species of rice,Oryza rufipogon andOryza nivara, have

been harnessed in the development of a few improved rice varieties like Jarava

and Chinsura Nona 2. Furthermore, increased access to sequence information

and enhanced knowledge about the genomics of salinity tolerance in wild

relatives has provided an opportunity for the deployment of wild rice

accessions in breeding programs, while overcoming the cross-incompatibility

and linkage drag barriers witnessed in wild hybridization. Pre-breeding is another

avenue for building material that are ready for utilization in breeding programs.

Efforts should be directed towards systematic collection, evaluation,

characterization, and deciphering salt tolerance mechanisms in wild rice
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introgression lines and deploying untapped novel loci to improve salinity

tolerance in rice cultivars. This review highlights the potential of wild relatives

ofOryza to enhance tolerance to salinity, track the progress of work, and provide

a perspective for future research.
KEYWORDS

rice, salt tolerance, mechanisms, wild gene pool, traditional breeding, MAS,
transgenics, genomics
1 Introduction

Cultivated rice, which primarily includes Oryza sativa (Asian

cultivated rice) and Oryza glaberrima (African cultivated rice),

contains 22 wild species that are not cultivated (Solis et al., 2020).

O. sativa is cultivated worldwide, whereas O. glaberrima, is

predominantly grown in Africa. Wild rice ancestors have adapted

to various geographically distinct habitats (Atwell et al., 2014). The

22 wild ancestors constituted the largest gene pool. Oryza species

are highly variable and comprise 11 distinct genomes, including six

diploids (AA, BB, CC, EE, FF, and GG) and five allotetraploids

(BBCC, CCDD, KKLL, HHJJ, and HHKK) (Stein et al., 2018). They

differ in morphological characteristics such as growth habit, plant

height, flowering, leaf size, panicle size, and branching, awning, and

seed size.

Wild relatives of rice are grouped into three gene pools

(primary, secondary, and tertiary) based on their ease of

hybridization with cultivated rice and phylogenetic relationships

(Harlan and deWet, 1971). The primary gene pool comprises theO.

sativa complex (AA genome) with close relatives of cross-

compatible rice and a secondary gene pool consisting of O.

officinalis complex (BB to FF genomes) with less closely related

species and a tertiary gene pool constituted with O. meyeriana

complex, O. ridleyi complex, and O. schlechteria complex (GG to

KKLL genomes) with more distant relatives of rice, necessitating

embryo rescue, chromosome doubling, or bridging species to

facilitate gene transfer (Solis et al., 2020) (Figure 1).

Studies have revealed that indigenous species of rice could

potentially be used as genetic resources for abiotic stresses such as

submergence (Luo et al., 2020; Sasayama et al., 2022) drought

(Hamzelou et al., 2020; Anilkumar et al., 2023), heat (Prasanth

et al., 2012; Khan et al., 2019; Jagadish et al., 2021), etc. However,

few limited published studies have reported the significance of wild

rice species in elevating salinity tolerance in cultivars (Solis

et al., 2020).

Indeed, very few review articles have focused on the genetic

enhancement of salinity tolerance in wild O. sativa species. Hence,

in this manuscript, we have reviewed the impact of salinity effects in

rice, the importance of wild rice species in breeding for salinity

tolerance, characterization and mechanisms of tolerance in wild
02
rice, deployment of wild rice genes in rice breeding, and challenges

and opportunities for the incorporation of wild gene loci to develop

salt-resilient rice cultivars.
2 Importance of wild species in
rice breeding

Wild progenitors adapted to various changing climatic

conditions display tremendous genetic diversity and carry genetic

loci associated with unique agronomic and adaptive traits (Hellwig

et al., 2021). The basic requirement of a successful crop breeding

program is the availability and accessibility of genetic variability in

target traits (Perrino and Perrino, 2020). When there is exhaustion

in genetic variation among domesticated genotypes, breeders are

left with access the diversity available in land races and wild

ancestors as alternate sources of variability.

Asian cultivated rice has evolved from its wild ancestor Oryza

rufipogon through human efforts (Wang et al., 1992). Similarly, the

African rice O. glaberrima was domesticated from the African wild

progenitor Oryza barthii. Erect growth, non-shattering, and

increased grain number and weight were targeted during selective

breeding. The intense selection and breeding that occurred during

domestication could have probably resulted in the loss of genetic

variability and the loci associated with stress tolerance in cultivars.

O. sativa represents <20% of the total variation compared to that

found in various wild species (Stein et al., 2018), and significant

natural variability for salt tolerance still exists in wild species

(Munns et al., 2016), which can be exploited to improve

cultivated rice. There are certain wild species such as Oryza

coarctata, a distantly related wild rice that thrives under extreme

salinity (450 mM NaCl). However, the crossability barrier limits

their utility.

Owing to tall plant stature, photosensitivity, poor grain type,

low seed set, high grain shattering, and low yield potential, natural

wild accessions are regarded as poor agronomic performers

(Sanchez et al., 2013). Despite this, the recovery of widely

adaptable cultivars to diverse challenging environments would be

higher when wild relatives of rice are used in the crossing program

(Jin et al., 2021). Insights into morphological and physiological
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responses to salt stress are crucial for exploiting stress tolerance

through distant crosses. The extent to which wild rice progenitors

demonstrate tolerance and the probable genetic defense strategies

behind tolerance remains partially understood. Crossing barriers,

linkage drag, and epistatic effects from unadapted wild genes when

introgressed into elite cultivars may complicate mainstream

breeding. However, advances in genomic tools and techniques,

particularly embryo rescue techniques and deploying molecular

marker-based advanced backcrosses, identification, selection, and

incorporation of target quantitative trait loci (QTLs) into elite

varieties, could successfully generate improved versions of

cultivars (Dai et al., 2022).

The genetic wealth of rice diversity was systematically preserved

in gene banks. As of December 2023 (URL-https://www.irri.org/

international-rice-genebank), the International Rice Gene Bank

Collection Information System (IRGCIS) of the International Rice

Research Institute (IRRI) documented 1,32,000 accessions of both

cultivated and wild rice. Nevertheless, only a few wild accessions

have been evaluated using various salt-screening methods (Kumar

et al., 2015). The primary gene pool consisting of cultivated rice

species (O. sativa and O. glaberrima) and wild rice species (Oryza

nivara, O. rufipogon, O. barthii, Oryza longistaminata, Oryza

meridionalis, and Oryza glumaepatula) are analyzed for detecting

tolerant wild accessions in limited research investigations. A large

untapped genetic diversity is available in the secondary and tertiary

gene pools, which are additional sources of new salinity tolerance

genes. These gene pools can be used to introduce beneficial genes

into superior rice varieties (Prusty et al., 2018; Solis et al., 2020).
Frontiers in Plant Science 03
Over the past three decades, there has been substantial

advancement in the genetic diversity analysis of wild rice

resources and the selection of suitable donor parents. Following

the standard Yoshida solution culture method (Gregorio et al.,

1997) and the modified Yoshida solution culture method (Singh

et al., 2010), several germplasm accessions were screened at the

seedling stage to identify the donors. A few accessions of O.

rufipogon and O. nivara that survived salinity levels as high as 12

dSm−1 (Habiba et al., 2015) were identified. O. rufipogon is

considered the best donor among the closest wild relatives

belonging to the AA genome, followed by the distant wild

relatives O. coarctata, O. latifolia, and Oryza alta (Solis et al., 2020).

