Eng. & Tech. Journal, Vol. 29, No.7, 201

Training Artificial Neural Networks by PSO to Perform Digital
Circuits Using Xilinx FPGA

Dr.Hanan A. R. Akkar =& FirasR. Mahdi*
Received on: 30/6/2010
Accepted on: 7/4/2011

Abstract

One of the major constraints on hardware implementations of Artificial Neural
Networks (ANNSs) is the amount of circuitry required to perform the multiplication
process of each input by its corresponding weight and there subsequent addition. Field
Programmable Gate Array (FPGA) is a suitable hardware IC for Neural Network (NN)
implementation as it preserves the parallel architecture of the neurons in a layer and
offers flexibility in reconfiguration and cost issues. In this paper the adaption of the
ANN weights is proposed using Particle Swarm Optimization (PSO) as a mechanism
to improve the performance of ANN and also for the reduction in the ANN hardware.
For this purpose we modified the MATLAB PSO toolbox to be suitable for the taken
application. In the proposed design training is done off chip then the fully trained
design is download into the chip, in this way less circuitry is required. This paper
executes four bit Arithmetic Logic Unit (ALU) implemented using Xilinx schematic
design entry tools as an example for the implementation of digital circuits using ANN
trained by PSO algorithm.
Keywords: Particle Swarm Optimization (PSO), Artificial Neural Network (ANN),

Field Programmable Gate Array (FPGA).

Al gl LAY) Sad) adiald) Auliad) Ao g3 dse Lihua) dyuanl) ClSUEY) gy jai
daa_ll ALIAY il gul) 48 ghiaa aladinily 4rd)

Lanall
48 paadl dglae 5 a3 381 5all (5 5lL Jaal IS i dilee 383080 A D)) gall 4aS i
Gl 5all 4 sian (ANN) daelibhall dpniandl CUSE) 90 20858 4y Hll Gl gall (g2a) L
Lilas LY duelilaiaV¥) dnaell Sl oliad dpulic LalSia 55000 & FPGA) 4oyl AL
sale)) (8455 e (i s Baal gl Akl 8 e lidaaV) dpasd) LIAD (6) il el e
el Y dppamal) S)35 a5)1 Canyl) 13 b i A8 Gliad) A8LaY Al
ALY dpeliha¥) danll ISl ol et A0S PSQ il adall bl alasinly
o) adall Zabiadl ol ool (5 gatia (haady Liad (a jall 13g] Uil olid 3 50U 30 gall Julés)
A8) s ol dlee caai il ppanail) 33 galall Gadaill Culia ¢ oS3l L) Ay b
Cunall 13 283y) sall (e dae JB) Ui A8 Hhall edgy A8 1)) oy il JalS apanail) Jas o
Gaakat) JUiS (Sl 33 el a5l <l ol aladials < ao) I3 (ALU) Ghaie s Gilbas 3 53l
2 iall Al cadl A)l sa Ada i) g 30 yeall Auelida iYW A caal) IS) alasiuly dpad 5l il sal)

!

* Electrical and Electronic Engineering Department, University of Technology/ Baghdad
1329

https://doi.org/10.30684/ ¢tj.29.7.8
University of Technology-Iraq, Baghdad, Iraq/2412-0758
This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0

https://orcid.org/0000-0001-6648-2952
https://doi.org/10.30684/ etj.29.7.8

.& Tech. Journal, Vol. 29, No.7, 201

Training Artificial Neural Networksby PSO to

Perform Digital Circuits Using Xilinx FPGA

Introduction
Swarm Intelligence

arm Intelligence (SI) is a
modern artificial intelligence
discipline that is concerned with

the design of multi agent systems. The
design paradigm for these systems is
fundamentally different from many
traditional approaches. Instead of the
sophisticated controller that governs the
global behavior of the system, the Sl
principle is based on many
unsophisticated entities that cooperate
in order to exhibit a desired behavior.
Inspiration for the design is taken from
the collective behavior of social insects
such as ants, termites, bees and wasps,
as well as from the behavior of other
animal societies such as flocks of birds
or schools of fish. Even though the
single members of these societies are
unsophisticated individuals, they are
able to achieve complex task in
cooperation [1].
Particle Swarm Optimization

PSO is an emerging population based
optimization method, a parallel
evolutionary computation technique
originally designed by Kennedy and
Eberhart in 1995 [2]. The basic concept
of PSO basically comes from a large
number of birds flying randomly and
looking for food together. Each bird is
an individual called a particle. As the
bird looking for food, the particles fly in
a multidimensional search space
looking for the optimal solution. All the
particles are composed of family rather
than the isolated individual for each
other. They can remember their own
flying experience. According to the
cognitive memory, all the particles can
adjust their position moving toward.

