Zahra M. Mohamed Hasan

Department of Mathematics, College of Education for Pure Sciences (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq

Salwa.s.a@ihcoedu.uobaghdad.edu.iq

Salwa S. Abed

Department of Mathematics, College of Education for Pure Sciences (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq

Received on: 21/06/2018 Accepted on: 08/11 /2018 Published online: 25/05/2019

Weak Convergence of Two Iteration Schemes in Banach Spaces

Abstract- In this paper, we established weak convergence theorems by using appropriate conditions for approximating common fixed points and equivalence between the convergence of the Picard-Mann iteration scheme and Liu et al iteration scheme in Banach spaces. As well as, numerical examples are given to show that Picard-Mann is faster than Liu et al iteration schemes.

Keywords-Banach space, weak convergence, common fixed points.

How to cite this article: Z.M.M. Hasan, S.S. Abed, "Weak Convergence of Two Iteration Schemes in Banach Spaces," *Engineering and Technology Journal*, Vol. 37, Part B, No. 02, pp. 32-40, 2019.

1. Introduction and Preliminaries

Let B be a nonempty subset of a Banach space M. A map T on B is called nonexpansive map if $||Ta - Tb|| \le ||a - b||$ for all $a, b \in B$. It is called quasi-nonexpansive map [1] if $||Ta - b|| \le$ ||a-p|| for all $a \in B$ and for all $p \in F(T)$, denote by F(T) the set of all fixed point of T. In 2008, a new condition for maps, called condition (C) was introduced by Suzuki [2], which is stronger than quasi-nonexpansive and weaker than nonexpansive, and given some results about fixed point for map satisfying condition (C). Dhompongsa et al [3] and Phuengrattana [4] studied fixed point theorems for a map satisfying condition (C). Weak convergence theorem for a map satisfying condition (C) in uniformly convex Banach space are proved by Kahn and Suzuki [5]. Recently, Garcial-Falset et al [6] introduced two new generalization of condition (C), called condition (E_{λ}) , condition (C_{λ}) and studied the existence of fixed points and also their asymptotic behavior. For approximating common fixed point of two maps, Takahashi and Tamura [7] studied the following Ishikawa iteration scheme for two nonexpansive maps.

$$\begin{aligned} & a \in B \\ & a_{n+1} = (1 - \alpha_n) a_n + \alpha_n T b_n \\ & b_n = (1 - \beta_n) a_n + \beta_n T a_n \\ & \text{for all } n \in N, (\alpha_n) \ and \ (\beta_n) in \ [0,1]. \end{aligned}$$

The aim of this paper is to study weak convergence of the Picard-Mann iteration scheme, Liu et al iteration scheme for

approximating common fixed point of generalized nonexpansive and quasinonexpansive maps and give some corollaries. Throughout this paper, M will be a uniformly convex Banach space and B a nonempty closed convex subset of M. F(T,S) denotes the set of common fixed point of the maps S and T.

The Picard-Mann [8] iteration scheme for two maps through the sequence (a_n) is defined by:

$$\begin{aligned} a_{n+1} &= Sb_n \\ b_n &= (1-\alpha_n)a_n + \alpha_n Ta_n, \forall n \geq 0 \\ \text{where } (\alpha_n) \in (0,1). \end{aligned} \tag{1}$$

The Liu et al [9] iteration scheme for two maps through the sequence (z_n) is defined by:

$$z_{n+1} = (1 - \alpha_n)Sz_n + \alpha_n Tu_n$$

$$u_n = (1 - \beta_n)Sz_n + \beta_n Tz_n, \forall n \ge 0$$
where (α_n) and $(\beta_n) \in [0,1]$.
If $S = I$ is called Ishikawa iteration scheme.

Definition (1.1): A Banach space M is called satisfying:

1-Opial's condition [10] if for any sequence (a_n) in M, is weakly convergent to a implies that $\lim_{n\to\infty} \inf \|a_n - a\| < \lim_{n\to\infty} \inf \|a_n - b\|$ for all $b \in M$ with $a \neq b$.

2-Kadec-Klee property [11] if for every sequence (a_n) in M converging weakly to (a) together with $||a_n||$ converging strongly to ||a|| imply that (a_n) converges strongly to a point $a \in M$.

Defintion (1.2)[12]: A map $T: B \to M$ is said to be generalized nonexpansive map if there are nonnegative constants δ, μ and ω with $\delta + 2\mu + 2\omega \le 1$ ssuch that $\forall a, b \in B$

$$\begin{split} \|Ta - Tb\| &\leq \delta \|a - b\| + \mu \left\{ \begin{aligned} \|a - Ta\| \\ + \|b - Tb\| \end{aligned} \right\} \\ &+ \omega \left\{ \begin{aligned} \|a - Tb\| \\ + \|b - Ta\| \end{aligned} \right\} \end{split}$$

Defintion (1.3)[13]: A map $T: B \rightarrow B$ is said to satisfying:

1- Condition (C) if $\frac{1}{2} ||a - Ta|| \le ||a - b||$ $\underset{\longrightarrow}{vields} ||Ta - Tb|| \le ||a - b||, \forall a, b \in B.$ 2-Condition (C_{λ}) if $\lambda ||a - Ta|| \le ||a - b||$ $\underset{\longrightarrow}{vields} ||Ta - Tb|| \le ||a - b||, \forall a, b \in B \text{ and } \lambda \in (0,1).$ 3-Condition (E_{λ}) if $||a - Tb|| \le \lambda ||a - Tb|| + ||a - b||, \forall a, b \in B \text{ and } \lambda \ge 1.$

Remark (1.4): A map $T: B \to M$ satisfy 1-Condition(C_{λ}) and T has fixed point, then T is quasi-nonexpansive, but the inverse is false[2]. 2-Condition(E_{λ}) and T has fixed point, then T is quasi-nonexpansive, but the inverse is false[6].

Definition (1.5)[14]: A map $T: B \to M$ is said to be demiclosed with respect to $b \in M$ if for any sequence (a_n) in B, (a_n) converges weakly to a and $T(a_n)$ converges strongly to b. Then $a \in B$ and T(a) = b. If (I - T) is demiclosed i.e if (a_n) converges weakly to a in B and (I - T) converges strongly to B. Then B and B

Definition (1.6)[15]: Let M be a Banach space, M is called uniformly convex if for any $\epsilon > 0$ there is $\varsigma > 0$ such that $\forall a, b \in M$ with ||a|| = ||b|| = 1 and $||a - b|| \ge \epsilon$, $||a + b|| \le 2(1 - \varsigma)$ holds. Every uniformly convex Banach space is reflexive.