At the ICAR-National Institute of Plant Biotechnology, India, 800

accessions ofO. nivara andO. rufipogon collected across ecologies were

evaluated (Singh et al., 2018). The accession NKSWR 173 recorded

high seedling stage salt tolerance (150 mMNaCl) (Mishra et al., 2016).

A survey of 22 accessions of wild species screened under high salinity

(240 mM NaCl) in a hydroponic system revealed seven accessions,

Oryza minuta, Oryza grandiglumis, Oryza latifolia, O. alta, Oryza

rhizomatis, O. coarctata, and Oryza eichingeri, with higher levels of

tissue tolerance and chlorophyll preservation in leaves as compared to

the donor parents for salinity tolerance(Pokkali, Nona Bokra, and

FL478) and salt-sensitive checks (IR29 and IR75862-206-2-8-3) (Prusty

et al., 2018). Mondal et al. (2018) and Mishra et al. (2022) studied the

halophytic wild speciesO. coarctata abundant in Indian coastal regions

as a source of salinity tolerance genes.

In the past two decades, genome sequencing technology has

improved the utilization of genetic variation in wild Oryza species
FIGURE 1

Gene pools of rice representing various wild and related species.
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for crop improvement. Efforts to sequence wild rice genomes began

in 2003 with the establishment of the International Oryza Map

Alignment Project (IOMAP). It has provided an in-depth

characterization of wild rice genomes to discover and exploit

genes/genomic regions governing diverse traits for their transfer

into cultivated rice (Wing et al., 2005). Stein et al. (2018) sequenced

genomes of seven wild species (O. rufipogon, O. nivara, O. barthii,

O. glumaepatula, O. meridionalis, O. punctata, and L. perrieri) and

deposited at National Center for Biotechnology Information

(NCBI), Bethesda, Maryland and provided an array of diversity

panels. The genome of O. coarctata has been sequenced at ICAR-

NIPB, India, which would be a valuable addition to the I-OMAP

project and would supplement the current genomic resources of

wild and cultivated species (Mondal et al., 2018). This provides

insight into the genetic makeup of O. coarctata and broadens the

gene pool for the enhancement of cultivated rice. Multiple studies

have employed whole genome sequencing and resequencing

information from cultivated and wild rice population species to

identify genomic regions harboring improved agronomic traits as

well as adaptive traits, such as resistance to biotic stresses and

tolerance to abiotic stresses, including salinity tolerance (Huang

et al., 2012; Xu et al., 2012).
3 Impact of salt stress on rice

Rice is the main nutritional source for more than half of the

world’s population (Zhou et al., 2020). Globally, rice is the third-

largest cereal grown in 162 million hectares, with an annual

production of 755 million tons (FAO, 2022). Soil salinity and

alkalinity are the leading abiotic stressors in coastal and inland

areas, followed by drought (Islam et al., 2021). Even moderate salt

stress has been reported to reduce the rice yield by 68% (Naheed

et al., 2007). The changing global climate is expected to cause a

significant increase in soil salinization owing to inadequate rainfall,

high evaporation rates, and seawater intrusion (Cheng et al., 2020).

Salt-affected soils are broadly classified as sodic–alkaline, saline,

or saline–sodic soils (Eynard et al., 2005). In alkaline soils,

carbonates and bicarbonates of sodium and magnesium are the

most prevalent anions, whereas chlorides and sulfates of sodium

and magnesium are frequently found in saline soils. Sodic soils have

pH >8.5, the electrical conductivity of saturation extract (ECe) <4

dS m−1 and exchangeable sodium percentage (ESP) >15. Saline soils

near the coastal regions, ECe >4 dS m−1, pH < 8.5, and ESP <15.

Saline sodic soils exhibit saline and sodic characteristics, such as

variable pH, ECe ≥4 dS m−1, and ESP ≥15%.

Plants are categorized into halophytes and glycophytes based on

their responses to salt stress, (Flowers and Colmer, 2008; Mishra

and Tanna, 2017). Halophytes thrive in highly saline soils. Most of

the crops are salt-sensitive glycophytes. Rice has a threshold salt

concentration of >30 mM NaCl (ECe = 3 dS m−1) (USDA et al.,

2008). A decrease in yield of 12% was reported for each unit,

exceeding the specified threshold (Reddy et al., 2014). Excessive

salinity causes osmotic stress and ion toxicity in crop plants.

Osmotic pressure reduces soil osmotic potential and causes

decreased water uptake, further inhibiting stomatal opening,
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photosynthesis, elongation, and cell proliferation. This results in a

slower growth. Ionic stress causes rapid accumulation of toxic Na+

and Cl−, disrupting metabolic processes, resulting in early

senescence and reduced stomatal conductance, leading to

decreased photosynthesis, biomass, and poor yield (Yu et al.,

2017). Salinity stress, apart from reducing germination, causes

whitening of affected leaf tips, leaf rolling, stunted plant growth,

patchy appearance in the field, reduced tillering, delayed panicle

emergence, length and the number of panicles, reduces pollen

viability, spikelet fertility, spikelet number/panicle, and ultimately

grain yield, and in cases of increased severity, results in the death of

the rice plant (Figure 2).

Plants adapt to high salt through various physiological and

biochemical defense systems namely high initial seedling vigor,

early maturity, sodium exclusion, sodium compartmentalization in

vacuoles of roots and older leaves, osmotic adjustment, control of

Reactive Oxygen Species (ROS) through production of antioxidants,

and programmed cell death.

During the domestication of cultivated rice from local landraces

and traditional varieties, selection pressure for productivity traits

favored a few genes at the expense of many others. Hence,

domesticated varieties have less genetic diversity for other non-

selected traits, such as biotic and abiotic stresses, including salinity

tolerance, compared to wild species and landraces. This implies that

the cultivated gene pool has a narrow genetic base; hence, further

gain in salinity tolerance is difficult to achieve. Consequently, the

developed cultivars were found to be salt sensitive or moderately

tolerant to salinity. Interestingly, wild rice gene pools possess

extensive genetic diversity as they grow in undisturbed natural

habitats. This diversity can enrich the cultivated gene pool with

higher salt tolerance through introgression of wild genes. Salt stress

profoundly affects various morphological, physiological, and

biochemical processes in rice plants (Table 1).
4 Defense strategies of salt tolerance
in rice

Plants have evolved protective mechanisms at the cellular,

organellar, and whole plant levels to recover from salinity stress.