1330

Their global best position or their
neighbor’s local best position. PSO has
a few parameters to adjust, so that its
convenient to make the parameters
reach to the optimum values, a large
amount of calculation work and much
time can be saved, on the other hand,
PSO can find the optimum solutions or
near the optimal solutions with a fast
convergent speed, because it has only
two computation formulas for iteration
[3].

The most popular formulation of
how particle adjusts its velocity and
position are shown in equations (1) and
(2).

VI ay(d) = Wi(d)
+Gr, (Ph(d)-x(d))
+Grp (Gh(d)-x(d)) - (1)

Xi 1) (d) = %(d) Vi (d) e
Where, d is the index of dimension in
the search space, W represents the
inertia weight, Gand G are regarded as
cognitive and social parameters for
algorithm respectively,rand s are two
random numbers. Pis the personal
best position recorded by particle i,
while Gh is the global best position
obtained by any particle in the
population [4].
Artificial Neural Network

The discipline of NNs originates
from the understanding of the human
brain. The average human brain consists
of 3*10" neurons of various types, with
each neuron connecting to up to*10
synapses processing information
separately and simultaneously [5].
ANN consists of a number of very
simple and highly interconnected
processors, which are analogous to the
biological neuron. Each neuron receives
a number of input signals through its
connections, producing a single output

.& Tech. Journal, Vol. 29, No.7, 201

Training Artificial Neural Networksby PSO to

Perform Digital Circuits Using Xilinx FPGA

signal. The output signal is transmitted
through the neuron outgoing
connection. Neurons are connected by
links; each link has a numerical weight
associated with it. Weights are the basic
means of long term memory in ANNS.
ANN learns through repeated
adjustments of these weights [6].

Each neuron computes the
weighted sum of the input signal
applied some activation function to the
net sum then firing an output according
to the used activation function, thus the
output of the neuron could be depicted
as in equation (3).

Yi=fi(Xj=1 wij * xj — 6i) ...(3)
Where, Yis the output of neuron i, is
the " input to the neuron, wis the
connection weight between neuron i and
j input, 6; neuron i bias and; fis the
activation function corresponding to
neuron i [7].

Field Programmable Gate Array

FPGA is a prefabricated silicon
device that can be electrically
programmed to become almost any kind
of digital circuit or system [8]. FPGA
architecture is dominated by its
programmable interconnects, and
configurable logic blocks which are
relatively simple. However, these
devices are more flexible than other
devices like Complex Programmable
Logic Device (CPLD) especially in
terms of the range of designs [9].

FPGA based reconfigurable
computing architecture are well suited
to implement ANNs as one can develop
concurrency and rapidly reconfigure to
adapt the weights and topologies of an
ANN [10]. FPGA realization of ANN
with large number of neurons is still a
not easy task because ANN algorithm is
wealthy with multiplication process and

1331

it's relatively expensive to realize.
Various works reported in this area
includes new multiplication algorithm
for ANN, NNs with some constraints to
achieve higher speed of process at
lower price and multichip realization
[11- 13].
Theory Description

ANNSs have been successfully used
in a wide range of scientific and
engineering applications. ANN is
capable of exhibiting intelligent
behavior and modeling complex non
linear functions which makes it proper
to variable conditions. Training is the
process of gradually adjusting the
weight of connections. BP algorithm is
mainly used to train ANNs for many
applications. Since this algorithm is
based on gradient descent which
demands derivatives, it's complex and
prone to get trapped in local optima. It
also has a slow convergence rate and a

high resources requirement on
hardware. PSO is one of the
evolutionary computation techniques

based on SI; PSO algorithm has been
employed for training feed forward
NNs.

