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Abstract

Output-feedback (observer-based) robust and optimal control law which guarantees

global (local) asymptotic stability in probability for nonlinear stochastic dynamic

system are stated, developed and proved with the help of stochastic Lyapunov function
approach supported by necessary theorems and an illustrative example. The inverse

optimal stabilization in probability with suitable performance index has also been

stated and developed.

Keywords: Backstepping, control Lyapunov functions, inverse optimality, stochastic
nonlinear output-feedback systems, stochastic stabilization.
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Introduction
ittle attention until recently.
Efforts toward (global)

stabilization of stochastic

nonlinear systems have Despite huge

popularity of the linear-quadratic-
Gaussian  control  problem, the
stabilization problem for nonlinear
stochasticsystems has been receiving
relativelyBeen initiated in the work of
Florchinger [5-7] who, among other
things,

Extended the concept of control
Lyapunov functions to the stochastic
setting. A breakthrough toward

arriving at constructivemethods for
stabilization of broader classes of
stochastic nonlinear systems came
with the result of Pan and Basar [16]
who derived a backstepping design
for strict-feedback systems motivated
by a risk-sensitive cost criterion.
Deng and Krsti'c [2-4] presented the
first result onglobal output-feedback
stabilization (in probability) for
stochastic nonlinear continuous-time
systems. Simpler inverse optimal
control laws were designed for strict-
feedback systems which guarantee
global asymptotic stability in
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probability. The output-feedback
problem had received considerable
attention in the recent robust and
adaptive nonlinear control literature
[1], [8-13], and [15]. In this paper, we
present two results, first address the
output-feedbackglobal stabilization
problem for stochastic nonlinear
systems, second, a robust and optimal
control law are designed which
guarantees global asymptotic stability
in probability for some dynamic
systems in the presence of output
observer.

The output feedback (observer-based)
backstepping control law which
guarantees global asymptotic stability
in probability has also been discussed
supported by some theoretical
justification and illustration.

2. Preliminaries on Stability In
Probability

Consider the nonlinear stochastic
system of the form
de = f(x)dr + g(x)dw

wherex £ R™ is the state, w is an r-
dimensional independent standard
Brownian motion, andf: R® — R™
and g:R™— R™" are locally

Lipschitz functions and satisfies
f(0) =0, g(0) =0, where < n.

Definition (2.1) [3]

The equilibrium x = 0 of equation (1)
is said to be globally asymptotically
stable in probability if for any,t> 0
and O > 0,
lim, (£)=0 P{.’::uplrErEI lx(t)| = e} =0
and for any initial condition x{},
P{lim___x(t)=0}=1

2.1 “Young’s Inequality” [3]

This inequality is mainly used in the

simplifications of this work which is
formed as follows:
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whereld > 0, the constants P >1,q>1
which satisfies the relation: (P -1) (q -
1) =1 and (x, y)= R

Theorem (2.1) [14]

Consider the nonlinear system of
equation (1) and suppose that there
exist a positive definite, radially
unbounded, twice continuously
differentiable function V(x) such that
the infinitesimal generator

w(x}-a—vﬂlr fa:—v 3
" 2% et ®
Is negative definite. Then the

equilibrium pointx = 0 of the above

system is globally asymptotically
stable in probability, where Tr ()
operator is standing for the trace

operation.

3. Output-Feedback  Stochastic
gfnlinear Stabilization In
obability

In this section we deal with nonlinear
output-feedback systems driven by
Brownian motion and some of its
theoretical results. This class of
systems is given by the following
nonlinear stochastic differential
equations.