- The modulus of convexity of M is defined by

$$\varsigma_{M}(\epsilon) = \inf \begin{cases}
1 - \frac{\|a + b\|}{2}; \|a\| = \|b\| \le 1, \\
\|a - b\| \ge \epsilon, \forall \ 0 < \epsilon \le 2
\end{cases}$$
M is uniformly convex if $\varsigma_{M}(0) = 0$ and $\varsigma_{M}(\epsilon) \ge 0, \forall \ 0 < \epsilon \le 2.$

Theorem (1.7)[15]: let M be a uniformly convex Banach space then the modulus of convexity is increasing function.

Remark (1.8)[16]: If $\zeta(0) = 0$ and has the properties: $\zeta(\epsilon) \to 0$ as $\epsilon \to +0$. $\zeta: [0,2] \to [0,1]$ is strictly monotone increasing function and surjective

Then $\eta: [0,1] \to [0,2]$ is called strictly monotone increasing function of ς .

Theorem (1.9)[15]: let M be a uniformly convex Banach space. Then for any r and ϵ wih $r \ge \epsilon > 0$ and elements $a, b \in M$ such that $||a|| \le r$, $||b|| \le r$, $||a - b|| \ge \epsilon$, $\exists \ \delta = \delta(\frac{\epsilon}{r}) > 0$ such that

$$\left\| \frac{a+b}{2} \right\| \le r \left[1 - \delta \left(\frac{\epsilon}{r} \right) \right].$$

Proposition (1.10)[16]: Let B be a closed convex set in a Banach space M. If (a_n) converges weakly to a for some sequence (a_n) in M, then $a \in M$.

Lemma (1.11)[17]: Let $(\mu)_{n=0}^{\infty}$ and $(\rho)_{n=0}^{\infty}$ be nonnegative real sequences satisfying the inequality:

$$\begin{array}{c} \mu_{n+1} \leq (1-\sigma_n)\mu_n + \rho_n \\ \text{where} \qquad \sigma_n \in \ (0,1), \forall \ n \geq n_0, \sum_{n=1}^\infty \sigma_n = \\ \infty \ and \ \frac{\rho_n}{\sigma_n} \to 0 \ as \ n \to \infty. \ \text{Then} \ \lim_{n \to \infty} \mu_n = 0. \end{array}$$

Lemma (1.12)[13]:Let M be a uniformly convex Banach space and $0 < L \le t_n \le K < 1, \forall n \in N$. Suppose that (a_n) and (b_n) are two sequences of M such that:

$$\begin{split} \lim_{n\to\infty} \|a_n\| &\leq m, \lim_{n\to\infty} \|b_n\| \\ &\leq m \text{ and } \lim_{n\to\infty} \left\| \frac{t_n a_n +}{(1-t_n)b_n} \right\| \\ &= m \\ \text{hold for some } m \geq 0. Then \ \lim_{n\to\infty} \|a_n - b_n\| = 0. \end{split}$$

Lemma (1.13)[18]: Let *B* be a nonempty convex subset of a uniformly convex Banach space. Then there is a strictly increasing continuous function $f: [0, \infty) \to [0, \infty)$ with f(0) = 0 such that for each lipschitzain map $T: B \to B$ with lipschitz constant K:

$$||tTx + (1-t)Ty - T(tx + (1-t)y)|| \le Kf^{-1} \left(\frac{||x - y||}{-\frac{1}{K}||Tx - Ty||} \right)$$

 $\forall x, y \in B \text{ and } \forall t \in [0,1].$

Lemma (1.14)[18]: Let M be a uniformly convex Banach space suth that its dual M^* satisfies the Kadec-Klee property. Assume that (a_n) bounded sequence in M such that

 $\lim_{\substack{n\to\infty\\[0,1]}} \|ta_n + (1-t)p_1 - p_2\| \quad \text{exists} \quad \forall \ t \in [0,1] \text{ and } p_1, p_2 \in W_w(a_n), \text{then } p_1 = p_2.$

2.The Main Results

Proposition (2.1): Let B be a closed convex bounded of uniformly convex Banach space, $T: B \to M$ is a generalized nonexpansive map and $a_0, a_1 \in B$, $a_0 \neq a_1 \ \forall \ t \in [0,1], a_1 = ta_0 +$ $(1-t)a_1$. If $\forall \epsilon > 0$, $\exists a(\epsilon) > 0$ such that $||Ta_0 - a_0|| \le \epsilon \ and \ ||Ta_1 - a_1|| \le \epsilon$ then $||Ta_t - a_t|| \le a(\epsilon)$ and $a(\epsilon) \to 0$ as $\epsilon \to 0$ +0.

Proof: Assume that (3) holds with $a_0 \neq$ a_1 and 0 < t < 1. Then let i = 0, 1 such that

 $||a_i - (a_t + Ta_t)/2|| \ge ||a_i - a_t||$

If not, would have the contradiction

$$||a_1 - a_0|| \le \sum_{i=0}^{1} ||a_i - \frac{a_t + Ta_t}{2}||$$

$$< \sum_{i=0}^{1} ||a_i - a_t|| = ||a_1 - a_0||$$

since $a_1 \neq a_0$ we have $r = ||a_t - a_i|| > 0$, n = $||a_t - Ta_i||, m = ||a_i - Ta_t||.$

Since T is generalized nonexpansive mapping $||Ta_t - a_i|| \le ||Ta_t - Ta_i|| + ||Ta_i - a_i||$

$$\leq \delta \|a_t - a_i\| + \mu \begin{cases} \|a_t - Ta_t\| \\ + \|a_i - Ta_i\| \end{cases}$$

$$+ \omega \begin{cases} \|a_t - Ta_i\| \\ + \|a_i - Ta_i\| \end{cases} + \|Ta_i - a_i\|$$

 $\leq \delta r + \mu(a(\epsilon) + \epsilon) + \omega(n+m) + \epsilon$ let $w = ar + \mu(a(\epsilon) + \epsilon) + \omega(n + m)$. Then $||Ta_t - a_i|| \le w + \epsilon$.

Put $a = a_t$, $b = Ta_t$, $c = a_i$ and $R = w + \epsilon$. Let $\eta(.)$ indicate the strictly monotone increasing function to $\varsigma(.)$. The diameter of M denotes by diam(M), by theorem (2.10), we have

$$||Ta_t - a_t|| \le \sup_{r \in [0, d(M)]} (w + \epsilon) \eta(\frac{\epsilon}{w + \epsilon})$$

the $a(\epsilon)$ defined here has desired properties. First $a(\epsilon) \ge \epsilon \eta(1) = 2\epsilon \text{ for } w = 0.$

Forming the supermum separately over the two $[0, \sqrt{\epsilon} - \epsilon]$ and monotonicity intervals $\eta(.)$, that

$$a(\epsilon) \le max\{\sqrt{\epsilon}\eta(1), (d(M) + \epsilon)\eta(\sqrt{\epsilon})\}\$$

 $\to 0 \text{ as } \epsilon \to 0.$

Since $a(\epsilon) \ge 2\epsilon$, then $||Ta_t - a_t|| \le a(\epsilon)$ as $a(\epsilon) \rightarrow 0 \text{ as } \epsilon \rightarrow +0.$

Hence

(3)holds for the remaining cases $a_1 \neq$ a_0 , t = 0, 1 and $a_0 = a_1$.

