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ABSTRACT 

In this paper, the seepage analysis through and underneath the hydraulic 

structures is studied at the same time without dividing the structure into parts, and 

then analyze each part individually.  The analysis has been done using the finite 

volume method using rectangular elements. This method implemented on several 

types of structures and the comparison of the results is made with the one solved 

using finite element method. The comparison showed close results. The finite 

volume method has been implemented on non-rectangular structures. The present 

work studied the effect of heterogeneous foundations on the uplift pressure and exit 

gradients at the downstream and comparison with homogenous foundations. Also it 

studied the evaluation of effect of position and inclination of cut-offs at upstream 

or downstream of structures on uplift pressure and exit gradients at downstream. In 

addition, it studied the effect of impervious body inside the structure or foundation 

on uplift pressure and exit gradients at downstream.  

 
 

 طريقة العناصر الحجمية آت المائية باستخدامليل التسرب خلال وتحت المنشـتح
 

 الخلاصة
ل  بتسذب  لاذ ل حتثذل  بآت ذلل  بآ فيذآ فذي د  ح ثذل لح   ب  ذح   بذ  يذتم في هذا   بحثذت تث 

تقسيم  بآت أ  ب   قس م حتث يل كل  ز  ع ذ  ثذل ت تذم  بتث يذل ح سذتلال م  بيقذآ  بات جذب  بث آيذآ 
عت جب آست ي آ  ب كل.  حقل  ب بيقآ ع   عل   تح ع آ   بآت لل حآق بتآ  بتت فج آع حح ستلال م 
آتق بحآ. تم ت حيق  ب بيقآ ع    بآت لل  بات جب  بآثلل  فك تل تت فج  بآق بتآ  ح بيقآتت فج  بثل 

ع ذذ  ضذذل   ببفذذع   تسذذآ لب سذذآ تذذأايب  لاسذذا ريذذب  بآت ح يضذذ ا ل  لا ذذك ل ريذذب  بآسذذت ي آ. 
تقيذيم تذأايب آحقذع آق بتذآ آذع  لاسذا  بآت  تسذآت ح لاضذ فآ  بذ   ح لاتثل ب  بهيذلبحبي عتذل  بآذ لاب

 ببأسيآ عتل آقلم  ح آ لاب  بآت أ ع ذ  ضذل   ببفذع ح لاتثذل ب  بهيذلبحبي  ثح  زبحلب آ آي    
 سم ريب تف ا ب آ   في  بآت أ  ح  س سه ع ذ  ضذل   ببفذع عتل  بآ لاب. كآ  تم لب سآ تأايب ح حل 

 ح لاتثل ب  بهيلبحبي عتل  بآ لاب.
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INTRODUCTION 

ydraulic structures are a specific type of engineering structures designed 

and executed in such a way in order to utilize it to control natural water or 

save industrial sources to ensure optimum use of water. Hydraulic 

structures of such a field normally consist of two parts: (1) the superstructure part 

which comprises the piers, abutments, retaining walls, arches, and all the upper 

components of the structure, and (2) The substructure part, which generally 

consists of a continuous masonry or concrete foundation called the floor, and of 

step walls or sheet piles.        

The design of a complete hydraulic structure then is divided into two parts, the 

hydraulic design and structural design. 

One of the most important problems that cause damage to hydraulic structures 

is seepage through and/or under dams, which occurs due to the difference in water 

level between the upstream and downstream sides of hydraulic structure. 

Seepage is inevitable in all earth dams and ordinarily does not harm. 

Uncontrolled seepage may, however, cause erosion within the embankment or in 

the foundation, which may lead to piping.  

Seeping water may prove harmful to the stability of the dam by causing 

softening and sloughing of slopes due to the development of pore pressures and 

thereby leading to the weakling of the mass and even failure by shear [2]. 

Therefore, the study of seepage through earth dams is one of the important 

analyses in dam design to calculate the quantity of losses from reservoir, estimating 

the pore pressure distribution, and locating the position of the free surface, which 

are used in analysis of the dam stability against the shear failure. In addition, 

studying of the hydraulic gradient gives a general idea about potential piping. 

Seepage flow below the foundation of hydraulic structures founded on 

permeable soils exerts upward pressure on the structure (floor) and tends to reduce 

the frictional resistance between the structure and its foundation, and increase the 

tendency to slide. This thrust force is called the uplift pressure. In addition, it may 

tend to wash away soil under the hydraulic structure, leading to piping. Excessive 

uplift pressure and piping are often the cause of damage of the stability of the 

structure and may cause its failure. 

In general, the problems to be considered due to seepage flow through and 

beneath structures can then be grouped into two categories, those due to (1) excess 

leakage and (2) excess pressure or gradients. 