Rice cultivars exhibit genetic variation in their adaptive strategies

against salinity (Khan et al., 2020). The crop has developed a series

of adaptive mechanisms, including (i) osmotic adjustment, (ii)

compartmentation and ion homeostasis, (iii) antioxidant defense,

and (iv) programmed cell death (Figure 3).
4.1 Osmotic adjustment by accretion
of osmolytes

Plants have less access to water and nutrients under osmotic

stress. To save water and minimize transpiration, which causes Na+

ion inflow from the roots to the shoots, plants respond by closing

their stomata (Flowers and Flowers, 2005). Osmotic stress builds up

Na+ in the leaves and reduces growth (Afrasyab et al., 2010). Plants

respond to salinity-induced osmotic stress by synthesizing
frontiersin.org
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osmoprotectants in the cytoplasm, such as quaternary amino acid

derivatives (proline and glycine betaine), sugars (glucose, fructose,
FIGURE 2

Rice genotypes showing field symptoms of alkalinity stress grown at Chandra Shekhar Azad University of Agriculture & Technology (CSAUAT),
Kanpur, India.
TABLE 1 Effects of salt stress on morphological, physiological, and
biochemical characteristics in rice.

Effects References

1 Morphological characteristics

Reduced seed germination and
leaf expansion

Ghosh et al. (2016)

Impeding overall plant growth Quan et al. (2018)

Decreased leaf area, length of roots and
shoots, fresh and dry weights of biomass

Barua et al. (2015); Hussain et al.
(2017); Dugasa et al. (2019)

Reduced number of tillers, panicles,
spikelets per panicle, length of panicles,
spikelet fertility and 1000 grain weight

Clermont-Dauphin et al. (2010);
Mojakkir et al. (2015); Razzaque
et al. (2017); Negrao et al. (2017);
Rodriguez-Llorente et al. (2019)

Hampered total dry matter production
and leaf area

Singh et al. (2009); Channa
et al. (2023)

Caused curled, brown, and dry leaves Munns (2005)

Ageing of older leaves and premature
plant mortality

Sirault et al. (2009);
Amirjani (2010)

Leaf tip burning, stunted growth, necrotic
lesions on old leaves and reduced survival
of plants

Kumar et al. (2007); Mohammadi
et al. (2013)

Reduced the average number and length
of roots per plant causing poor nutrient
uptake and decreased grain yield

Hussain et al. (2017)

Reduced panicle emergence, and flowering Saade et al. (2016), Puram
et al. (2017)

Delayed flowering, reduced pollen viability
and seed set.

Reddy et al. (2017); Irakoze
et al. (2020)

Lowered seedling growth, plant height
grain number and lower yield

Banumathy et al. (2018); Soares
et al. (2021)

2 Physiological characteristics

Decreased leaf photosynthesis, respiration
rate and biomass

Chinnusamy et al. (2005); Jamil
et al. (2012); Quan et al. (2018);

(Continued)
TABLE 1 Continued

Effects References

Tsai et al. (2019); Channa
et al. (2021).

Hastened senescence of leaves Munns (2002)

Minimized turgor pressure in plant tissues
limiting the proliferation of both root and
shoot cells

Zelm et al. (2020)

Triggered stomatal closure, impeding
carbon dioxide uptake and photosynthesis

Zhao et al. (2020)

Decreased biosynthesis of leaf
chlorophyll pigments

Chutipaijit et al. (2011)

Lowered harvest index. Gholizadeh et al. (2014)

3 Biochemical characteristics

Caused ion toxicity and cellular damage
by increasing Na+ concentration and Cl-

imbalance in cytosol

Hanin et al. (2016)

Triggered biosynthesis of osmolytes
(Fructose, sucrose, mannitol, glycerol,
trehalose proline, glycine betaine, glutamic
acid and secondary metabolites)
within cells

Sami et al. (2016); Hussain
et al. (2016)

Suppressed enzyme activities and impedes
protein synthesis

Horie et al. (2012)

Depleted micro (Mg, Zn, and Fe) and
macro (N, P, and K) nutrients
interrupting normal nutrient uptake

Razzaq et al. (2020)

Enhanced Na+ flow into cells and lowers
K+/Na+ ratio

Chen et al. (2007)

Stimulated production of ROS (Hydrogen
peroxide and superoxide).

Xie et al. (2019)
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and trehalose), sugar alcohols (glycerol and methylated inositols),

and late embryogenesis-abundant (LEA) proteins to maintain high

cytosolic osmotic adjustment (Horie et al., 2012). The proline

synthesis genes OsP5CS1 and OsP5CR enhance proline

biosynthesis and salt tolerance (Sripinyowanich et al., 2013).

Glycine betaine, encoded by OsCMO and OsBADH1, accumulates

in rice when exposed to high salt (Tang et al., 2014). OsSWEET13

and OsSWEET1 regulate sugar homeostasis in rice under saline

conditions (Mathan et al., 2020). Salt and drought tolerance was

considerably increased by the LEA genes OsLEA3-2, OsLEA4,

OsLEA5, and OsEm1 (Duan and Cai, 2012).
4.2 Compartmentation and ion
homeostasis or tissue tolerance

Tolerant plants minimize the initial entry of Na+, restrict Na+

movement in the xylem, induce outflow of Na+ in the soil, enhance

the absorption of K+, and regulate the Na+/K+ ratio to protect the

leaves from ion toxicity (Munns and Tester, 2008). In rice, plasma

membrane-based histidine kinase transporters (HKTs) modulate

the accumulation of Na+ in the cytosol. They either absorb sodium

from the soil solution or remove sodium from the xylem sap and

load Na+ into the phloem sap to reduce sodium accumulation in

leaves,when K+ is limited (Campbell et al., 2017). In the Saltol

region of FL478, a Pokkali derivative and a sodium transporter

gene, OsHKT1;5, mediate Na+ exclusion in rice (Hauser and

Horie, 2010).

The capacity of a tissue to function normally while containing a

high internal concentration of Na+ is known as tissue tolerance. It

involves the sequestration of excessive Na+ from the cytoplasm into

the vacuoles of non-functional older leaves and leaf sheaths, and

enzymatic detoxification of reactive oxygen species. Selective uptake

of Na+ into vacuoles is performed by four vacuolar Na+/H+
Frontiers in Plant Science 06
transporters (OsNHX1, OsNHX2, OsNHX3, and OsNHX4). Thus,

plants maintain a high tissue K+/Na+ ratio, which prevents cytosolic

Na+ toxicity (Wu et al., 2020). Excess Na+ is pumped out from the

root xylem by a salt overly sensitive 1 (SOS1) transporter, the

plasma membrane Na+/H+ antiporter, and OsNHX1 and OsSOS1

(Kumar et al., 2013) and OsTPC1 (Kurusu et al., 2012), which

contribute to ion homeostasis. Tissue tolerance also involves the

biosynthesis of compatible solutes and the formation of enzymes,

such as superoxide dismutase and catalase, which detoxify ROS and

conserve cell size and turgor (Munns et al., 2016).
4.3 Defense against oxidate damage
through detoxification of reactive
oxygen species

Excessive reactive oxygen species (ROS) are formed in

chloroplasts, peroxisomes, and mitochondria under salt stress.

