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Abstract- In this paper, we established weak convergence theorems by
using appropriate conditions for approximating common fixed points
and equivalence between the convergence of the Picard-Mann
iteration scheme and Liu et al iteration scheme in Banach spaces. As
well as, numerical examples are given to show that Picard-Mann is
faster than Liu et al iteration schemes.
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1. Introduction and Preliminaries

Let B be a nonempty subset of a Banach space
M. A map T on B is called nonexpansive map if
ITa—Th|| < lla—bll foralla,beB. 1t is
called quasi-nonexpansive map [1] if ||Ta — b|| <
lla — pll foralla e B and for all p € F(T),
denote by F(T) the set of all fixed point of T.

In 2008, a new condition for maps, called
condition (C) was introduced by Suzuki [2],
which is stronger than quasi-nonexpansive and
weaker than nonexpansive, and given some
results about fixed point for map satisfying
condition (C). Dhompongsa et al [3] and
Phuengrattana [4] studied fixed point theorems
for a map satisfying condition (C). Weak
convergence theorem for a map satisfying
condition (C) in uniformly convex Banach space
are proved by Kahn and Suzuki [5]. Recently,
Garcial-Falset et al [6] introduced two new
generalization of condition (C), called condition
(E;), condition (C;) and studied the existence of
fixed points and also their asymptotic behavior.
For approximating common fixed point of two
maps, Takahashi and Tamura [7] studied the
following Ishikawa iteration scheme for two
nonexpansive maps.

a€EB

any1 = 1 —ap)an + a,Thy

b, =1 = Bplan+ prTa,

forall n € N, (a,,) and (B,,)in [0,1].

The aim of this paper
convergence of the
scheme, Liu et al

is to study weak
Picard-Mann iteration
iteration scheme for
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approximating common  fixed point  of
generalized nonexpansive and quasi-
nonexpansive maps and give some corollaries.
Throughout this paper, M will be a uniformly
convex Banach space and B a nonempty closed
convex subset of M. F(T,S) denotes the set of
common fixed point of the maps S and T.
The Picard-Mann [8] iteration scheme for two
maps through the sequence (a,,) is defined by:
an+1 = Shy
b,=0-ay)a, + a,Ta,,Vn=0 (1)
where (a,) € (0,1).
The Liu et al [9] iteration scheme for two maps
through the sequence (z,,) is defined by:
Znt1 = (1 — ap)Szy + @ Tuy
up =0 —Bp)Szn + BrTz,,¥n =0 2
where (a,,) and (B,,) € [0,1].
If S = I is called Ishikawa iteration scheme.

Definition (1.1): A Banach space M is called
satisfying:

1-Opial’s condition [10] if for any sequence (ay)
in M, is weakly convergent to a implies that

lim inf |lay —all < lim inflla, — bl

forall b € M witha +# b.

2-Kadec-Klee property [11] if for every sequence
(ap) In M converging weakly to (a) together
with ||a, || converging strongly to [lall imply that
(ay) converges strongly to a point a € M.
Defintion (1.2)[12]: A map T:B — M is said to
be generalized nonexpansive map if there are
nonnegative constants §,u and w with§ + 2u +
2w < 1ssuchthatvVa, b € B
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lla —Tall }
— < -
ITa—Thll < Slla b||+“{+||b—TbII

lla —Thl| }
+ “’{+||b _Tall

Defintion (1.3)[13]: A map T: B — Bis said to
satisfying:
1- Condion (€) i >lla—Tall < lla— bl

yields
—— |[Ta =Th|| <lla—bl||,Va,b € B.

2-Condition (C;) if  Alla—Tall <|la—bl|
yields
— ||[Ta—Th|| < |la—bl,Va,b €

Band A € (0,1).
3-Condition (E;) if |la—Tb|l < Alla— Th|| +
la=bl,Ya,b € Band A > 1.

Remark (1.4): Amap T: B - M satisfy
1-Condition(C,) and T has fixed point, then T is
quasi-nonexpansive, but the inverse is false[2].
2-Condition(E;) and T has fixed point, then T is
quasi-nonexpansive, but the inverse is false[6].