Theorem (2.2): Let B be a closed, bounded and convex subset of uniformly convex M, then the operator I - T is demiclosed on B.

Proof: We show that for any sequence (a_n) in M, if (a_n) converges weakly to a and $(I-T)(a_n)$ converges strongly to 0 as $n \to \infty$, then $a \in$ M and (I-T)(a)=0.

By proposition (1.10), we get $a \in M$.

For $\epsilon_0 \in (0,1)$ choose a sequence (ϵ_n) such that $\epsilon_n \le \epsilon_{n-1}$ and $a(\epsilon_n) \le \epsilon_{n-1}$, $\forall n \in \mathbb{N}$

This is possible because $a(\epsilon) \to 0$ as $\epsilon \to 0$. Choosing a subsequence of (a_n) if necessary, we have

$$||Ta_n - a_n|| \le \epsilon_n$$
, $\forall n \in N$

then

$$||Tb - b|| \le \epsilon_0$$
, $\forall b \in co\{a_n, n \in N\}$ (4)
Now

i) Let $b_1 \in co\{a_m, a_n\}$ where $1 \le m < n$, by hypothesis

$$||Ta_m - a_m|| \le \epsilon_m \text{ and } ||Ta_n - a_n|| \le \epsilon_n, \epsilon_n$$

 $\le \epsilon_m$

then

$$||Tb_1 - b_1|| \le a(\epsilon_m) \le \epsilon_{m-1} \le \epsilon_0$$

ii) Let $b_2 \in co\{a_k, a_m, a_n\}$ where $1 \le k < m < m$ n. The key is that $b_2 \in co\{a_k, b_1\}$ since $b_1 \in$ $co\{a_m, a_n\} by(i) ||Tb_1 - b_1|| \le \epsilon_{m-1}, \epsilon_{m-1} \le$ ϵ_k , so

 $||Ta_k - a_k|| \le \epsilon_k$ and $||Tb_1 - b_1|| \le \epsilon_k$ hence

 $\|Tb_2-b_2\|\leq a(\epsilon_k)\leq \epsilon_{k-1}\leq \epsilon_0$ if (a_n) converges weakly to a as $n \to \infty$, then $a \in co\{a_n, n \in N\}$, by proposition (1.10) and step (4), we obtain

$$||Ta - a|| \le \epsilon_0$$

since ϵ_0 can be any arbitrary small, Ta - a = 0. Not only is the map $a \rightarrow Ta$ generalized nonexpansive, but for fixed point $b so is a \rightarrow$ Ta + b. This implies that I - T is demiclosed.

Lemma (2.3): Let $T: B \to B$ be a quasinonexpansive map and $S: B \to B$ be Lipschitzain and generalized nonexpansive maps. Let \mathbf{i})(a_n) be as in (1) where $(\alpha_n) \in (0,1)$. ii) (z_n) be as in (2) where (α_n) and $(\beta_n) \in [0,1]$.

 $F(T,S) \neq \emptyset$, then $\lim \|a_n$ $a^* \parallel and \lim \|z_n - a^*\|$ both exist for all $a^* \in$ F(T,S).

Proof: Let $a^* \in F$.

From: Let
$$a' \in F$$
.

i) $||a_{n+1} - a^*|| = ||Sb_n - a^*||$

$$\leq \delta ||b_n - a^*|| + \mu \left\{ ||b_n - Sb_n|| \right\} + \omega \left\{ ||b_n - a^*|| \right\} + \omega \left\{ ||b_n - a^*||$$

then $\lim \|a_n - a^*\|$ exists $\forall a^* \in F(T, S)$.

$$\|\mathbf{i}\| \|u_n - a^*\| \le (1 - \beta_n) \|Sz_n - a^*\| + \beta_n \|Tz_n - a^*\|$$

$$\leq (1 \\ -\beta_n) \begin{bmatrix} \delta \| z_n - a^* \| \\ +\mu \left\{ \| z_n - Sz_n \| \right\} + \omega \left\{ \| z_n - a^* \| \right\} \\ +\beta_n \| z_n - a^* \| \\ \leq (1-\beta_n) \begin{bmatrix} \delta \| z_n - a^* \| +\mu \left\{ \| z_n - a^* \| \right\} \\ +\omega \left\{ \| z_n - a^* \| \right\} \\ +\omega \left\{ \| z_n - a^* \| \right\} \\ +\beta_n \| z_n - a^* \| \\ \leq (1-\beta_n) \begin{pmatrix} \delta +\mu +\\ \mu K + \omega + \omega K \end{pmatrix} \| z_n - a^* \| \\ \leq (1-\beta_n) \begin{pmatrix} \delta +2\mu \\ +2\omega \end{pmatrix} \| z_n - a^* \| \\ \leq (1-\beta_n +\beta_n) \| z_n - a^* \| \\ =\| z_n - a^* \| \\ \leq (1-\beta_n +\beta_n) \| z_n - a^* \| \\ =\| z_n - a^* \| \\ \leq (1-\alpha_n) \begin{bmatrix} \delta \| z_n - a^* \| +\mu \left\{ \| z_n - Sz_n \| \right\} \\ +\alpha_n \| Tu_n - a^* \| \\ \leq (1-\alpha_n) \begin{bmatrix} \delta \| z_n - a^* \| +\mu \left\{ \| z_n - Sz_n \| \right\} \\ +(\| a^* - a^* \| +\| a^* - a^* \| +\| a^* - a^* \| \end{bmatrix} \\ +\alpha_n \| u_n - a^* \| \\ \leq (1-\alpha_n) [\begin{pmatrix} \delta + 2\mu \\ +2\omega \end{pmatrix} \| z_n - a^* \| \\ \leq (1-\alpha_n) \| z_n - a^* \| +\alpha_n \| z_n - a^* \| \\ =\| z_n - a^* \| \\ =\| z_n - a^* \| \\ \text{Then } \lim_{n\to\infty} \| z_n - a^* \| \text{ exists } \forall a^* \in F(T,S).$$

Lemma (2.4): Let $T: B \rightarrow B$ be quasinonexpansive map and $S: B \to B$ be Lipschitzain, generalized nonexpansive maps and affine and (a_n) be as in (1). Suppose that the following $||a - Tb|| \le ||Sa - Tb||, \forall a, b \in B$ condition holds. If $F(T,S) \neq \emptyset$, then

$$\lim_{n \to \infty} ||Ta_n - a_n|| = \lim_{n \to \infty} ||Sa_n - a_n|| = 0$$
Proof: Let $a^* \in F(T, S)$.

