

African Scientific Reports 2 (2023) 138

Robust-M new two-parameter estimator for linear regression models: Simulations and applications

Taiwo J. Adejumo^{a,*}, Kayode Ayinde^{b,c}, Abayomi A. Akomolafe^b, Olusola S. Makinde^b, Adegoke S. Ajiboye^b

^a Department of Statistics, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
 ^bDepartment of Statistics, Federal University of Technology Akure, Ondo State, Nigeria
 ^cDepartment of Mathematics and Statistics, Northwest Missouri State University, Maryville, Missouri, USA

Abstract

In the presence of multicollinearity and outliers, the ordinary least squares estimator remains inconsistent and unreliable. Several estimators have been proposed that can co-handle the problems of multicollinearity and outliers simultaneously. However, there is still a need to explore some other robust methods when the two anomalies appear in the linear regression model and recommend it to end users of statistics. Therefore, this study proposed Robust-M New Two Parameter (RNTP) and examined its performance over some already existing ones in the presence of multicollinearity and outliers in the x-direction. The theoretical expression under some conditions was established to showcase the new estimator's superiority. A simulation study was carried out alongside some factors to show that the RNTP is better than all other estimators considered in the study. The simulation study results revealed that RNTP outperformed other estimators in the study using the minimum MSE as the criterion. Likewise, real-life data was applied to affirm this claim.

DOI:10.46481/asr.2023.2.3.138

Keywords: Ordinary least squares, Multicollinearity, Outliers, Estimators, Simulation study

Article History : Received: 05 July 2023 Received in revised form: 15 August 2023 Accepted for publication: 25 September 2023 Published: 11 November 2023

© 2023 The Author(s). Published by the Nigerian Society of Physical Sciences under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Communicated by: Tolulope Latunde

1. Introduction

An explanation of a multiple linear regression model's matrix form is as follows:

$$v = X\beta + U_i, \tag{1}$$

such that y is an (nx1) vector endogenous variable, X is a complete design matrix of (nxp) exogenous variable, β is (nx1) unknown parameter which has (px1) vector and U_i is an (nx1) random error with $E(U_i) = 0$ and variance $V(U_i) = \sigma^2 I_n$ whereby σ^2 and I_n are unknown parameter and identity matrix of order *n* respectively.

1

^{*}Corresponding author: Tel.: +234-806-616-0296;

Email address: tjadejumo@lautech.edu.ng (Taiwo J. Adejumo)

Equation (1) is commonly referred to as the Ordinary Least Squares Estimator (OLSE), which is defined as:

$$\widehat{\beta} = \eta^{-1} X^T y, \tag{2}$$

where $\eta = X^T X$.

When all of its assumptions are met, Equation (2) stays the best among all other unbiased estimators; otherwise, it becomes inefficient. The existence of extreme observations in the data is one of the reasons why OLSE becomes unsuitable for regression analysis. Meanwhile, the M-estimator [1] is the most commonly used approach for dealing with this problem. Others include the MM-estimator [2, 3], Least Trimmed Squares (LTS) [4, 5], S-estimator [6, 7], Least Absolute Deviation (LAD) [8, 9], and Least Quartile of Square (LQS) estimator [5]. Similarly, strong exogenous variable correlation reduces OLSE performance, which includes imprecise parameter estimation, a broad range of confidence intervals, and the development of a small t-ratio [7]. In order to address this issue in the literature, writers have developed certain biased estimators such as Ridge Estimator [8], Principal Component Estimator [9–11], coupled Ordinary Ridge Regression and OLS, and the suggested Liu estimator are examples of early biased estimators. Other estimators that can avoid the multicollinearity problem in linear regression models are two-parameter (TP), new two-parameter (NTP), modified ridge type (MRT), Kibria-Lukman (KL), Dawoud-Kibria (DK), and more recently, a generalized Kibria-Lukman (GKL) estimator [12] and a new ridge-type estimator [7], among others.

Outliers and multicollinearity however, may be unavoidable in a linear regression model, if this is the case researchers have developed various estimators that can deal with these two problems, such as the Ridge-M Estimator and the Ridge-MM Estimator. Meanwhile, some authors have combined the M, MM, LTS, and S estimators to offer robust ridge regression [13]. The M, MM, LTS, and S estimators, along with various other reliable regression estimators, were merged with the Liu estimator. Other methods are robust two-parameter (RTP) [14], robust Dawoud-Kibria (RDK) [15], and modified Ridge-M estimation [16]. Hence, to further explore robust methods of dealing with the problem of outliers and multicollinearity in linear regression analysis, this study proposes a robust-M new two-parameter estimator, especially when the anomaly is in the x-direction.

2. Some already existing Robust One and Two-Parameter estimators

2.1. Ridge-M regression

The ridge regression estimator was introduced by Hoerl & Kennard [8] since OLSE is inefficient in the presence of multicollinearity. This was done by introducing a biasing parameter k into the design matrix of η . Also, it was noted that the Ridge Regression Estimator (RRE) is always affected by outliers in the y-direction, which led Lukman *et al.* [17] to propose robust ridge regression, defined as:

$$\widehat{\beta}_{K}^{M} = \left(K\eta^{-1} + I\right)^{-1} \widehat{\beta}_{M},\tag{3}$$

where $\widehat{\beta}_M = \min_{\beta} \sum_{i=1}^n \theta\left(\frac{u_i}{k}\right)$, such that $\widehat{\beta}_M$ is the M-estimator, $k \ge 0$ and $u_i = y_i - x_i^T \widehat{\beta}_M$.

2.2. Robust Liu estimator

The Liu estimator is another biased estimator to handle the problem of multicollinearity in a linear regression model. It was introduced by Liu [11], which can be expressed as:

$$\widehat{\beta}_L = (\eta + I)^{-1} (X^T y + d\widehat{\beta}), \tag{4}$$

where 0 < d < 1 and d are the biasing parameters. Meanwhile, the Liu estimator has been noted to be affected by the extreme values, especially in the y-direction; this led Ref. [18] to propose its robust version, which can be defined as follows:

$$\widehat{\beta}_{M}^{d} = \left(\eta + I_{p}\right)^{-1} (\eta + \mathrm{dI}_{p}) \widehat{\beta}_{M}.$$
(5)

2.3. Robust Kibria-Lukman estimator

As an alternative to the one-biasing parameter estimator aside Ridge and Liu estimator, Ref. [19] proposed K-L estimator, defined as:

$$\widehat{\beta}_{\mathrm{KL}} = \left(\eta + \mathrm{kI}_p\right)^{-1} (\eta - \mathrm{kI}_p) \widehat{\beta}_{\mathrm{OLS}}.$$
(6)

The robust version of the K-L estimator when there are outliers in the *y*-direction was just recently proposed [20], and it is defined as:

$$\widehat{\beta}_{M}^{\text{KL}} = \left(\eta + kI_{p}\right)^{-1} (\eta - kI_{p})\widehat{\beta}_{M}.$$
(7)

2.4. Robust Two-Parameter estimator

In a bid to curtail the effect of multicollinearity in linear regression analysis, Ref. [21] came up with Two-parameter estimator. They defined the estimator as;

$$\widehat{\beta}_{\text{TP}} = \left(\eta + kI_p\right)^{-1} (\eta + kdI_p) \widehat{\beta}_{\text{OLS}}.$$
(8)

However, due to the sensitivity of the two-parameter estimator to outliers in the y-direction, Ref. [14] proposed a robust version expressed as:

$$\widehat{\beta}_{TP}^{M} = \left(\eta + kI_{p}\right)^{-1} (\eta + kdI_{p})\widehat{\beta}_{M}.$$
(9)

2.5. Robust Dawoud-Kibria estimator

As an alternative to already existing estimators that can deal with the problem of multicollinearity, Ref. [15] proposed the Dawoud-Kibria estimator, which was noted to outperform others under some conditions and simulation studies. The estimator can be expressed as:

$$\widehat{\beta}_{\text{DK}} = \widehat{\beta}(\text{DK}) = \left(\eta + k(1+d)I_p\right)^{-1} (\eta - k(1+d)I_p)\widehat{\beta}_{\text{OLS}}.$$
(10)

Since the presence of extreme observations in the response variable direction has been noted to influence the performance of the Dawoud-Kibria estimator, Hence, to combat this problem, Ref. [15] proceeded and proposed a robust version of DKE by introducing $\hat{\beta}_M$ instead of $\hat{\beta}_{OLS}$ used in the DKE. They defined the estimator as:

$$\widehat{\beta}_{M}(\mathrm{DK}) = \left(\eta + k(1+d)I_{p}\right)^{-1} (\eta - k(1+d)I_{p})\widehat{\beta}_{M}.$$
(11)

3. Theoretical methodology of the proposed robust estimator

Yang and Chang (2010) proposed a new biased-based estimator as an alternative method of circumventing the problem of multicollinearity in regression analysis by following the methods of Refs. [11] and [22]. It is called the new two-parameter estimator and expressed as:

$$\widehat{\beta}_{(k,d)} = \left(\eta + I_p\right)^{-1} (\eta + \mathrm{dI}_p) \widehat{\beta}_K.$$
(12)