Definition (1.5)[14]: A map T:B — M is said to
be demiclosed with respect to b € M if for any
sequence (a,)in B, (a,) converges weakly to
a and T(a,) converges strongly to b. Then a €
BandT(a) =b. If (I —T) is demiclosed i.e if
(a,) converges weakly to ainB and (I —T)
converges strongly to 0. Then (I — T)(a) = 0.

Definition (1.6)[ 15]: Let M be a Banach space,
M is called uniformly convex if for any e >
O there is ¢ > Osuch that V a, b € Mwith ||al| =
||l = 1and |la— b|| = €, ||la + b|| < 2(1 —
¢)holds. Every uniformly convex Banach space is
reflexive.

- The modulus of convexity of M is defined by

12Oy = i < 1
sm(€) = inf z o nal= =4
la—b||=eV0O<e<?2

M is uniformly convex if ¢y, (0) =

Oandgy(e) 20,V0<e <2.

Theorem (1.7)[15]: let M be a uniformly convex
Banach space then the modulus of convexity is
increasing function.

Remark (1.8)[16]: If
0 and has the properties :

c(e) > 0ase— +0.

¢:[0,2] - [0,1] is strictly monotone increasing
function and surjective

Then 1:[0,1] — [0,2] is called strictly monotone
increasing function of ¢.

5(0) =
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Theorem (1.9)[15]: let M be a uniformly convex
Banach space. Then for any r and e wihr = € >
0 and elements a,b € M suchthat ||all <

rlbll<rlla—bll=¢e36= 5({) >0 such
that

a+b €

== EEE)

Proposition (1.10)[16]: Let B be a closed convex
set in a Banach space M. If (a,) converges
weakly to a for some  sequence
(a,)inM,thena € M.

Lemma (1.11)[17]: Let (u),~, and (p)n=o be

nonnegative real sequences satisfying the
inequality:

Pne1 < (1= opdun + pn
where o, € (0,1),Vn=ng X 0, =

o and 2% > 0 asn — . Then lim u, = 0.

on n—-oo

Lemma (1.12)[13]:Let M be a uniformly convex
Banach space and0<L <t,<K<1VnE€
N. Suppose that (a,)and (b,)are two
sequences of M such that:

lim [|a,ll < m, lim ||b,||

n—oo n—-oo

tha, +
1—t,)b,

<mand lim ”(

n—-o0o
=m
hold for some m = 0.Then lim ||a,, — b,|| = 0.
n—oo

Lemma (1.13)[18]: Let B be a nonempty convex
subset of a uniformly convex Banach space. Then
there is a strictly increasing continuous function
f:[0,00) - [0,00)with f(0) =0 such that for
each lipschitzain map T:B — B with lipschitz
constant K:

[tTx+ (1 —t)Ty —T(tx+ (1 — t)yl|

e =1
<Kf1 1
P\ S =i

Vx,y € Band Vvt € [0,1].

Lemma (1.14)[18]: Let M be a uniformly convex
Banach space suth that its dual M* satisfies the
Kadec-Klee property. Assume that (a,,) bounded
sequence in M such that

Ai_r}go”tan + (A =t)p; —pall
[0,1]and py, p, € Wiy (ay),then p; = p,.

exists Vte

2.The Main Results
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Proposition (2.1): Let Bbe a closed convex
bounded of uniformly convex Banach space,
T:B — M is a generalized nonexpansive map and
ag,a, €EB, ag# a,Vte€[0,1],a; =tay+
(1-t)a, .IfVe>0,3a(e) > 0 such that

ITag—apll < €eand ITa; —a4ll <€ 3)
then ||ITa,—a.||<a(e) and a(e) » 0as € -
+0.