Excess quantity of seepage is caused by high permeability, short seepage paths, 

and defects such as cracks, fissures, and uneven settlement. The seepage discharge 

can be reduced by using soils of low permeability, placing cores (in earth fill 

structures), cut-offs in the foundations, and by increasing the seepage path by 

extending the floor using auxiliary revetments. Excessive uplift pressures, 

particularly at point where there is little weight of structure materials to resist them, 

lead to boiling and piping. Control of these pressures and gradients by using step 

walls or sheet piles on upstream or/and downstream, internal drains, filter trench on 

downstream, pressure relief wells on downstream side. 

 

AIM OF THE RESEARCH 

H 
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The aim of the present work is to verify the finite volume method adopted in 

this study to obtain solutions for seepage flow through porous media comprising 

irregular zones and compare the results obtained with finite element method. In 

addition, an investigation is to be done to show the effect of anisotropy of 

foundation soil on the uplift pressure and exit gradient and compare it with the 

isotropic soil foundation. Also, to evaluate the effect of location and inclination of 

the cut-offs on the uplift pressure and exit gradient. As well, to evaluate the effect 

of impermeable solid rock located in the foundation. 

 

FINITE VOLUME METHOD 

The finite volume method (FVM) is one of the numerical methods used to solve 

the partial differential equations of such applications: fluid flow, heat transfer, 

combustion …etc. The FVM was originally developed as a special finite difference 

formulation and then thoroughly validated general purpose computational fluid 

dynamics (CFD) technique. The numerical algorithm consists of the following 

steps [4][5]: 

 Formal integration of the governing equations of fluid flow over all the 

(finite) control volumes of the solution domain. 

 Discretisation involves the substitution of a variety of finite-difference-

type approximations for the terms in the integrated equation representing flow 

processes such as groundwater flow and sources. This converts the integral 

equations into a system of algebraic equations. 

 Solution of the algebraic equations. 

 

FVM FOR TWO-DIMENSIONAL STEADY STATE SEEPAGE 

Consider steady state seepage (without external source) in a two dimensional 

domain defined in Figures (1) through (3). The process is governed by Laplace 

equation. 

 

0
































y
k

yx
k

x

  …(1) 

 

 

Where k is the coefficient of permeability. Boundary values of   are 

prescribed. The numerical algorithm steps are as follows: 

Step 1: Grid generation 

The first step in the finite volume method is to divide the domain into discrete 

control volumes. Let us place a number of nodal points in the domain. The 

boundaries (or faces) of control volumes are positioned mid-way between adjacent 

nodes. Thus, each node is surrounded by a control volume or cell. It is common 

practice to set up control volumes near the edge of the domain in such a way that 

the physical boundaries coincide with the control volume boundaries as shown in 

Figure (1). 

A general nodal point is identified by P and its neighbours in a two-dimensional 

geometry, the nodes to the west, east, south, and north are identified by W, E, S, 

and N respectively. The west side face of the control volume is referred to by 'w' 

and the east side of the control volume face by 'e' and the same for rest faces south 

's' and north 'n'. The distances between the nodes W and P, P and E, P and S, and P 
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and N are identified by δxw , δxe , δys , and δyn respectively. Similarly, the 

distances between face w and point P and between P and face e are denoted by δxwP 

, δxPe , δysP , and δyPn respectively. Figure (3) shows that the control volume width 

is Δx = δxwe and height is Δy = δysn. 

Step 2: Discretisation 

The key step of the finite volume method is the integration of the governing 

equation (or equations) over a control volume to yield a discretised equation at its 

nodal point P. For the control volume defined above and for a case of steady state 

seepage with a source gives Poisson’s equation. 
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Where S  is the source term. Integrating the above equation gives: 

 

0.. 

































 VVV

dVSdydx
y

k
y

dydx
x

k
x



  …(3) 

 

0.. 
































   VSdydx

y
k

y
dydx

x
k

x

e

w

n

s

n

s

e

w

x

x

y

y

y

y

x

x



 

…(4) 

 

exact evaluation of the inner integral yields the following: 
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…(5) 

 

For the first term in the above equation, will be assumed that the quantities 

between square brackets do not vary with y, and for the second term the quantities 

between square brackets do not vary with x, which yields the following expression: 
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By considering a control volume of unit thickness, then face areas of the control 

volume are Ae=Aw=∆y and An=As=∆x, this tends to: 
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The above equation expresses the continuity equation across the control 

volume. 

Here ∆V is the volume and S  is the average value of the source S  over the 

control volume. The source term S  may be a function of the dependent variable. 