Consider the stochastic nonlinear
system described by:

fx, = xuqdt + F(Z0d + &, [v)Tdw + U, (%) Tdw

dx, = udt + f,(x,)de+ @, (y) dw + w, (x,) dw
¥ = X 6%, (4)

where



Eng. & Tech. Journal, Vol.29, No.7, 20

Output-Feedback Stochastic Nonlinear
Stabilizatiaand Inverse Optimality

1. X eR" is the
state, % = [x,%,,..3%,]7

2. w is an r- dimensional
independent standard  Brownian
motion

3. f=(fy, &, ..... , BT, fis a vector

valued function which satisfies:

« f: R™ > R™, f(0) =0.
*fi(®@) = filxixg i)
o 1070 ) £ A QM (9

where @, is a positive definite matrix,
and/ma(@,) is the largest eigenvalue

of Q.

4. ¢.(v) are r-vector-valued
smooth functions with
=
[@1’ ¢2 ""i’n]r; ¢: R* —=R"and ¢'1(0] =0

5. W, (%) are r-vector-valued
smooth functions with

0= (Wl o U,) 0 RRSR™, with ,(0) =0,

6. fi ¢, i, are assumed to
satisfy Lipschitz condition.
7. The dynamic observer system

is suggested as follows:

; [=1..1n

8. The observation
e; = x; — X, = X, satisfies:

error

dF, = dx, — df, = x,.q dt + £,(2)dt + ¢,(3) dw +

n

Wi ()" = ®ppqdt — L, Z ¢ X, dt

i=1

i, =Ty e - Ly Cifadﬁﬁifajm¢i[}’erW+ %(?ﬂ]r

A7)

Or in vector form, we can write:

01 0 - O LiCy LG o - LG, ﬁ(flj
ai=|0 01 '?]fdt— bafy Lol LoC. fd:+[rf1(i1’f?j

6 ‘ 0 u L,,f1 L,;C,, ,4(21,:...,2”)
by ()7 Wy (%)
¢:(}’)r]dw+ w:(ili-f:J ]d,’w
#.0T By 5,

..... (8)

thus

dt +

dit = (A - LO)Edt + F(H)dt + o(y) dw + () dw

0 1 0 0
where A= :ﬂ ':' 1 ':' ,
0 . .. 0 gy
LC =
Llcl LICE Llc?‘z
L,C, L,C, L,C,
L,Cy ... .. we L, O,
and thus

= Rpq dt + L0y cox; — Tig o8 )de £ = Add = f(@)dt + 00) dw + Ui v (9)
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whered, = (4 — LC) is designed to
be asymptotically stable,

the

coefficients L, i=1,...,n are computed
in a way that guarantee asymptotic

stability of A, (if possible).
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Now the entire system can be
expressed as:

di — ApFdl + [(0d + o () dw + 0 () T dw
And

"
dy = Z c; dx;

i=1

= Z £ ¥t + Z o f(F)dr + Z e b, () dw + Z el (7)) dw
i=1 i=1 i=1 i=1

aX, =u dr_L"Z cx.dt  (10)
i=1

where ., = u.

9. The r-vector-valued smooth
functions ¢(v) and w(x) satisfies

the following imposed conditions,
respectively:

¢(v) = lleWll =
"’11":_4(ij|£| (ll)

wi(E) = ly@ =
";‘mr.-_x (Qs) |£| (12)

where @,,{; are positive definite
matrices, andma{(@;), imaf@) are
the largest eigenvalues @f and @

respectively.

10. Since
?; (0)=0, ‘-I’t(ﬂj =0, fz(ﬂj =0
, the o s will vanish at
£_,=0,vy=0 as well as at
Z. =0 where Z, = (zq,...,2,)".
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Thus, by the mean value theorem
o; (%, y) can be expressed as:

[1: ) S‘ -f x . (13)

wherex,, (%,,5) are smooth

functions.

On depending on the conditions of
dynamic system (4), the following
main theorem is stated and proved to
guarantee the global asymptotic
stability in probability to the
stochastic dynamic control system
defined by equation (4).