Proof: Assume that (3) holds with aq#

a;and 0 <t < 1. Thenleti =0, 1 such that
lla; — (ac+ Ta))/2ll = lla; — a.ll

If not, would have the contradiction

1 a:+Ta;

lla; — aoll < E N | A
i=0
1
< E ' 0||ai_at”= lla; — aoll
1=

aiII >0,n=

since a; # ap we have r = |la; —
lay —Tall,m = lla;— Ta.ll. _
Since T is generalized nonexpansive mapping
ITa;—a;ll < ITa;— Ta;|| + |ITa; — a;l|

a, — Ta.||
< dlla—agll+uf 0

| . ”{‘HIai —Tall
ar—14a;
+w {_I_”ai _ Tat||}+ ”Tai - ai”
<ér+uale) +e) +wn+m)+e
let w=ar+u(a(e) +¢€)+wn+m). Then
ITa; —a;ll <w+e.
Puta=a;,b=Ta;,c=a;andR=w +e€.
Let n(.) indicate the strictly monotone increasing
function to ¢(.). The diameter of M denotes by
diam(M), by theorem (2.10), we have

ITa; — a.ll < suprefoapnw + E)n(w n E)
the a(e) defined here has desired properties. First
a(e) = en(1) = 2e forw = 0.

Forming the supermum separately over the two
intervals  [0,v/e —¢[ and monotonicity of
n(.), that

a(e) < max{Ven(1), M) + ey}

- 0ase—- 0.

Since a(e) = 2¢,then ||Ta; — a;|l < a(e) as
a(e) » 0 ase - +0.
Hence
(3)holds for the remaining cases a, #
ag,t=0,1and ay = a,.

Theorem (2.2): Let B be a closed, bounded and

convex subset of uniformly convex M, then the

operator I — T is demiclosed on B.

Proof: We show that for any sequence (a,) in M,

if (a,) converges weakly to a and (I —T)(a,)

converges strongly to 0 asn — o, then a €

Mand (I —T)(a) = 0.

By proposition (1.10), we get a € M.

For €5 € (0,1) choose a sequence (e,) such that
€n < €p_qand ale,) < €,_4,YNEN
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This is possible because a(e) » 0ase— 0.
Choosing a subsequence of (a,) if necessary, we
have
ITa,—aull<e€,,VneEN

then

ITh —b|| < €y,V b € cofa,,n € N} (€))
Now

i) Let by €cola,a}wherel <m<n, by
hypothesis

ITam — anll < €y and (|Ta, — ayll < €46,
<€n
then
”Tbl - bl” < a(em) S €m-1 = €

i) Let b, € co{lay, am,an}wherel <k <m <
n. The key is that b, € co{ay, by} sinceb; €
co{am, an} by (i)”Tbl - bl” S Em-1,€m-1 =
€k, SO

ITay — axll < ex and [Ty
hence

—bill < e

ITh, — b, |l < a(er) < €x—1 < €
if (a,) converges weakly to a as n — oo, then
a € co{a,,n € N}, by proposition (1.10) and step
(4) , we obtain

ITa —all < ¢

since €, can be any arbitrary small, Ta —a = 0.
Not only is the map a—Ta generalized
nonexpansive, but for fixed point bsoisa —
Ta+ b.This implies that I — T is demiclosed.

Lemma (2.3): Let T:B—B be a quasi
nonexpansive map and S: B — B be Lipschitzain
and generalized nonexpansive maps. Let
i)(ay) be as in (1) where (a;,) € (0,1).
ii)(z,,) be as in (2) where (a,)and(B,) € [0,1].
If F(T,S) # 0, then lim |la,, —

n—oo

a*|| and lim ||z, —a*|| both exist for all a* €
n—oo

F(T,S).
Proof: Leta* € F.
Dlapss —a*ll = IShy, — a*||

by, _Sbn”}

< dllb,— @l + {1 =Sl

by, — a|| }

+a){ .
+lla* — Sbyll
<6llbp,—a*ll+u

of Pomall )
+|Sb, — a*||

lon—all } |

+I1Sby — a”l

d+u+ow .
= (+uK+a)K) by — a’
< (6 +2u+2w)||b, —a*|l
< |lbp —a||
= (1 - a’n)an +apTa, — a*||
S(Il—an)llan—a*ll+ aplla, —a*||

la, —a*|l
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then lim ||a,, — a*|| exists Va* € F(T,S).
n—-oo

ii)llu, —a*ll < (@ - BIIISz, — a*ll +
Bn”TZn_a*”

