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A B S T R A C T 

Giant star-forming clumps (GSFCs) are areas of intensive star-formation that are commonly observed in high-redshift ( z � 1) 
galaxies but their formation and role in galaxy evolution remain unclear. Observations of low-redshift clumpy galaxy analogues 
are rare but the availability of wide-field galaxy surv e y data makes the detection of large clumpy galaxy samples much more 
feasible. Deep Learning (DL), and in particular Convolutional Neural Networks (CNNs), have been successfully applied to 

image classification tasks in astrophysical data analysis. Ho we ver, one application of DL that remains relatively unexplored 

is that of automatically identifying and localizing specific objects or features in astrophysical imaging data. In this paper, we 
demonstrate the use of DL-based object detection models to localize GSFCs in astrophysical imaging data. We apply the Faster 
Region-based Convolutional Neural Network object detection framework (FRCNN) to identify GSFCs in low-redshift ( z � 

0.3) galaxies. Unlike other studies, we train different FRCNN models on observational data that was collected by the Sloan 

Digital Sk y Surv e y and labelled by volunteers from the citizen science project ‘Galaxy Zoo: Clump Scout’. The FRCNN model 
relies on a CNN component as a ‘backbone’ feature extractor. We show that CNNs, that have been pre-trained for image 
classification using astrophysical images, outperform those that have been pre-trained on terrestrial images. In particular, we 
compare a domain-specific CNN – ‘ Zoobot ’ – with a generic classification backbone and find that Zoobot achieves higher 
detection performance. Our final model is capable of producing GSFC detections with a completeness and purity of ≥0.8 while 
only being trained on ∼5000 galaxy images. 

Key words: Machine Learning – Deep Learning – Data Methods – Object Detection – Transfer Learning – Galaxies: Structure. 
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.  I N T RO D U C T I O N  

eep field observations of high-redshift star-forming galaxies with
he Hubble Space Telescope ( HST ) showed galaxy morphologies
hich differ from low-redshift galaxies. The dominating spiral and

lliptical shapes in the local Universe are replaced by more irregular
nd chaotic morphologies at higher redshifts (Cowie, Hu & Songaila
995 ; van den Bergh et al. 1996 ; Elmegreen et al. 2005 , 2007 , 2009 ;
 ̈orster Schreiber et al. 2009 , 2011 ; Guo et al. 2015 , 2018 ). While

hese early HST -based studies suggest that the formation of galaxies
ith disc morphologies happened late in the cosmological timeline,

ecent studies using data from the JWST Early Release observations
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Ferreira et al. 2022 ) and the JWST CEERS observations (Ferreira
t al. 2023 ) find a high number of regular disc galaxies already at
arly times. With the longer wavelength filters and higher spatial
esolution from JWST more faint morphological features of galaxies
ould be resolved re vealing dif ferent morphologies for previously
eculiar galaxy types. 
H α line emission and rest ultraviolet (UV)/optical continuum

missions show that most galaxies at z > 1 are dominated by several
iant star-forming knots or ‘clumps’ (GSFCs, or clumps for short)
hich appear much more luminous and larger in extent than H II

egions of local galaxies. Unlensed observations report clump sizes
f ∼1 kpc (Elmegreen et al. 2007 ; F ̈orster Schreiber et al. 2011 ) and
tellar masses ranging 10 7 –10 9 M � (Elmegreen et al. 2007 ; Guo
t al. 2012 , 2018 ; Zanella et al. 2019 ; Mehta et al. 2021 ). For
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hese extended regions of star-formation, highly ele v ated specific 
tar-formation rates (sSFRs) have been observed (Guo et al. 2012 , 
018 ; Fisher et al. 2016 ). 
Ho we ver, clumps that are observed in high-redshift galaxies are 

ikely to be unresolved. Observations by HST from lensed galaxies 
ound clump sizes of ∼30–100 pc (Livermore et al. 2012 ; Adamo
t al. 2013 ; Cava et al. 2017 ) and from recent JWST Early Release
bservations of lensed galaxies at z = 1–8.5 clumps with sizes of
 10 to 100s of pc have been detected (Claeyssens et al. 2023 ). These

WST observ ations also re vealed clump masses as lo w as 10 5 M �.
ther reports indicate that kpc-scale clumps observed at redshifts 
f z ∼ 0.1–0.3 consist of smaller coalesced clumps which are not 
esolved with existing instruments (Overzier et al. 2009 ; Fisher et al.
014 ; Messa et al. 2019 ). 
The formation and evolution of GSFCs are still debated in the 

iterature. There are believed to be two principal modes of GSFC
ormation: (1) formation by gravitational instabilities in a gas- 
ich disc (Elmegreen & Elmegreen 2005 ; Bournaud, Elmegreen 
 Elmegreen 2007 ; Bournaud et al. 2013 ; Mandelker et al. 2014 ;
omeo & Agertz 2014 ; Fisher et al. 2016 ) and (2) formation due

o galaxy interactions and mergers (Conselice, Yang & Bluck 2009 ; 
andelker et al. 2016 ; Zanella et al. 2019 ). Ho we ver, the ways

n which clumps do contribute to the evolution of the host galaxy
owards modern elliptical and spiral types is not yet fully understood. 