In such cases the FVM approximates the source term by means of a linear form: 

 

PPu SSVS       …(8) 

 

To calculate gradients (and hence fluxes) at the control volume faces an 

approximate distribution of properties between nodal points is used. Linear 

approximations seem to be the obvious and simplest way of calculating interface 

values and the gradients. This practice is called central differencing. Thus, we can 

re-write equation (7) as follows[5] [4]: 
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This equation can be re-arranged as: 
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Identifying the coefficients of E , W , S , N ,and P  in the above 

equation as aW , aE , aS , aN , and aP . Hence, the above equation can be written as: 

 

uNNSSEEWWPP Saaaaa               …(11) 
 

 

 

The above equation represents the discretised form of equation (1) and it applies 

to each internal node in the domain shown in Figure (1). This defines a linear 

system of m equations in the m unknown internal values of  . 

Step 3: Solution of equations[4][5] 

Discretised equations of the form (11) must be set up at each of the nodal points 

in order to solve a problem. For control volumes that are adjacent to the domain 

boundaries, the general discretised equation (11) should be modified to incorporate 

boundary conditions. The resulting system of linear algebraic equations is then 

solved to obtain the distribution of the property   at nodal points. There are two 

families of solution techniques for linear algebraic equations: direct methods and 

indirect or iterative methods. 
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The finite volume method usually yields systems of equations each of which 

has a vast majority of zero entries. In this proposed work, the matrix of coefficients 

will be a penta-diagonal system that has five non-zero coefficients. Since the 

systems are often very large - up to 100000 or 1 million equations - one find that 

iterative methods are generally much more economical than direct methods. 

Jacobi and Gauss-Seidel iterative methods are easy to implement in simple 

computer programs, but they can be slow to converge when the system of 

equations is large. Hence, they are not considered suitable for general CFD 

procedures. Thomas (1949)[5] developed a technique for rapidly solving tri-

diagonal systems that is now called the Thomas algorithm or the tri-diagonal 

matrix algorithm (TDMA). The TDMA is actually a direct method for one-

dimensional situations, but it can be applied iteratively, in a line-by-line fashion, to 

solve multi-dimensional problems and is widely used in CFD programs. It is 

computationally inexpensive and has the advantage that it requires a minimum 

amount of storage. 

 

VERIFICATION OF FINITE VOLUME METHOD 

The capacity and effectiveness of the finite volume method have been examined 

by applying it to solve several typical and practical seepage examples. The 

examples contained both isotropic and anisotropic body and foundation material. 

Having determined the values of potentials, the uplift pressure distribution 

beneath the structure, the seepage discharge, the exit gradients …etc. can be 

determined accordingly. 

The method has been used to solve the following examples: 

a. Seepage flow beneath a solid rigid impermeable base to a water 

impounding structure supported by a uniform isotropic permeable foundation, 

Figure (4). It can be shown analytically that, for this case, the equipotential lines 

are symmetrical. Figure (4) shows the equipotential lines produced by the 

numerical solution of both finite element and the finite volume; it is seen that the 

flow pattern is symmetrical as logical would expected. It shows that the result of 

the finite volume is similar to the Jumaily[1] finite difference/element results. 

b. The same previous example, but now the permeable foundation is 

anisotropic (kx = nky). Different values of n were taken. Figure (5) shows the 

comparison between the response of the finite difference/element and finite volume 

methods for these various conditions that show the similarity in results, Jumaily[1]. 
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MORE ILLUSTRATIVE EXAMPLES 

Figures (6 to 8) show the comparison between the response of the finite element 

and finite volume methods for various boundary conditions and seepage control 

devices that show the similarity in results, Khasaf
[3]

, except for Figure (8) which 

shows a different equipotential lines. A thorough check done using finite volume 

method to reach the result that the figure showed by Khasaf is for ( 60 ) and 

not ( 150 ) as printed in his thesis. Figures (9 to 10) show other cases of dams. 

Figure (10) shows a case which is difficult to be solved using finite difference as 

there is a rounded rock under the dam. 

 

OTHER CHARACTERISTICS OF FVM 

The finite volume method is not limited to Cartesian grids but can be used with 

a grid in any orthogonal coordinate system. i.e. one can use rectangular elements in 

Cartesian coordinate, sector elements in polar coordinates, and cuboids elements in 

three dimensional Cartesian coordinates. 

The finite volume method is applied to different types of material, structures, 

boundary conditions and it shows good results in comparison to ones done by finite 

element method. 

The finite volume method shows a good response easy to implement in 

anisotropy, non-homogeneous material, and discontinuous boundary. 

The finite volume method is easy as finite difference and powerful as finite 

element and it is easy to program and implement. 