In NN training, the main goal is to
obtain a set of weights that minimizes
error. In order to address the problem of
NN training to PSO; we represent each
set of weights and biases of a network
by a single particle. Thus, each patrticle
is a string of continuous valued
numbers encoding a candidate solution
for weights and biases of all neurons in
the network the length of the particle
depends on the network intended to
train. A pool of particles is considered
as a swarm (population) for PSO. By
repetitively updating particles of the
swarm, the most suited network weights

.& Tech. Journal, Vol. 29, No.7, 201

Training Artificial Neural Networksby PSO to

Perform Digital Circuits Using Xilinx FPGA

are gradually determined. Different
stopping criteria are used. One criterion
is to update the particles until the error
between actual and target output is
lower than a given threshold. Stopping
the training processes after a given
period without any improvement in
training is the next criterion. Another
criterion is training the network for a
given iteration [14].

PSO has its own advantages and
drawbacks over other computational
algorithms, advantages like its
probabilistic mechanism and multi
starting points, hence PSO can avoid
getting into the local optimal solution
[15], but the most utilized PSO property
is its free derivative activation function,
which means that we will train feed
forward NNs using PSO as the learning
algorithm with only hard limit
activation function for all network
layers. According to the hard limit
activation function properties the output
will be either one or zero, this property
will be very helpful simplifying the
network multiplication process.

For the purpose of NN
implementation of digital logic circuits
we have modified the MATLAB PSO
toolbox to be more suitable with our
application. The modification is in the
search space environment, instead of
searching all real search space values
the searching will be restricted to the
integer search space only which means
more save in term of time and efforts.
PSO tools will give us the exactly
weights needed for the network
training, these weights will be only
integers numbers. These integers will be
helpful in execution the multiplication
process using only AND gates. The goal
of training ANN using modified

1332

MATLAB toolbox is to get zero error
value as depicted in equation (4).

m yn K _ yKya
E:Zi:1zk:1(ti yi)*2)]

mn
Where, £ and ¥ represent the actual
and the predicted function values
respectively, m is the number of
training samples, and n is the number of
output nodes.
The Proposed Design of PSO Neuron

Hardware realization of ANN
depends on the efficient execution of
single neuron; one of the major
constraints on hardware
implementations of NNs is the amount
of circuitry required to perform the
multiplication of each input by its
corresponding weight and their
subsequent addition. This problem is
especially acute in digital designs,
where parallel multipliers and adders
are extremely expensive in terms of
circuitry.

FPGAs provide different design
choices to be evaluated in a short time
and keep system cost at a minimum. For
the proposed design, training of ANN
using modified PSO toolbox will be
done off chip, and a fully trained
configuration is downloaded into
hardware. In this way less hardware is
required. As training occurs only once
in the lifetime of an application training
off line method does not reduce the
network’s functionality.

Constructing digital circuits using
ANNs means that the input will be
restricted between two values one and
zero, when the NN is trained with only
integer weights values, the
multiplication process will not need
more than AND gates. Suppose a
neuron with a single input and weights
are blocked in the integer range of [-3,

.& Tech. Journal, Vol. 29, No.7, 201

Training Artificial Neural Networksby PSO to

Perform Digital Circuits Using Xilinx FPGA

3], two bits will represent the weight
and a single bit represents the weight's
sign. Therefore three AND gates are
sufficient to represent the multiplication
process with sign, where 0 stands for
the positive sign and 1 stands for the
negative sign. Figure (1) shows single
input two bit weight multiplication
process. This structure will be repeated
for each input. Product produced by the
multiplication process will be added or
subtracted according to the weights
signs using special designed
Adder/Subtracter with sign digital
circuit. Figure (2) shows a two bit
Adder/Subtracter with sign logic circuit.
Adder/Subtracter with sign digital
circuit will consist of: maximum
numbers block, magnitude comparator,
full adders, 4*1 multiplexer, AND gates
and XOR gates. The function of the
maximum number block is to put the
maximum number of two input numbers
on its X output and the smallest number
on its Y output. Figure (3) shows two
bit maximum number block logic
circuit. Since hard limit activation
function has been applied for all
network layers, therefore the output of
the neurons will be 1 if the net (final
neuron input weights product
summation) greater or equal zero, and 0
if the net is less than zero. Figure (4)
shows two inputs, two bits weight
neuron logic circuit. Output of the
neuron will be the same as the inverted
sign of the final neuron net. Figure (5)
shows the inverted neuron output.
Arithmetic Logic Unit