<@
Slizy — a*|
— B {nzn—sZnu} { llzy — a*|l
+ +w ¥
Fltllar = a*ll +la* — Sz,
+ Bpllzn — a*|l | |
Z, —a* i
[sllzn — all+uf o=l
| +||Sz,, — a*||
sU=por (el
| Pltlla* = Sz,
+ﬁnllzn_a*|!$
<=8 kb o 4 k) 1n— 'l
+ Bpllzn — a*|l
<=8 (° L)z - ']
+Bollzy — a*|l
< (1 - Bn+ .Bn)”Zn - a*”
= |izy— a*|l

|zpe1 —a*ll £ (A = a ISz, — a*|
+a,|[Tu, —a*||

i zZ, — Sz
ot =l i
S(l—an) +w{ ”Zn_a*” } |
Hla* = Szl ]

+ay,|lu, —a*||

< - a) [(°5 2z - a*l]
+apllu, —a*||

< (1 - an)”Zn - a*” + an”Zn - a*”

= ||z, — a’|l

Then Tlli_rgollzn — a*|| exists Va* € F(T, S).

Lemma (2.4): Let T:B—-B be quasi
nonexpansive map and S: B — B be Lipschitzain,
generalized nonexpansive maps and affine and

(an) be as in (1). Suppose that the following
condition lla—Th|l < ||Sa—Th|,Vabe B
holds. If F(T,S) #+ @, then

7lirl;lo”Tan - an” = Airgo”-gan - an” =0
Proof: Leta* € F(T,S).
By lemma(2.3.)) lim||la, —a*|| exists. Suppose

n—-0o

that lim |la, —a*|| = ¢,V c = 0.

n—-o
If ¢ = 0, there is nothing to proof.
Now suppose ¢ > 0,

lanss —a*ll = |IShy, — a*l
< |lbp—a*l

By lemma(2.3.i), we show that ||b,—a*|| <
lan —a*l

Vol. 37, Part B. No. 02, 2019

this implies to
lim supllb, —a*ll < ¢ (5)
moreover d = 71im |a,+1— a*ll
lani—a*ll < llbp — a*|l
then
¢ < lim inf||b, — a*|| (6)
n—-co

By (5) and (6), we get

lim ||b, —a*|| = ¢

n—oo
Next consider
¢ = |lby—a*l

<@ __an)”an —a*|[+ an”Tan —a*|
By applying lemma (1.12), we get
lim llan, — Tayll= 0
¢ = limllan, s —a*ll = lim [[Sby — a|l
IS[(1 — ap)an + anTa,]—a’ll
< (1 -a)llSan — a*l| + a,lISTa, — a*||
By applying lemma (1.12), we get
lim |[Sa, — STa,|[=0
n—co

Now
”San - an” < ”San - STan” + ”STan - an”

By using the hypothesis condition, we have
[|Sa,, —anll < 2|[Sa,, — STa,|| » 0asn — oo.
Thus

lim ||Sa,, — a,|| = 0.
n—oo

Lemma (2.5): Let T:B—B be a quasi
nonexpansive map, S: B — B be Lipschitzain and
generalized nonexpansive maps and (z,) be as in
(2). Suppose that the following condition|la —
Tbll < ||Sa—Thl,va b€ B holds. If
F(T,S) # @, then
lim ||Tz, — z,|| = lim||Sz,, — z,|| = 0.
n—oo n—oo
Proof: Let a* € F(T,S).
By lemma (2.3.ii) lim ||z, — a*|| exists. Suppose
n—oo
that lim ||z, —a*||=c, V¢ = 0.
n—-oo

If ¢ = 0, there is nothing to proof.
Now suppose ¢ > 0

lim |znyq —a*ll=c
¢ =llzpgr —a*l

< (1 - an)”SZn - a*”
Ty -l

By applying lemma (1.12), we get

lim||Sz, — Tu,|l=0

n—-oo
a1 —a*ll = 11— a,)Sz, + a,Tu,, —a*||

= 1Sz, — a*|| + an|lSz, — Tu,l|

this implies to

¢ < lim inf||Sz, — a*|| (7
n—-oo
and ||Sz,, — a*|| < ||z, — a*||
therefore
lim sup||Sz, —a*|| < c (8)
n—-oo
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By (7) and (8), we have