By lemma(2.3.i) $\lim_{n\to\infty} \|a_n - a^*\|$ exists. Suppose that $\lim_{n\to\infty} \|a_n - a^*\| = c, \forall c \geq 0$. If c=0, there is nothing to proof.

Now suppose c > 0,

$$||a_{n+1} - a^*|| = ||Sb_n - a^*|| \le ||b_n - a^*||$$

By lemma(2.3.i), we show that $||b_n - a^*|| \le$ $||a_n - a^*||$

this implies to

$$\lim_{n \to \infty} \sup \|b_n - a^*\| \le c \tag{5}$$

moreover $d = \lim_{n \to \infty} ||a_{n+1} - a^*||$

$$||a_{n+1} - a^*|| \le ||b_n - a^*||$$

then

$$c \le \lim_{n \to \infty} \inf \|b_n - a^*\| \tag{6}$$

By (5) and (6), we get

$$\lim_{n\to\infty} ||b_n - a^*|| = c$$

Next consider

$$c = \|b_n - a^*\|$$

$$\leq (1 - \alpha_n) \|a_n - a^*\| + \alpha_n \|Ta_n - a^*\|$$

By applying lemma (1.12), we get

$$\lim_{n\to\infty} ||a_n - Ta_n|| = 0$$

$$\lim_{n \to \infty} ||a_n - Ta_n|| = 0$$

$$c = \lim_{n \to \infty} ||a_{n+1} - a^*|| = \lim_{n \to \infty} ||Sb_n - a^*||$$

$$||S[(1 - \alpha_n)a_n + \alpha_n Ta_n] - a^*||$$

$$||S[(1-\alpha_n)a_n + \alpha_n Ta_n] - a^*||$$

$$\leq (1 - \alpha_n) \|Sa_n - a^*\| + \alpha_n \|STa_n - a^*\|$$

By applying lemma (1.12), we get

$$\lim_{n\to\infty} ||Sa_n - STa_n|| = 0$$

Now

$$||Sa_n - a_n|| \le ||Sa_n - STa_n|| + ||STa_n - a_n||$$

By using the hypothesis condition, we have $||Sa_n - a_n|| \le 2||Sa_n - STa_n|| \to 0 \text{ as } n \to \infty.$

$$\lim_{n\to\infty}||Sa_n-a_n||=0.$$

Lemma (2.5): Let $T: B \to B$ be a quasinonexpansive map, $S: B \to B$ be Lipschitzain and generalized nonexpansive maps and (z_n) be as in (2). Suppose that the following condition |a - a| $|Tb|| \leq ||Sa - Tb||, \forall a, b \in B$ $F(T,S) \neq \emptyset$, then

$$\lim_{n\to\infty} ||Tz_n - z_n|| = \lim_{n\to\infty} ||Sz_n - z_n|| = 0.$$

Proof: Let $a^* \in F(T,S)$.

By lemma (2.3.ii) $\lim_{n\to\infty} ||z_n - a^*||$ exists. Suppose that $\lim_{n\to\infty} ||z_n - a^*|| = c, \forall c \ge 0$.

that
$$\lim_{n\to\infty} ||z_n - a^*|| = c, \forall c \ge 0.$$

If c = 0, there is nothing to proof.

Now suppose c > 0

$$\lim_{n \to \infty} ||z_{n+1} - a^*|| = c$$

$$c = \|z_{n+1} - a^*\|$$

$$\lim_{\substack{n \to \infty \\ c = \|z_{n+1} - a^*\| \\ \leq (1 - \alpha_n)\|Sz_n - a^*\| \\ + \alpha_n\|Tu_n - a^*\|}$$

By applying lemma (1.12), we get

$$\lim_{n\to\infty} ||Sz_n - Tu_n|| = 0$$

$$\begin{split} & \lim_{n \to \infty} \|Sz_n - Tu_n\| = 0 \\ \|a_{n+1} - a^*\| &= \|(1 - \alpha_n)Sz_n + \alpha_n Tu_n - a^*\| \\ &\leq \|Sz_n - a^*\| + \alpha_n \|Sz_n - Tu_n\| \end{split}$$

this implies to

$$c \le \lim_{n \to \infty} \inf \|Sz_n - a^*\| \tag{7}$$

and $||Sz_n - a^*|| \le ||z_n - a^*||$

 $\lim_{n\to\infty} \sup \|Sz_n - a^*\| \le c$ (8)

By (7) and (8), we have
$$\lim_{n\to\infty} \|Sz_n - a^*\| = c$$

$$\|Sz_n - a^*\| \le \|Sz_n - Tu_n\| + \|Tu_n - a^*\|$$
 that yields to
$$c \le \lim_{n\to\infty} \inf \|u_n - a^*\|$$
 (9) and
$$\|u_n - a^*\| \le (1 - \beta_n) \|Sz_n - a^*\| + \beta_n \|Tz_n - a^*\|$$
 =
$$\|z_n - a^*\|$$
 Now
$$\lim_{n\to\infty} \sup \|u_n - a^*\| \le c$$
 (10) By (9) and (10), we have
$$\lim_{n\to\infty} \|u_n - a^*\| = c$$

$$c = \|u_n - a^*\|$$
 \le (1 - \beta_n) \|Sz_n - a^*\| + \beta_n \|Tz_n - a^*\| By applying lemma (1.12), we obtain
$$\lim_{n\to\infty} \|Sz_n - Tz_n\| = 0$$
 Now

 $||Sz_n - z_n|| \le ||Sz_n - Tz_n|| + ||Tz_n - z_n||$

By using the hypothesis condition, we get $||Sz_n - z_n|| \le 2||Sz_n - Tz_n|| \to 0$ as $n \to \infty$

and
$$\begin{split} \|Tz_n-z_n\| &\leq \|Tz_n-Sz_n\| + \|Sz_n-z_n\| \\ &\leq 2\|Tz_n-Sz_n\| \to 0 \text{ as } n\to\infty. \end{split}$$
 Hence

$$\lim_{n \to \infty} ||Tz_n - z_n|| = \lim_{n \to \infty} ||Sz_n - z_n|| = 0.$$

Lemma (2.6): Let $T: B \to B$ be Lipschitzain and quasi-nonexpansive maps and $S: B \to B$ be lipschitzain and generalized nonexpansive maps. Then for $a_1^*, a_2^* \in F(T, S), (a_n)$ be as in (1) and (z_n) be as in (2) such that $\lim_{n \to \infty} \|ta_n + (1-t)a_1^* - a_2^*\|$ and $\lim_{n \to \infty} \|tz_n + (1-t)a_1^* - a_2^*\| = 0, \forall t \in [0,1].$

Proof: Now to prove $\lim_{n\to\infty} ||ta_n + (1-t)a_1^* - a_2^*||$ exists and equal to zero, by lemma (2.3.i) $\lim_{n\to\infty} ||a_n - a^*||$ exists, $\forall a^* \in F(T,S)$ and (a_n) is bounded.