ALU performs all the necessary
arithmetic and logic operations. It
requires one or two operands upon
which it operates and produces result.
It's basically a multifunction

1333

combination logic circuit. It provides
select inputs to select the particular
operation. The popular ALU IC,
IC74LS181, is a four bit high speed
parallel ALU, controlled by the four
select input (¢ %) and the Mode
control (M). It can perform all the 16
possible logic function operations or 16
different arithmetic operation on active
HIGH or active LOW operand. Table
(1) shows the function table of the ALU
operations [16]. Figure (6) shows the
logical diagram of the DM 74LS181 4-
bit ALU.

Since, we have a large data set
16,384 due to 14 inputs we will divide
the network into 6 parts with maximum
8 inputs to simplify the design. Figures
(7, 8,9, 10, 11, 12) show part (1, 2, 3, 4,
5, 6) ALU logic diagrams respectively,
figures (13, 14, 15, 16, 17, 18) show
part (1, 2, 3, 4, 5, 6) error against
iteration respectively. All parts will be
designed on Xilinx XC 3000 chip.

Part One ALU

Part 1 will be repeated four times in the
overall ALU design using only 6
neurons in the input layer and 2 neurons
in the output layer. The training
parameters are given by: W=0.6,=C
C,=1.7 these parameters will be
repeated for all designs. No. of particles
1000, weights are arranged in the
integer range between [-7, 7] therefore 4
bits will be sufficient to represent this
range, three bits for the weight and a
single bit for weight's sign. Weights
obtained by the PSO modified tools are:
wW{1, 1}=s[-4 -3 0 0 -1 -2;-5 -7 2
-2 1 0] and B{1}= [7; 5]. Error goal
reached successfully termination after
19 iterations. Figure (19), shows the
hardware design of part 1 ANN based
on FPGA.

.& Tech. Journal, Vol. 29, No.7, 201

Training Artificial Neural Networksby PSO to

Perform Digital Circuits Using Xilinx FPGA

Part Two ALU

Part 2 will be represented by 4
neurons in the input layer, 3 neurons in
the hidden layer and single neuron in
the output layer. Part 2 training
parameters are: No. of particles 10000,
minimum range for weights required for
the network training arranged in the
integer range of [-3, 3] therefore, three
bits are sufficient to represent the

weight and its sign. Error goal reached
successful termination after 31
iterations. Weights obtained by

modified PSO tools are: W{1, 1}=[2 2
1-1,2 1 -10;-1 1 2 -1], W{2,1}=[2
-2 -2], B{1}=[-3;-1;-2] and B{2}= 1.
Figure (20), shows part 2 ALU ANN
hardware design.
Part Three ALU

Part 3 will be represented by 6
neurons in the input layer, 3 neurons in
the hidden layer and 1 neuron in the
output layer. Part 3 training parameters
are: No. of particles 10000, minimum
weights range required for the training
process will be blocked in the integer
range between [-7, 7]. Error goal
reached successful termination after 55
iterations. Weights obtained by PSO
modified tools are: W{1,1}=[4 0 7 -4
146 -1-3-3 -17,21-5 51
-3], B{1}=[-2;4;-2] , B{2} = 7 and
W{2, 1}=[-5 -5 -3]. Figure (21) shows
part 3 ALU hardware ANN design.
Part Four ALU

Part 4 will be represented by 8
neurons in the input layer, 3 neurons in
the hidden layer and single neuron in
the output layer. Part 4 ALU training
parameters are: No. of particles 1000,
minimum weights range required for the
training process will be blocked in the
integer range between [-31, 31]. Error
goal reached successful termination

1334

after 124 iterations. Weights obtained
by the PSO modified tools are: W{1,
1}=[-2 -1 -5 -3 -8 28 -1 13;-4 -1 -
9 -6 -30 30 -2 15;2 1 12 3 25 -31
1 -19], B{1}=[18; 8; 26], W{2, 1}=[-
23 23 14] and B{2}= -9. Figure (22)
shows part 4 ALU ANN design.
Part Five ALU