This causes oxidative damage to lipids, proteins in cell

membranes, enzymes, and nucleic acids, and death in plants (Arif

et al., 2020). Rice plants overproduce enzymatic antioxidants, viz.,

glutathione peroxidase, superoxide dismutase, catalase, and

ascorbate peroxidase, and non-enzymatic antioxidants, such as

proline, glycine betaine, glutathione, and polyphenols, to protect

the cell against oxidative damage (Kim et al., 2017; Meng

et al., 2018).
4.4 Programmed cell death

Plants adopt PCD to destroy excess or injured cells and prevent

sodium influx into the shoots and roots. Reports have suggested

that the upregulation of genes linked to PCD in rice increases

salinity tolerance (Hoang et al., 2015). Cell death in rice roots
FIGURE 3

An overview of salt-tolerance mechanisms of rice under salinity stress.
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during salinity stress was found to occur in a highly regulated

manner (Liu et al., 2019).

Other tolerance mechanisms manifest through early vigorous

growth to avoid salt toxicity and enhanced stomatal closure in rice

(Kumar et al., 2013). The osmotic tolerance phase has not been

much researched in rice compared to ionic stress. Tolerant rice

accessions possess only a few of these mechanisms. Pooling the

superior genes associated with adaptive mechanisms governing low

Na+ uptake, high K+ uptake, Na+ sequestration, reduced

transpiration, and synthesis of osmolytes to develop highly

tolerant elite cultivars is urgently needed.
5 Overview of morphological,
physiological, genetic, and molecular
mechanisms underlying salt tolerance
in wild rice

Wild species have evolved stronger morphological,

physiological, genetic, and molecular adaptive mechanisms than

cultivars have. They exhibit sodium secretion through special

structures such as salt glands, improved ion homeostasis in roots

and shoots, increased osmolyte biosynthesis, strong tissue tolerance,

greater detoxification of ROS, and enhanced osmotic tolerance

compared to cultivars. Several wild rice donors with increased

tolerance to salinity have been, i.e., O. coarctata (Majee et al.,

2004; Sengupta and Majumder, 2010; Garg et al., 2014), O.

punctata, O. officinalis (Prusty et al., 2018), and O. rufipogon

(Tian et al., 2011; Zhou et al., 2016).

Nakamura et al. (2002) reported higher seedling survival and

high photosynthetic rates in O. latifolia and O. rufipogon up to 300

mM NaCl concentration than cultivated salt tolerant SR26-B and

salt sensitive IR28. O. coarctata, earlier known as Porteresia

coarctata, an allotetraploid wild rice halophyte with KKLL

genome (2n = 4x = 48), is the only distant rice which could

withstand extreme salinity (500 mM to 650 mM NaCl) as

reported by Sengupta et al. (2008). It is a unique wild rice that

grows in mangroves along coastal belts. It exhibits multiple defense

mechanisms of tolerance and mainly adopts a salt excretion strategy

to reduce the high salt load in photosynthetic tissues (Sengupta and

Majumder, 2010), thereby retaining a high photosynthetic rate. It

contains characteristic hairs known as trichomes on the upper

surface of the leaves, through which sodium and chloride salts are

excreted (Prusty et al., 2018). It deploys vacuolar Na+

compartmentation mediated by Na+ transporters (OcNHX1,

OcSOS1, OcHKT1;4, and OcHKT1;5) to maintain a low cytosolic

Na+/K+ ratio in the leaf mesophyll, even though it continues to grow

in saline water. Despite high salinity, it sustains a low water content

(Senthilkumar et al., 2005). Additionally, it possesses a greater Na+

and K+ retention capacity in shoots than in roots and eliminates

ROS through enzymatic processes (Sengupta and Majumder, 2009).

A study conducted by Platten et al. (2013) using 103 O. sativa

and 12 O. glaberrima accessions indicated the operation of ion

homeostasis mechanisms in O. glaberrima through salt

accumulation in leaves, which was independent of OsHKT1;5, as
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observed in O. sativa. Pushpalatha et al. (2013) evaluated 15 O.

nivara and O. rufipogon introgression lines in the background of

KMR3 and Swarna cultivars at various salinity levels (0 mM to 200

mM NaCl) during germination, vegetative, and reproductive

growth stages and study revealed a Na+ exclusion mechanism and

osmoprotection by proline synthesis in KMR3 ILs (K463 and

K478), vacuolar sodium sequestration, and consistent chlorophyll

content in Swarna ILs (S166, S3-1, S14, and S75) in response to

salt stress.

Nishizawa et al. (2015), (Nishizawa et al., 2016) reported similar

constant photosynthetic rates and sodium accumulation in O.

officinalis and O. latifolia accessions. However, a relationship

between stomatal conductance and net photosynthetic rate could

not be demonstrated in O. latifolia compared to O. officinalis,

indicating the possibility of the presence of a new set of salinity

tolerance loci. O. rufipogon and O. nivara have been reported to

possess a pool of genes that maintain K+ homeostasis, Na+

exclusion, and sodium compartmentalization (Ganeshan et al.,

2016; Tian et al., 2017). Another wild relative, O. australiensis

recorded proline accumulation, low Na+ content, and a low Na+/K+

ratio in the shoots and roots (Yichie et al., 2018).

Prusty et al. (2018) investigated 22 wild species in a hydroponic

experiment along with four cultivated tolerant checks (Nona Bokra,

Pokkali, and FL478) and two sensitive checks (IR 29 and IR 75862-

206-2-8-3) under high saline stress (240 mM NaCl). Two wild

species, O. latifolia and O. alta, survived up to 26 days to 33 days,

and O. coarctata grew without deleterious effects. Interestingly, O.

eichingeri, O. minuta, and O. coarctata accumulated high Na+

content in their roots and had low oxidative damage. Gene

expression studies suggested the involvement of the OsHKT1;4

transporter gene for mediating Na+ exclusion in leaves, but Na

compartmentation occurred independently of the tonoplast-

localized OsNHX1 transporter gene. Shahzad et al. (2022)

attributed the tolerance in wild rice genotypes of O. alta and O.

barthii, to a greater tissue tolerance mechanism. Orthologous alleles

of the stress-responsive VOZ gene from wild species, viz., O.

brachyantha, O. longistaminata, and O. nivara, could act as

potential donors for salinity stress improvement (Ganie et al.,

2020). Nan et al. (2020) identified activation of OrWRKY genes in

O. rufipogon under salt stress.

Nguyen (2022) investigated physiological traits governing salt

tolerance in 18 Australian wild rice accessions of O. australiensis, O.

rufipogon, and O. meridionalis under high salinity (200 mM NaCl)

together with three cultivars, namely IR 29, salt sensitive and

Pokkali, salt tolerant. O. australiensis accessions displayed high

net photosynthesis, high relative water content, and low Na+ and

Na+/K+ in the shoots and roots. Gene expression analysis revealed

upregulation of proline synthesis genes OsP5CS1 and OsP5C2, and

downregulation of the proline degradation gene OsProDH. Thus,

osmoregulation and ion homeostasis are the key tolerance

mechanisms in O. australiensis accessions. Solis et al. (2022)

demonstrated higher Na+ uptake and reduced Na+ effluxes in O.