Sequel to the existence of extreme observation, especially in the x- variable direction, which has been noted to affect the new twoparameter estimator, a robust version of the new two-parameter estimator is hereby introduced and defined as:

$$\widehat{\beta}_{\rm NTP}^{M} = \left(\eta + I_p\right)^{-1} (\eta + dI_p) \widehat{\beta}_{K}^{M}, \tag{13}$$

where $\widehat{\beta}_{K}^{M} = (\eta + k_{M}I_{p})^{-1}X^{T}y$ such that $k_{M} = \frac{p\widehat{\sigma}_{m}^{2}}{\sum_{i=1}^{p}\widehat{\alpha}_{im}^{2}}$

3.1. The canonical form of Robust-M New Two Parameter (RNTP) estimator

Recall the general linear regression model as given in equation (1), therefore the canonical form is as follows:

$$y = S\gamma + U, \tag{14}$$

where $S = XMand\gamma = M^T\beta$, M is the orthogonal matrix such that $S^TS = M^T\eta M = \mu = diag(\mu_1, \mu_2, \mu_3, \dots, \mu_p)$ where $\mu_1, \mu_2, \mu_3, \dots, \mu_p > 0$ are the ordered eigen values of η .

Let γ_m be the M-estimator of the equation $\sum_{i=1}^n \psi(\varepsilon_i/c) = 0$ and $\sum_{i=1}^n \psi(\varepsilon_i/c) s_i = 0$ such that $\varepsilon_i = y_i - s_i^T \widehat{\gamma}_m$ where *c* is a scale parameter and ψ is a selected useful function [23, 24]. Hence, the estimator in equation (14) can be expressed as:

$$\widehat{\gamma} = \mu^{-1} S^T y, \tag{15}$$

$$\widehat{\gamma}_m = \min_{\alpha} \sum_{i=1}^n \theta\left(\frac{y_i - s_i^T \alpha}{k}\right),\tag{16}$$

$$\widehat{\gamma}(k) = \left(\eta + k\mathbf{I}_p\right)^{-1} S^T y, \tag{17}$$

$$\widehat{\gamma}_m(k) = \left(I_p + \mathbf{k} \mathbf{S}^{-1}\right)^{-1} \widehat{\gamma}_m, \tag{18}$$

$$\widehat{\gamma}_m(d) = \left(\eta + I_p\right)^{-1} \left(\eta + \mathrm{dI}_p\right) \widehat{\gamma}_m,\tag{19}$$

$$\widehat{\gamma}_m(\mathrm{KL}) = \left(\eta + k I_p\right)^{-1} \left(\eta - \mathrm{kI}_p\right) \widehat{\gamma}_m,\tag{20}$$

$$\widehat{\gamma}_m(\mathrm{TP}) = \left(\eta + k I_p\right)^{-1} \left(\eta + \mathrm{kdI}_p\right) \widehat{\gamma}_m, \tag{21}$$

$$\widehat{\gamma}_m(\mathrm{DK}) = \left(\eta + k(1+d) I_p\right)^{-1} \left(\eta - k(1+d) I_p\right) \widehat{\gamma}_m.$$
(22)

Consequently, the robust New Two-parameter estimator of γ is hereby defined as:

$$\widehat{\gamma}_m(\text{NTP}) = (\eta + I)^{-1} (\eta + dI))\widehat{\gamma}_m(k).$$
(23)

3.2. Determination of the MSE for Robust M New Two-Parameter (RNTP) estimator Generally, the MSE of an OLS estimator $\hat{\gamma}$ is expressed as:

$$MSE(\widehat{\gamma}) = E(\widehat{\gamma} - \gamma)^{T} (\widehat{\gamma} - \gamma), \qquad (24)$$
$$= tr (Cov(\widehat{\gamma})) + bias(\widehat{\gamma})^{T} bias(\widehat{\gamma}).$$

Equation (24) can also be given as:

$$MSE(\widehat{\gamma}) = \sum_{i=1}^{p} \frac{\sigma^2}{\mu_i}$$

The MSE of robust M-estimator can be defined as:

$$MSE(\widehat{\gamma}_m) = \sum_{i=1}^p \Omega_{ii},$$
(25)

where Ω_{ii} indicates the diagonal elements for $Cov(\widehat{\gamma}_m)$ which is equivalent to Ω that is finite. MSE for robust version of Ridge estimator proposed by Ref. [8] can be expressed as:

$$MSE(\widehat{\gamma}_m(K)) = \sum_{i=1}^{p} \frac{\mu_i^2 \Omega_{ii}}{(\mu_i + k)^2} + \sum_{i=1}^{p} \frac{k^2 \widehat{\gamma}_i^2}{(\mu_i + k)^2}.$$
 (26)

Liu M-estimator has the MSE of:

$$MSE(\widehat{\gamma}_m(d)) = \sum_{i=1}^p \frac{(\mu_i + d)^2 \Omega_{ii}}{(\mu_i + 1)^2} + \sum_{i=1}^p \frac{(1 - d) \widehat{\gamma}_i^2}{(\mu_i + 1)^2}.$$
(27)

Robust Kibria-Lukman has the following MSE:

$$MSE(\widehat{\gamma}_{m}(KL)) = \sum_{i=1}^{p} \frac{(\mu_{i} + k)^{2} \Omega_{ii} + 4k^{2} \widehat{\gamma}_{i}^{2} \mu_{i}}{\mu_{i}(\mu_{i} + k)^{2}}.$$
(28)

Equation (29) is the MSE of robust TPE

$$MSE(\widehat{\gamma}_m(TP)) = \sum_{i=1}^p \frac{(\mu_i + kd)^2 \Omega_{ii}}{(\mu_i + k)^2} + \sum_{i=1}^p \frac{k^2 (1-d)^2 \widehat{\gamma}_i^2}{(\mu_i + k)^2}.$$
(29)

MSE of robust Dawoud-Kibria is expressed as:

$$MSE(\widehat{\gamma}_m(DK)) = \sum_{i=1}^p \frac{(\mu_i - k(1+d))^2 \Omega_{ii}}{(\mu_i + k(1+d))^2} + \sum_{i=1}^p \frac{4k^2(1+d)^2 \widehat{\gamma}_i^2}{(\mu_i + k(1+d))^2}.$$
(30)

Therefore, the MSE of the proposed robust New Two-Parameter Estimator (RNTPE) is as follows:

$$MSE(\widehat{\gamma}_m(NTP)) = \sum_{i=1}^{p} \frac{(\mu_i + d)^2 \mu_i \Omega_{ii}}{(\mu_i + 1)^2 (\mu_i + k)^2} + \sum_{i=1}^{p} \frac{((k+1-d)\mu_i + k)^2 \widehat{\gamma}_i^2}{(\mu_i + 1)^2 (\mu_i + k)^2}.$$
(31)

3.3. Performance of the proposed Robust-M New Two-Parameter Estimator over some existing ones

The performance of the proposed estimator is established based on the following imposed conditions and theorems. Conditions:

- (i) The function ψ is skew symmetric and non-decreasing.
- (ii) The $E(\varepsilon_i) = 0$ and $V(\varepsilon_i) = 1$. This simply means that the expected value of the residual is zero and variance is finite.
- (iii) The diagonal element of $Cov(\widehat{\gamma}_m)$ is finite.

Theorem I

If $\sum_{i=1}^{p} \Omega_{ii} < \sum_{i=1}^{p} \sigma^2$ then MSE($\widehat{\gamma}_m(NTP)$) < MSE($\widehat{\gamma}(NTP)$), **Proof:** The difference between the MSE of NTP and RNTP estimators.

$$D_{\text{RNTP}}^{\text{NTP}} = \sum_{i=1}^{p} \left[\frac{(\mu_i + d)^2 \mu_i \Omega_{\text{ii}} + ((k+1-d)\mu_i + k)^2 \gamma_i^2}{(\mu_i + 1)^2 (\mu_i + k)^2} - \frac{(\mu_i + d)\mu_i \sigma^2 + ((k+1-d)\mu_i + k)^2 \gamma_i^2}{(\mu_i + 1)^2 (\mu_i + k)^2} \right],$$
(32)

$$=\sum_{i=1}^{p} \frac{(\mu_i + d)^2 \mu_i \Omega_{ii} - (\mu_i + d)^2 \mu_i \sigma^2}{(\mu_i + 1)^2 (\mu_i + k)^2},$$
(33)

$$= \sum_{i=1}^{p} \frac{(\mu_i + d)^2 \mu_i \left(\Omega_{ii} - \sigma^2 \right)}{(\mu_i + 1)^2 (\mu_i + k)^2},$$
(34)