Part 5 will be implemented using 8
neurons in the input layer and single
output neuron. Part 5 training
parameters are: No. of particles 1000,
minimum weights required to reach the
intended error goal are arranged in the
integer range between [-31, 31]. Error
goal reached successful termination
after 27 iterations, weights obtained by
PSO modified tools are: W{1, 1}=[-2
-1 -5 -3 -14 -9 -1 26] and B{1}=13.
Figure (23) shows part 5 ALU hardware
design.
Part Six ALU

Part 6 will be implemented by 3
neurons in the input layer, three neurons
in the hidden layer and single output
neuron. Part 6 training parameters are:
No. of particles 100, minimum weights
required to reach the intended error goal
are arranged in the integer range
between [-3, 3]. Error goal reached
successful termination after 62
iterations, weights obtained by PSO
modified tools are: W{1, 1}=[2 1 -2;
0 2 1;-2 -2 -2]and B{1}={1,; -2; 3},
W{2, 1}=[-1 1 1], B{2}=-1. Figure
(24) shows part 6 ALU ANN hardware
design. Figure (25) shows the overall 4
bit ALU design and figures (26) (a, b, c)
represent random output readings from

the overall ALU wusing Xilinx
foundation series logic simulator.
Conclusions

This paper proposes a hardware
design of an ANN using FPGA. FPGA

.& Tech. Journal, Vol. 29, No.7, 201

Training Artificial Neural Networksby PSO to

Perform Digital Circuits Using Xilinx FPGA

is chosen mainly because of the lower
price as compared to other technologies,
parallel implementation of ANN using
software as well as with hardware
approaches.

The objective of this paper was to
reduce the number of neurons needed
for the training process, as well as
reducing the single neuron complexity
by the abstraction of the multiplication
process needed to multiply each input
by the corresponding weight. PSO
optimization algorithm is the most
suitable training algorithm required to
our application implementing of digital
circuits using ANN. NNs are trained by
minimizing the error function in search
space based on weights. PSO generates
possible solutions and measure their
quality by using a forward propagation
through the NN to obtain the value of
error function (minimized error to zero).
This error value is used as the particle’s
fithess function to direct it towards
more promising solution. The global
best particle corresponded to the desired
trained after adequate iterations. The
design of NN on to an FPGA is a
relatively simple process. Once the
training is completed and the correct
network weights are determined, these
weights will be hard coded on the
FPGA, and since we have taken these
weights as integers, these integers will
be represented as a binary digital bits
one and zero entered to the designed
ANN hardware bus as a VCC and
ground, where the VCC stands for
binary 1 and the ground stands for
binary 0. The accuracy in which these
weights are coded depends upon the
number of the available bits. The
MATLAB modified PSO toolbox is
used in the training of the ANNs

1335

minimum weights required to get the

highest accuracy (100%) which was

calculated using trail and error method.

Refrences

[1] C. Blum, D. Merkle,
Intelligence: Introduction

Application”, Springer, 2008.

[2] J. Kennedy and R. Eberhart, *“
Particle Swarm Optimization”,
IEEE Int. Conf. on Neural
Networks, Australia, PP. 1942-1948,
1995.

[3] L. Wang, X. Wang, J. Fu and L.
Zhen, “A Novel Probability Binary
Partical Swarm Optimization
Algorithm and its Application”,
Academy publisher, Journal of
software, China, Vol. 3, No. 9,
December, 2008.

[4] T. Gong and A. L. Tuson, “Particle
Swarm Optimization for Quadratic
Assignment Problem A Forma
Analysis Approach”, International
Journal of Computational
Intelligence Research, Vol. 4, No.2,
PP. 177-185, 2008.

[5] K. Du and M. Swamy, “Neural

Network in a Soft Computing

Framework”, Springer, 2006.

M. Negnevitsky, “Artificial
Intelligence: A Guide to Intelligent
Systems. (¥ edition)”, Addison
Wesley, 2005.

[7] X. Yao, “Evolving Artificial Neural
Network”, IEEE, Vol. 87, No. 9,
September, 1999.

[8] I. Kuon, R. Tessier and J. Rose,
“FPGA Architecture: Survey and
Challenges”, Now Publisher, 2008.

[9] A. K. Mani, “Digital Electronics:

“Swarm
and

[6]

Principles, Devices and
Applications”, Wiley, 2007.