11m IISzn —a*|l=c
ISz, — a*ll < IISzn = Tupll + ITuy — a*|l
that yields to

¢ < lim infllu, —a”|l 9
and

lluy —a”|l

< (1 - BIlSzy — a*ll + Bl Tz, — a*|

= ||z, — a”||

Now

11m supllu,—a*|l <c

By (9) and (10), we have
lim||lu,—a*||=c¢
n—oo

(10)

¢ = llup,—a’ll
< @A =BIlISzy— a”ll + BnllTzy — a”|l
By applying lemma (1.12), we obtain
1lim [1Sz,, — Tz || = 0
Now
1Sz, — zp | < ISz, — Tz, || + 1Tz, — 2,,|l

By using the hypothesis condition, we get
1Sz, — z, || < 2[|1Sz, — Tz, > 0 asn - o

and
”TZn - Zn” < ”TZTL - SZTL” + ”SZTL - Zn”
<2||Tz, —Sz,|l > 0as n — co.
Hence
lim ||Tz, — z,|| = lim||Sz,, — z,|| = 0.
n—0o n—0oo

Lemma (2.6): Let T: B — B be Lipschitzain and
quasi-nonexpansive maps and S:B— B be
lipschitzain and generalized nonexpansive maps.
Then for aj,a; € F(T, S), (ay)be as in (1) and
(zp)be as in (2) such that

lim [[ta, + (1 — t)a] — a5|| and
n—-oo

lim |[tz, + (1 —t)a; —a;ll=0,v t €[0,1].
n—oo

Proof: Now to prove lim||lta,+ (1 —t)a; —

n—oco

asl|| exists and equal to zero, by lemma (2.3.i)
lim ||a,, — a*|| exists, V a* € F(T,S)and (a,) is
n—-oo

bounded.
Then there is a real number L > 0 such that
(a,) €D =B,(0) nB,sothat D #+ @ is a closed
convex bounded subest of B.

Put yn(t) = ”tan + (1 - t)a; - a;”

Notice that 7,(0) = llaj — a}ll and y,(1) =
lla, — a3ll esists by lemma(2.3.i).

DefinR,:D - D,vn€N,R,,a=

S —ap)a, +a,Ta,]Va € D.
”Rna - Rnb”
_ | S - ay)a, + a,Ta,]
~I-S[(1 — ap)b,, + @, Thy]
< (1 - an)”an - bn” + 6Zn”Ta-n - Tbn”

Vol. 37, Part B. No. 02, 2019

< (1 - an)”an - bn” + an”Tan - a*”
+an|IThy, — a*|l

< (1 - an)”an - a*” + (1 - an)”bn - a*”
+an”an —a*|l+ an”bn —a*|

= llan—a*ll + llby, — a||

Set Wy 1m = RpsmPRn+m—-1 .- R and

bn,m = ”Wn,m(tan + (1 - t) a;) - (th,man

Then

”Wn,ma_ Wn,mb”

<|w, hm

<lla—a*||+ b - a*||

and v, O =

Anim and wy ma* = a*,vVa* € F.

By lemma(1.13) there is a strictly increasing
function  continuous  function  f:[0,00) —
[0, @)with f(0) = 0 such that

b < Kf 7 (llan — afll - : ||

<Kf(la,— ajl
since lim ||a,, — a*|| exists v a* € F
n—oo

nman
W, ma1

yields
lim supf(bn,m) =0 — lim lim supb,,
n—oo n—o0o m—oo
=0
Now,
)4 +m(t) = ||tan+m+ (1 - t)ai - a;”

= |[eWpman + @ = Oa; — a3

tWyman+ (1 —t)a; —aj +
Wn,m(tan + (1 - t) a;)
—a;+a*—a*
~Wym(tay+ (1= t)ay) + a;

<bpm+t ”Wn,m(tan +(1- t)ai) - aZ”
< by + W (tan + (1 = Da}) — W,

< bn,m + ¥ (@)
Now

711_1)‘[;10 SUPYnam(t) < 111_1)1(;10 Supbpm + yn ()
then

rlim SUPYnem(t) < Aim infyn(t)

which implies that lim [|ta, + (1 — t)a] — a5l
n—-oo

exists V ¢t € [0,1].

