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ABSTRACT

In this paper, we summarize some recently published methods and results in parametric audio coding. These

are all based on rate-distortion optimized coding using a perceptual distortion measure. We summarize

how a number of well-known computationally e�cient methods for incorporating perception in sinusoidal

parameter estimation relate to minimizing this perceptual distortion measure. Then a number of methods

for parametric coding of transients are compared and results of listening tests are presented. Finally, we show

how the complexity of rate-distortion optimized audio coding can be reduced by rate-distortion estimation.

1. INTRODUCTION
Audio coding is one of the success stories of modern sig-
nal processing. It is the art of maximizing the perceived
quality of audio signals encoded at a desired bit-rate.
Perhaps the most common incarnations of audio coders
are transform/sub-band coders such as MPEG-1 Layer
III (mp3) or MPEG-2/4 AAC (see, e.g., [1, 2]). Paramet-
ric models have been applied successfully to digital pro-
cessing of audio and speech signals during the past cou-
ple of decades and in the past few years, there has been
significant interest in so-called parametric coding tech-
niques, e.g. [3–7] and recently, coding standards based
on parametric coding have been established [4, 8–10].
These parametric coding techniques have primarily been
used as alternatives to transform coders, but some para-

metric coding techniques have also been successfully
combined with the more traditional transform coders.
For example, sinusoidal coders have been combined with
transform coders in a multi-stage structure in [11, 12].
Also, the recent advances in parametric multi-channel
coding such as [13–15] (see also [16]) and the percep-
tual noise substitution method [17, 18] are examples of
this. Parametric coding can be described as coding by
means of signal models or perceptual cues. The most
common case is perhaps the combination of some si-
nusoidal model and an auto-regressive (AR) stochastic
process, and this is also the focus of the present paper.
In one sense, parametric coding can be described as a
form of structured vector quantization, where the code-
book structure is imposed by the choice of signal model.
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This relation is further strengthened by the equivalence
between a commonly used method for finding the model
parameters in parametric coding, namely matching pur-
suit (MP) [19] and multi-stage gain-shape vector quanti-
zation (see, e.g., [20]).

Audio coders are designed and evaluated in terms of rate,
distortion, delay, complexity, robustness, and flexibility
and in designed audio coders, all these criteria must be
taken into account. Often, however, only rate, distortion
and delay constraints are explicit. The design of audio
coders have mainly been concerned with achieving the
lowest possible distortion at a given bit-rate and also the
computational complexity has played an important role.
More recently, the delay has also become a factor and
dedicated standards for low delay coding have been im-
plemented [21]. In the past few years, though, there has
been an increasing interest in scalability, i.e. flexibility in
terms of the aforementioned design criteria, and robust-
ness. A valuable tool in achieving flexible and robust
solutions is rate-distortion (R-D) optimization. Rate-
distortion optimized audio coding is coding that opti-
mizes itself according to time-varying constraints, such
as rate or distortion, and the source that is to be encoded.

In this paper, we present some new methods and results
in rate-distortion optimized audio coding. These are:
1) computationally efficient sinusoidal parameter estima-
tion based on a perceptual distortion measure, 2) ampli-
tude modulated sinusoidal audio coding, and 3) compu-
tationally efficient rate-distortion optimization by rate-
distortion estimation. Most parametric coders are based
on a sinusoidal model and a residual model. We con-
sider the problem of estimating the parameters of the per-
ceptually most important sinusoids. A number of sinu-
soidal frequency estimators that incorporate perception
have been proposed in the literature. These incorporate
perception by various heuristic ways, e.g. by pre-filtering
of the input signal [22, 23] or component weighting as
done in the weighted matching pursuit [24]. We relate
and analyze these estimators a framework based on a per-
ceptual distortion measure and show that they are equiv-
alent to to minimizing the perceptual distortion, as done
in [25], under certain conditions.

