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1. Introduction 

Analytical functions could be studied using certain   

or complex analysis nominated or Geometric 

functions. Geometric function is characterized by 

compromising  between geometry and analysis. 

During recent decades, algebraic geometrical 

methods and theatrical  function on compact 

Rieamann surface  have been used in  finite- gap, 

solution concerning  non-linear integral system and 

constructing, [8]. The method is also connected 

through growing specialized area of mathematics 

to mathematical physics. Early string theory 

models is utilized for computation Veneziano 

amplitudes [12]. The new progress in approach of 

constructing  to  problems of linear and non-linear 

value and initial value lead to a role for geometric 

function by using spectral analysis [10] Geometric 

function could be considered as a classical subject.  

 

    Assume M  institute the class of all functions of 

the form: 

1

1
( ) = s

s

s

h n k n
n





         ........(1) 

Who is analytic and meromorphic univalent in 

punctured unit disk 

 

           *={n  ℂ: 0 < n < 1} = \{0} 

Consider subclass  T  of functions of the form: 

ℕ = {1,2,…})                              .......(2) 

A function  h  T  is meromorphic univalent 

starlike function of order  (0 1)     if  

'( )
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n
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 
     
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            ......(3) 

A function  h  T  is meromorphic univalent 

convex function of order  (0 1)     if  

''( )
Re 1 , (0 1; *)

( )
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The convolution of two functions, h is shown in (2) 

and 
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Is defined by 

1
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Definition (1):Let  h  T  be shown in (2). The 

class MK( , , , )     is defined by 

 

2 2
''( ) (1 ) '( )
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(0 < 1,0 < 1,0 < 1,0 1)                  ......(6) 

 

Different authors executed other class, like, Aouf 

[2, 3], Aouf and Shammarky [4], Atshan [5], 

Atshan and Joudah [6], Atshan and Kulkarni [7] 

and Cho, Owa, Lee and O. Altintas [8]. 
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2- Coefficient inequality 
The first theorem, we get coefficient estimates for 

h to be in MK( , , , )    . 

 

Theorem (1): Let  h  T. Then  MK( , , , )     if 

and only if 

 
1

( ) (1 )(1 ),s

s

s s k     




    

(0 < 1,0 < 1,0 < 1,0 1)              ......(7) 

 

For the following function the result is acute  
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Proof: Presume that the inequality (7) satisfy and 

postulate n = 1. Then from (6), we get 
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by presumption. 

Thus, using the principle of maximum modulus, 

we obtain h MK( , , , )     

Conversely, assume that  h  which is defined by 

(2) content in the class  MK( , , , )    . 

Hence 
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Since  Re(n)  n  for all n, we have  
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Upon clearing divisor in (8) and letting n  1 –, 

for real values, so we can rewrite (8) as follows 
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Finally sharpness follows if we take 
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Corollary (1):Let  h MK( , , , )    . Then 
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where  (0 < 1,0 < 1,0 < 1,0 1)        . 

 

3- Convex set 

Next Orem, we get the convex set of the class 

MK( , , , )    . 

 

Theorem (2):Let the functions 

1
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be in the class  MK( , , , )    . Then for 0  t  1 

the function 

1

1
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where  (1 ) 0s s su t k tw     

is also in the class MK( , , , )    . 

 

Proof: presume that the functions  h  and  d  

content in the class MK( , , , )    . 

Therefore, making use of Theorem (1). We see 

that 
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which complete the proof of Theorem (2). 

 

4- Extreme points 
In this section we present and prove new 

Theorem. 
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0

1
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n
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For s = 1,2,3,… . Then  h MK( , , , )     if and 

only if it can be expressed in the form 

0

( ) ( )s s

s

h n d h n




   where  ds  0  and  
0

1s

s

d




 . 



Engineering & Technology Journal                                                                    Vol. 35, Part B. No. 2, 2017 
 

611 

 

Proof: suppose that 
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By Theorem (1), we have  h MK( , , , )      if 

and only if 
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the proof is complete. 

Conversely, assume h MK( , , , )    . Then we 

show that  h  can be written in the form: 
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5- Radius of starlikeness and convexity 
In the dependent theorems, we illustrate the radius 

Starlikeness and Convexity. 

Theorem (4): If   h MK( , , , )    , Then  h  is 
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The outcome is severe for the function  h  shown in 
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Theorem (5): If  h MK( , , , )    , then  h  is 

univalent meromorphic convex of order              

(0    1) in the disk  n < r2, where 
1

1

2

(1 )[ ( ) ]
inf

( 2)(1 )(1 )

ss
r

s

   

   

   
  

    
 

The score is intense for the function  h  shown in 
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which follows the result. 