Now to prove lim|ltz, +(1—t)a; —asll
n—-oo

exists.

By lemma (2.3.ii) lim||z, — a*||exists,V a* €
n—co
F(T, S)and (z,) is bounded.
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Then there is a real number L>0 such that(z,) <
D = B,.(0) nB so that D # @ is a closed convex
bounded subest of B.

Put ,,(£) = litz, + (1 — O)a; — a3 |

notice that y,(0) = lla; — a3l andy,(1) =
lla, — a5l esists by lemma (2.3.ii).

Define R,:D->DVneNR,zz=(1-
an)Sz, + anT((l — Bn)Sz, + ,BnTzn)

”RnZ_ RnW”

_ | (1 —ap)Sz, + a,Tu,
=1 = a)Swy, — a,Tv,
<@1- an)”SZn - SWn” + an”Tun_ Tvn”

< (1= a) (° 52 llzw = wal

+anllTu, — a*|l + a,lITv, — a||
< (1 - an)”Zn - Wn” + an”u'n - Cl*”
+a,|lv, —a*||

1 - Bullzn — a*II}
+a { "
n +ﬁn”zn —a ”
b (L Il 2l
+Pnllwy, — a”i
= |lzp — a*ll + [lwy, — a*|
The rest of the proof follows the pattern of the
above argument.

Theorem (2.7): Let M be a uniformly convex
Banach space satisfying Opial’s condition and
T:B — B be quasi-nonexpansive map with (I —
T) demiclosed at zero, S: B — B be Lipschitzain
and generalized nonexpansive maps and
(a,),(zy)as in lemma (2.4) and lemma (2.5),
respectively. If F(T,S) # @, then (a,) and (z,)
both converge weakly to a common fixed point of
SandT.

Proof: Let a* € F(T,s). As proved in lemma
(2.3) %i_r)rgollan — a*|| and ,{i_IEo”Zn — a*|| exist.
Now, must prove that (a,,) converges weakly to a
unique weak subsequential limit in F.

Since (a,)is bounded sequence in M, there exist
two convergent subsequences
(ans) and (an;) of (an)-

Let x1,x, € B be weak limit of (an;) and (a,;)
respectively. By lemma (2.4) 7{1_{{)10 [Sa, —a,ll =

0.

By propsition (2.1) and theorem (2.2), we get [ —
S is demiclosed to zero.

Then Se; = e; and by hypothesis I —
T is demiclosed so,Te; = e;. In the same way,
can prove that e, € F(T, S).

To prove the uniquence, assume e; # e,. Then
by Opials condition:

,11330”“" —ell = gmllani — el
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< lim[la, — eI
n—-oo
= m lan; - e
< lim ||anj— el||
n—>?0
= lim [la, — el
- - - - n_>w
this is contrasiction. Thus (a,,) converges weakly
to a point in F(T,S).
By ulitizing the same above argument, we can

prove that (z,) converges weakly to a point in
E(T, S).

Theorem (2.8): Let M be a uniformly convex
Banach space such that its dual M* satisfies the
Kadec-Klee property. Let T,S, B, (a,) and (z,)
be as in lemma (2.4) and lemma (2.5),
respectively. If F(T,S) # @, then (a,)and (z,)
converge weakly to a common fixed point of S
and T.

Proof: Since (a,) and (z,) are bounded and M
is reflexive . Then, there is a subsequence
(ani) of (a,,) that converges weakly to a point
a* € B. By lemma (2.4)

%H{}o”Sani —apll=0= ngo”Tani — Ayl

thus a* € F(T, S).

To prove (a,,) converges weakly to a point a*.
Assume that (ay,) is another subsequence of
(a,,) that converges weakly to a point b* € B.
Then by lemma (2.6) Tli_r)golltan +(1 —-8a* -

b*|| exists V t € [0,1].