Then there is a real number L > 0 such that $(a_n) \subseteq D = \overline{B_r(0)} \cap B$, so that $D \neq \emptyset$ is a closed convex bounded subest of B.

Put
$$\gamma_n(t) = \|ta_n + (1-t)a_1^* - a_2^*\|$$
.
Notice that $\gamma_n(0) = \|a_1^* - a_2^*\|$ and $\gamma_n(1) = \|a_n - a_2^*\|$ esists by lemma(2.3.i).

$$\begin{split} & \operatorname{Defin} R_n : D \to D, \forall \ n \in N, R_n a = \\ & \quad S[(1-\alpha_n)a_n + \alpha_n T a_n] \ \forall \ a \in D. \\ & \|R_n a - R_n b\| \\ & = \left\| \frac{S[(1-\alpha_n)a_n + \alpha_n T a_n]}{-S[(1-\alpha_n)b_n + \alpha_n T b_n]} \right\| \\ & \leq (1-\alpha_n) \|a_n - b_n\| + \alpha_n \|T a_n - T b_n\| \end{split}$$

$$\leq (1 - \alpha_n) \|a_n - b_n\| + \alpha_n \|Ta_n - a^*\| \\ + \alpha_n \|Tb_n - a^*\| \\ \leq (1 - \alpha_n) \|a_n - a^*\| + (1 - \alpha_n) \|b_n - a^*\| \\ + \alpha_n \|a_n - a^*\| + \alpha_n \|b_n - a^*\| \\ = \|a_n - a^*\| + \|b_n - a^*\| \\ \text{Set } W_{n,m} = R_{n+m} R_{n+m-1} \dots R_n \text{ and } \\ b_{n,m} = \|W_{n,m} (ta_n + (1 - t)a_1^*) - (tW_{n,m} a_n + (1 - t)a_1^*) \|, \forall n, m \in \mathbb{N}.$$

Then $\|W_{n,m}a - W_{n,m}b\|$ $\leq \|W_{n,m}a - a^*\| + \|W_{n,m}b - a^*\|$ $\leq \|a - a^*\| + \|b - a^*\|$ and $\|W_{n,m}a - a^*\| \leq \|a - a^*\|, W_{n,m}a_n = a_{n+m} \ and \ w_{n,m}a^* = a^*, \forall \ a^* \in F.$ By lemma(1.13) there is a strictly increasing function continuous function $f: [0, \infty) \rightarrow 0$

$$b_{n,m} \le Kf^{-1} \left(\|a_n - a_1^*\| - \frac{1}{k} \| \frac{W_{n,m} a_n}{-W_{n,m} a_1^*} \| \right)$$

$$\le Kf^{-1} (\|a_n - a_1^*\| - \frac{1}{K} \| \frac{a_{n+m}}{-a_1^*} \|)$$
since $\lim_{n \to \infty} \|a_n - a^*\|$ exists $\forall a^* \in F$.

 $[0, \infty)$ with f(0) = 0 such that

$$\lim_{n \to \infty} supf(b_{n,m}) = 0 \xrightarrow{\text{yields}} \lim_{n \to \infty} \lim_{m \to \infty} sup b_{n,m}$$
$$= 0$$

Now

$$\begin{aligned} \gamma_{n+m}(t) &= \|ta_{n+m} + (1-t)a_1^* - a_2^*\| \\ &= \left\|tW_{n,m}a_n + (1-t)a_1^* - a_2^*\right\| \end{aligned}$$

$$= \begin{vmatrix} tW_{n,m}a_n + (1-t)a_1^* - a_2^* + \\ W_{n,m}(ta_n + (1-t)a_1^*) \\ -a_2^* + a^* - a^* \\ -W_{n,m}(ta_n + (1-t)a_1^*) + a_2^* \end{vmatrix}$$

$$\leq b_{n,m} + \|W_{n,m}(ta_n + (1-t)a_1^*) - a_2^*\|$$

$$\leq b_{n,m} + \|W_{n,m}(ta_n + (1-t)a_1^*) - W_{n,m}a_2^*\|$$

$$\leq b_{n,m} + \gamma_n(t)$$

Now

 $\lim_{n\to\infty} \sup \gamma_{n+m}(t) \leq \lim_{n\to\infty} \sup b_{n,m} + \gamma_n(t)$ then

 $\lim_{n\to\infty} \sup \gamma_{n+m}(t) \leq \lim_{n\to\infty} \inf \gamma_n(t)$ which implies that $\lim_{n\to\infty} \|ta_n + (1-t)a_1^* - a_2^*\|$ exists $\forall t \in [0,1].$

Now to prove $\lim_{n\to\infty} ||tz_n + (1-t)a_1^* - a_2^*||$

By lemma (2.3.ii) $\lim_{n\to\infty} ||z_n - a^*||$ exists, $\forall a^* \in F(T, S)$ and (z_n) is bounded.

Then there is a real number L>0 such that $(z_n) \subseteq D = \overline{B_r(0)} \cap B$ so that $D \neq \emptyset$ is a closed convex bounded subest of B.

Put
$$\gamma_n(t) = ||tz_n + (1-t)a_1^* - a_2^*||$$
 notice that $\gamma_n(0) = ||a_1^* - a_2^*||$ and $\gamma_n(1) = ||a_n - a_2^*||$ esists by lemma (2.3.ii).