THEOREM (3.1)

Consider the stochastic dynamic
control system defined by equation
(4), and assume that the dynamic
observer system is designed to be
di = Ayxdt + f(D)dt + ¢(y) dw + U(3) dw

a sequence of stabilizing functions
«; (%.v) : where

£, will  be

constructed recursively to build the

Lyapunov function of the form

V(z7) = %Z it g(::-fp::-)f (14)

i=1

%= [Ru%y

where P is a positive definite matrix
which  satisfies the following
algebraic equation:

ATP+PA, =1
where _
zi =% -y Rpy) i

1,...n (15)

and if the following are satisfied

sty e Y 5 T a5 s 5 )

i=1

. Bu(z_
2\ dyt

T m1

)(2 czq:z(fa) (}@@)
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And the control is designed as:

) vrlao( )
u= —snzn—%m;—aﬁ s + LEE, ahi(E)

107, T o, R .
I ) (sm(_\a)g( ) e )

3 4 1
-=g %

s
Where u is standing for . as
discussed in equations (4) and (10) of
the previous section (3). Then the
equilibrium point x =0 of the
closed-loop nonlinear stochastic
system (20) is globally
asymptotically stable in probability.

Proof:
Since we have by equation (15) that:

Z; =X =0y [fi—ir}’)
According to Itd differentiation we
have:

dz;=df-do_ (;?E_l, }r] i=13,.,n
where the second part of the above
equation (16) is computed as follows:

dery (Fyy) B
:Za:;i( L z )ng (Z”m*ch ”)
L : & =1
% afaﬂ‘i:l)(z Dz ¢;(."J) (z o, (.\’J)'if
) i1 =

T
TR TN C s
+Z By? )(mcx ‘l’;(’ﬁ)) <ZC u(x ])dH‘ By Zfid’((})rd"f

re
#5250 T )
T

=

Set the Lyapunov function as follows:
V(z%) = ZX%, 28 + 2 (2T PR)?
where P is a suitable positive definite
matrix will be designed later on and
the above form indicates that the first
term constitutes a Lyapunov function
for the (%,%,,..,%, )= system,

=
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while the second term is a Lyapunov
function for thex — system.

Now, we start the process of selecting
the functionse, (%, v) to makeLV

negative definite. Along the solution
of equations (9) and (16), from
definition of £V (equation (3)), we
have that:

w :% Zz? E Z o, -:6;‘_;’1(@# L‘i :ﬁ,\)

1 4

e
”( o H yc W(X)) (Zc,\p,[ﬁg ]
‘ /
+§sz[:a |Zc¢(x)( (i)
3 760y 2 f 7 ‘\
+g;lf (.6 o ) '\Z‘c‘ o,(,l’_]) (\choi(}q)

+Eb(if0§‘\ [7Pds + Pada"] + 25 Tr{g(y)T(2PEETP + 5 PEP)S (1)}
+ Zb Tr{p(D7 (2PEFP + ETPEPIU(R) } (18)
Since we have
= by % (8] 2 =2 1 () (=0 (1)

thug@

TC¢(\)) (S‘rrbm)

=1 )

Y

/

T
_Z (z ciw‘(ii)) (Zc ¥ (x])
1 ¥ i=1
| B{ETPE)[% Tp(.q FUE) | PR(AT | FET)]

+ 2b Trig(y)(2PEETP + TFEP)p(y)7}
+ 2b Trip(F1(2PEFT P+ FTEF P ()7} 20

Now, by applying Young's inequality
of equation (2) onto some terms of
equation  (20), the following
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simplifications are needed and as
follows:
(Note that the values of p and g will be

selected agy = i ;g =4)

Z 42 E JHZ—
2 Yl Z ,4; 5},1)4’ 4+4Z )G’
(—‘)"az;’ﬁi%a*f*

=1
n
3T ¢4
<4Z”t
~ 4] 4
£; z+1 = |C xz+1| < |C:' ||xi+1| < |C|4|R’|4 p= Erq =4

where

and || is the largest value of; for

i=1,2,..,n.