By lemma(1.15) a* = b*. Then (a,) converges
weakly to the point a* € F(T,S).

Ulitizing the same above argument to prove that
(z,) converges weakly to the point a* € F(T,S).

The following corollary as a special case of
quasi-nonexpansive mapping is now obvious.
Corollary (2.8):Let M be a uniformly convex
Banach space satisfying Opial’s condition and
T:B — B be satisfying condition (C;), S:B — B
be generalized nonexpansive map and (a,),(z,)
be as in lemma (24) and lemma(2.5),
respectively. If F(T,S) # @, then (a,) and (z,)
converges weaklt to a common fixed point of S
and T.

Corollary (2.9): Let M be a uniformly convex
banach space and its dual M* satisfies the Kadec-
Klee property and T: B — B be lipschitzain map
and satisfying condition (C;) and S:B — B be
lipschitzain and generalized nonexpansive maps
and (a,),(z,) be as in lemma (2.6). If F(T,S) #
@, then (ay) and (z,) converges weakly to a
common fixed point of Sand T.
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Corollary (2.10): Let M be a uniformly convex
Banach space satisfying Opial’s condition and
T:B — B be satisfying condition (E;), S:B = B
be generalized nonexpansive map and (a),(z,)
be as in lemma (2.4) and lemma (2.5),
respectively. If F(T,S) # @, then (a,) and (z,)
converges weaklt to a common fixed point of S
and T.

Corollary (2.11): Let M be a uniformly convex
banach space and its dual M* satisfies the Kadec-
Klee property and T: B — B be Lipschitzain map
and satisfying condition (E;) and S:B — B be
Lipschitzain and generalized nonexpansive maps
and (a,),(z) be as in lemma (2.6). If F(T,S) #
@, then (a,) and (z,) converges weakly to a
common fixed point of Sand T.

3. Equivalance of Iterations

Theorem (3.1): Let B be a nonempty closed
convex subset of a Banach space M. Let T:B —
B be a quasi-nonexpansive map, S:B — B be
Lipschitzain and generalized nonexpansive maps
and a* € B be a common fixed point of S and T.
Let (a,) and (z,) be the Picard-Mann and Liu et
al iteration schemes defined in (1) and (2),
respectively. Suppose (a,) and (B,) satisfied the
following conditions:
1-(ay)and (B,) € (0,1),vn = 0.
2-), a, = oo.
3-Y By < 0.
If zy = ag and R(T),R(S) are bounded, then the
Picard-Mann iterative sequence (a,) converges
strongly to a* (a,, = a*)and the Liu et al iterative
sequence (z,) converges strongly to a*(z, —
a*).
Proof: Since the range of T and S are bounded,
let
M = supgeptlITall} + llaoll < oo

then

layll < M, lbyll < M, Iz, ]l < M, lluyll < M
therefore

ITanll <M, |ITz,ll< M

lants— znsall
= |[Sh, — (1 — a,,)Sz, — @, Tu,||
< ”Sbn - SZn” + an”SZn - Tun”
< ”Sbn B Cl*” + ”Szn - a*” + an”SZn - a*”

+an||Tun—a*||”b bl

e n-— S n }

S6|lbn a ||+ﬂ{+”a*_a*”

by, — a|| } .
ol gy ) Ol —al

”bn_Sbn”} { b, — a*|| }
+“{+||a*—a*|| T OV la = byl

+an”2n - a*” + an“un - a*”
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< (2 b= all+ (°5 2 ) iz — ol
+ayllz, — a*|[ + ay lluy, — a|l
<|lbp—a*ll + A+ ayllz, —a*l
+apllu, —a*||