An important problem in audio coding is efficient coding
of transients. A wide range of methods for this have been
proposed. Most audio coders deal with this problem us-
ing variable segmentation, variable bit-rate, and percep-
tual noise shaping. Recently, amplitude modulated sinu-
soidal models have been shown, in listening tests, to of-

fer improved coding of transients, even when combined
with the other methods. Three different experimental
coders based on amplitude modulated sinusoidal mod-
els have been proposed and shown to lead to improved
coding compared to a state-of-the-art sinusoidal coder.
The proposed coders are based on different models of the
amplitude modulating signal, namely a linear combina-
tion of basis vectors, a frequency-domain all-pole filter,
and so-called gamma envelopes. Here, we compare these
methods in terms of perceived quality and computational
complexity. The coder based on gamma envelope model
has been found to produce the highest perceived qual-
ity at high bit-rates and at moderate complexity while
the frequency-domain all-pole filter model has very low
complexity and performs well at low bit rates but can-
not handle very complex mixtures of sources. The linear
combination of basis vectors, on the other hand, has been
found to produce reasonable quality but suffers from high
complexity.

There has been a significant interest in rate-distortion op-
timized audio coding in recent years, e.g. [26, 27]. Us-
ing rate-distortion optimization, an optimal segmentation
and allocation of bits can be found for any desired bit-
rate, but this requires that distortions are calculated for all
allocations and segments. We instead estimate the distor-
tions based only on a number of simple signal features.
Specifically, the relationship between these features and
distortions are modeled using a Gaussian mixture, and,
for a particular segment, the distortions are estimated us-
ing a computationally efficient linear Bayesian estima-
tor. MUSHRA listening tests reveal that this principle
can be applied to the problem of finding a rate-distortion
optimal segmentation in a sinusoidal coder resulting in
a complexity reduction by a factor of ten without much
loss in perceived quality.

The paper is organized as follows. In Section 2 we re-
view the basic results of rate-distortion optimization and
in Section 3 the perceptual distortion measure which is
used in this paper is presented. Then, in Section 4, the
problem of finding the sinusoidal components that min-
imize this distortion measure is treated. A number of
different methods for efficient coding of transients are
presented in Section 5, and in Section 6, the principles of
rate-distortion estimation are presented. Finally, in Sec-
tion 7, we summarize the contributions.

Aside from the information given in this paper, more de-
tails can be found in [28] and in the referenced papers.

AES 120th Convention, Paris, France, 2006 May 20–23
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2. RATE-DISTORTION OPTIMIZATION
In this section, we briefly review the basic results of

the rate-distortion optimal allocation and segmentation
scheme of [29], which is based on the earlier work on op-
timal allocation reported in [30]. First, we define a seg-
ment σs as having a length of `(σs) = κm with m ∈ N,
and a segmentation as σ = [ σ1 · · · σS ] consisting of
disjoint, contiguous segments that satisfy

S∑
s=1

`(σs) = κG, (1)

where κG is the total length of the signal and κ is natural
number. Then each of these segments, say segment s, can
be encoded using a set of coding templates Ts. Let D(τ)
be the distortion and R(τ) the number of bits associated
with coding template τ ∈ Ts. Assuming additivity over
the segments in the segmentation σ and coding templates
τ = [ τ1 · · · τS ], we can write the total distortion as

D(σ, τ ) =
S∑

s=1

D(σs, τs) (2)

and the total number of bits as

R(σ, τ ) =
S∑

s=1

R(σs, τs). (3)

The rate-distortion optimization problem can be stated as

minimize D(σ, τ ) s. t. R(σ, τ ) = R?, (4)

where R? is the bit budget. This can be written as
an unconstrained problem using the Lagrange multiplier
method [29, 30], i.e.,

min
σ

S∑
s=1

min
τ∈Ts

[D(σs, τ) + λR(σs, τ)]− λR?. (5)

The optimal λ that leads to the target rate R? can be
found by sweeping over different λ using simple bisec-
tion until the resulting rate is within some desired range
of the bit budget. In sinusoidal coding, the coding tem-
plates are often chosen to be different number of sinu-
soids such that the number of sinusoids may vary from
segment to segment. Additionally, we here also consider
coding templates to include different models, e.g. the
amplitude modulated sinusoidal models to be discussed
in Section 5.