> EZ & (aj_x) (Zl c. 0. f--v-‘l) (Z .9, r__vj)

i=1

3?2 1 aoci—144 3" 2 |=14
<327(5) S aere
since we have by the imposed

condition of equatlon (11) we get:

S T et

i_(where we select the values of p
andgagp =g = 2)

* g i::LZi: (%)2 (Z € IIJ,-(E,-)) (Z € ll‘[i(fijj

" n
Ivide.yt, 30 . .
S;Z{G_S( dy ) Z?+XZ{6;|C|4(AMM(QSJ) I

(where the values of p and g as
p=gq=2)
E. 2b Trid(y) (2PEETP + 2TPEP) d(y)T)
, with reference to [14] we have:
< 2b, lo(y)(2PEETP +ETPEP)O(¥)7|,

76,m)°

< 2b \nlB(y)(2PEXTP+ XTPEP)B(v)T |

< 6b,\n @) PP %]
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TN S 116 B
finally applying Young’s inequality
with =g = 2, gives:
(@) 11+ 307 (1P (25,
6.22b Triw(X)(2Exc™ P+ x" PIEW(X)"}
< b, W) (2PEXTP + X7 PEF)W(X)T ],
=2, (D)(ZPIETE + TTPIP)L(E)T|
ez = 6b,\n [W(D)?|PI* 2]

with  the help of Young's
inequality,p =g =2, we have:
3b.yn
Bt ) @
7.
[TP(A, + f(2)) + (4T + F(D)7)P]
is simplified as follows:
11 (PA, + APIES =[P (27
where
fFE P+ 3P fR)ZIf(R)PE+xTPF(2)
<I7(ER8il #1372 () ()

FET P = [FEPIZ] < Ay (Q)IEI( g (P)] 7]

= [:“1?:!1&3‘ ({'-)1:)("1?‘]1&1 (P) :Ilil:
thus, we get
FEgP <
Now, by substituting the equations (21-
29) into equation (20), we have:

)l i)

4
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W —’b D CP) o () = 220030 Y s P30 = 3872 3 { A (P2)

3b,\T s+ 3b,\T

(e (@29)" = 307 F e ()] = (1 (@)

fi

m;w——Zfl 1 (e (@) ——Ze 121 (Lo (o))]l P

n-1 A
3 &
(% ) (Zci¢i(£‘))+laiqz‘+74a
21

3 a0, 4\ AN
3 % i1 AN
+30.7( 3y ) 3y )“
oty 5 a1
— - - .
+z2 [u‘f[.,,c,,x 72 —1z. Z T3 LLe R, — 5: 12 Cifian
=1 =1 =

S, J——(%)(c #,07) (c 0.0 J)

i

4
3 (A o H 3 A
3 4y Ao,y -

+4”1 ( 3y ) Z"+4{,§( ER

9, +T(65_)]
At this point, we can see that all the
terms can be cancelled by u awig.
If we choosee,, =, n;, &, §; to
satisfy:

. . . 3h\7
52 (B) ) = 2l et )

(0] e (P1) = 30, 64 e (Y] === (1 @)
1

s oar 4
—zbyn el (A, (P)]

3k \G, *
. (Amac(@3)]

T i w—— elelt um,,w)u

—jzszlﬂ’um,w,)) =550 (1)
anda; and u as:
6( rnf'_ A\ P n-1 3o lrl
“:_5‘_"4? o, _Ef e u__ :Z ii/ oy Z“ﬂn"‘?iﬁf{*)

160(
2\

)(T 0G) )(? a2 )

. 107 o
2\ gyt

=1

(a o, 1)"Z__i(a oci-l)"z
4{ dy : 465 dy !
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n-1
- 90,y
—Lyc,a, +Z ER ZC,XH1+ ay

=1
1fd o,y T 1% o, U -
+5( = )(c,,@,,(,v)) (c,,@,,m)g( ) @) )

.
3,4 1 3 4, (0%, 4\ 3 3 3, g\t
3% z»*@zfa’?f( ) z"’ﬁ( o) =
3 e, n?
- (=)
where 5; = 0, then the infinitesimal

generator of the closed-loop
stochastic system (9), (16) and (33) is
negative definite, that is:

v = — Y, szi—

Cuful®y)

(33)

plxl*
(34)
with (34) and hencefll” = 0, and

from theorem (1) the critical point of
(4) is globally asymptotically stable
in probability. That completes the
proof.