[10] A. Muthuramalingam, S.
Himavathi and E. Srinivasan,

.& Tech. Journal, Val. 29, No.7, 201

Training Artificial Neural Networks by PSO to
Perform Digital Circuits Using Xilinx FPGA

“Neural Network Implementation
Using FPGA: Issues and
Application”, International Journal
of Information Technology, India,
Vol. 4, No. 2, PP. 86-92, April,
2007.

[11] R. H. Turner, R. F. Woods,
“Highly Efficient Limited Range
Multipliers for LUT- Based FPGA
Architecture”, IEEE transactions on
vary large scale integration system,
Vol. 15, No.10, PP. 1113-1117,
2004.

[12] M. Marchesi, G. Orlandi, F. piazza
and A. Uncini, “Fast Neural
Network without Multipliers”,
IEEE transactions on NN , Vol.4,
No.1,1993. [13] B. Noory and V.

Approach to Hardware
Implementation of Neural
Network”, IEEE Canadian
conference on Electrical and
Computer Engineering, PP.1861-
1863, 2003.

[14] A. Farahani, S. Fakhraie, S. Safari,
“Scalable Architecture for On-Chip
Neural Network Training Using
Swarm Intelligence”, EDAA, 2008.

[15] R. Mendes, P. Cortez, M. Rocha
and J. Nevers, “Particle Swarm for
Feed forward Neural Network
Training”, IEEE Transactions, PP.
1895-1899, June, 2002.

[16]A. P. Godse, D. A. Godse, “Digital
Electronics”, Technical
Publications Pune, 2008.

Grozo, “A Reconfigurable
Table1 ALU operation
Mode Select Active LOW Operands Active HIGH Operands
Inputs & F, Outputs & F, Outputs
Logic Arithmetic Logic Arithmetic
(Note 2) (Note 2)
s3 §2 S S0 (M=H) (M=L)(C,=L) (M=H) (M=L)(C,=H)
L L L L |A A minus 1 A A
L L L H |AB AB minus 1 A+B A+B
L L H L |A+B AB minus 1 AB A+B
L L H H Logic 1 minus 1 Logic 0 minus 1
L H L L |A+B A plus (A + B) AB A plus AB
L H L H [B AB plus (A + B) B (A+B) plus AB
L H H L |A®E A minus B minus 1 AEB A minus B minus 1
L H H H |[A+B A+B AB AB minus 1
H L L L |AB A plus (A +B) R+B A plus AB
H L L H |aeB Aplus B AeB Aplus B
H L H L |8 AB plus (A + B) B (A +E) plus AB
H L H H |a+B A+B AB AB minus 1
H H L L |Logico A plus A (Mote 1) Logic 1 A plus A (Note 1)
H H L H [aB AB plus A A+B (A+B) plus A
H H H L [aB AB minus A A+B (A<B)plusA
H H H H A A A A minus 1

1336

.& Tech. Journal, Val. 29, No.7, 201

Training Artificial Neural Networks by PSO to
Perform Digital Circuits Using Xilinx FPGA

Figure.1l Two bitswith sign

; " —
J‘,. B

Welghts bus A outputbus
V[1:0] ! el 1:0]
' - Input
B weigts' sign J ‘} outnut sign

multiplication digital circuit.

(1:0] Maximum A or B

A0 e
101 —
Minimum A or B
Maximum number
Asign block
ra « - I I
compoarter o
6 1
B sign
33 |
x4
. x x
=} =]
5 &
wee U U
ﬁ |

03
Tz

M1

multiplexer

BN

Full Adder

=

Full Adder

o =
o

sign

vl
i

ZHOX

Figure.2 Two bits Adder/Subtracter circuit.

Maximum

0 o 21 multiplexer B10]
21 multiplexer .
W21 Minimum
h2_1 Y-} AorB
5 w N i
N ‘ 1 ke Bl
i)
@
21 multiplexer 21 multiplexer
h2_1 W21
1] i | @ 00
0 o ‘ — 0 L] -
compartor = =
ol -
- ag— ORZ
'.3[1 0] InputB
~@:[10] Inputh

Figure.3 Two bits maximum number logic diagram.