 

6- Hadamard product 
In the subsidiary Theorem, We get the hadamard 
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     


    
 

 

Theorem (7): Let h, c MK( , , , )    . Then 

2 2

1

1
( ) ( ) s

s s

s

h n k w n
n





    

belongs to MK( , , , )   , where 
2 2 2

2 2

2 (1 ) (1 )( ) [ ( ) ]

[ ( ) ] 2 (1 ) (1 )

s s s

s s

      

     

     


    
 

 

Proof: Since  h, c MK( , , , )    . So Theorem (1) 

yields 
2

1

[ ( ) ]
1

(1 )(1 )
s

s

s s
k

  

  





  
 

  
   and  

2

1

[ ( ) ]
1

(1 )(1 )
s

s

s s
w

  

  





  
 

  
  

From the two present inequalities we obtain  

2

2 2

1

1 [ ( ) ]
( ) 1

2 (1 )(1 )
s s

s

s s
k w

  

  





  
  

  
          .......(17) 

But h MK( , , , )    if and only if 

2 2

1

[ ( ) ]
( ) 1

(1 )(1 )
s s

s

s s
k w

  

  





 
 

 
 .(18) 

where  0 < ℓ < 1, however, (17) implies      .....(18) 

if 
2

[ ( ) ] 1 [ ( ) ]

(1 )(1 ) 2 (1 )(1 )

s s s s     

    

    
  

    
 

simplifying, we get 
2 2 2

2 2

2 (1 ) (1 )( ) [ ( ) ]

[ ( ) ] 2 (1 ) (1 )

s s s

s s

      

     

     


    
 

 

7- Integral Operators with some properties 
Next, we consider some properties have been 

found on the another class in [13]. 

 

Theorem (8): If h MK( , , , )    , then  

1

0

( ) ( ) , 1

n

H n o h o do
n









    

Content in the class MK( , , , 1)     , the score is 

Sharp for the Function  h  shown in  

1 (1 )(1 )
( ) , ( 1)

[ ( ) ]

sf n n k
n s s

  

  

 
  

 
    ........(19) 

Proof: By definition of M(n), we get  

1
10

1
( ) ( ) , 1

1

n

s

s

s

M n o h o do k n
n sn





 









    
 



In view of Theorem(1), it's enough to display that 

1

[ ( ) ( 1]
1

( 1) (2 )(1 )
s

s

s s
k

s

    

   





  


   
               ........(20) 

Since h MK( , , , 1)     , then (20) satisfies if 

[ ( ) ( 1)] [ ( ) ]

( 1) (2 )(1 ) (1 )(1 )

s s s s

s

       

      

    


     
 

 

or equivalently, when 

(1 ) [ ( ) ( 1)]
( , , , , , ) = 1

( 1)(2 )[ ( ) ]

s
s

s s

     
     

    

   


    
 

since ( , , , , , )s       is decreasing of s(s  1).  

Then the proof is complete. 

Theorem (9): Let the function  h  be shown in (2) 

in the class MK( , , , )    . Then, the integral 

operator 
1

0

( ) = ( ) , (0 1,0 )L n p h pn dp p          .....(21) 

is in the class MK( , , , )     where 

=
( 1)[ ( ) ] ( )s s s




          
 

 

The consequence is acute for the function 
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1 (1 )(1 )
( ) =

[ ( ) ]

sh n n
n s s

  

  

 


 
 

Proof: Let 1

1

( ) = s

s

s

h n n k n






  in the class 

MK( , , , )    . Then 

1 1 1

10 0

( ) = ( ) s s

s

s

p
L n p h pn dp p k n dp

n


  

 




 
  

 
   

        
1

1
=

1

s

s

s

k n
n s










 

  

It is enough to show that 

 

1

[ ( ) ]
1

( 1) (1 )(1 )
s

s

s s
k

s

   

   





 


   
             ...........(22) 

Since  h MK( , , , )    . Then by Theorem (1). 

We have 

1

[ ( ) ]
1

(1 )(1 )
s

s

s s
k

  

  





 


 
  

 

Note that (22) is satisfied if 

 

[ ( ) ] [ ( ) ]

( 1) (1 )(1 ) (1 )(1 )

s s s s

s

      

      

   


     
 

 

or equivalently 

=
( 1)[ ( ) ] ( )s s s




          
 

 

8-   - neighborhoods 
The above concept of  -neighborhoods was 

extended and applied recently to families of certain 

analytic functions with negative coefficients by 

Altinta¸s et al. [1] and to families of 

meromorphically multivalent functions by Liu and 

Song [13]. The main object of the present paper is 

to investigate the p-neighborhoods of several 

subclasses of the class T of normalized analytic 

functions in U with negative and missing 

coefficients, which are introduced below by 

making use of the Ruscheweyh derivatives. 