3. A PERCEPTUAL DISTORTION MEASURE
For the R-D optimization to be effective in audio cod-

ing, it is imperative that a distortion measure that reflects
the human auditory system is used. The methods and re-
sults presented in this paper are all based on the auditory
masking model proposed in [31,32]. A block diagram of
this model is shown in Figure 1 with C and B being cali-
bration constants. According to this model, the distortion
D for a particular segment can be written as

D =
K∑

k=0

A(k)|E(k)|2, (6)

where A(k) is a real, positive weighting function derived
from [31, 32] and w(n) is the analysis window, with

E(k) =
N−1∑
n=0

w(n) [x(n)− x̂(n)] e−j2π k
K n, (7)

and x(n) is the input and x̂(n) is the reconstructed signal.
When the perceptual weighting function A(k) is chosen
as the reciprocal of the masking threshold, as is the case
here, the resulting error spectrum will be shaped accord-
ing to the masking threshold. This distortion measure
can be written using matrix-vector notation as

D = ‖He‖2
2 = ‖H (x− x̂)‖2

2 , (8)

where the matrix H is the perceptual weighting matrix
having the following circulant structure

H =


h(0) h(K − 1) · · · h(1)
h(1) h(0) · · · h(K − 1)

...
...

. . .
...

h(K − 1) h(K − 2) · · · h(0)

 ,

(9)
with h(n) = 1

K

∑K−1
k=0

√
A(k) cos (2πkn/K). Addi-

tionally, this matrix is also symmetric, i.e. HH = H.
This distortion measure has been applied to sinusoidal
audio modeling and coding in, for example, [25, 26].

4. SINUSOIDAL ESTIMATION
We now present some new insights into the problem

of finding the perceptually most important sinusoids that
were originally published in [33]. Given a real observed
signal x(n) for n = 0, . . . , N − 1, find the parameters of
the signal of interest x̂(n) in additive noise e(n):

x(n) = x̂(n) + e(n). (10)

AES 120th Convention, Paris, France, 2006 May 20–23
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Fig. 1: Block diagram of the masking model used throughout this paper. The model was proposed in [31, 32].

In our case the signal of interest x̂(n) is a sum of sinu-
soidal components

x̂(n) =
L∑

l=1

Al cos (ωln + φl) , (11)

with each component having an amplitude Al, phase φl,
and frequency ωl. The perceptual nonlinear least-squares
(NLS) estimates of the frequencies ω = [ ω1 · · · ωL ]T

are the set of frequencies that minimize the perceptual
distortion, i.e.,

ω̂ = argmin
ω

‖H(x− Za)‖2
2. (12)

Seen in the light of the R-D optimization problem, the
estimator in (12) is optimal in the sense that for a given
number of bits (with the number of bits being approxi-
mately proportional to the number of sinusoids), it min-
imizes the perceptual distortion. The matrix Z is a Van-
dermonde matrix defined as

Z =
[

z1 z∗1 . . . zL z∗L
]
, (13)

with ∗ denoting complex conjugation and

zl =
[

z0
l . . . zN−1

l

]T
, (14)

where zl = ejωl are the complex poles. Furthermore, we
have that a = [ a1 a∗1 · · · aL a∗L ]T with al = Al

2 ejφl .
These can be estimated as

â =
(
ZHH2Z

)−1
ZHH2x. (15)

Now, we can write the optimal estimator that minimizes
the perceptual distortion as

ω̂ =argmin
ω

‖H(x− Za)‖2
2 (16)

=argmax
ω

xHH2Z
(
ZHH2Z

)−1
ZHH2x. (17)