4. Inverse Optimal Output-Feedback
Stabilization

After considering the stabilization of
feedback  stochastic  dynamical
systems in the previous section we
shall show how our backstepping
design which achieves stability can
be redesigned to also achieve inverse
optimality.

Theorem (4.1) [4]

Consider the simple class of nonlinear
stochastic dynamical system
described by:

dx; = x At + @i(y)" aw ; i=Lun-1

n-1 T om-1 4,
1 3 L@\
1)( ri‘lﬂ(fa) (Zc‘i’(z))——ﬂ AT ;ﬂ?‘a(T,l) dx, =udt + @, (v)" dw
=1

(32) Yy =x
such that{l =< 0, with the suggested
Lyapunov function of the form
1, 1v, b .
V(Z,ﬁ'j = Z}'f +ZZZ? +£ (frpf)‘

if there exist a continuous positive
function M(y,%) such that the
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control law of the above dynamical

system can be rewritten
as
u=al(y,) = —M[}n%)zn
then the control
law
u'=faly®) , f =1

solves the problem of inverse optimal
stabilization in probability.

Theorem (4.2)

Consider the nonlinear stochastic
dynamical system described by
equation (4) assuming that the
conditions of theorem (2.1) are
satisfied, if there exist a continuous

positive functionM(y, ) such that

the control law of theorem (3.1) can
be rewritten as:

u=al(yx)= —M[}n%)zn
Such thatfl” = 0, with the suggested
Lyapunov function

V(Z,Ej =7 ?:12?"'
then the control law

v=a'lf)=falnd) Bz

B3| o

(£TP%)?

solves the problem of inverse optimal
stabilization in probability.

Proof

If we consider carefully the last bracket
of equation (30), every term except
the second, third, fourth, fifth, sixth,
seventh, and eighth, hasas a factor,
with the help of Young's inequality,
we have:

1- Lc;czhi e‘a “+4

nTRTRTR — ?I

1

i
-3

<§e &'l G

1259

— L C*
Ed

ZZ ni i

axn_

4
n-1 3
doc, ) 1
g ) —-L o lEPIER 38
( 4,_1 T e) z, 4EZ|C| i (38)

Er +

a%p_s . 5 2 T == 4
o Falx, )z, S;(Es _-nz‘; HFa

45
.3 By L\ /3 1 | 4.
$2(6 7)ot -l (e (@) (39)

3w . T
4- %( Ejyi_l) (2.0, (1))(c.0.0) 2,2

3 Ao,y s AP 2 Hlas
Ea(c‘ ay* ) Wy |c (e (@) T (40)
5_%(3 o, _1) CRAeR) R AN FR
\¥a .
* 7 - 1' z"q+_|°‘ (A (05)) 151 (41)

6- To S|mpI|fy the thlrd term we use
the equation:

g1 = Zgpq T g
thus

(35)

r - _ {
xé‘zm‘zm‘l'zﬁ:izx Wi (42)

substitute it back in the third

term to get:
n—1 n—1 n=1 £
—Z aare 1 z =_z 3 aan—lz =z 32 aan—lz z.
n ErY n af £+1 n Ed K HE
£=1 £=1 k=1
12 it
}6 & Bxe 4632”1
n-1 3 n—ta s i
o .
+ I(Ea Z?El‘xéx) Z:ﬁ“‘ﬁzé (43)
= =r B

Thus,Lv is given as:-

292 = b2 PP (P) = 253 (0 P (P) ~ 3o € (b1 (P))'