Define
$$R_n: D \to D, \forall n \in N, R_n z = (1 - \alpha_n)Sz_n + \alpha_n T((1 - \beta_n)Sz_n + \beta_n Tz_n)$$

$$\|R_n z - R_n w\|$$

$$= \| (1 - \alpha_n)Sz_n + \alpha_n Tu_n \|$$

$$\leq (1 - \alpha_n)\|Sz_n - Sw_n\| + \alpha_n \|Tu_n - Tv_n\|$$

$$\leq (1 - \alpha_n) \|Sz_n - Sw_n\| + \alpha_n \|Tu_n - Tv_n\|$$

$$\leq (1 - \alpha_n) (\delta + 2\mu) \|z_n - w_n\|$$

$$+ \alpha_n \|Tu_n - a^*\| + \alpha_n \|Tv_n - a^*\|$$

$$\leq (1 - \alpha_n) \|z_n - w_n\| + \alpha_n \|u_n - a^*\|$$

$$+ \alpha_n \|v_n - a^*\|$$

$$\leq (1 - \alpha_n) \|z_n - w_n\|$$

$$+ \alpha_n \|v_n - a^*\|$$

$$+ \alpha_n \{(1 - \beta_n) \|z_n - a^*\|\}$$

$$+ \alpha_n \{(1 - \beta_n) \|w_n - a^*\|\}$$

$$+ \alpha_n \{(1 - \beta_n) \|w_n - a^*\|\}$$

$$= \|z_n - a^*\| + \|w_n - a^*\|$$

The rest of the proof follows the pattern of the above argument.

Theorem (2.7): Let M be a uniformly convex Banach space satisfying Opial's condition and $T:B \to B$ be quasi-nonexpansive map with (I-T) demiclosed at zero, $S:B \to B$ be Lipschitzain and generalized nonexpansive maps and $(a_n),(z_n)$ as in lemma (2.4) and lemma (2.5), respectively. If $F(T,S) \neq \emptyset$, then (a_n) and (z_n) both converge weakly to a common fixed point of S and T.

Proof: Let $a^* \in F(T,s)$. As proved in lemma (2.3) $\lim_{n \to \infty} ||a_n - a^*||$ and $\lim_{n \to \infty} ||z_n - a^*||$ exist.

Now, must prove that (a_n) converges weakly to a unique weak subsequential limit in F.

Since (a_n) is bounded sequence in M, there exist two convergent subsequences (a_{ni}) and (a_{ni}) of (a_n) .

Let $x_1, x_2 \in B$ be weak limit of (a_{ni}) and (a_{nj}) respectively. By lemma (2.4) $\lim_{n \to \infty} ||Sa_n - a_n|| =$

By propsition (2.1) and theorem (2.2), we get I - S is demiclosed to zero.

Then $Se_1 = e_1$ and by hypothesis I - T is demiclosed so, $Te_1 = e_1$. In the same way, can prove that $e_2 \in F(T, S)$.

To prove the uniquence, assume $e_1 \neq e_2$. Then by Opials condition:

$$\lim_{n \to \infty} ||a_n - e_1|| = \lim_{n \to \infty} ||a_{ni} - e_1||$$

$$< \lim_{n \to \infty} \|a_n - e_2\|$$

$$= \lim_{n \to \infty} \|a_{nj} - e_2\|$$

$$< \lim_{n \to \infty} \|a_{nj} - e_1\|$$

$$= \lim_{n \to \infty} \|a_n - e_1\|$$

this is contrasiction. Thus (a_n) converges weakly to a point in F(T,S).

By ulitizing the same above argument, we can prove that (z_n) converges weakly to a point in F(T, S).

Theorem (2.8): Let M be a uniformly convex Banach space such that its dual M^* satisfies the Kadec-Klee property. Let $T, S, B, (a_n)$ and (z_n) be as in lemma (2.4) and lemma (2.5), respectively. If $F(T, S) \neq \emptyset$, then (a_n) and (z_n) converge weakly to a common fixed point of S and T.

Proof: Since (a_n) and (z_n) are bounded and M is reflexive. Then, there is a subsequence (a_{ni}) of (a_n) that converges weakly to a point $a^* \in B$. By lemma (2.4)

$$\lim_{n \to \infty} ||Sa_{ni} - a_{ni}|| = 0 = \lim_{n \to \infty} ||Ta_{ni} - a_{ni}||$$
thus $a^* \in F(T, S)$.

To prove (a_n) converges weakly to a point a^* . Assume that (a_{nk}) is another subsequence of (a_n) that converges weakly to a point $b^* \in B$. Then by lemma (2.6) $\lim_{n \to \infty} ||ta_n + (1-t)a^* - b^*||$ exists $\forall t \in [0,1]$.

By lemma(1.15) $a^* = b^*$. Then (a_n) converges weakly to the point $a^* \in F(T, S)$.

Ulitizing the same above argument to prove that (z_n) converges weakly to the point $a^* \in F(T,S)$.

The following corollary as a special case of quasi-nonexpansive mapping is now obvious.

Corollary (2.8):Let M be a uniformly convex Banach space satisfying Opial's condition and $T: B \to B$ be satisfying condition (C_{λ}) , $S: B \to B$ be generalized nonexpansive map and (a_n) , (z_n) be as in lemma (2.4) and lemma(2.5), respectively. If $F(T, S) \neq \emptyset$, then (a_n) and (z_n) converges weaklt to a common fixed point of S and T.

Corollary (2.9): Let M be a uniformly convex banach space and its dual M^* satisfies the Kadec-Klee property and $T: B \to B$ be lipschitzain map and satisfying condition (C_{λ}) and $S: B \to B$ be lipschitzain and generalized nonexpansive maps and $(a_n), (z_n)$ be as in lemma (2.6). If $F(T, S) \neq \emptyset$, then (a_n) and (z_n) converges weakly to a common fixed point of S and T.

Corollary (2.10): Let M be a uniformly convex Banach space satisfying Opial's condition and $T: B \to B$ be satisfying condition (E_{λ}) , $S: B \to B$ be generalized nonexpansive map and (a_n) , (z_n) be as in lemma (2.4) and lemma (2.5), respectively. If $F(T, S) \neq \emptyset$, then (a_n) and (z_n) converges weaklt to a common fixed point of S and T.

Corollary (2.11): Let M be a uniformly convex banach space and its dual M^* satisfies the Kadec-Klee property and $T: B \to B$ be Lipschitzain map and satisfying condition (E_{λ}) and $S: B \to B$ be Lipschitzain and generalized nonexpansive maps and $(a_n), (z_n)$ be as in lemma (2.6). If $F(T,S) \neq \emptyset$, then (a_n) and (z_n) converges weakly to a common fixed point of S and T.

3. Equivalance of Iterations

Theorem (3.1): Let B be a nonempty closed convex subset of a Banach space M. Let $T: B \to B$ be a quasi-nonexpansive map, $S: B \to B$ be Lipschitzain and generalized nonexpansive maps and $a^* \in B$ be a common fixed point of S and T. Let (a_n) and (z_n) be the Picard-Mann and Liu et al iteration schemes defined in (1) and (2), respectively. Suppose (α_n) and (β_n) satisfied the following conditions:

$$1-(\alpha_n) and \ (\beta_n) \in (0,1), \forall \ n \ge 0.$$

$$2-\sum \alpha_n = \infty.$$

$$3-\sum \alpha_n \beta_n < \infty.$$

If $z_0 = a_0$ and R(T), R(S) are bounded, then the Picard-Mann iterative sequence (a_n) converges strongly to a^* $(a_n \to a^*)$ and the Liu et al iterative sequence (z_n) converges strongly to $a^*(z_n \to a^*)$.