If $(\Omega_{ii} - \sigma^2) < 0$, therefore MSE $(\widehat{\gamma}_m(NTP)) < MSE(\widehat{\gamma}(NTP))$. Hence, RNTP estimator is better than NTP, if $\sum_{i=1}^p \Omega_{ii} < \sum_{i=1}^p \sigma^2$. Theorem II

 $MSE(\widehat{\gamma}_m(NTP)) < MSE(\widehat{\gamma}_m(DK))$ if;

$$\sum_{i=1}^p M_i < \sum_{i=1}^p W_i$$

Proof: The difference between the MSE of RNTP and RDK estimators.

$$D_{\text{RDK}}^{\text{RNTP}} = \sum_{i=1}^{p} \frac{(\mu_i + d_1)^2 \mu_i \Omega_{\text{ii}} + ((k_1 + 1 - d_1)\mu_i + k_1)^2 \gamma_i^2}{(\mu_i + 1)^2 (\mu_i + k_1)^2} - \sum_{i=1}^{p} \frac{(\mu_i - k_2(1 + d_2))^2 \Omega_{\text{ii}} + 4k_2^2 (1 + d_2)^2 \gamma_i^2}{(\mu_i + k_2(1 + d_2))^2},$$
(35)

where $a = (\mu_i + 1)^2 (\mu_i + k_1)^2$, $a_1 = (\mu_i + d_1)^2 \mu_i$, $a_2 = ((k_1 + 1 - d_1)\mu_i + k_1)\gamma_i^2$, $b = (\mu_i + k_2(1 + d_2))^2$, $b_1 = (\mu_i - k_2(1 + d_2))^2$, $b_2 = (\mu_i - k_2(1 + d_2))^2$, $b_1 = (\mu_i - k_2(1 + d_2))^2$, $b_2 = (\mu_i - k_2(1 + d_2))^2$, $b_2 = (\mu_i - k_2(1 + d_2))^2$, $b_1 = (\mu_i - k_2(1 + d_2))^2$, $b_2 = (\mu_i - k_2(1 + d_2))^2$, $b_2 = (\mu_i - \mu_i - \mu_i)^2$, $b_1 = (\mu_i - \mu_i)^2$, $b_2 = (\mu_i$ $b_2 = 4k_2^2(1+d_2)^2\gamma_i^2$. Such that k_1, k_2, d_1 , and d_2 are the biasing parameters for RNTP and RDK respectively.

$$D_{\text{RDK}}^{\text{RNTP}} = \sum_{i=1}^{p} \left[\frac{a_1 \Omega_{\text{ii}} + a_2}{a} - \frac{b_1 \Omega_{\text{ii}} + b_2}{b} \right]$$
(36)

$$=\sum_{i=1}^{p} \left[\frac{a_{1}b\Omega_{ii} + a_{2}b - ab_{1}\Omega_{ii} - ab_{2}}{ab} \right],$$
(37)

$$=\sum_{i=1}^{p} \left[\frac{(a_{1}b - a_{2}b)\Omega_{ii} - (ab_{2} - a_{2}b)}{ab} \right],$$
(38)

where $M_i = (a_1b - a_2b)\Omega_{ii}$, $W_i = (ab_2 - a_2b)$. Therefore, the difference is less than zero if:

$$\sum_{i=1}^p M_i < \sum_{i=1}^p W_i$$

3.3.1. Selection of robust shrinkage parameters for the RNTP estimator

Assume that $\widehat{\gamma}_m N(0,1)$. This implies that $\widehat{\gamma}_m$ follows a Gaussian distribution with the same mean and covariance matrix equals $A^2\eta^{-1}$. When $\sqrt{n}\left(\widehat{\gamma}_m^2 - \gamma\right) N(0, A^2\eta^{-1})$, then the assumption holds especially in practice, where $A^2 = \frac{c_0^2 E[\phi^2(\varepsilon/c_0)]}{E[\phi'(\varepsilon/c_0)]^2}$ such that c_0 is the scale estimate.

Also, according to Ref. [24], the unbiased estimator $\gamma_{im} = \hat{\gamma}_{im}^2$ that is $E(\gamma_{im}) = \hat{\gamma}_{im}$ and the unbiased estimator $\Omega_{ii} = A^2/\eta_i$ such that $A^2 = \frac{c^2(n-p)^{-1}\sum_{i=1}^n \left[\phi(\varepsilon_i/c)\right]^2}{\sum_{i=1}^n \left[\frac{1}{n}\phi'(\varepsilon_i/c)\right]^2}$. Biasing parameters for some robust estimators are hereby expressed as follows:

(i) Biasing parameter for Robust Ridge Regression (RRR) estimator by Ref. [17] is defined as:

$$\hat{K}_{M} = \frac{pA^{2}}{\sum_{i=1}^{p} \gamma_{im}^{2}}.$$
(39)

(ii) According to Ref. [18], they expressed parameter for robust Liu estimator as:

$$\hat{d}_m = 1 - A^2 \left[\frac{\sum_{i=1}^p \frac{1}{\eta_i(\eta_i+1)}}{\sum_{i=1}^p \frac{\gamma_{im}^2}{(\eta_i+1)^2}} \right].$$
(40)

(iii) Biasing parameter for Robust Ridge-Liu estimator can be expressed as:

$$\hat{k}_m = \frac{1}{p} \sum_{i=1}^p \frac{A^2}{\widehat{\gamma}_{\rm im}^2 - d\left(\frac{A^2}{\eta_i + \widehat{\gamma}_{\rm im}^2}\right)} \tag{41}$$

$$\hat{d}_m = \min\left\{\frac{\widehat{\gamma}_{\rm im}^2}{\frac{A^2}{\eta_i} + \widehat{\gamma}_{\rm im}^2}\right\}$$
(42)

(iv) In respect to Ref. [15], they derived the biasing parameters for Robust Dawoud-Kibria as follows:

$$\hat{k}_m(\text{DK}) = \frac{1}{p} \sum_{i=1}^p \frac{A}{(1+d_{\text{TP}}) \left(\frac{A}{\eta_i} + 2\widehat{\gamma}_{\text{im}}^2\right)},$$
(43)

where
$$d_{\text{TP}} = \min\left(\frac{\widehat{\gamma}_{\text{im}}^2}{\left(\frac{A}{\eta_i}\right) + \widehat{\gamma}_{\text{im}}^2}\right)_{i=1}^p$$

Consequently, following Ref. [25], the biasing parameter for RNTP is as follows:

$$\hat{k}^{\text{RNTP}} = \frac{A^2 \left(\eta_i + d\right) - \left(1 - d\right) \eta_i \widehat{\gamma}_{\text{im}}}{\left(\eta_i + 1\right) \widehat{\gamma}_{\text{im}}},\tag{44}$$

such that d = 0 < d < 1 and

$$\hat{d}^{\text{RNTP}} = \frac{\sum_{i=1}^{p} \frac{(\tilde{\gamma}_{in}^{2} - A^{2})}{(\eta_{i}+1)^{2}}}{\sum_{i=1}^{p} \frac{(A^{2}+\eta_{i} \tilde{\gamma}_{in}^{2})}{(\eta_{i}+1)^{2} \eta_{i}}}.$$
(45)

3.4. Monte Carlo Experiment

To show the performance of the proposed RNTP over already existing estimators OLS, KL, DK, M, Ridge-M, Liu-M, KL-M, and Dk-M, a Monte Carlo experiment was conducted with the aid of R-statistical programming codes.

(-2 2)

3.4.1. Procedures

The Monte Carlo experiment of the study was conducted using R statistical programming codes. Some of the estimators whose performances were compared are OLS, KL, DK, M, Ridge-M, Liu-M, KL-M, DK-M, and RNTP. All the exogenous variables were generated using the equation given in (46) and used by Ref. [26] among all other researchers.

$$x_{ij} = (1 - \rho^2)^{\frac{1}{2}} z_{ij} + \rho z_{ip+1}, i = 1, 2, \dots, n, j = 1, 2, \dots, p,$$
(46)

where z_{ij} are independent standard normal pseudo-random numbers and ρ means the correlation between any two exogenous variables. Five (5) levels of different correlations were considered which are 0, 0.8, 0.9, 0.95, and 0.99 so as to exhibit the degrees of correlations between the explanatory variables. Meanwhile, the number of exogenous variables is p = 3 and expressed in a standardized form. Also, 10% and 20% of x_2 was random selected and replaced with outliers using $X_{(i)outlier} = Mo^*Max (X_i) + X_i$ The magnitude of outliers (Mo) considered are (0, 5, and 10). Likewise, the response variable was generated using the following equations:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_{ip} + e_i, \ i = 1, \dots, p,$$
(47)

where $e_i \sim \text{iidN}(0, \sigma^2)$, whereby zero intercept was assumed for the model in (47), and the values of β was chosen to satisfy the constraints $\beta^T \beta = 1$ suggested by Ref. [13]. The simulation study was replicated 1000 times for the sample sizes n= 20, 50, 100, and 250, respectively, with error variances (1, 5, and 10). Furthermore, the estimated MSE for each of the estimators was obtained for each replicate as in equation (48).

$$MSE(\beta) = \frac{1}{1000} \sum_{i=1}^{1000} (\beta - \beta)^2.$$
(48)

In the same vein, individual Ridge parameters of the estimators considered in the study were used.