1337

.& Tech. Journal, Vol. 29, No.7, 201 Training Artificial Neural Networks by PSO to
Perform Digital Circuits Using Xilinx FPGA

Aweight

Asign 2hit .

o il % ultiplier XA4,—“: 2bit Adder s i Final sum

" D input ' g 1g Subtracter 5 it Adder s e 53 1]
J . subtracter

TR

' E D sen
o sign

T SLR] S L 1
) B sign . 2bit

" B input " multiplier
I

[

Bias weight

B2 0B

Bias sign

Figure.4 Two inputs neuron with two bitsweight cir cuit.

Weight A
mﬂg%’ Weight B s
| e
Bias
B2 O].—-.) " papemm final REUIroN sum (net) not used
Weight A sign —{m=
Weight B sjgn —E :N__DO—DC‘UTPUT

nputp DiEs SO —e ™ heuron output

) Input B .
r p—m——————

Figure.5 Two inputs neuron with two bits weight cir cuit.

G oM R o i 1 i2 B2 i3

v v v v

[1] ; t T .

A9

|
'

Aol

Figure.6 DM 74L S181 4-bit ALU logic diagram.
—_— —_
== —
e {“ @) o | "
] — mj 7‘ CN
g - - 1
JT T : i J*
W— o) [

Figure.7 Part 1 logic diagram. 4Fig.8 Part 2 logic diagram. Fig.9 Part 3logic
diagram.

1338

Training Artificial Neural Networks by PSO to
Perform Digital Circuits Using Xilinx FPGA

I b
A Q3

1= @
oN—

= 1=

—— @ = ___r___L// °
—) S —— m:::jr/f
- _[_ a — . i —

]
.
|

1T,

M—. > _“_7,-' M—/,"_J »
Figure.10 Part 4 logic diagram. Fig.11 Part 5logic diagrams. Fig.12 Part 6 logic
diagrams.

H
¥ 12 4 i e 2 a

;s T T T ™
5 0 3
5 o 5 ration ™ 3 EY] 5

Figure.13 Error against iteration part 1 ALU. ig.14 Error against iteration part 2
ALU.

10
Iteration

10°

Error \L

T T2 140

L L i L i y
o n E) 30 a0 50 &0 o 2 a
Iteration

Figure.l5 Error against iteration part 3ALU. Figurel6 Error against iteration part 4
ALU.

&0
Iteration

1339

.& Tech. Journal, Vol. 29, No.7, 201 Training Artificial Neural Networks by PSO to
Perform Digital Circuits Using Xilinx FPGA

Error

o i =3 1

10 = ks 0 0 20 50 &0 70

30 a0
Iteration

Figure.17 Error against iteration part 5ALU. Figure.18 Error against iteration part 6
ALU.

15
Iteration

[BE: (e [EE1 IFF:
22 |BBO [BE1 o oo [EEx GO
A} 1 DD G
FFO G2
[EED [FF1
S
s [0 o Q1
MY
VOO MEHBCCYCOVCC MEND | GIMBAD VGHD | GNDGMDGNDGMEGND WEXD_ GND
K|
IHHO [HH1 [HHZ (00 [iz [pad p2 (R0 K (62 LD [LLT (L2 || [NND
bR 1 [N
INNZ
cpfe—
s e & Q0
(53
B
.

A 16
39 :
81 o
82 IF
83

GND

Figure.19 PartIANNimplementation.

1340

Training Artificial Neural Networks by PSO to
Perform Digital Circuits Using Xilinx FPGA

I{\ lpeo (61 frca oo

oo [eka [emr [eez s

0

660561
IFF [FF1 IHHa JHH 1

oy q
V=i
: T . n
TR
o — N
¢ ! Ty
— =D

—
0[PP o o fRRD
R

i

L [t Jun
ol

7
k] b E:
I et
P Sl fr— \—lf woe S 74‘ =0—0 F0
e - | — v
e aif—y
} Vit LV C
|
_ —e
T s
I
(g
- 0
]
b Iy
— e
— 15

0
=0eg

-’:-n -—\’;:un | T A

Inbob 1 4z]
e i (i fag oy oz o)

Qo
Q1

Q3
Cn

-
2 i
M
=
=
o — e
i 5]
s -
=N (] O W 1| 0|
i) o |
—
o =
PRy L
i j
i | oo | s i
o
bl [I
]
m
I
gt

Figure.21 Part3 ANN implementation.