Proof: Since the range of *T* and *S* are bounded, let

$$M = \sup_{a \in B} \{ ||Ta|| \} + ||a_0|| < \infty$$

then

 $\|a_n\| \le M, \|b_n\| \le M, \|z_n\| \le M, \|u_n\| \le M$ therefore

$$||Ta_n|| \le M, ||Tz_n|| \le M$$

$$||a_{n+1} - z_{n+1}||$$

$$= ||Sb_n - (1 - \alpha_n)Sz_n - \alpha_nTu_n||$$

$$\le ||Sb_n - Sz_n|| + \alpha_n||Sz_n - Tu_n||$$

$$\le ||Sb_n - a^*|| + ||Sz_n - a^*|| + \alpha_n||Sz_n - a^*||$$

$$+ \alpha_n||Tu_n - a^*||$$

$$\le \delta ||b_n - a^*|| + \mu \left\{ ||b_n - Sb_n|| \right\} + \omega \left\{ ||b_n - a^*|| \right\} + \delta ||z_n - a^*||$$

$$+ \omega \left\{ ||b_n - a^*|| \right\} + \omega \left\{ ||b_n - a^*|| \right\} + \omega \left\{ ||b_n - a^*|| \right\} + \omega \left\{ ||a^* - Sb_n|| \right\} + \alpha_n ||z_n - a^*|| + \alpha_n ||u_n - a^*||$$

$$\leq {\delta + 2\mu \choose +2\omega} \|b_n - a^*\| + {\delta + 2\mu \choose +2\omega} \|z_n - a^*\| \\ + \alpha_n \|z_n - a^*\| + \alpha_n \|u_n - a^*\| \\ \leq \|b_n - a^*\| + (1 + \alpha_n) \|z_n - a^*\| \\ + \alpha_n \|u_n - a^*\|$$

$$\begin{split} &\|b_n - a^*\| \\ &\leq (1 - \alpha_n) \|a_n - a^*\| + \alpha_n \|Ta_n - a^*\| \\ &\leq (1 - \alpha_n) \|a_n - a^*\| + \alpha_n \{\|Ta_n\| + \|a^*\| \} \\ &\leq (1 - \alpha_n) \|a_n - a^*\| + \alpha_n \|M + \|a^*\| \| \\ &\|u_n - a^*\| \\ &\leq (1 - \beta_n) \|Sz_n - a^*\| + \beta_n \|Tz_n - a^*\| \\ &\leq (1 - \beta_n) \left(\frac{\delta + 2\mu}{+2\omega} \right) \|z_n - a^*\| + \beta_n \left\{ \frac{\|Tz_n\|}{+\|a^*\|} \right\} \\ &\leq (1 - \beta_n) \{M + \|a^*\| \} + \beta_n \{M + \|a^*\| \} \\ &= M + \|a^*\| \end{split}$$

Thus
$$\begin{aligned} \|a_{n+1}-z_{n+1}\| &\leq \|b_n-a^*\| + (1+\alpha_n)\|z_n-a^*\| \\ &\leq \|b_n-a^*\| + (1+\alpha_n)\|z_n-a^*\| \\ &\leq (1-\alpha_n)\|a_n-a^*\| + \alpha_n\{M+\|a^*\|\} \\ &+ (1+\alpha_n)\|z_n-a^*\| + (1-\alpha_n)\|z_n-a^*\| \\ &\leq (1-\alpha_n)\|a_n-z_n\| + (1-\alpha_n)\|z_n-a^*\| \\ &+ 2\alpha_n\{M+\|a^*\|\} + (1+\alpha_n)\|z_n-a^*\| \\ &\leq (1-\alpha_n)\|a_n-z_n\| + \|z_n-a^*\| + 2\alpha_n \\ &\{M+\|a^*\|\} \\ &\leq (1-\alpha_n)\|a_n-z_n\| + (1+2\alpha_n)\{M+\|a^*\|\} \\ &\text{let} \qquad \mu_n = \|a_n-z_n\| , \rho_n = (1+2\alpha_n)\{M+\|a^*\|\} \\ &\text{let} \qquad \mu_n = \|a_n-z_n\| , \rho_n = (1+2\alpha_n)\{M+\|a^*\|\} \\ &\text{let} \qquad \mu_n = \|a_n-z_n\| , \rho_n = (1+2\alpha_n)\{M+\|a^*\|\} \\ &\text{let} \qquad \mu_n = \|a_n-z_n\| + \|a_n-a^*\| + 0 \text{ as } n \\ &\text{lim} \|a_n-z_n\| = 0. \end{aligned}$$
 By applying lemma(1.11), we get
$$\lim_{n\to\infty} \|a_n-z_n\| = 0.$$
 If $a_n\to a^*\in F(T,S)$, then
$$\|z_n-a^*\| \leq \|z_n-a_n\| + \|a_n-a^*\| \to 0 \text{ as } n \\ &\to \infty.$$
 And if $z_n\to a^*\in F(T,S)$, then
$$\|a_n-a^*\| \leq \|a_n-z_n\| + \|z_n-a^*\| \to 0 \text{ as } n$$

4. Numerical examples

In this section, we consider two examples to show that the Picard-Mann iteration scheme converges faster than Liu et al iteration schem.

Example (4.1): Let $T,S: R \to R$ be a map defined by $Ta = \frac{2a}{3}$ and $Sa = \frac{a}{2}$, $\forall a \in R$. Choose $\alpha_n = \beta_n = \frac{3}{4}$, $\forall n$ with initial value $a_1 = 30$. The two iteration scheme converge to the same fixed point $a^* = 0$. It's clear from table 1, that Picard-Mann converges faster than Liu et al.

Table 1: Numerical results corresponding to $a_1 = 30$ for 20 steps

	0 0 101 2 0 Steps					
n	Iterati on (1)	Iterati on (2)	n	Iterati on (1)	Iterati on (2)	
0	30	20	1 1	0.000 6	0.003 4	
1	11.25 00	13.12 50	1 2	0.000 2	0.001 5	
2	4.218 8	5.742 2	1 3	0.000 1	0.000 6	
3	1.582 0	2.512 2	1 4	0.000	0.000	
4	0.593 3	1.099 1	1 5	0.000	0.000 1	
5	0.222 5	0.480 9	1 6	-	0.000 1	
6	0.083 4	0.210 4	1 7	-	0.000	
7	0.031 3	0.092 0	1 8	-	0.000	
8	0.011 7	0.040 3	1 9	-	0.000	
9	0.004 4	0.017 6	2 0		0.000	
1 0	0.001 6	0.007 7		-	0.000	

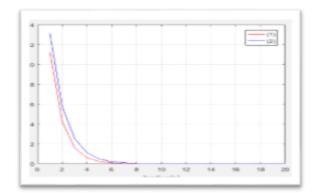


Figure 1: Convergence behavior corresponding to $a_1 = 30$ for 20 steps.