4. Presentation of sample of Simulation results and discussion

4.1. Sample of simulation results

Sample of simulation results are presented in Tables 1 - 4 and graphically displayed in Figures 1 - 6.

Table 1:	MSEs of	estimators	when	$M_{o} =$	0 (No)	outlier).
10010 11	1110100			1110	0 (1 10	0000000)

			OLS	KL	DK	Μ	Ridge-M	Liu-M	KL-M	DK-M	NTP-M
	$\sigma=1$	rho=0	0.3189	0.2891	0.2921	0.3333	0.2843	0.2778	0.2887	0.2913	0.3391
		rho=0.8	0.9855	0.3836	0.6545	1.0354	0.4233	0.5406	0.383	0.6519	0.2965
		rho=0.9	1.8789	0.5703	1.1132	1.9754	0.659	0.7135	0.5695	1.1104	0.4679
		rho=0.95	3.6694	0.9365	1.9543	3.8588	1.1255	0.9946	0.9394	1.9494	0.8677
		rho=0.99	18	3.8902	8.3505	18.934	4.8246	3.0628	3.92	8.3318	4.3981
	$\sigma=5$	rho=0	7.9715	3.1457	4.6774	8.3336	3.1959	6.6965	3.1488	4.6762	1.6928
n=20		rho=0.8	24.637	6.6164	12.286	25.886	7.574	13.129	6.6571	12.276	4.2038
		rho=0.9	46.974	11.37	22.043	49.384	13.466	16.809	11.446	21.983	8.6176
		rho=0.95	91.734	20.703	41.843	96.47	25.133	23.032	20.87	41.78	18.491
		rho=0.99	450	94.831	201.16	473.35	117.72	74.783	95.699	200.71	107
	$\sigma = 10$	rho=0	31.886	11.269	17.781	33.334	11.536	26.758	11.295	17.779	4.9457
		rho=0.8	98.546	26.056	48.319	103.54	29.722	52.511	26.228	48.232	16.042
		rho=0.9	187.89	45.125	87.19	197.54	53.39	67.138	45.453	86.864	33.904
		rho=0.95	366.94	82.508	166.34	385.88	100.11	91.928	83.188	166.05	73.465
		rho=0.99	1800	379.04	803.77	1893.4	470.54	299.28	382.53	801.53	427.64
		rho=0	0.0983	0.0861	0.0931	0.1031	0.0864	0.0933	0.0861	0.093	0.0846
	$\sigma=1$	rho=0.8	0.2793	0.1607	0.2219	0.2907	0.1673	0.2241	0.1604	0.2214	0.1118
		rho=0.9	0.5264	0.2251	0.3772	0.5473	0.2452	0.3515	0.2243	0.3762	0.1495
		rho=0.95	1.0216	0.3218	0.6444	1.0617	0.3726	0.5134	0.3208	0.6414	0.2295
		rho=0.99	4.986	1.0442	2.3695	5.1796	1.3089	0.8027	1.0437	2.3575	1.006
		rho=0	2.4579	1.0747	1.5736	2.5763	1.1208	2.3292	1.0777	1.5705	0.6855
	$\sigma=5$	rho=0.8	6.9836	1.9255	3.5974	7.2673	2.1955	5.5896	1.9306	3.5838	0.9857
n=50		rho=0.9	13.159	3.1124	6.3099	13.682	3.6848	8.5679	3.1193	6.2949	1.6652
		rho=0.95	25.54	5.4184	11.549	26.542	6.6113	12.241	5.4306	11.483	3.3848
		rho=0.99	124.65	23.719	51.99	129.49	29.877	18.419	23.789	51.701	22.35
		rho=0	9.8315	3.5137	5.6652	10.305	3.6307	9.3171	3.5426	5.6579	1.4411
	$\sigma=10$	rho=0.8	27.934	7.27	13.488	29.069	8.2078	22.357	7.2999	13.478	3.169
		rho=0.9	52.637	12.086	24.25	54.726	14.237	34.264	12.124	24.195	6.086
		rho=0.95	102.16	21.375	45.222	106.17	26.021	48.85	21.436	45.002	13.087
		rho=0.99	498.6	94.611	207.32	517.96	119.14	73.759	94.907	206.02	89.066
		rho=0	0.0427	0.0374	0.0395	1.125	0.6693	1.0494	0.676	0.8007	0.6093
		rho=0.8	0.1765	0.1205	0.1542	0.1382	0.0935	0.1177	0.0918	0.1131	0.0622
	$\sigma=1$	rho=0.9	0.3468	0.1877	0.2834	0.2624	0.1416	0.1982	0.1346	0.1954	0.0824
		rho=0.95	0.6876	0.2565	0.4288	0.5111	0.2115	0.3134	0.1899	0.3396	0.1175
		rho=0.99	3.4145	0.6295	1.8025	2.5017	0.6436	0.6947	0.5071	1.2449	0.4343
		aha O	1.0005	0 5(31	0.6076	1 105	0.6602	1 0 4 0 4	0 (7)	0.0007	0.6002
		mo=0	1.0005	0.5021	0.00/0	1.123	0.0093	1.0494	0.0/0	0.800/	0.0093
100	~	rno=0.8	4.4110	0.8/93	2.39/3	3.4334	1.0414	2.9404	0.8965	1.7058	0.4477
n=100	$\sigma=5$	rho=0.9	8.6696	1.50/8	5.114	6.3389	1.7004	4.953	1.4041	2.95	0.0599
		rho=0.95	17.19	2.5012	6.7989	12.777	3.016	1.765	2.4142	5.3312	1.2607
		rho=0.99	85.362	11.092	31.401	62.544	13.452	16.328	10.447	24.763	8.4291

		rho=0	4.2661	1.4531	1.9	4.4999	1.7867	4.1984	1.7889	2.6067	0.9561
		rho=0.8	17.647	2.9698	8.9953	13.822	3.7091	11.762	3.2188	6.3105	1.311
	$\sigma=10$	rho=0.9	34.678	5.331	18.762	26.236	6.3925	19.812	5.3107	10.897	2.2842
		rho=0.95	68.76	9.4807	30.31	51.108	11.684	31.047	9.3918	20.317	4.7198
		rho=0.99	341.45	43.85	118.05	250.17	53.467	65.248	41.556	97.982	33.374
		rho=0	0.0151	0.0151	0.015	0.0158	0.0151	0.015	0.0151	0.015	0.0162
		rho=0.8	0.0415	0.0369	0.0391	0.0433	0.037	0.0402	0.0369	0.0391	0.0306
	$\sigma=1$	rho=0.9	0.0774	0.0616	0.0698	0.0806	0.0619	0.0724	0.0616	0.0698	0.0446
		rho=0.95	0.1494	0.0984	0.1258	0.1554	0.1005	0.1304	0.0984	0.1256	0.0616
		rho=0.99	0.7257	0.2391	0.4775	0.7543	0.2749	0.4004	0.2396	0.4754	0.1494
		rho=0	0.3765	0.3213	0.3372	0.3952	0.3207	0.3736	0.321	0.3371	0.4005
		rho=0.8	1.0378	0.3971	0.6889	1.0815	0.4378	1.0048	0.3988	0.6874	0.2196
n=250	$\sigma=5$	rho=0.9	1.9357	0.5577	1.132	2.0146	0.6525	1.8096	0.5607	1.1316	0.2569
		rho=0.95	3.7357	0.8579	1.9146	3.885	1.0604	3.2592	0.8648	1.9016	0.3665
		rho=0.99	18.144	3.3114	7.8764	18.858	4.329	9.815	3.3556	7.8411	1.8573
		rho=0	1.5061	0.856	1.0815	1.581	0.8584	1.4943	0.859	1.0856	0.6889
		rho=0.8	4.1513	1.2023	2.2618	4.326	1.3728	4.019	1.2128	2.259	0.5588
	$\sigma = 10$	rho=0.9	7.743	1.8544	3.8171	8.0583	2.2195	7.2384	1.872	3.8387	0.7597
		rho=0.95	14.943	3.0969	6.8057	15.54	3.8672	13.037	3.1323	6.7854	1.2425
		rho=0.99	72.575	12.963	30.503	75.431	16.965	39.257	13.153	30.399	7.2084

Table 2: MSEs of estimators when $P_o = 10\%$ and $M_o = 5$.