However, solving this is not computationally feasible.
Instead several relaxed methods that find sinusoids one
at a time have been proposed and we will now relate
these to the minimization of the perceptual distortion
measure. First, we define the residual vector at iteration
i as ri =

[
ri(0) · · · ri(N − 1)

]T
with

ri+1(n) = ri(n)− Âi cos(ω̂in + φ̂i), (18)

which is initialized as r1(n) = x(n). In the perceptual
matching pursuit [25], which is a derivative of matching
pursuit [19] (see also [34]), the sinusoid that minimizes
the perceptual norm is chosen as

ω̂i = argmin
ω

‖H(ri − za)‖2
2, (19)

with z = [ ejω0 · · · ejω(N−1) ]T . then we get the greedy
frequency estimator

ω̂i =argmax
ω

| 〈Hz,Hri〉 |2

‖Hz‖2
2

, (20)

and the associated optimal scaling (the amplitude and
phase) is

âi =
〈Hz,Hri〉
‖Hz‖2

2

. (21)

AES 120th Convention, Paris, France, 2006 May 20–23
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Note that the perceptual matching pursuit can be solved
efficiently using FFTs. Furthermore, it converges in the
perceptual distortion meaning that the perceptual distor-
tion decreases as we increase the number of sinusoids
and thereby also the number of bits. Consider now the
signal model component being an eigenvector of the per-
ceptual weighting matrix

Hv = λv. (22)

This assumption leads to some interesting results and
is indeed valid for certain important cases. As is well-
known, complex sinusoids are eigenvectors of convolu-
tion operators, i.e.,

v =
[

ejω0 · · · ejω(N−1)
]T

. (23)

This holds only in general for the asymptotic case N →
∞. Using the eigenvector assumption the sinusoidal fre-
quency estimation criterion can be significantly simpli-
fied:

min ‖H(ri − r̂i)‖2
2 =min ‖Hri − λva‖2

2, (24)

where a is a complex scale factor. The estimation cri-
terion can now be reduced to the so-called pre-filtering
method [22, 23], i.e.,

ω̂i =argmax
ω

|〈v,Hri〉|2

N
. (25)

Note that < v, · > can be found using an FFT. The inner
product in the estimation criterion can further be rewrit-
ten as

〈v,Hri〉 = vHHri = (λv)H ri, (26)

whereby frequency estimation criterion then becomes

ω̂i =argmax
ω

|λ|2 |〈v, ri〉|2

N
. (27)

This is the weighted MP [24]. In weighted MP, the eigen-
value of a complex sinusoids of frequency ω = 2π k

K is
approximated as

λ̂ ≈
√

A (k). (28)

As we have seen in this section, both the weighted MP
and the pre-filtering method can be seen as approxima-
tions to the perceptual MP and as the segment length N

is increased, these approximations become more accu-
rate. The weighted MP is identical to the pre-filtering
method and the perceptual MP under certain conditions,
namely that the sinusoids are eigenvectors of the percep-
tual weighting matrix. Additionally, the perceptual MP
can be seen as a relaxation of the optimal perceptual non-
linear least-squares method that simultaneously solves
for the L sinusoids that minimize the perceptual distor-
tion. It is also interesting to note that asymptotically,
all these methods attain the Cramér-Rao bound mean-
ing that the estimated frequencies have the lowest pos-
sible variance [33] for sufficiently large N under some
mild conditions on the noise and the perceptual weight-
ing function.

5. EFFICIENT CODING OF TRANSIENTS
There exists a number of different and complementary

tools for handling transients, namely 1) segmentation 2)
variable rate, and 3) perceptual noise-shaping/distortion
measure. R-D optimization based on a perceptual distor-
tion measure incorporates all these in an elegant manner.
Also, a number of adapted signal models based on ampli-
tude modulation (AM) have been proposed specifically
for dealing with transients in audio coding in combina-
tion with the methods mentioned above [35–39]. In this
section we compare these method, which are all based
on the following modified sinusoidal signal model for
n = 0, . . . , N − 1