Sbny*n
(s 42 e (e (@) - Za (09

&
i
—ELA‘EP—EMA——M (_bl (Qij) __EM [bl 80 j)q

[ -
*@\c\ (D (@) ]IX\‘

=4
n
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¥

ZZ! {ﬁ +L§‘Ca,.a Z&“ﬁ L )
o]

=1 1

1

8 “:1 ( /s, id ,'gcc,l\f
d{ (E“”’:‘)Z ||+a g
\i=1 (Y=
s(auﬂ)’ . 1 s 1
+— nt—z5t—z
PEE N = L
;o 13 4,
sl L3 % 3 e,y 37 o,
_z++:ea z4+z[eqz = Le) 7,4 (e5 n ) z,
=T
3{” @ o 1)543 3( o s doc, y Y
n- "
AT e ) e e
6 2 N
E2Y 9y ) / %
n=1 ;
’3:’%—1 5::,!_1 “4-1 3 y,
LS a—"‘ By W
ool ViR - /

3 alx,‘_l *
= (44)
4@;( ay )z] &9

If £1,E, EE! £ 4 £ 5 £ 6 £

7,
M, 6;,and &, are chosen to satisfy

b,
5 A ) — 2102 (00 () — 35,37 2 (s ) = "”um.,,(oa)"

B

4 3b, \J:ru
=311 B) -2 (@) Z et

Y ot 821,
41:1

ren0)° -regﬂi\f\ (A

*fL”E\A Lémé

Loy
ekl (@) —rE;Ltlc\*umwaJ)‘

=p=0
N
4et 4e 2
where Si are those in (33), and

u=-M(yk,

-1 “ 4 " 4y
i) =5 +364/’+3 c ZacxHL +3(E ;?ocn,l)/3+3 c 0w, )3
yi) =5 42 z . 2 2
- "434"_163? nE s\ ¢ dy,
n-1 / n-

4 1 4
3 dtw, )3 3 c?ocnl‘i 37 0w, 2
+s(€7 Ay, ) +24(65 ay ) +24(6’ axt '”f)

=K

Y
780:“,1 . 3 9,«3+ 1 +§n4,«3(8 ““’1)/3+i(6 :KH)A
dy 4 dgr 4\ By 452\ gy

el
Then
u=pa(y,2), Bz
Thus we get:
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E n) 5“Tc - ey

\ z

!

1
LV = —EZSEz;‘— plEl* <0

i=1

Thus, according to theorem (4.2), we

achieve not only global asymptotic

stability in probability, but also
inverse optimality, which completes
our proof.
5. Algorithm

A robust controller stabilization in

probability of the non-linear
stochastic system presented in
equation (4) with linear dynamic
observer of equation (6), is found
using the following steps.

Input: The dynamic control system
described by

dr; ~ 2 dt + (7 )dt+ 6,(y) dw + ¥, (%) dw i-

L2,

n-1

dx, — udt + f, I:xnjdt + &, (:.'jrriw + 7, (xxj‘_dw

n

vix) = Zcx

i=1
Output Robust stabilizing control u in
prébablllty and the unknown design

(#)  positive functionsz, , for

backstepping procedure,
i=1,..n—1,
(47) as well as a suitable stabilized

Lyapunov functionV(x, z).
Step 1: Check Lipschitz conditions for

the functionsf, ¢,y otherwise,
either

approximate the function by
another one that satisfies the
Lipschitz

condition or change the space

into another one to ensure the

condition
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is satisfied “the problem of

extension”, or go to the last step
(12), for

stopping the algorithm work.
Step 2: Define the following

(suggested) dynamic observer:
n—1

di, =%, dt +LF €, %, dt i=1,..n—1
.G
i=1
d¥,=udt+L, C, %, dt
Step 3: Set the error vector
e =X =x,— X,
Step 4: Computedx; = dx; — dX,
using Ité formula such that:

di; =y dt - LEZCE Bt fiE)de 4 (R) dw o, (3) dw
i1
or
dx, = Ayt de + f,(&)dt +1, (%) dw + ¢, \,]rd"-’Step 9
equations (32) and

5 main theorem (4.2).