			OLS	KL	DK	Μ	Ridge-M	Liu-M	KL-M	DK-M	NTP-M
	$\sigma=1$	rho=0	0.2429	0.1539	0.2018	0.25228	0.1571	0.2034	0.153	0.201	0.1057
		rho=0.8	0.5449	0.2065	0.3223	0.58062	0.2365	0.3258	0.2061	0.322	0.1472
		rho=0.9	1.056	0.2761	0.4726	1.0914	0.3455	0.4088	0.2743	0.469	0.2219
		rho=0.95	1.795	0.355	0.7221	1.91128	0.4807	0.5064	0.3595	0.72	0.3325
		rho=0.99	8.511	1.2643	2.9546	9.04265	1.743	1.7129	1.297	2.941	1.5048
	σ -5	rho-0	6 0733	1 9046	3 1681	6 30708	2 0691	5 0793	1 8953	3 15	0 9045
n - 20	0-5	rho=0.8	13 622	3 3 2 8 7	6 4767	14 5155	3 8335	8 1171	3 3731	6.483	1 9715
m=20		rho=0.9	26 401	5 6584	10 578	27 285	6 6198	10 112	5 7395	10.48	4.0117
		rho=0.95	44 874	8 0291	16 165	47 7821	10.033	12 138	8 2838	16.18	6.5727
		rho = 0.99	212 77	31.674	73 777	226.066	41 851	43 019	32 679	73 5	36.016
		1110 0.555	212.77	011071	13.111	220.000	11.001	12.017	52.079	10.0	20.010
	$\sigma=10$	rho=0	24.293	7.1676	12.596	25.2283	7.745	20.316	7.1417	12.52	3.0965
		rho=0.8	54.487	13.075	25.875	58.0618	14.854	32.476	13.277	25.91	7.3414
		rho=0.9	105.6	22.551	42.178	109.14	26.09	40.419	22.902	41.76	15.663
		rho=0.95	179.5	32.078	64.472	191.128	39.772	48.449	33.127	64.6	25.867
		rho=0.99	851.1	126.73	295.11	904.265	167.14	172.22	130.79	294.1	143.79
	$\sigma=1$	rho=0	0.0816	0.0678	0.0773	0.08512	0.068	0.0773	0.0678	0.077	0.0537
		rho=0.8	0.2084	0.1113	0.1612	0.22223	0.1193	0.164	0.1116	0.162	0.0732
		rho=0.9	0.3586	0.1283	0.2114	0.36926	0.1508	0.2215	0.1273	0.212	0.0807
		rho=0.95	0.5532	0.1525	0.2658	0.59536	0.196	0.277	0.1537	0.267	0.1061
		rho=0.99	2.8696	0.4296	0.9915	3.08895	0.6326	0.6697	0.4427	1.001	0.4548
	<i>σ</i> −5	rho-0	2 0407	0 7075	1 1/36	2 12800	0 7623	1 0325	0 7116	1 1/1	0 2507
	0-5	rho=0.8	5 2103	1 258	2 4245	5 55573	1 4931	4 0961	1 2852	2.445	0.6057
		110-0.0	5.2105	1.200	2.12.13	5.55575	1.1751		1.2052	2.115	010001

\sim
9
~

n=50		rho=0.9	8.9661	1.7417	3.5129	9.2314	2.1406	5.529	1.7515	3.474	0.8882
		rho=0.95	13.83	2.5084	5.0337	14.8841	3.1898	6.8985	2.5738	5.077	1.55
		rho=0.99	71.74	10.71	24.747	77.2237	14.225	16.717	11.143	25	10.27
	$\sigma=10$	rho=0	8.1629	2.3605	4.3373	8.51236	2.5939	7.73	2.381	4.333	0.7816
		rho=0.8	20.841	4.8083	9.6879	22.2229	5.5901	16.383	4.9273	9.774	2.178
		rho=0.9	35.865	6.8666	14.025	36.9256	8.2267	22.112	6.9236	13.87	3.3449
		rho=0.95	55.32	9.9958	20.127	59.5362	12.448	27.583	10.27	20.29	5.9946
		rho=0.99	286.96	42.911	98.97	308.895	56.666	66.874	44.66	100	40.912
		rho=0	0.0294	0.0269	0.0287	0.76999	0.3512	0.721	0.3376	0.495	0.1427
	$\sigma=1$	rho=0.8	0.1591	0.1079	0.1413	0.06293	0.0481	0.0565	0.0476	0.056	0.0366
		rho=0.9	0.2001	0.0951	0.1566	0.11545	0.071	0.095	0.0678	0.094	0.0448
		rho=0.95	0.7933	0.2433	0.4426	0.24056	0.1039	0.1589	0.0895	0.152	0.0538
		rho=0.99	3.783	0.4902	1.4086	1.05466	0.2469	0.3083	0.163	0.332	0.1349
		1 0	0 72 42	0.0000	0.4100	0.7(000	0.2512	0.701	0.2276	0.405	0 1 405
	5	rno=0	0.7343	0.2302	0.4122	0.76999	0.3512	0.721	0.3376	0.495	0.1427
	$\sigma=5$	rno=0.8	5.9786	0.4949	1.3559	1.5/329	0.5121	1.411/	0.4392	0.707	0.2084
100		rho=0.9	5.0032	0.2295	1.6226	2.88617	0.7237	2.3758	0.5/8/	1.083	0.247
n=100		rho=0.95	19.833	1.6313	7.3716	6.01405	1.2929	3.9687	1.0187	2.072	0.4918
		rho=0.99	94.576	7.2558	33.416	26.3665	4.7526	7.7307	3.7053	7.973	2.5968
		rho-0	2 9372	0 494	1 2814	3 07996	1 0361	2 884	0.9612	1 589	0 3692
	$\sigma = 10$	rho=0.8	15 915	1 5015	5 1724	6 20316	1.0001	2.004 5.6467	1 4896	2 659	0.5072
	0 = 10	rbo=0.0	20.013	0.741	6 2265	11 5//7	2 5801	0 5032	2.1714	2.057 4 308	0.0142
		rbo=0.9	20.013	6.0236	20.817	24 0562	2.5801	15 873	4 0608	4.300 8.28	1 87/6
		$rb_{0.95}$	278.2	0.0230	132.76	105 466	4.902	20.028	14 012	31.80	1.0240
		1110-0.99	576.5	20.317	132.70	105.400	10.790	30.938	14.912	31.69	10.201
		rho=0	0.0121	0.0117	0.012	0.01271	0.0117	0.012	0.0117	0.012	0.0112
	$\sigma=1$	rho=0.8	0.0247	0.0222	0.024	0.02608	0.0222	0.024	0.0222	0.024	0.0193
		rho=0.9	0.0435	0.0348	0.0407	0.04534	0.0351	0.0408	0.0347	0.041	0.0269
		rho=0.95	0.0772	0.0506	0.0675	0.0811	0.0523	0.0679	0.0506	0.068	0.0339
		rho=0.99	0.3601	0.0944	0.1839	0.37881	0.1246	0.1991	0.0951	0.185	0.0567
		rho=0	0.3024	0.1825	0.2482	0.31783	0.186	0.2999	0.1831	0.248	0.076
	$\sigma=5$	rho=0.8	0.6165	0.2276	0.3534	0.65196	0.2594	0.599	0.229	0.354	0.0907
		rho=0.9	1.0865	0.2733	0.4648	1.13349	0.3437	1.0203	0.272	0.463	0.1133
n=250		rho=0.95	1.9306	0.359	0.703	2.02755	0.4953	1.6967	0.3681	0.707	0.1622
		rho=0.99	9.0021	1.2274	2.8542	9.47018	1.745	4.9803	1.2925	2.87	0.6957
		1 0	1 0000	0.4640	0.7105	1 0510	0.4053	1 1000	0.4600	0.725	0.1.810
		rho=0	1.2096	0.4642	0.7185	1.2713	0.4953	1.1998	0.4689	0.725	0.1513
	$\sigma=10$	rho=0.8	2.4659	0.6447	1.1095	2.60784	0.7609	2.3958	0.6542	1.119	0.2298
		rho=0.9	4.3461	0.896	1.7354	4.53394	1.1024	4.0812	0.898	1.719	0.3327
		rho=0.95	7.7223	1.3295	2.8026	8.11021	1.7302	6.7866	1.3795	2.819	0.5411
		rho=0.99	36.008	4.9455	11.417	37.8807	6.7709	19.922	5.229	11.48	2.6928

Table 3: MSEs of estimators when $P_o = 10\%$ and $M_o = 10$.