x̂(n) =
L∑

l=1

γl(n)Al cos(ωln + φl), (29)

where γl(n) is the amplitude modulating signal or en-
velope if γl(n) ≥ 0 for all n. The papers referenced
above then differ in the model they impose on γl(n)
and how the model parameters are found. Aside from
the question of how to model γl(n) and find the associ-
ated parameters, there is also the interesting question of
how to decide when to use such modified models. Since
most audio segments are stationary, these modified mod-
els that have additional parameters associated with them
will not always be the best choice. However, by R-D
optimization, any heuristic switching, as is often seen in
audio coders, can be avoided. A block diagram of the
encoder and decoder based on rate-distortion optimiza-
tion and amplitude modulated sinusoidal audio coding is
depicted in Figure 2.

In [38], an amplitude modulated sinusoidal audio coder
is presented. It is based on a nonlinear model of the mod-

AES 120th Convention, Paris, France, 2006 May 20–23
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Fig. 2: Block diagram of the encoder and decoder that include an amplitude modulated (AM) coder and a sinusoidal
coder based on constant amplitudes.

ulating signal which is characterized by an onset, an at-
tack, and a decay. Each sinusoidal component can have
a different envelope. This model is combined with a si-
nusoidal coder without amplitude modulation in a rate-
distortion optimized framework that uses optimal distri-
bution of sinusoids over segments and optimal segmen-
tation [29, 30]. The gamma envelopes are given as

γl(n) = u(n− nl) (n− nl)
αl e−βl(n−nl). (30)

Each envelope is characterized by an onset time nl ∈
Z, an attack parameter αl ∈ N, and a decay parameter
βl ∈ R+. The parameters of this signal model are found
by analysis-by-synthesis using the perceptual distortion
measure.

In Figure 3 an example of a coded signal is shown. In
the top panel, the original, the claves signal from SQAM
[40], is shown. In the middle panel, the reconstructed
signal is shown for a sinusoidal coder that uses con-
stant amplitudes (CA) and a fixed segmentation while,
in the bottom panel, the reconstructed signal for the AM
coder combined with the CA coder using optimal allo-
cation and segmentation (AM/CA+SEG) is shown. In
both cases, the bit-rate was 30 kbps. The coder uses
log-quantization of amplitudes and frequencies, uniform
quantization of phases along with segment lengths of 10,
20, 30, 40 ms segments with 5 ms overlap.

A MUSHRA-like test [41] was carried out with 9 lis-
teners participating and using 7 critical transients mono

0 10 20 30 40 50 60
−1

0

1
Original

0 10 20 30 40 50 60
−1

0

1
CA

A
m

pl
itu

de

0 10 20 30 40 50 60
−1

0

1
AM/CA+SEG

Time [ms]

Fig. 3: Example of a signal coded using the AM coder
based on the gamma envelopes. In the top panel, the
original signal is depicted. In the middle panel, the sig-
nal coded by the CA is shown, while a the bottom the
synthesized signal of the AM/CA+SEG coder is shown.
In both cases, the bit-rate is 30 kbps.

excerpts from the EBU’s SQAM [40]. The mean scores
and the respective 95 % confidence intervals are listed in
Table 1 for a bit-rate of 30 kbps. The results are shown
for four different configurations, namely constant ampli-
tude (CA) with a fixed segmentation, constant amplitude

AES 120th Convention, Paris, France, 2006 May 20–23
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AM Coding Techniques
Gamma Envelopes Linear Combination FDLP

Model Nonlinear, attack, decay, on-
set parameters

Linear combination of vec-
tors

Frequency domain AR pro-
cess (in subbands)

Estimation Analysis-by-synthesis Least-Squares Linear Prediction
Complexity Medium High Low
Quality High Medium Medium
Flexibility Medium High Low

Table 2: Comparison of various amplitude modulated sinusoidal audio coders.