 

CONCLUSIONS 

In this study the finite volume method was used to analyze the seepage flow 

under hydraulic structures founded on isotropic, anisotropic, homogeneous, and 

non-homogeneous material. Rectangular elements proved their efficiency in 

computing the potential head. Comparison between the results of finite volume 

method and finite element method is obtained and the solutions show good 

agreement. 

A special code written to program the finite volume method solutions, so as 

potential head and exit gradient can be obtained at any point within the flow 

domain. The present finite volume model is general and can be applied to a wide 

range of practical problems. 
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LIST OF SYMBOLS 
Symbol Definition Dimensions 

Aw, Ae, As, 

An 

Face areas of the control volume at w, e, s, n [L2] 

aW , aE , aS , 

aN , aP 

Coefficients [-] 

k Coefficient of permeability [L/T] 

ka Coefficient of permeability of material a [L/T] 

kb Coefficient of permeability of material b [L/T] 

kw, ke , ks , kn Coefficient of permeability at control volume faces [L/T] 

P General nodal point [-] 

uS  
source term [unit/L3] 

S  
source term [unit/L3] 

x,y coordinates [-] 

W, E, S, N Node position at west, east, south, and north [-] 

w, e, s, n west, east, south, and north side face of the control volume [-] 

  
Orientation of the direction of major principal hydraulic 

conductivity ellipse with x-axis [


] 

∆V Volume of the control volume [L3] 

Δx Control volume width [L] 

Δy Control volume Height [L] 

δxw , δxe , 

δys , δyn 

The distances between the nodes W and P, P and E, P and S, and P 

and N 

[L] 

δxwP , δxPe , 

δysP , δyPn 

The distances between face w and point P, P and face e, s and face 

P, P and face n, 

[L] 

δxwe Control volume width in respect with east-west directions [L] 

δysn Control volume Height in respect with north-south directions [L] 

  
Flow potential [L] 

E , 

W , S , 

N , P  

Flow potential at nodes E, W, S, N, and P [L] 
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Symbol Definition Dimensions 

j  
Potential at extremity (j) [L] 

P  
Potential at node under consideration (P) [L] 

 

 
 

 

 
 
 

 
 

Figure (3) Geometric variables for a typical control volume. 
 

 
Figure (4) Homogeneous uniformly isotropic soil example, comparison results 

between (1) finite volume & (2) finite difference, Jumaily
[1]

. (kx=ky). 

Figure (2) A part of the two 

dimensional grid 

Figure (1) Control Volume 

surrounding grid nodes and covering 

whole domain. 
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Figure (5) Comparison between finite volume & finite difference, Jumaily

[1]
. 

(a1) finite volume & (b1) finite difference (kx=5 ky), (a2) finite volume & (b2) 

finite difference (kx=0.2 ky ), (a3) finite volume & (b3) finite difference 

(kx=0.1 ky ). 

 

 
Figure (6) A dam supported by isotropic foundation impounding a depth of 

water (H=1) (a) Equipotential lines, (b) Pore water pressure, (c) Uplift 

Pressure distribution under the dam base, (d) FEM, Khasaf 
[3]

. 
 

(a2) 

(b2) (b3) 

(a3) 
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Figure (7) A dam supported by isotropic foundation impounding a depth of 

water (H=1) and filter trench at x=14 width=1  (a) Equipotential lines, (b) 

Pore Water Pressure, (c) Uplift Pressure distribution under the dam base, (d) 

FEM, Khasaf 
[3].

 

 

 
 

Figure (8) A dam based on anisotropic foundation (kx =4ky with 150 ) 

impounding a depth of water (H=1) with two cut-offs at far ends (a) 
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Equipotential lines, (b) Pore water pressure, (c) Uplift Pressure distribution 

under the dam base, (d) FEM, Khasaf
[3]

. 
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Figure (9) A dam its k=1E-12 and Layer1 k=1E-10 and Layer2 k=1E-8 

impounding a depth of water (H=7) and D/S H=6 with two cut-offs at far ends 

(a) Equipotential lines, (b) Pore water pressure, (c) Head at Exit Gradient, (d) 

Uplift Pressure distribution under the dam base, (e) Flow Vectors. 

 
 

 

 

 

 

 

 
 

 

Figure (10) A dam its k=1E-12 and Layer1 k=1E-10 and Layer2 k=1E-8 

impounding a depth of water (H=7) and D/S H=6 with spherical rock under 

the middle of the dam(a) Equipotential lines, (b) Pore water pressure, (c) Head 

at Exit Gradient, (d) Uplift Pressure distribution under the dam base, (e) Flow 

Vectors, (f) Head around the Rock. 

 