-L,c, —L,0,+1 —L,G —Lty
—L,C, —L,C; —L,C3+1 —L,C, O
Ay = : = 5
5 0
—L, G —Lplhpy LG, u
Step 5: ComputeL:, i=1,.

in order to makel, stable.

Step 6: Find the unique positive
definite matrix P of the following
linear

algebraic Riccati equation:

ATP+PA= I

Step 7. Suggest the Lyapunov
function of the form:

1% b )
VD = sz += GTPE)
i=1
where
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Step 8. As discussed in theorem
(4.1) above, select a suitable values
for -51, €,,0,,& andn, to satisfy:

i () o () = 2 (0

3h,n

5—2( max(Q j) -3b \ms ( MGX(P))

MEEEI RV

@)
3b
‘ ;:"um,( )

4|”

where @,
positive  definite
Imak@1) IS the

largest eigenvalue of,,
ImaX@2), Ama{@3) are the largest
eigenvalues

of(, and @, respectively
and || is the largest value of;
for

@z, Q5 are
matrices, and

i=1,2,..,n.
Compute; and u using
(33) in the

Step 10: On using the results of
the previous steps, the
infinitesimal generator LV will be
negative, i.e.
LV = —p |Z|* - ?sizf =0

|
=1
where
5, >0 i=1,..,n

Step 11: Back substitution the

values of step (10) into step (7)

making the Lyapunov function of
step (7) is completely defined.

Step 12: Stop “the algorithm work is
completed”.

6. EXAMPLE

Consider the following non-linear
dynamical system

dx, = x,dt + x3dw + 3y, dw

ch (1oae @) ——Za 64 (dgr(@0) = 3 0
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dx, = x5dt + cos x;sinx,dw + yidw
dxy = x,dt + sin(x, x3)dw + siny; dw

dx, = udt + cos(x, x3)aw + cos y, dw

V=cyxy Fopx, Fogxg ooy
Check Lipschitz Condition fof, ¢ ,
Check for i
IF Geyy ) — £y, Z) = |||l — 21 = 3% — 211

1. Check the Lipschitz conditions
¥ ”%” <9  Thus
Y = (g, 0y, 03, 0)"
Lipschitz
||w(x1!x:rx3rx4j -

for

satisfies
condition

3. Check the Lipschitz condition
for the function ¢(y) satisfies:-

le(y) —e(Ml=7
The observer system is:
d¥, = %,,,dt + L. 2", c, %, dt
d%, = £,dt + L, (c,%, + c;%, + €35 + c,x,)dt

d&, = Fdt + Ly(cyx; +¢;%; + C3%5 + €%, )dt

Yl By By )l £ 9wl + 202, - 0t +3 5,

the equationAZP + P4, = —I and
computing P, after choosing the
values of ¢ i=1,..., 4, and computing
the values of Lwe have:

[ —2 1 0 0
_|—-625 0 1 .
A, = 75 0 0 1 so that:
= —9 o 0 0
[ 451.9063 —0.5 —128.625 0.5
p= —0.5 128.625 —-0.5 —35.2%
—128.6250 —0.5 35.25 —05
0.5 —35.25 —0.5 104913

where the eigenvalues of P are
A, =03093,4, = 1.3203,4, = 138.345,4, = 516.2997

4100 4
—a,) +;(x4_“3)

, / 4819063 -05 —128625 S
liewwar[ —D5 128625 -05 —33 25 i
t z‘ 5T _semm0  —05 3525 05 %,

\ 05 —3525 —05 10. 4913 E

1 1
=—if - (- e+

1 1
’ 4 ~ 2
: 2 1(3(3 - (L:] +1 (xq— a,3] -|- |481 9063x1 11286253

+352523 4 104931 ] - xy 1, — 257.25 xix_+x1x4 XXy = 7057,
"%"e)i
b is positive constant. Compuge== 0
such that

by Vi (F) = 20 [0 (1) = 301 (A, (P)) = bl

4
)

dX; = X,dt + Ly(cyx, + ¢35 + €35 + cux,)dt '