1341

Training Artificial Neural Networks by PSO to
Perform Digital Circuits Using Xilinx FPGA

TN

Qo
Q1

Q2

Q3

Q4
Q5
Cn
M

Figure.22 Part4 ANN implementation.

Figure.23 Part5 ANN implementation.

1342

.& Tech. Journal, Vol. 29, No.7, 201 Training Artificial Neural Networks by PSO to
Perform Digital Circuits Using Xilinx FPGA

_WEBNDYCC | GMEBNBCC | GND VGG

SpRp— WG ;VBND mim;m
GNOGNEERACC GNEIERL o =) >C —‘7‘[77777777777777
) B 1S iy .
| | por| e
e [1 %o
) LLEEN 0] e
=== 1 7] e
f
—i py_lg 1 fe— | :E"—DO—DFﬁ
| ‘_:‘;; Iy
VEND VEHD VENEICCVCC i wee s %\?
Q7 _53 N [\NV
QE% 3
0
o
Figure.24 Part6 ANN implementation.
B3p
A3 BART ar PART, 3
—f 1 o8 = | ©
—& .DARIJO
5
B2p]
Q5 T
Aze PART
[(e .
PAR—————————F2
Blp T
Q3 -
Ate PART
[S R e T
= PARTL gy
BO | T
208 el L
S0 PART —{-PART]
St ~ 1 fao T 2 e
52° 1
s3
M e
Cn®™

Figure.25 Overall 4-bit ALU block diagram.

1343

& Tech. Jou

al, Vol. 29

Training Artificial Neural Networks by PSO to
Perform Digital Circuits Using Xilinx FPGA

(@)

(b)

()

L z0ns/eiy | Qidus {Ofns [0ns [0ins [us [L2us [Ldus (Las [LBus flus [ius [bus fodus [LBus fus [Zas [dus [B.fus us fus [ilus ‘
XL L O e e o e e \\H‘Hu’l\m 00 e o e e e e e e \‘m\mﬁm 00 e e e e e e e o
e I B 8 B B
Bt R e e R B e R N N R R R N e e R R Nl i N B R R i N R
fi B2
i1}
ii.pe.
i3
fip2 2|
fip3 3 f
lig8. !
i3 5
ip2 b
g3 7
fi N, B
in. 9
PART 4 and 5 ALY OUTPUT
7.F2 - A 1 f
PART 4 ALY OQUTPUT
7.0 - e e ey
PART 3 ALY OUTPUT
7,50 - 8 -
PART 2 ALU QUTRUT

| zonsdiv

6

1y G 6.0 ur P2 [L6 LR e L2 (ldte fus pfus S P2 P P P (e (02 (0.4 lU.éus‘
I I I I |
i

das_ oo i il alealwodwodi i il FCCIECR O AL AL R (R O O R LT

ofi.F2 - ...
ofiZ.Fl - ...
ofi7.Fe - ...

| sns/atr

s33.1tus uliiln

L L AL e U . T AL A U L LR UL LR
L R L LN RN L L L L RN
IR R R R R R R

—

[T]
p— L et

|

reau n_Anur.m_‘u”uﬂu”u | — Bl u =) o HH LH
PART 5 RD 6 L) OUIPUT
e e i e e B e e e T R e AR i e,
PART 4 ALU OUTRUT
PP
LA LR
PARI 3 AL OUTRUT
T FIRFHFHLAR

e A FF
S S S

A Ar anid
[e S S R S uf

PeF P AP AR

FARM
PR

PP

RUL i

PART 2 ALU QUTRUT

[PBdus 384.2ue
lilinl

[E84.3us [386 . 2us

s
[bl v

T

e
| |

Fﬁius ‘355 us |85 Eus ‘355“5 FBS Bus [:87.Zus ‘
et e e [[T T |

—_—
Lo T =

PART 5 AND € ALU QUIRUT

e o e e e e e
S s g S S R S e S

PART 4 ALU OUTPUT

e e B e e e e B e e M B = B = B e B B
| S = RS R R R

PART 3 ALU OUTRUT
UL

e e O e e B e SO
(S EEE B S p

B e e e B e
L e

LAY

LAY LU E
PART 2 ALU OUTPUT

Figure. (26) 4bit ALU random simulation reading.

1344