 

Definition(2):Let 

(0 1, 0 1, 0 1, 0 1)            and g  0 

We define the  -neighborhoods of a function  h  

T  and denote  Ng(h)  such that 

1 1

1 [ ( ) ]
N ( ) = : ( ) and

(1 )(1 )

s

g s s s

s s

s s
h g T g n w n k w g

n

  

  

 

 

  
     

  
   

                                                                   …(23)   

                                                                    

Goodman [11] , Ruscheweyh [14] , Altintas and 

Owa [1] have inspected neighborhoods for analytic 

univalent functions. We consider this notion for the 

class MK( , , , )    . 

 

Theorem (10):Let the function  h(n) defined by (2) 

be in the class MK( , , , )    , for every complex 

number ℓ with ℓ < g, g  0, let 
1( )

1

h n n 


  

MK( , , , )    . Then                      Ng(h)  

MK( , , , )    , g  0. 

 

Proof: Since  h  MK( , , , )    , h satisfies (7) and 

we can write for j ℂ, j = 1, that 

2
''( ) (1 ) '( )

(1 )
'( )

sn h n nh n
n

nh n
n


  

  


  


 



j                .......(24) 

Equivalently, we must have  

1

( )( )
0, *

h n
n

n





                                   

.........(25) 

Where 

1

1
( ) s

s

s

n u n
n





   , 

such that  

js[ (s

(1 )(1 )
su

  

  

  


 
 

satisfying  

 

js[ (s

(1 )(1 )
su

  

  

  


 
 and s  1 

Since  
1( )

1

h n n 


  MK( , , , )     by          .... 

(26) 
1

1

1 ( )
( ) 0

1

h n n
n

n





 
  

 
.(26) 

Now assume that  
1

( )( )h n
g

n 


 . Then, by (26), 

we have  

1 1

1 ( )( ) 1 ( )( )
0

1 1 1 1 1

gh n h n

n n 

 
    

    

 

This is a contradiction as ℓ < g Therefore 

  

1

( )( )h n
g

n 


  

 

Letting 

1

1
( ) N ( )s

s g

s

g n w n h
n





   . 

Then  
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1 1
1 1

( )( ) ( ) ( )
( )

ss

s s s s s s

s s

c n h c n
g k w u n k w u n

n n

 

 
 

  
      

 

1

[ ( ) ]

(1 )(1 )

s

s s s

s

s s
n k w u g

  

  





 
  

 
  

Therefore 
1

( )( )
0

c n

n 


 , and we get c(n)  

MK( , , , )     so Ng(h)  MK( , , , )    . 

 

9- Distortion and Growth Theorem  

Next, we get the distortion and growth theorems 

for a function  h  to be belongs in the class 

MK( , , , )     

Theorem (11):-Let the Function h(n) defined by 

(2) be in the class MK( , , , )    . Then for            n 

 *, we have  

 

1 (1 )(1 ) 1 (1 )(1 )
( ) 1

[ (1 ) ] [ (1 ) ]
n h n n

n n

     

     

   
    

   
 

 

                                                               .........(27) 

 

The score is squeaky for the function  h(n)  

specified by  

1 (1 )(1 )
( )

[ (1 ) ]
h n n

n

  

  

 
 

 
                        ......(28) 

 

Proof: It is easy to see from Theorem (1) that  

1 1

[ (1 ) ] [ ( ) ] (1 )(1 )s s

s s

k s s k        
 

 

        

 

Then  

1

(1 )(1 )

[ (1 ) ]
s

s

k
  

  





 


 
                                 .........(29) 

 

Making use of (29), we have 

1

1
( ) s

s

h n n k
n





    

1 (1 )(1 )
( )

[ (1 ) ]
h n n

n

  

  

 
 

 
 

and 

1

1
( ) s

s

h n n k
n





    

1 (1 )(1 )
( )

[ (1 ) ]
h n n

n

  

  

 
 

 
.  

Theorem (12): presume the function h(n)  

acquaint by (2) be in the class MK( , , , )    .Then 

for n  *, we have  

 

2 2

1 (1 )(1 ) 1 (1 )(1 )
'( ) , 1

[ (1 ) ] [ (1 ) ]
h n n

n n

     

     

   
    

   
 

                                                                 ........(30) 

 

with equality for  

1 (1 )(1 )
( )

[ (1 ) ]
h n n

n

  

  

 
 

 
 

Proof:  From (29) and Theorem (1) that  

1

(1 )(1 )

[ (1 ) ]
s

s

sk
  

  





 


 
  

 

Consequently, we have  

2 2
1

1 1 (1 )(1 )
'( )

[ (1 ) ]
s

s

h n sk
n n

  

  





 
   

 
  

and 

2 2
1

1 1 (1 )(1 )
'( )

[ (1 ) ]
s

s

h n sk
n n

  

  





 
   

 
 .  
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