4 3b, \,’n

mx 1

- 3b,n 5 (A (P)) -

T i

3 . s d
d.'fq_ = u-dt + L4[C1x1+ chQ + ng:g + C4x4]dt —‘Emﬂ [Am“m:“)

The error is computed as follows:

= At (b xg b it o4 cost s, syt o (374974
sy, 4 ooy sy

we choose the values of the above
uncounted matrix in order to satisfy
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__E b ‘Cl max QE

. (P) =516.2997,b = 1000,¢, = 0.01,¢, = 0.02
1= M2=N3=1e =1 ,21—0-3,|C| =1151—0-4
=10000(516.2997) +2(516.2997)-

(0.0003)/2(0.01Y (516.2997)
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% —  (0.0003)/2
(0.02)(516.2997) +———= -
(o2}
3
2+2(0.36) 5064
=4558081.38% p = 0
Find ai and u:-

3
;= —S5;2; —L1 (CXg+CoXotCaXs) — T

4/3, _ 1

dJ Zy 321
1 40op
Cy=— — S:Z: —L2

(6 + ey o) + ((qﬂxa bofln) af(eg) +1[32) (a0t e+

i) (cmuczmucszj (qwc Yteh)

3
(e, + Cziluz '|' c3¥s) - :

43 1 3 a/3 (3E=»_) 43
] === M, - Z=
z. ry 2
T T 4 Gy
3 3

fo.\4 By
— (a_y) = 45‘ ( )
oiz= - $Z3  -L3(CiXa+CoXptCaXa)

D

e=1 Bxg

(er+1
fex, fex,
tLe(CiXatCXotCaXg)) +—= Cxi+1—=

¥ Y

T3 efi(x) + E(“"‘") (T2, ¢ i0))
(T, cioi)’ +2 ('fﬂ;;-)
(XL, ci¥(ZL, ciw)’ s

4/3, - 920y

e | 0

3

1 3 4., )4.- 2
agk

B 4-3 4 (
(55) ot ()
By 3482 \ a3y 8

= M

u = [-54 Zy L C :": + 2:1—,5

Fi

fo ]
Ko +22- 1a L oCs %4 rn cafy

o e

B3y
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B3| =

(s (v ) (ca@e(v))" + (ﬂ;:.)
(':4"P4 [xﬂ] [.;;4'-{-74 [x4:]]T-%

4y 45
{ 1 3 { Ao
04;3 zy —z, -2, ® ( 5)4/3 z,
so; g = Ay

3 3:5 * 3 fdog *
2 (5) - () w)
25 by \ vy

7. Conclusions

1. A robust and optimal control
law which guarantees global
asymptotic stability in probability has
been designed. The output feedback
(observer-based) backstepping
control law which guarantees global
asymptotic stability in probability has
been also discussed and proved
supported by some theoretical
justifications and an illustration.

2. A large class of nonlinear
stochastic dynamic control systems in
the presence of Brownian motion
have been discussed and its
controllability and hence
stablizability are also been proved
depending on the presented theorems.

3. The relation between inverse
optimality and optimality as well as
robust control is discussed supported
by some theoretical results.

4, On depending on this work,
the computational algorithm is easier
and hence makes this work applicable
and can be used to design some real
life systems later on.

5. The given example are added
to the research to be easy to follow
the direction of theorems and how it
can be applied to more complex
dynamic systems in future.

6. We have been faced by a large
of difficulties to follow this direction,
like backstepping of stochastic
dynamic systems, inverse optimality,
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control Lyapunov functions,
stochastic nonlinear output-feedback
systems, stochastic stabilization, etc.
So we recommend that any person
who is interested in this direction
should be familiar with these facts.
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