alta, O. latifolia, and O. coarctata. The expression of NHX1 and

SOS1/NHX7 genes that govern tissue tolerance triggered by salt

stress. Detailed information on the candidate genes and their

mechanisms are listed in Table 2.
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Adaptive mechanisms may occur singly or in combination,

depending on the species and growth stage of the crop. Different

accessions of the same wild Oryza species could have a distinct

genetic basis for phenotypic expression. With better knowledge of

the mechanisms in wild species, appropriate breeding methods

could be formulated to enhance yield under salt stress than what

is currently obtained in studies involving O. sativa donors.
6 Approaches to improve salt
tolerance in rice

Tolerance to salinity is a complex polygenic trait linked to several

morphological and physiological traits, with huge environmental

influence and poor heritability (Gregorio and Senadhira, 1993;

Flowers, 2004). Based on an earlier standard hydroponic system of

screening (Gregorio et al., 1997) and the modified Yoshida culture-

based method (Singh et al., 2010), there have been several

investigations in screening the germplasm of O. sativa subspecies

indica and japonica (Negrao et al., 2011) to identify donors. In rice,
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three major strategies, namely conventional breeding, molecular

breeding, and genetic engineering, were employed to generate

superior salinity-tolerant cultivars.
6.1 Traditional breeding

Breeders have employed introduction, hybridization, pedigree

selection, bulk method, modified bulk pedigree, recurrent selection,

backcross method, and induced mutations to adapt to salt stress.

Early breeding efforts have focused on improving locally

domesticated landraces using pure line selection. Notable among

them are Pokkali, Nona Bokra, Bhura Rata, and Kalarata. Globally,

Pokkali is the most extensively utilized donor because it maintains a

low shoot Na+/K+ ratio with tissue tolerance under high salinity.

Unfortunately, linkage drag contribute to poor yield and grain

quality, and the late maturity of landraces is often brought into new

cultivars (Solis et al., 2020).

Approximately 101 salinity-tolerant rice cultivars developed

using conventional breeding techniques have been developed
TABLE 2 List of salt tolerance adaptation mechanisms and the candidate genes in wild rice donors.

Wild
Oryza
donors

Candidate genes for
salt tolerance

Salt adaptation strategy Introgression
lines/
Cultivars
developed

References

O. coarctata NHX1, VHA PsbR, MT2b, MT, MT2, MT3,
L18a, L23a, PP, VPS2.1, IMT1, INO1, NACs,
MYBs, WRKYs, OEC, MSP, CP47/PsbB, PsaE,
Rubisco activase, chloroplastic precursor of
glutamine synthetase, Hsp70, cellulose
synthase-like protein

Na+ sequestration, Salt exclusion through salt
hairs, Unaltered carbon fixation and higher
water retention, Higher synthesis of
osmoprotectants, Higher ROS scavenging,
Higher RUBISCO activation, cell wall
synthesis and chaperone functions

IR56 ILs Sengupta and Majumder
(2009); Sengupta and
Majumder (2010);
Garg et al. (2014); Mishra
et al. (2016); Prusty
et al. (2018)

O. rufipogon OsGH3-2, OsGH3-8, CML15, GEM, LRP1,
ABF2, RPK1, DST, HKT2;3, HKT1;5, BADH2,
HsfC1B, MIPS1, MIPS2, MYB2, NHX1,
NHX2, NHX3, P5CS1, P5CS2, PIP1, SIK1,
SOS1, and SOS2

Na+ retrieval from shoot, Higher ROS
detoxification, Chlorophyll retention

Chinsurah Nona 2,
Jarava,
BRRI Dhan 55
(AS996),
Swarna ILs,
KMR3 ILs

Tian et al. (2011); Nishizawa
et al. (2015); Nishizawa et al.
(2016); Mishra et al. (2016);
Ganeshan et al. (2016);
Wang et al. (2017); Prusty
et al. (2018)

O. latifolia HKT1;4, HKT1;5, SOS1 Na+ retrieval from shoot, Na+ exclusion, Na+

accumulation in mature leaves,
Chlorophyll retention

– Nishizawa et al. (2015);
Nishizawa et al. (2016);
Prusty et al. (2018)

O nivara OsHTK1;1; OsHTK1;2 OsHTK1;3; OsHTK1;4
OsHTK1;5; OsHTK2;1 OsHTK2;3 OsHTK2;4

Ion homeostasis – Mishra et al. (2016)

O. alta HKT1;5, SOS1 Na+ retrieval from shoot, Na+ exclusion,
Chlorophyll retention

– Prusty et al. (2018)

O.
grandiglumis

HKT1;5, SOS1 Na+ retrieval from shoot, Na+ exclusion – Prusty et al. (2018)

O. officinalis – Higher chlorophyll synthesis, photosystem not
affected and higher water use efficiency

– Nishizawa et al. (2016);
Prusty et al. (2018)

O.
australiensis

– Leaf Na+ loading, High K/Na,
Chlorophyll retention

– Prusty et al. (2018); Yichie
et al. (2018)

O.
australiensis

OsP5CS1 and OsP5C2 High net photosynthesis, high relative water
content, high proline biosynthesis, low Na+

and Na+/K+

– Nguyen (2022)

O.
glaberrima

– Na+ exclusion, low leaf Na+ concentration – Platten et al. (2013)
Source: modified from Solis et al. (2020).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1253726
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Padmavathi et al. 10.3389/fpls.2023.1253726
worldwide (Singh et al., 2021). However, many of them are only

moderately tolerant to salinity and not during all growth stages of

the crop. The complex inheritance, pleiotropy, and high G × E

interactions of salt-tolerance traits hinder traditional breeding

efforts (Cohen and Leach, 2019). It is vital to breed rice varieties

that can withstand high salt levels without compromising the yield.

Under these conditions, the marker-assisted introgression approach

shows more promise in the rapid development of tolerant cultivars

and in lowering the risk of unwanted linkage drag with the negative

traits of wild species and landraces. This has increased the need for

the integration of molecular breeding techniques into the breeding

process (Ismail et al., 2007; Thomson et al., 2010).
6.2 Molecular breeding

With the advent of DNA-based markers, approximately 1,000

QTLs for salt tolerance in rice have been mapped (Prakash et al.,

2022), and several candidate genes for salinity tolerance have been

identified (Supplementary Table 1). The genetic regions

corresponding to these QTLs and genes have been implicated in

various molecular and physiological processes. The major landmark

in salinity tolerance breeding was the detection of a Saltol QTL for

shoot K+/Na+ homeostasis on chromosome 1 (Gregorio, 1997) in

an RIL designated as FL478 (IR66496-3R-78-1-1) derived from

Pokkali/IR29. In the Saltol region, the SKC1 gene of the Nona Bokra

landrace controlling K+ concentration in shoots was identified and

later cloned as OsHKT1;5, which encodes a plasma membrane Na+

transporter that regulates Na+ partitioning between roots and

shoots (Ren et al., 2005).

Saltol QTL have been successfully transferred to many popular

varieties through marker-aided back cross breeding (MABB) in

India, Bangladesh, Russia, and Vietnam. (Padmavathi et al., 2023).