|y, — a|l

< (- alla, —a*ll + apllTa, — a*||

< (A -allay, —a*ll + apiliTa,ll + lla*|[}

< (1 - aplla, — a*ll + ap||M + lla*l||

llu, —a*|l

<= BISz, —a*ll + BTz, — a*” |
6+2 . Tz,

< =) (O 2 = @l + g, {1 20

<@A-BIXM+lla*|l} + BniM + lla*|[}

=M+ |la*||

Thus

lans1 = Znsall

< lIbp —a*ll + (A + ap)llzy, — a”||
+ap|lup —a’|l

< (- aplla,—a*ll + an{M + l|a*|]}
+(1 + a)llz, — a*ll + an{M + |la*|1}

< (1 - an)”an_zn” + (1 - an)”Zn_ a*”
+2a,{M + |la* I} + (A + ap)llz, — a*||

<A - apllay—zull + 1z, — @[l + 2a,

M + |la*||}
<A -a)llay, = zyll + A + 2 ){M + lla*|l}
let Un = llan—z,ll,pn = (A + 2a,){M +

lla*|[}, oy, = @y, and ? - 0asn — oo.
n
By applying lemma(1.11), we get
lim ||a,, — z,|| = 0.
n—oo
Ifa, » a* € F(T,S), then
lz, — a*ll < llz, — anll + llap — a*ll > 0as n
— 00,
And if z, » a* € F(T, S), then
la, —a*ll < llap — zpll + llzo — a*ll > 0as n
— 00,

4. Numerical examples

In this section, we consider two examples to show
that the Picard-Mann iteration scheme converges
faster than Liu et al iteration schem.

Example (4.1): LetT,S: R = R be a map defined
by Ta=23—a andSa=§ ,V a € R. Choose a,, =
Bn = %,Vn with initial value a; =30. The two

iteration scheme converge to the same fixed point
a* =0 .It’s clear from table 1, that Picard-Mann
converges faster than Liu et al.
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Table 1: Numerical results corresponding to a; =
30 for 20 steps

n Iterati Iterati n Iterati Iterati

Vol. 37, Part B. No. 02, 2019

Table 2: Numerical results corresponding to a; =
30 for 30 steps

n Iteratio Iteratio n Iteratio Iteratio
on (1) on (2) on (1) on (2) n (1) n (2) n (1) n (2)
0 30 20 1 0000  0.003 0 30 30 1~0.000T 0.0014
1 6 4 6
1 10.7713 12.9255 1 0.0000 0.0008
1 11.25 13.12 1 0.000 0.001 7
00 50 22 5 2 31911 75904 1 00000  0.0005
2 4218 5.742 1 0.000 0.000 8
8 2 3 1 6 3 0.5325 3.4317 1 0.0000 0.0003
3 1.582 2512 1 DL 0.000 4 0.2540 0.7150 Z 0.0000 0.0002
0 2 4 0 3 ' ' 0 ' '
4 0.593 1.099 1 0.000 0.000 5 0.1256 0.3940 2 - 0.0001
3 1 5 0 1 1
5 0.922 0.480 1 ) 0.000 6 0.0626 0.2304 2 - 0.0001
. ) ) 5
s 9 6 1 7 0.0313 0.1370 2 - 0.0000
6 0.083 0.210 1 - 0.000 3
4 4 7 0 8 0.0156 0.0819 2 - 0.0000
7 0.031 0.092 1 - 0.000 L 0.0078 0.0491 ;’
3 0 8 0 9 ' ' 5
8 0.011 0.040 1 - 0.000 1 0.0039 0.0295 2 - -
7 3 9 0 0 6
9  0.004 0.017 2 0.000 i 0.0020 0.0177 5 - -
4 6 0 0
1 0.0010 0.0106 2 - -
1 0.001 0.007 - 0.000 2 8
0 6 7 0 1 0.0005 0.0064 2 - -
3 9
1 0.0002 0.0038 3 - -
4 0
1 0.0001 0.0023
5

Figure 1: Convergence behavior corresponding to
a, = 30 for 20 steps.

Example (4.2): Let B = [-180,180], T,S:B —
B be a map defined by Ta = acosa and Sa =

SVa € B. Choose a, =§,ﬁn =§ V n with
initial value a; = 30. The two iteration scheme
converge to the same fixed point a* = 0.1t’s

clear from table 2, that Picard-Mann converges

faster than Liu etal.

Figure 2: Convergence behavior corresponding to
a, = 30 for 30 steps.

Finally, it is appropriate to ask a question about
the possibility of employing the above results in
finding solutions to problems such in [19] and
[20]
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