Example (4.2): Let B = [-180,180], $T, S: B \rightarrow B$ be a map defined by Ta = acosa and $Sa = \frac{a}{2} \forall a \in B$. Choose $\alpha_n = \frac{1}{3}$, $\beta_n = \frac{1}{5} \forall n$ with initial value $a_1 = 30$. The two iteration scheme converge to the same fixed point $a^* = 0$. It's clear from table 2, that Picard-Mann converges faster than Liu et al.

Table 2: Numerical results corresponding to $a_1 = 30$ for 30 steps

				<u> </u>	
n	Iteratio	Iteratio	n	Iteratio	Iteratio
	n (1)	n (2)		n (1)	n (2)
0	30	30	1	0.0001	0.0014
			6		
1	10.7713	12.9255	1 7	0.0000	0.0008
2	2 1011	7.5004		0.0000	0.0005
2	3.1911	7.5904	1 8	0.0000	0.0005
3	0.5325	3.4317	1	0.0000	0.0003
3	0.5525	3.4317	9	0.0000	0.0003
4	0.2540	0.7150	2	0.0000	0.0002
			0		
5	0.1256	0.3940	2	-	0.0001
			1		
6	0.0626	0.2304	2	-	0.0001
			2		
7	0.0313	0.1370	2 3	-	0.0000
0	0.0156	0.0010			0.0000
8	0.0156	0.0819	2 4	-	0.0000
1	0.0078	0.0491	2	_	_
9	0.0070	0.0171	5		
1	0.0039	0.0295	2	-	-
0			6		
1	0.0020	0.0177	2	-	-
1			7		
1 2	0.0010	0.0106	2 8	-	-
	0.0005	0.0064			
1 3	0.0005	0.0064	2 9	-	-
1	0.0002	0.0038	3		_
4	5.0002	0.0030	0		
1	0.0001	0.0023			
5					

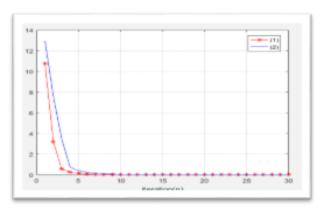


Figure 2: Convergence behavior corresponding to $a_1 = 30$ for 30 steps.

Finally, it is appropriate to ask a question about the possibility of employing the above results in finding solutions to problems such in [19] and [20]

References

- [1] J.B. Diaz, F.T. Metcalf, "On the structure of the set of subsequential limit points of successive approximation," Bull. Am. Math. Sco. 73, 516-519, 1967.
- [2] T. Suzuki, "Fixed point theorems and convergence theorems for som generalized-nonexpansive mappings," J. Math. Anal. Appl. 340, 1088–1095, 2008.
- [3] S. Dhompongsa, W. Inthakon, A. Kaewkhao, Edelstein's, "Method and Fixed point theorems for some generalized nonexpansive mappings," J. Math. Anal. Appl. 350, 12-17, 2009.
- [4] W. Phuengrattana, "Approximating fixed points of suzuki-generalized nonexpansive mappings," Nonlinerar Anal. Hybrid. Syst. 5, 3, 583-590, 2011.
- [5] S.H. Khan, T. Suzuki, "A Reich-type convergence theorem for generalized nonexpansive mappings in uniformly convex Banach spaces," Nonlinear Anal. 80, 211-215, 2013.
- [6] J. Garcial-Falset, E. Llorens-Fuster, T. Suzuki, "Fixed point theory for a class of generalized nonexpansive mappings," J. Math. Anal. Appl. 375, 185-195, 2011.
- [7] W. Takahashi, T. Tamura, T "Convergence theorem for a pair of nonexpansive mappings in Banach spaces," J. convex Analysis, 5, I, 45-58.
- [8] S.H. Khan, "A Picard-Mann hybrid iteration process," Fixed Point Theory. Appl., 2013:69, 2013.
- [9] Z. Liu, C. Feng, J.S. Ume, S.M. Kang, "Weak and strong convergence for common fixed points of a pair of nonexpansive and asymptotically nonexpansive mappings," Taiwanese Journal of Mathematics, 11, I, 27-42, 2007.
- [10] V.K. Sahu, "Convergence results of implicit iteration scheme for two asymptotically quasi-Inonexpansive mappings in Banach spaces," Global Journal of pure and Applied Mathematices, Vol. 12, No. 2, pp. 1723-1742, 2016.
- [11] B. Gunduz, "A new two step iterative scheme for a finite family of nonself I-asymptoically nonexpansive mappings in Banach space," NTMSCI 5, No. 2, 16-28, 2017.
- [12] E.L. Fuster, E.M. Galvez, "The fixed point theory for some generalized nonexpansive mapping," Abstract . Appl. Anal. Vol 2011, Article ID 435686, 15 page, 2011.
- [13] A. Sharma, M. Imdad, "Approximating fixed points of generalized nonexpansive mappings Via faster iteration schemes," Fixed point theory, 4, no.4, 605-623, 2014.
- [14] F.E. Browder, "Semicontractive and semiaccretive nonlinear mappings in Banach spaces," Bull. Amer. Math. Soc. 74, 660-665, 1968.
- [15] D.R, Sahu, D.O. Regan, R.P. Agarwal, "Fixed applications, Topological fixed point theory and its applications," doi:10.1007/978-387-75818-3-1.

- [16] E. Zeidler, "Nonlinear Functional analysis and applications," Fixed point theorems, Springer Verilage, New York Inc. 1986.
- [17] I. Yildirim, M. Abbas, N. Karaca, "On the convergence and data dependence results for multistep Picard-Mann iteration process in the class of contractive-like operators," J. Nonlinear. Sci. Appl. 9, 3773-3786, 2016.
- [18] G.S. Saluja, "Weak convergence theorems for Asymptotically Nonexpansive Mappings and Total Asymptotically Non-self Mappings," Sohag J. Math. 4, No.2, 49-57, 2017.
- [19] B.E. Kashem, "Partition method for solving Boundary value problem using B-Spline functions," Eng & Tech. Journal, Vol. 27, No. 11, 2009.
- [20] A.J. Kadhim, "Expansion method for solving Linear integral equations with Multiple Lags using B-Spline and Orthogonal functions," Eng & Tech. Journal, Vol.29, No.9, 2011.