		OLS	KL	DK	Μ	Ridge-M	Liu-M	KL-M	DK-M	NTP-M
<i>σ</i> =1	rho=0	0.2389	0.1492	0.1983	0.2482	0.1526	0.1992	0.1483	0.1979	0.0986
	rho=0.8	0.5338	0.1954	0.3098	0.57	0.2257	0.3151	0.1951	0.3101	0.1324
	rho=0.9	1.0474	0.2665	0.4435	1.0827	0.3363	0.3959	0.2646	0.4414	0.2098
	rho=0.95	5 1.7789	0.3392	0.6333	1.8947	0.4654	0.4709	0.3436	0.6342	0.3068
	rho=0.99	8.4996	1.2528	2.9367	9.0331	1.7318	1.7071	1.2861	2.9268	1.4874

-1	n
1	υ

n=20	σ=5	rho=0 5.9717 rho=0.8 13.345 rho=0.9 26.184 rho=0.95 44.472 rho=0.99 212.49	1.7879 3.1047 5.4522 7.6971 31.395	3.059 6.2155 10.269 15.668 73.417	0.7592 1.5417 2.8473 5.9811 26.333	0.3365 0.4842 0.701 1.2721 4.7308	0.7112 1.384 2.3411 3.9449 7.7062	0.3233 0.4117 0.5556 0.9995 3.6869	0.4839 0.6716 1.0473 2.0506 7.9429	0.1053 0.1566 0.2254 0.4659 2.5741
	<i>σ</i> =10	rho=0 23.887 rho=0.8 53.378 rho=0.9 104.74 rho=0.95 177.89 rho=0.99 849.96	6.7264 12.212 21.738 30.763 125.62	12.218 24.862 41.044 62.695 293.67	24.824 57.003 108.27 189.47 903.31	7.3515 14.048 25.331 38.523 166.1	19.91 31.454 39.473 46.919 170.92	6.7055 12.427 22.108 31.794 129.7	12.141 24.905 40.652 62.737 292.74	2.7947 6.791 15.11 24.873 142.83
	<i>σ</i> =1	rho=0 0.0814 rho=0.8 0.2074 rho=0.9 0.3556 rho=0.95 0.5561 rho=0.99 2.8817	0.0674 0.1088 0.1264 0.1502 0.4293	0.077 0.1596 0.21 0.2629 0.9859	0.085 0.2214 0.3661 0.5986 3.102	0.0675 0.117 0.1488 0.1944 0.6329	0.077 0.1619 0.219 0.2747 0.6625	0.0674 0.1091 0.1253 0.1514 0.4427	0.077 0.1598 0.2103 0.2638 0.9961	0.0529 0.0708 0.0788 0.1037 0.453
n=50	σ=5	rho=0 2.035 rho=0.8 5.1861 rho=0.9 8.8909 rho=0.95 13.903 rho=0.99 72.042	0.6896 1.2109 1.6979 2.4756 10.711	1.1239 2.3596 3.4405 4.993 24.638	2.1241 5.5345 9.1535 14.966 77.549	0.7453 1.4488 2.093 3.1604 14.24	1.9255 4.0451 5.473 6.8635 16.565	0.694 1.2398 1.7052 2.5424 11.154	1.1222 2.3815 3.4048 5.037 24.896	0.2168 0.5479 0.8351 1.5062 10.267
	<i>σ</i> =10	rho=0 8.14 rho=0.8 20.744 rho=0.9 35.563 rho=0.95 55.613 rho=0.99 288.17	2.2903 4.635 6.6965 9.8725 42.912	4.276 9.4384 13.757 19.976 98.547	8.4963 22.138 36.614 59.865 310.2	2.53 5.4274 8.0452 12.341 56.731	7.702 16.18 21.891 27.452 66.261	2.3125 4.7617 6.7443 10.152 44.703	4.281 9.5267 13.615 20.153 99.581	0.6958 2.0322 3.1938 5.8785 40.926
	<i>σ</i> =1	rho=0 0.0284 rho=0.8 0.1576 rho=0.9 0.2025 rho=0.95 0.7848 rho=0.99 3.7659	0.0259 0.1078 0.0962 0.2449 0.492	0.0277 0.1408 0.1599 0.4497 1.2988	0.7592 0.0617 0.1139 0.2392 1.0533	0.3365 0.047 0.0697 0.103 0.2461	0.7112 0.0554 0.0936 0.1578 0.3082	0.3233 0.0465 0.0666 0.0887 0.1622	0.4839 0.0553 0.0929 0.152 0.3295	0.1053 0.0355 0.0439 0.0531 0.1331
n=100	<i>σ</i> =5	rho=0 0.7089 rho=0.8 3.9407 rho=0.9 5.0614 rho=0.95 19.621 rho=0.99 94.147	0.2161 0.5016 0.1921 1.6077 7.1721	0.4028 1.2185 1.4883 7.5364 32.407	0.7592 1.5417 2.8473 5.9811 26.333	0.3365 0.4842 0.701 1.2721 4.7308	0.7112 1.384 2.3411 3.9449 7.7062	0.3233 0.4117 0.5556 0.9995 3.6869	0.4839 0.6716 1.0473 2.0506 7.9429	0.1053 0.1566 0.2254 0.4659 2.5741
	<i>σ</i> =10	rho=0 2.8355 rho=0.8 15.763 rho=0.9 20.246 rho=0.95 78.485 rho=0.99 376.59	0.442 1.4586 0.5696 5.8683 28.112	1.1981 4.8987 5.8606 30.146 129.6	3.0368 6.1667 11.389 23.924 105.33	0.9756 1.6025 2.4936 4.8208 18.709	2.845 5.536 9.3643 15.78 30.826	0.9013 1.3905 2.0871 3.9889 14.839	1.5239 2.5532 4.1844 8.2022 31.772	0.2623 0.4858 0.7735 1.7458 10.186
	<i>σ</i> =1	rho=0 0.012 rho=0.8 0.0245 rho=0.9 0.0433 rho=0.95 0.077 rho=0.99 0.3599	0.0116 0.022 0.0346 0.0504 0.0943	0.0119 0.0238 0.0406 0.0674 0.1845	0.0126 0.0259 0.0451 0.0809 0.3786	0.0116 0.0221 0.0349 0.0522 0.1244	0.0119 0.0238 0.0406 0.0677 0.199	$\begin{array}{c} 0.0116\\ 0.022\\ 0.0346\\ 0.0505\\ 0.0949 \end{array}$	0.0119 0.0238 0.0406 0.0674 0.1853	0.0111 0.0191 0.0267 0.0338 0.0565
		rho=0 0.3004 rho=0.8 0.6132	0.1804 0.2247	0.2466 0.3509	0.3157 0.6483	0.1839 0.2565	0.2979 0.5957	0.1809 0.2259	0.2467 0.352	0.0718 0.0869

σ=5 n=250	rho=0.9 1.082 rho=0.95 1.9261 rho=0.99 8.9977	0.269 0.3549 1.2233	0.458 0.6977 2.8496	1.1285 2.0226 9.4651	0.3396 0.4914 1.7408	1.0158 1.6922 4.9765	0.2677 0.3639 1.2881	0.4558 0.7022 2.8645	0.1088 0.1578 0.6916
<i>σ</i> =10	rho=0 1.2014	0.4544	0.7084	1.2627	0.4856	1.1916	0.459	0.7145	0.1303
	rho=0.8 2.4528	0.6333	1.0936	2.5931	0.7493	2.3828	0.6421	1.1029	0.2126
	rho=0.9 4.3279	0.8802	1.7132	4.514	1.0869	4.0631	0.8823	1.697	0.3142
	rho=0.95 7.7046	1.3144	2.786	8.0905	1.715	6.7689	1.3641	2.8032	0.5232
	rho=0.99 35.991	4.9296	11.399	37.86	6.7542	19.906	5.2121	11.458	2.6762

Table 4: MSEs of estimators when $P_o = 20\%$ and $M_o = 10$.