The tightly linked markers within the Saltol QTL region (AP3206,

RM8094, and RM3412), flanking markers, i.e., RM1287 and

RM10694, RM493 and RM10793 enabled its successful transfer

(Thomson et al., 2010) in the genetic background of BT7 (Linh

et al., 2012), AS996 (Huyen et al., 2012), Bacthom 7 (Vu et al., 2012)

in Vietnam, BRRI Dhan 49 (Hoque et al., 2015) in Bangladesh,

Novator (Usatov et al., 2015) in Russia; ADT43 (Geetha et al.,

2017), PB 1121 (Babu et al., 2017), Pusa Basmati 1 (Singh et al.,

2018), Yukinko-mai (Rana et al., 2019), Pusa44 and Sarjoo 52

(Krishnamurthy et al., 2020), Pusa Basmati 1509 (Yadav et al.,

2020), Aiswarya (Nair and Shylaraj, 2021) and Improved Samba

Mahsuri (Rekha et al., 2022) in India. These MAS-derived varieties

are already available to farmers for cultivation purposes.

Numerous QTLs for salinity tolerance in rice have been

identified through biparental mapping populations. However, this

approach may only partially reveal the genetic diversity of traits. A

genome-wide association study (GWAS) facilitates the detection of

a wide array of QTLs, thereby revealing a more extensive genetic

diversity of the trait than bi-parental populations. Due to the higher

recombination rate of the genome of natural genotypes, GWAS is

employed for high resolution rapid mapping of genome-wide SNPs

associated with morphological, physiological, photosynthetic and

yield and its component traits under salinity such as K+/Na+ ratio,
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salt injury score, Na+ and K+ content of root and shoot, Na+ sheath:

blade ratio, seedling length, fresh and dry weight of shoots and

roots, chlorophyll and water content, number of panicles, filled

grains and grain yield in seedling stage using hydroponics (Batayeva

et al., 2018; Lekklar et al., 2019; Rohila et al., 2019; Zhang et al.,

2020; Yuan et al., 2020; Le et al., 2021; Nayyeripasand et al., 2021;

Kim and Suk-Man, 2023) and during the reproductive stage

(Theerawitaya et al., 2020; Warraich et al., 2020; Chen et al., 2022).

The enrichment of MABB-derived salt-tolerant cultivars is

constrained to bring major advancement, as it can only correct

the deficiency of popular varieties, for example, salt sensitivity

retaining the recurrent parent genome rather than creating highly

heterotic salt-tolerant varieties. Wild rice has not been exploited

much compared to cultivated rice. With the advent of next-

generation sequencing (NGS) techniques, the available sequence

information of genomes of seven wild species, viz., O. rufipogon, O.

nivara, O. barthii, O. glumaepatula, O. meridionalis, O. punctata,

and L. perrieri (Stein et al., 2018), provides opportunities to detect

new genes and novel functional markers for incorporation

into cultivars.
6.3 Genetic engineering

Genetic engineering is a promising approach for trait transfer to

overcome hybridization barriers. This approach for increasing

salinity tolerance centers on manipulating genes encoding the

synthesis of compatible osmotica, antioxidants, sodium/potassium

transport proteins, and transcription factors underlying salt

tolerance mechanisms, focusing on cultivated rice (Table 3).

Despite the improvement in transgenic rice possessing the

reported genes produced under glasshouse conditions, they have

hardly reached farmers’ fields for commercial cultivation (Kotula

et al., 2020). Transgenic methods have focused only on altering

individual genes and a single tolerance mechanism that hinders

salinity tolerance improvement. Hence further research is needed to

harness the potential of these wild sources.
6.4 Genome editing

The technique permits editing of the target locus, knockout, and

allele exchange in the genome, and culminating in the development

of transgene-free edited plants. In rice, the CRISPR/Cas9 gene

editing method has been effectively used to edit the OsRR22 gene,

which encodes a transcription factor that controls signaling and

cytokinin metabolism in plants, thereby improving salt stress

tolerance in rice (Zhang et al., 2019). The mutated salt-tolerant

gene (OsDST A), which was developed using CRISPR/Cas9, has

been reported to increase tolerance to salt stress by decreasing

stomata and increasing leaf water retention in the MTU1010 rice

variety (Santosh Kumar et al., 2020). In another study, CRISPR/

Cas9 mediated mutagenesis of the BEARI transcription factor

enhanced the tolerance to excessive salts by controlling ion

transport (Teng et al., 2022). Improvement in salt tolerance with

decreased salt build-up has been achieved by editing the OsNAC3
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gene in rice (Zhang et al., 2021). Mutants with CRISPR/Cas9-

mediated OsmiR535 knockout exhibit increased NaCl tolerance

(Yue et al., 2020). The CRISPR/Cas9 mediated mutagenesis of the

rice gene BG3, which promotes the transport of cytokinin

hormones, revealed increased salinity tolerance (Yin et al., 2020).

The CRISPR/Cas technique can be applied to investigate the wild

rice gene pool and address challenges associated with linkage drag

during the introgression of target wild genes into high-

yielding backgrounds.
7 Deployment of wild rice relatives in
breeding for salt tolerance

Wild rice species are treasure troves with various beneficial

traits linked to yield, quality, and tolerance/resistance to abiotic and

biotic stresses. Breeders often neglect the utilization of wild rice

species for two main reasons. First, it is difficult to ensure gene flow

from wild rice into the cultivated gene pool because of cross

incompatibility, sterility, or non-viability in F1 or backcrosses,

restricted genetic recombination between wild and elite genomes,

and linkage drag from wild rice. However, these genetic

complications could be resolved with MABB, ensuring precise

gene introgression with selections to minimize unwanted linkage

drag and backcrosses, as compared to the traditional approach

(Warburton et al., 2017). Second, when wild rice is grown outside

their native habitat, either it is poorly acclimated or the expression

of beneficial alleles is concealed. Ultimately, the performance of the

derived introgression lines (ILs) is inferior.

Novel genes from the AA genome containing wild species in the

primary gene pool could be easily transferred into domesticated rice

through the traditional back-cross method. However, distant

crosses between O. sativa and genetically remote wild species of

the secondary and tertiary gene pools are difficult to achieve due to

cross incompatibility and embryo abortion and/or degeneration.

However, embryo rescue techniques can overcome these hurdles by
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producing distant fertile interspecific hybrids (Jena, 2010).

Intergeneric hybrids between Porteresia coarctata, distant rice

relatives, and O. sativa were produced with limited success by

adopting vegetative multiplication of rescued hybrid embryos (Jena,

1994). Salt-tolerant genes can also be incorporated from O.

porteresia into O. sativa through bridge crossing with O.

australiensis (Latha et al., 2004; Mammadov et al., 2018).

With the latest advancements in NGS technology and high-

throughput phenotyping, the historical natural genetic variation for

salt tolerance present in a panel of wild rice accessions can easily be

captured following GWAS. This is a potential strategy for mapping

salt tolerance genes/QTLs, particularly in wild rice, where cross-

incompatibility complicates the generation of mapping populations.

The use of genetically distant wild species in the development of

improved cultivars with superior trait performance has been greatly

facilitated by the identification of candidate genes, GWAS, and

development of introgression lines through MABB (Singh et al.,

2021; Dai et al., 2022).

Transgenic approaches using cloned genes from wild species

offer a solution to the issue of direct introgression of wild rice genes.