Results of Listening Test
Statistic CA CA+SEG AM AM/CA+SEG
Mean 45 59 48 70
Conf. 5 6 5 5

Table 1: Summary of the results (means and ± 95 %
confidence intervals) of MUSHRA-like listening test in
[38] for the amplitude modulated sinusoidal audio coder
based on the gamma envelopes for 30 kbps.

with optimal segmentation (CA+SEG), amplitude mod-
ulated with a fixed segmentation (AM) and the combina-
tion of the AM and CA coders with optimal segmenta-
tion (AM/CA+SEG). The results reported in [38] prove
that it is indeed efficient in terms of bit-rate to allow dif-
ferent modulating signals for different components and
that optimal segmentation and adapted models are com-
plementary coding techniques; furthermore, the optimal
segmentation changes with the signal model.

Two other AM coders have also been developed that have
different properties. In [37], the amplitude modulating
signal is modeled as a linear combination of arbitrary ba-
sis vectors. This model is rather different from the other
models considered in this section in that the constraints
on the amplitude modulating signal being nonnegative
is relaxed; sinusoidal frequencies may occur at spectral
minima. The model can exploit spectral symmetries for
coding purposes and is demonstrated in listening tests to
improve upon a sinusoidal coder. Also, this coder has
the advantage that since the model parameters are linear
they may easily be optimize. In terms of achieving a scal-
able and flexible coder, this model is desirable. The main
downside of the AM coders and their complicated signal
models is the complexity associated with finding the pa-

rameters. The work presented in [35] aims at finding an
alternative that has low complexity. An amplitude mod-
ulated sinusoidal audio coder based on the theory of [35]
and the results of paper [36] was developed in [39]. It
uses frequency-domain linear prediction (FDLP), a prin-
ciple similar to the temporal noise shaping of [42], as a
means for estimation and efficient coding of the modulat-
ing signal. The envelopes are found in critically sampled
subbands, and given these envelopes, the remaining si-
nusoidal parameters are found. This coder has very low
complexity and requires little memory compared to that
of [38], and it is demonstrated in listening tests to im-
prove upon a baseline coder in a delay constrained setup.
The strength of the methods used in this paper is that the
model of the modulating signal is not very restrictive. On
the other hand, the envelope estimator will approximate
the squared instantaneous envelope of the subbands, so
the method may result in incorrect envelopes for compli-
cated sub-band signals consisting of mixtures of different
components. Additionally, it was also shown in [38] that
the prediction order should not be chosen too high as the
estimator then will model cross-terms that are due to the
sinusoidal carriers. In Table 2 an overview of the various
AM coders and their properties are shown in terms of the
underlying model characteristics, the estimation proce-
dure used for finding the modulating signal, the complex-
ity, and perceived quality. Finally, also the flexibility, by
which we mean how restrictive and scalable the model is
compared in relative terms. From the table and the dis-
cussion in this section, it should be clear that the various
methods have their pros and cons and that it depends on
the application at hand which is the best solution.

6. RATE-DISTORTION ESTIMATION
In order to find the R-D optimal allocation and segmen-

tation, we need to find R(σ, τ) and D(σ, τ). These are
found by encoding and decoding the signal for various

AES 120th Convention, Paris, France, 2006 May 20–23
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combinations of segments and coding templates and in
many cases, this will be done for coding templates and
segments that will not be used in the coding of the sig-
nal. The optimal segmentation, for example, requires
that V = G2+G

2 different segments are evaluated for all
different coding templates when segment lengths can be
from 1 to G (measured in terms of the minimum seg-
ment length, see (1)). If the maximum segment length
is limited to H with G � H then V ≈ GH . How-
ever, the number of segments used can be no more than
G. Likewise, the coder switching structure employed in
the AM/CA coder in Section 5 requires that distortions
and rates are calculated for both the CA and AM coders.
Clearly, this approach will generally be wasteful in terms
of computational complexity. In rate-distortion estima-
tion [43], the distortions D(σ, τ) are estimated for dif-
ferent rates R(σ, τ) based on signal features. We now
briefly present the basic idea of rate-distortion estima-
tion and its application to a sinusoidal coder. The joint
PDF of the distortions D = [ D1 . . . DM ] associated
with coding templates τ1, ..., τM and the feature vector
p is modeled as

p(D,p) =
K∑

k=1

wkpk(D,p) (31)

where pk(D,p) is a multivariate Gaussian having mean
µk and covariance Σk while wk is the mixture weight.
These are found using the expectation maximization al-
gorithm Given some observed features in p we can then
estimate the distortion D̂i by minimizing the Bayesian
mean-square error:

E =
∫ ∫

(Di − D̂i)2p(D,p)dDdp (32)

=
∫ [∫

(Di − D̂i)2p(D|p)dD
]

p(p)dp. (33)

This is solved by the conditional mean estimator:

D̂ =
∫

Dp(D|p)dD. (34)

It turns out that this has a particularly simple form for
Gaussian mixtures, i.e.,

D̂ =
K∑

k=1

w̃kµ̃k, (35)

where µ̃k is the conditional mean. In [44] it was pro-
posed to use only diagonal covariance matrices for a

number of reasons. Firstly, the computational complex-
ity associated with the estimator for the diagonal case is
much less than that of full covariance matrices, although
a higher model order may be needed for the modeling
performance of the GMM. Secondly, the training of the
GMM and the Bayesian estimator can easily be shown to
preserve the desirable properties that the rate-distortion
curves are non-increasing and often also convex.

In [45], the principle of rate-distortion estimation was
applied to a sinusoidal coder and later, in [44], also to
the problem of finding the optimal segmentation. Note
that the principle of rate-distortion estimation also can
be applied to determining whether an amplitude modu-
lated sinusoidal signal model should be applied. We will
now briefly present some results regarding the applica-
tion of rate-distortion to optimal segmentation in a sinu-
soidal coder and summarize the results. The features that
were used for estimating the distortions in the sinusoidal
coder were log-power, spectral flatness, linear prediction
flatness, spectral centroid, spectral bandwidth, power sta-
tionarity, and spectral stationarity. All these features
have in common that they are very simple and have fast
implementations. Different number of sinusoids are used
as coding templates and segments of 10, 20, 30, and 40
ms were used with 5 ms overlap in the optimal segmen-
tation. We compare the estimated segmentation to the
optimal segmentation and a fixed segmentation (30 ms
segments) at 30 kbps. A MUSHRA-like test was per-
formed using 6 mono excerpts from SQAM [40] and 8
listeners. In Table 3 the results are shown in the form of
means and 95 % confidence intervals. The listening test
shows that the estimated rate-distortion pairs can be re-
placed by estimates with only a moderate loss in quality
while simulations indicate a complexity reduction by a
factor of 10. It must be stressed that the rate-distortion
estimation scheme can take dependencies between tar-
get bit-rate and different coding templates on the optimal
segmentation into account.

7. SUMMARY
In this paper, some new methods and results in rate-

distortion optimized audio coding based on a percep-
tual distortion measure have been presented. We have
shown how various methods for incorporating perception
in sinusoidal estimators relate. Various amplitude modu-
lated sinusoidal audio coders having different properties
have been proposed. It has been demonstrated that am-
plitude modulated sinusoidal audio coding can improve
parametric coders. Finally, it has been proven that the

AES 120th Convention, Paris, France, 2006 May 20–23
Page 8 of 11



Christensen and Jensen New Results in Rate-Distortion Optimized Parametric Audio Coding

Results of Listening Test
Statistic Estimated Fixed Optimal
Mean 53 33 59
Conf. 8 8 8

Table 3: Summary of the results of MUSHRA-like listen-
ing test (means and ± 95 % confidence intervals) in [44]
for the rate-distortion estimation scheme. The excerpts
were encoded at 30 kbps.

principle of rate-distortion estimation can alleviate one of
the major issues in R-D optimized audio coding, namely
complexity.
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