			OLS	KI.	DK	М	Ridge.	Lin-M	KL-M	DK-M	NTP-
			0L0	ILL.	DK	171	M				M
	$\sigma=1$	rho=0	0.2187	0.135	0.1824	0.2277	0.13891	0.1822	0.1348	0.182	0.0902
		rho=0.8	0.3174	0.182	0.2487	0.3319	0.18793	0.2506	0.1812	0.2484	0.1176
		rho=0.9	0.4231	0.194	0.2876	0.4457	0.2103	0.2916	0.1937	0.2872	0.1225
		rho=0.95	1.2987	0.316	0.5416	1.3446	0.39807	0.4547	0.3097	0.5306	0.2521
		rho=0.99	5.1929	0.854	1.872	5.3992	1.15282	1.1264	0.8512	1.8313	0.9277
n-20	σ - 5	rho-0	5 4678	1 538	2 9365	5 6010	1 70985	4 5431	1 5404	2 9171	0 6647
11-20	0-5	rho=0.8	7 9356	2 282	2.9505 4 1579	8 2072	2 5266	6 2522	2 2801	2.7171 A 1496	1 0344
		rbo=0.0	10 576	2.202	5 2062	11 142	2.5200	7 2720	2.2091	5 1701	1.0544
		110-0.9	22 467	2.039	12 017	22 614	7 77096	11 244	2.0910	12 722	1,2071
		110=0.93	52.407 120.82	0.018	15.017	124.09	1.11980	11.544	0.338	12.123	4.0954
		rno=0.99	129.82	21.12	40.004	154.98	20.9222	28.085	21.202	43.080	21.034
	σ =10	rho=0	21.871	5.763	11.719	22.768	6.40137	18.171	5.7872	11.643	2.4586
		rho=0.8	31.742	8.68	16.631	33.189	9.62286	25.006	8.7257	16.58	3.8389
		rho=0.9	42.306	10.3	20.816	44.569	11.6873	29.092	10.447	20.667	4.9512
		rho=0.95	129.87	26.37	52.055	134.46	30.7535	45.38	26.157	50.894	18.504
		rho=0.99	519.29	84.51	186.62	539.92	107.404	112.3	85.096	182.74	86.378
			0.0000	0.070	0.0506		0.060	0.0506	0.060	0.0506	0.050
		rho=0	0.0832	0.069	0.0786	0.0877	0.0687	0.0786	0.0685	0.0786	0.0536
	$\sigma=1$	rho=0.8	0.1778	0.102	0.1437	0.1872	0.10698	0.145	0.1014	0.1436	0.0666
		rho=0.9	0.3876	0.131	0.2203	0.4032	0.15618	0.2293	0.1295	0.2197	0.0816
		rho=0.95	0.4621	0.14	0.242	0.4885	0.17363	0.254	0.1397	0.2413	0.0914
		rho=0.99	2.3055	0.336	0.7718	2.4301	0.50262	0.535	0.3371	0.7678	0.3339
		rho=0	2.0801	07	1 1 3 7 5	2 1918	0 7616	1 9645	0 7076	1 1427	0.2227
	$\sigma=5$	rho=0.8	4 4455	1 049	1 9878	4 679	1 24647	3 6256	1 0564	1 9901	0.4303
n=50	0 0	rho=0.9	9 691	1.829	3 6831	10.08	2.25611	5 73	1.8254	3 6438	0.9136
11 20		rho=0.95	11 552	2 105	4 2236	12 212	2.23011	6 3445	2 1311	4 2033	1.1746
		rho = 0.99	57 638	8 142	19 286	60 753	10 9356	13 384	8 3074	19 185	7 3218
		1110-0.77	57.050	0.172	17.200	00.755	10.7550	15.504	0.5074	17.105	7.5210
		rho=0	8.3202	2.334	4.3291	8.7673	2.5959	7.8582	2.3706	4.3528	0.7225
	$\sigma = 10$	rho=0.8	17.782	3.947	7.9498	18.716	4.60811	14.502	3.9898	7.959	1.567
		rho=0.9	38.764	7.23	14.731	40.32	8.70642	22.92	7.2339	14.574	3.5124
		rho=0.95	46.208	8.36	16.901	48.848	10.294	25.377	8.4829	16.819	4.5573
		rho=0.99	230.55	32.61	77.143	243.01	43.5064	53.544	33.3	76.737	29.149
		rho=0	0.033	0.03	0.0322	0.0323	0.02835	0.0301	0.0283	0.0301	0.0253
		rho=0.8	0.1708	0.115	0.1518	0.0635	0.04829	0.057	0.0477	0.0569	0.0363
	$\sigma=1$	rho=0.9	0.2737	0.127	0.2117	0.1169	0.06928	0.094	0.0659	0.0932	0.0433
		rho=0.95	0.6474	0.19	0.3776	0.2262	0.10059	0.1534	0.0873	0.1482	0.0527

		rho=0.99	3.3579	0.363	1.0676	1.0038	0.23371	0.2947	0.1521	0.3137	0.1228
		rho=0	0.8257	0.256	0.4538	0.8072	0.34912	0.752	0.334	0.5038	0.1048
		rho=0.8	4.271	0.562	1.3321	1.5882	0.4945	1.425	0.4227	0.6863	0.1518
	$\sigma=5$	rho=0.9	6.8413	0.354	2.2362	2.9236	0.69692	2.3496	0.5593	1.0378	0.2225
n=100		rho=0.95	16.184	0.822	5.3649	5.6545	1.21364	3.8355	0.958	1.9537	0.4309
		rho=0.99	83.948	4.546	26.489	25.096	4.42133	7.3688	3.4269	7.5284	2.3064
		rho=0	3.3029	0.563	1.5963	3.2289	1.0215	3.0082	0.9409	1.6006	0.2605
		rho=0.8	17.084	1.663	5.3803	6.3526	1.63639	5.7001	1.4263	2.6162	0.4683
	$\sigma = 10$	rho=0.9	27.365	1.054	8.9108	11.694	2.4838	9.3982	2.1156	4.15	0.7641
		rho=0.95	64.736	2.845	21.508	22.618	4.57552	15.342	3.8078	7.8139	1.6027
		rho=0.99	335.79	17.68	105.86	100.38	17.4646	29.476	13.798	30.114	9.1127
		rho=0	0.013	0.013	0.0129	0.0137	0.01257	0.0129	0.0126	0.0129	0.0119
		rho=0.8	0.0249	0.023	0.0243	0.0262	0.02255	0.0243	0.0225	0.0243	0.0197
	$\sigma=1$	rho=0.9	0.0482	0.038	0.045	0.0509	0.0384	0.045	0.038	0.045	0.029
		rho=0.95	0.075	0.05	0.0661	0.0787	0.05164	0.0664	0.0501	0.0661	0.034
		rho=0.99	0.346	0.093	0.1817	0.3633	0.12131	0.1955	0.0933	0.1823	0.0539
		rho-0	0 3253	0 101	0 2635	0 342	0 10/08	0 3225	0 1013	0 2636	0 0743
		rho=0.8	0.5255	0.171	0.2055	0.542	0.17470	0.5225	0.1213	0.2030	0.0745
n - 250	$\sigma = 5$	rho=0.0	1 2042	0.252	0.5017	1 2717	0.20205	1 1 2 5 3	0.2527	0.5055	0.0005
11-230	0 = 5	rho = 0.9	1.2042	0.302	0.5154	1.2717	0.30471	1.1255	0.3618	0.5188	0.122
		rho = 0.93	1.0740 8.6511	1 1 2 2	2 7125	0.0836	1 63227	1.0399	1 1012	27210	0.1303
		1110-0.99	0.0311	1.155	2.7123	9.0850	1.03227	4.00/1	1.1912	2.7219	0.3707
		rho=0	1.3014	0.482	0.751	1.3678	0.51739	1.2898	0.4868	0.7567	0.1365
		rho=0.8	2.494	0.639	1.1035	2.6231	0.75954	2.4266	0.6488	1.1072	0.2072
	σ =10	rho=0.9	4.8169	0.995	1.963	5.0868	1.25795	4.5012	1.0223	1.9735	0.3637
		rho=0.95	7.4984	1.3	2.7296	7.8704	1.68145	6.6395	1.3428	2.7454	0.4916
		rho=0.99	34.604	4.566	10.85	36.334	6.31346	19.548	4.8232	10.888	2.3032

Source: Simulation results.

_

Note: the values in bolded form indicate the estimator that has smallest MSE.

Figure 1. Graph of estimated MSEs of all the estimators when there is no outlier at all levels of multicollinearity and sample size (n) = 20.

4.2. Discussion on simulation results

With respect to the simulation results as displayed in Tables 1–4 and graphically shown in Figures 1–6, the comments are itemized as follows:

- (i) As multicollinearity and outliers are simultaneously increasing in the x-direction as expected, OLS performed woefully.
- (ii) MSEs of the estimators considered increase as the error variances (σ^2), levels of multicollinearity (rho) and percentage (po), and magnitude (Mo) of outliers increase.

Figure 2. Graph of estimated MSEs of the estimators when the magnitude of outlier is 5, 10%.

Figure 3. Graph of estimated MSEs of the estimators at 20% outliers when the magnitude of outlier is 5, at all levels of multicollinearity, error variances and n = 50.

Figure 4. Graph of estimated MSEs of the estimators at 10% outliers when the magnitude of outlier is 10, at all levels of multicollinearity, error variances and n = 100.

- (iii) As the sample size (n) increases, the MSEs of the estimators decreases.
- (iv) When rho>0, Mo>0, the percentage of outliers (po) increases, and sample size (n) increases the RNTP outperformed other estimators considered as the two anomalies occur simultaneously in the x-direction.

4.3. Application to real-life data

Data from Hussein & Abdalla [27] were adopted as real-life application in this study. The linear model below is the regression model for the data set.

$$y = \beta_1 x_2 + \beta_2 x_2 + \beta_3 x_3 , \qquad (49)$$

where y is the product value in the manufacturing sector, x_1 is the value of the imported intermediate, x_2 represents the imported capital commodities and x_3 indicates the value of imported raw materials. Ref. [11] claimed that the data suffered from the problem of multicollinearity in the values of the variance inflation factor (VIF), which were estimated to be 128.29, 103.43, and 70.87. Likewise, Ref. [28] affirmed the claim of Ref. [11] and spotted the presence of outliers in the data.

Figure 5. Graph of estimated MSEs of the estimators at 10% outliers when the magnitude of outlier is 5, at all levels of multicollinearity, error variances and n = 250.