Most transgenic methods have focused on single genes and/or one

type of salt-tolerance mechanism in cultivars. However, genetic

engineering utilizing cloned genes governing antioxidants,

osmolytes, and ion transporters, photosynthesis enhancement,

and yield simultaneously could potentially lead to the creation of

more resilient rice varieties capable of thriving under high-

salinity conditions.

The double haploid technique (DH) is another potential

method for generating new homozygous salt-tolerant lines from

distant crosses involving wild species in a single generation from

heterozygous parents, which would otherwise require several

generations of selfing to achieve near homozygosity in

conventional breeding.

Genome editing is an emerging strategy for speeding up the

development of advanced breeding lines, wherein a specific site in a

target wild gene is edited directly by insertion, deletion, or alteration
TABLE 3 Genetically engineered rice varieties with increased salinity tolerance.

Transgene Source
of gene

Mechanism Target
rice variety

Reference

OsPP1a Rice Increased antioxidant enzymes (APX and SOD) Rice Liao et al. (2016)

HsCBL8 Wild barley Proline accumulation and a reduced Na+ uptake Zhonghua11 Guo et al. (2016)

OsNHX1 Pokkali rice K+mediated osmoregulation Binnatoa Amin et al. (2016)

PDH45 Pea Reduced Na+ accumulation and ROS IR 64 Nath et al. (2015)

PcINO1
and PcIMT1

Porteresia coarctata Upregulated inositol metabolic pathway IR 64 Mukherjee
et al. (2019)

TPSP E. coli Enhanced K+/Na+ ratio, stomatal conductance, and
photosynthetic efficiency

IR 64 Joshi et al. (2020)

OsSOS1 Rice Na+ extrusion into apoplast Vikas Awaji et al. (2020)

OsRF1 Rice Intensification of ABA signaling pathway Dongjin Kim et al. (2022)

SiMYB19 Foxtail Millet Regulation of ABA synthesis and signal transduction. – Xu et al. (2022)

miR5505 Pokkali – – Fan et al. (2022)
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of existing nucleotide/s in the genomic segment of commercial

varieties developed through distant hybridization. It corrects the

deficiency, as in the present case, of salt sensitivity of the cultivars by

avoiding laborious conventional or MABB and the incorporation of

large introgressed genomic regions of wild species. Speed breeding

is another promising approach for utilizing wild progenitors in

breeding that manipulates the photoperiod and temperature to

rapidly generate multiple generations within a year. In scenarios

where precise genome editing is not an option, speed breeding plays

a pivotal role in accelerating generation advancement, enabling

selection against undesirable traits inherited from wild species, and

stabilizing the genetic background of newly developed cultivars.

Although extensive studies have not been carried out in rice

using wild species for genome editing and transgenic approaches, a

considerable amount of research has been conducted on QTL

mapping and introgression of QTLs/candidate genes in

agronomically superior cultures.
7.1 QTLs/genes in wild species

As the QTLs/genes from indigenous wild relatives cannot be

utilized directly in breeding populations, pre-breeding strategies

could be followed to identify and transfer wild rice genes into an

intermediate breeding material that can easily be hybridized with

modern elite varieties. Although wild rice is not as widely exploited as

cultivated rice, it contains positive alleles, genes, and QTLs associated

with salt tolerance. These effects have been documented using

advanced backcross populations and introgression lines. Due to the

large natural genetic diversity of wild species, QTLs associated with

novel tolerance mechanisms could be prime candidates for

improving salt tolerance (Stein et al., 2018). A few studies, as

detailed below, have attempted to discover natural alleles governing

salt tolerance in wild rice donors.

A collection of 87 ILs derived from Teqing/O. rufipogon was

screened for salinity tolerance during seedling stage by Tian et al.

(2011). They detected 15 QTLs, 13 containing O. rufipogon alleles

that conferred higher tolerance in the Teqing background. These

alleles enhanced relative root, shoot, and total dry weight at three

loci (qRRW10, qRSW10, and qRTW10) on chromosome 10 in salt-

tolerant ILs.

In a set of 285 ILs derived from 93-11/O. rufipogon, Wang et al.

(2017) identified 10 QTLs for salt tolerance traits on chromosomes 1,

5, 7, 9 to 12 at seedling stage. They observed that qST7 on

chromosome 7 coincided with qRRW7, qRSW7, and qRTW7 in O.

rufipogon for salt tolerance reported by Tian et al. (2011). They also

found that qST10 on chromosome 10 shared a similar QTL hotspot as

qRRW10, qRSW10, and qRTW10 reported by Tian et al. (2011). Four

candidate genes linked to salinity tolerance namely LRP1

(LOC_Os05g32070), acetyltransferase (LOC_Os05g31254), GRAM

domain containing protein (GEM, LOC_Os10g34730) and

calmodulin-related calcium sensor protein (OsCML15 ,

LOC_Os05g31620) were recorded in an O. rufipogon derived salt-

tolerant IL 9L136. It is perceived that the accumulation of enzymatic

antioxidants such as peroxidase, catalase and superoxide dismutase in

9L136 served as a probable antioxidant defense mechanism.
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A RIL mapping population from a cross between salt sensitive

cultivar, Ningjing16 and salt tolerant Dongxiang wild rice, O.

rufipogon was used by Quan et al. (2018) to map 9 QTLs for salt

tolerance at the seedling stage (qST) on chromosomes 1, 3, 4, 5, 6, 8,

and 10. They reported that qST6, a major QTL influencing survival

rate, accounted for 19.3% of the phenotypic variance and showed

additive effects. They indicated protein kinases, MYB and zinc

finger transcriptional factors and SKC1, HKT1;5 transporters and

HAK6 as the potential genes within the QTL region. They

hypothesized that ion homeostasis and kinase signalling pathways

were the possible mechanisms of salt tolerance.

Wairich et al. (2021) conducted a research experiment to

examine the effect of salinity stress on two different populations

of interspecific introgression from O. sativa × O. meridionalis and

O. sativa × O. rufipogon crosses. They identified three potential

QTLs on chromosomes 1, 3, and 5 in O. sativa cv. Curinga O.

meridionalis (Ng. acc. W2112) ILs, and 19 QTLs on chromosomes

1, 4, and 7 in O. sativa cv. Curinga O. rufipogon accession (IRGC

105491) population for various vegetation indices under salinity.

The study demonstrated that introgression line (IL) CR47 of O.

sativa/O. rufipogon cross had a tissue tolerance mechanism, while IL

CM6, derived from O. sativa/O. meridionalis, had a higher Na+/K+

ratio in roots to cope with salinity.

Kumari et al. (2021) subjected back cross progenies derived

from IR64 and O. nivara accession NKSWR 173 to screening

against salinity stress. They genotyped a set of 74 BC1F2 families

for the presence of seedling stage (qSES1.1 and qSES3.2) and

reproductive-stage salt-tolerant QTLs (qSTY11.1). Four

backcrossed families displayed enhanced tolerance, as determined

by phenotypic performance and QTL peak markers, during both

stages of growth.