Figure 6. Graph of estimated MSEs of the estimators at 20% outliers when the magnitude of outlier is 20, at all levels of multicollinearity, error variances and n = 2504.

Table 5	Regression	coefficients	and MSEs of	estimators	using t	he real-life data
Table 5.	Regression	coefficients	and MISES OF	esumators	using t	ne real-me data.

Coefficients	OLS	KL	DK	NTP	М	RID-M	LIU-M	KL-M	DK-M	NTP-M			
β_0	208.885	176.894	200.223	0.1029	173.34	161.419	-4145097	157	194.072	0.11812			
β_1	0.61295	0.87701	0.68445	1.7704	0.9976	1.0047	3.6E+07	1.0412	0.73523	1.84258			
β_2	1.25626	1.15167	1.22794	0.6457	1.1153	1.10108	7.5E+07	1.0866	1.20783	0.62593			
β_3	-1.2213	-1.266	-1.23338	-0.195	-1.1159	-1.2875	1.1E+07	-1.2938	-1.242	-0.2938			
MSEs	1850.48	85236.3	1700.39	2.6537	2212.6	1322.55	1.02E+20	103389	1910.32	2.35401			
D													

Source: R-output

The highlighted value in Table 5 indicates the MSE of the proposed robust estimator which is the least when compared with MSEs of other estimators.

5. Conclusion

When multicollinearity and outliers are present in the data set, ordinary least squares regression analysis remains inconsistent and unreliable. Numerous estimators that can simultaneously address the issues of multicollinearity and outliers have been developed. When the two anomalies in the linear regression model arise, it is still necessary to further investigate another reliable approach and advise the end user of statistics to apply it. This work therefore presented Robust-M New Two-Parameter (RNTP), or NTP-M, and evaluated its performance in comparison to several already existing ones in the presence of multicollinearity and particularly when there are outliers in the x-direction. In order to demonstrate the superiority of the proposed estimator, theoretical expressions under certain circumstances were established. A simulation study was carried out alongside some factors to show that the new robust estimator (RNTP) is better than all other estimators considered in the study. Likewise, real-life data was used to justify the claim.

Acknowledgement

All peer reviewers are appreciated for the constructive criticism of the paper and their professional contributions.

References

- [1] P. J. Hurber, "Robust estimation of a location parameter", The Annals of Mathematical Statistics 35 (1964) 73. https://doi.org/10.1007/978-1-4612-4380-9_35
- [2] V. J. Yohai, "High breakdown-point and high-efficiency robust estimates for regression", The Annals of Statistics 15 (1987) 642. https://doi.org/10.1214/aos/ 1176350366
- P. J. Rousseeuw & V. K. Driessen, "Computing LTS regression for large data sets", Technical Report University of Antwerp submitted, (1998). https://doi.org/ 10.1007/s10618-005-0024-4
- [4] P. J. Rousseeuw & V.J. Yohai, "Robust regression by means of S-estimator", In W. H. J. Frank and D. Martin; Robust and nonlinear Time series Analysis, Springer-verlag, New York, 1984, pp. 256 – 272. https://doi.org/10.1007/978-1-4615-7821-5_15
- [5] P. J. Rousseeuw, "Least median of squares regression", Journal of the American Statistical Association 79 (1984) 871. https://doi.org/10.1080/01621459.1984. 10477105
- [6] D. Birkes & Y. D. Dodge, Alternative methods of regression, Wiley, New York, 1993. https://www.wiley.com/en-us/Alternative+Methods+of+ Regression-p-9781118150245
- [7] A. T. Owolabi, K. Ayinde, & O. O. Alabi, A new ridge-type estimator for the linear regression model with correlated regressors, Wiley, 2022. https://doi: 10.1002/cpe.6933
- [8] A. E. Hoerl, & R. W. Kennard, "Ridge Regression. Biased Estimation for nonorthogonal problems", Technometrics 1 (1970) 55. https://homepages.math.uic.edu
- W. F. Massy, "Principal components regression in exploratory statistical research", Journal of America Statistics Association 60 (1965) 234. https://doi.org/10. 2307/2283149
- [10] C. Stein, "Inadmissibility of the usual estimator for the mean of a multivariate normal distribution", Proceedings of the third Berkeley symposium on Mathematical statistics and probability 1 (1956) 197. https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/ Proceedings-of-the-Third-Berkeley-Symposium-on-Mathematical-Statistics-and/chapter/Inadmissibility-of-the-Usual-Estimator-for-the-Mean-of-a/bsmsp/ 1200501656
- [11] K. Liu, "A new class of biased estimate in linear regression", Journal of Communications in statistics: Theory and Methods 22 (1993) pp. 393. https://doi.org/ 10.1080/03610929308831027
- [12] S. Dawoud, M. R. Abonazel & F. A. Awwad, "Generalized Kibria-Lukman estimator: method, simulation and application", Frontiers in Applied Mathematics and Statistics 8 (2022) 880086. https://doi.org/10.3389/fams.2022.880086
- [13] A. F. Lukman, O. Arowolo, & K. Ayinde, "Some robust ridge regression for handling multicollinearity and outliers", International Journal of Sciences: Basic and Applied Research (IJSBAR) 16 (2014) 192. https://core.ac.uk/download/pdf/24933393.pdf
- [14] F. A. Awwad, I. Dawoud, & M. R. Abonazel, "Development of robust Ozkale Kaciranlar and Yang-Chang estimators for regression models in the presence of multicollinearity and outliers", Concurr Comput Prac Exp. 34 (2022) e6779. https://doi.org/10.1002/cpe.6779
- [15] I. Dawoud & M. R. Abonazel, "Robust Dawoud-Kibria estimator for handling multicollinearity and outliers in the linear regression model", Journal of Statistical Computation and Simulation 91 (2021) 3678. https://doi.org/10.1080/00949655.2021.1945063
- [16] E. A. Hassan, "Modified ridge M-estimator for linear regression model with multicollinearity and outliers", Communication in Statistics and Computation 47 (2017) 1240. https://doi.org/10.1080/03610918.2017.1310231
- [17] M. J. Silvapulle, "Robust ridge regression based on an M-estimator", Australian Journal of Statistics 33 (1991) 319. https://doi.org/10.1111/j.1467-842X.1991. tb00438.x
- [18] O. Arslan, & N. Billor, "Robust Liu estimator for regression based on an M-estimator", Journal Applied Statistics 27 (2000) 39. https://doi.org/10.1080/ 02664760021817.
- [19] B. M. Kibria & A. F. Lukman, "A new ridge-type estimator for the linear regression model", Simulations and Applications, Hindawi scientifica 2020 (2020) 9758378. https://doi.org/10.1155/2020/9758378
- [20] A. Majid, S. Ahmad, M. Aslam, & M. A. Kashif, "Robust Kibria-Lukman estimator for linear regression model to combat multicollinearity and outliers", Concurrency and Computation: Practice and Experience 35 (2022) e7533. https://doi.org/10.1002/cpe.7533
- [21] M. R. Ozkale, & S. Kaciranlar, "The restricted and unrestricted two-parameter estimators", Communication Statistics. Theory. Meth. 36 (2007) 2707. https://doi.org/101080/036109207013868
- [22] S. S. F. Kaciranlar, G. P. H. S. Akdeniz, & H. J. Werner, "A new biased estimator in linear regression and detailed analysis of the widely-analysed dataset on Portland Cement", Indian Statistical Institute 61 (1999) 443. https://www.jstor.org/stable/25053104
- [23] F. R. Hampel,, E. M. Ronchetti, P. J. Rousseeuw, & W. A. Stahel. Robust statistics, the approach based on inference function, Wiley, New York, 1986. https://www.wiley.com/en-us/Robust+Statistics%3A+The+Approach+Based+on+Influence+Functions-p-9781118150689
- [24] P. J. Hubber, Robust statistics, Wiley, New York, 1981. https://doi.org/10.1002/0471725250.
- [25] H. Yang & X. Chang, "A new two-parameter estimator in linear regression model", Communication in Statistics. Theory and Methods 39 (2010) 923. https://doi.org/10.1080/03610920902807911.
- [26] A. F. Lukman, K. Ayinde, B. B. Aladeitan, & B. Rasak, "An unbiased estimator with prior information", Arab Journal of Basic and Applied Sciences. 27 (2020) 45. https://doi.org/10.1080/25765299.2019.1706799
- [27] Y. E. Hussein & A. A. Abdalla, "Generalized two stage ridge regression estimator GTR for multicollinearity and autocorrelated errors", Canadian Journal of Science and Engineering Mathematics 3 (2012) 79. https://www.researchgate.net/publication/283205493_Generalized_Two_Stages_Ridge_regression_Estimator_ GTR_for_Multicollinearity_and_Autocorrelated_Errors
- [28] H. Midi & M. Zahari, "A simulation study on ridge regression estimators in the presence of outliers and multicollinearity", Journal of Teknologi 47 (2007) 59. https://doi.org/10.11113/JT.V47.261