In another study employing backcross inbred lines (BILs) from

the cross 9311 and an African wild rice, O. longistaminata, 18 QTLs

conferring salt tolerance were found (Yuan et al., 2022), and one

QTL each for salt injury score (qSIS2), the water content of

seedlings under salt treatment (qWCSST2), and the relative water

content of seedlings (qRWCS2) colocalized on chromosome 2.

Sequence and expression analyses suggest that MH02t0466900,

encoding cytochrome P450 86B1, may contribute to

ion homeostasis.

In a study involving 117 DHs derived from F1s of Savitri and

Pokkali, Samantaray et al. (2021) identified four candidate genes for

salinity tolerance, namely LOC_Os01g09550, LOC_Os01g09560,

LOC_Os12g06560, and LOC_Os12g06570 during germination stage.
7.2 Wild rice derived salt-tolerant elite
lines/cultivars

Elite rice lines with salinity tolerance have been successfully

developed by harnessing the genetic variability in a limited number

of wild rice species (Chatterjee et al., 2006; Tian et al., 2011;

Ganeshan et al., 2016; Wang et al., 2017; Quan et al., 2018;

Kumari et al., 2021; Wairich et al., 2021).

The wild species O. rufipogon (2n = 24, AA) is frequently used to

breed salt-tolerant lines because of its close evolutionary proximity
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and high compatibility with O. sativa (2n = 24, AA) (Londo et al.,

2006). The potential salt-tolerant introgression line, YIL 16, is a

derivative of Teqing/O. rufipogon has been reported by Tian et al.

(2011). It has three O. rufipogon genomic regions that hold qRRW3

and qSTS2, which are responsible for the relative root dry weight and

salt tolerance score, respectively. With its enhanced salt tolerance, YIL

16 could be directly utilized or suggested for breeding programs.

Ganeshan et al. (2016) reported salinity tolerance genes in ILs derived

from the crosses O. sativa with O. rufipogon or O. nivara.

Four candidate genes (LOC_Os05g31254, LOC_Os05g31620,

LOC_Os05g32070, and LOC_Os10g34730) were identified in the

QTL regions (qRW10, qRSW10, and qRTW10) of an introgression

line (9L 136) according to a study carried out by Wang et al. (2017).

This line was developed from a cross between a Chinese O.

rufipogon accession and the O. sativa cultivar 93-1. The

researchers hypothesized that the overexpression of these genes

could improve salt tolerance in rice varieties. Furthermore, the

potential of O. rufipogon QTLs to boost the antioxidant system in

domesticated varieties could help them tolerate salt-induced

oxidative stress through marker-assisted introgression.

Quan et al. (2018) employed an accession of wild rice, O.

rufipogon, recovered DJ15, a salt-tolerant introgression line from

O. rufipogon and O. sativa (Ningjing16) cross. Subsequently, six

high-yielding salt-tolerant RILs developed between NIL DJ15/

Koshihikari possessing both qST1.2DJ15 and qST6DJ15 were

identified with an improved seed set.

Despite the availability of 22 potential wild species and two

cultivated species (O. sativa and O. glaberrima), only two salt-

tolerant varieties have been developed to date. Jarava and Chinsura

Nona 2 were both developed using O. rufipogon donors. Jarava is a

coastal saline-tolerant rice cultivar bred by ICAR-IIRR, Hyderabad,

India, through distant hybridization between O. rufipogon and O.

sativa. In 2005, it was released and notified by the Central Sub-

Committee on Crop Standards, Notification and Release of

Varieties for cultivation in West Bengal, Andaman & Nicobar,

Puducherry states of India due to its superior yield under saline soils

(Gazette of India notification No: S.O.1566 E dated 11-05-2005). It

is a long-duration (143 days to 145 days) variety possessing short

bold grains with 4.5 t/ha grain yield (Figure 4).
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Another coastal saline tolerant cultivar, Chinsura Nona 2

(Gosaba 6), a medium duration (130 days to 135 days) variety

with bold grains, originated from the KMR3 × O. rufipogon cross

developed at ICAR-IIRR, Hyderabad in collaboration with Rice

Research Station, Chinsurah, West Bengal, India (Thummala et al.,

2022). It recorded 5.56 t/ha of grain yield under salinity; and was

released and notified by the State Variety Release Committee

(SVRC) for commercial cultivation in the West Bengal state of

India (Gazette of India notification No S.O. 3220 E dated 5.9.2019).

Thus, wild rice genes contributed immensely to the enhanced salt

tolerance in the improved cultivars.

Employing genetic engineering, the MIPS coding gene from the

most distant rice ancestor, O. coarctata, PcINO1, encoding L-

myoinositol 1-phosphate synthase, was introgressed into the

cultivated rice variety, Pusa Basmati-1, which displayed increased

salt tolerance (Chatterjee et al., 2006).
8 Conclusions

Salinity, particularly during the reproductive stage, is a major

abiotic stress factor that drastically reduces rice crop productivity. If

not properly addressed, it poses a severe threat to global food

security. Breeding for salinity tolerance is challenging due to its

polygenic control, interaction with the environment, intricate

physiological and metabolic processes, and growth stage. Despite

the complexity, a moderate headway has been achieved with the

development and release of approximately 101 salt-tolerant rice

varieties using traditional global breeding methods.

The development of salt-tolerant cultivars has been hindered by

the scarcity of genetic resources among domesticated cultivars.

Therefore, future research should prioritize broadening the

genetic base of modern cultivars by utilizing the salinity-adaptive

genes present in unexplored wild species from secondary and

tertiary gene pools. Prior to this endeavor, it is necessary to

systematically explore and characterize various unexploited

accessions of wild species for different salt stress defense

mechanisms and identify genes for incorporation into

breeding programs.
FIGURE 4

Wild rice derived salt tolerant rice cultivars released from ICAR-IIRR, Hyderabad, India.
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Obstacles associated with crossing and unwanted linkage drag are

common during distant hybridization with wild species. This

deficiency can be corrected by adopting the MABB method, which

facilitates the accurate and accelerated introgression of target candidate

genes/QTLs in popular cultivars. It is vital to reinforce pre-breeding

programs that employ wild species in their breeding schemes

worldwide. Continued research is needed to pinpoint more genomic

resources in terms of salt-responsive QTLs and molecular markers and

to profile the genes and their upstream regulatory regions in potential

wild relatives. This will facilitate an in-depth understanding of the

mechanisms that are effective in breeding tolerant varieties.

Exotic candidate genes have the potential to generate transgenic

plants. The accurate pyramiding of genes responsible for different

mechanisms of salt tolerance from divergent wild genetic sources

into elite cultivars is needed for an hour to increase salt tolerance.

Progress in transgenic and genome-editing techniques has paved

the way for more possibilities to utilize and investigate valuable

genes from wild rice to enhance salinity tolerance in cultivated rice.

The specific salt tolerance mechanisms in halophytes have yet to

be fully elucidated. A comprehensive analysis of the process by

which plants recognize salt stress and the crosstalk between

different genes and pathways that are involved in regulating salt

tolerance mechanisms is still needed. Concerted efforts are

necessary to preserve both ex situ and in situ wild rice species for

integration into salinity breeding programs.
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