The fraction of clumpy galaxies appears to peak at ∼
5 –65 per cent around z ∼ 2 (Guo et al. 2015 ; Shibuya et al. 2016 )
ut this fraction decreases with decreasing redshift (e.g. Adams et al. 
022 ). Due to the scarcity of clumpy galaxies in the local Universe
ost surv e ys of clumpy galaxies have focused on intermediate- and

igh-redshift galaxies. Therefore, their evolution and properties have 
ot been fully studied for a continuous redshift range between 0 

z � 0.3. Comparable studies for local galaxies are faced with 
he challenge of identifying enough clumps in galaxies to base 
opulation statistics on a reasonable sample size. Extensive surveys 
ike the Sloan Digital Sky Survey (SDSS, York et al. 2000 ), the
ark Energy Camera Le gac y Surv e y (DECaLS, De y et al. 2019 ),

nd the Hyper Suprime-Cam Subaru Strategic Program (HSC SSP, 
ihara et al. 2018 ) are providing wide field imaging data that
ake systematic searches for large numbers of low-redshift clumpy 

alaxies possible but are limited by the resolution constraints of 
round-based telescopes. 
With forthcoming instruments like the Euclid space telescope and 

ide-field surv e ys like the Vera Rubin Observatory Le gac y Surv e y
f Space and Time, vast amounts of high-resolution imaging data of
ocal galaxies will become available. 

Such huge data volumes require automatic analysis. Deep Learn- 
ng (DL), and in particular Convolutional Neural Networks (CNNs, 
.g. LeCun, Bengio & Hinton 2015 ), have been successfully applied 
o image classification tasks in astrophysical data analysis (for an 
 v erview see Huertas-Company & Lanusse 2023 ). However, one 
pplication of DL, that of automatically identifying and localizing 
pecific objects or features in astrophysical imaging data either 
hrough object detection (e.g. Huertas-Company et al. 2020 ) or image 
egmentation (e.g. Aragon-Calvo 2019 ; Burke et al. 2019 ; Merz 
t al. 2023 ; Zavagno et al. 2023 ), has only been recently used in
strophysical data analysis. 

Modern object detection algorithms like the Faster Region-based 
onvolutional Neural Network framework (Faster R-CNN or FR- 
NN for short, Ren et al. 2015 ) are widely used in ‘terrestrial’ ap-
lications, e.g. self-driving cars or face-recognition software. Those 
etworks usually incorporate a pre-trained classification backbone 
hich can be used for transfer learning and so the whole object
etection model only needs fine-tuning for a specific use case to be
ble to produce a high detection performance. 

To quantify the benefits of transfer learning for astrophysical 
mage data this paper tests ‘ Zoobot ’ (Walmsley et al. 2023 ) as a
eature extraction backbone for object detection in galaxy images. 
oobot is a classification-CNN which has been already pre-trained 
n morphological features from > 1000 000 galaxies and will 
e benchmarked against FRCNN models with feature extraction 
ackbones that have been trained using terrestrial (i.e. not related to
alaxies) imaging data. 

Even fine-tuning a classifier or an object detection model still re-
uires some training data. A major challenge for astronomy is the lack
f sufficiently large labelled data sets to train supervised DL models.
revious studies have used simulated training images with known 

abels (e.g. Burke et al. 2019 ; Huertas-Company et al. 2020 ; Ginzburg
t al. 2021 ) or classifications from publicly available catalogues (e.g.
han & Stott 2019 ). In contrast, the object detection models that we
escribe in this paper were trained using observational data labelled 
y volunteers from the citizen science project ‘Galaxy Zoo: Clump 
cout’ (GZCS, Adams et al. 2022 ; Dickinson et al. 2022 ). 
To assess the sample size required to obtain a scientifically useful

SFC detection performance, we train the different FRCNN models 
sing training data sets with different sizes. The results of these tests
an be used to estimate the required effort if labels are needed to
ne-tune the FRCNN model for a new data set. 
This paper is organized as follows. Section 2 provides a brief

ntroduction to the techniques of object detection with DL, followed 
y a section describing the data sources and the necessary pre-
rocessing steps (Section 3 ). Section 4 explains the details of our
odel design and training process together with an e v aluation of

he achieved detection performance. We describe applications of the 
bject detection models on different sets of imaging data in Section 5
nd discuss the implications of our findings in Section 6 . The paper
oncludes with a summary of our results in Section 7 . 

.  D L  F O R  O B J E C T  D E T E C T I O N  

bject detection is one of many technologies used in computer 
ision and image processing. Its main application is in detecting 
nd recognizing instances of semantic objects, i.e. objects of mean- 
ngful physical origin, in images or videos (e.g. Dasiopoulou et al.
005 ). Object detection algorithms generally make use of Machine 
earning or DL to produce automatic detections, localizations, and 
lassifications on large data sets like video-feeds or image catalogues. 
t is commonly used in computer vision tasks like face recognition or
raffic sign recognition in driver assistance systems (see e.g. Erhan 
t al. 2014 ; P av el, Tan & Abdullah 2022 ). 

Among computer vision tasks, object detection can be seen as 
 combination of image classification and object localization (e.g. 
zegedy, Toshev & Erhan 2013 ). Whereas image classification at- 

empts to assign a label or class to an entire image, object localization
ries to locate a single instance of a specific object in an image and
arks it with a tightly cropped bounding box centred on the instance.
bject detection not only tries to locate all instances of multiple
bjects in an image but also assigns a label to each instance found.
ealing with a variable number of objects and instances of different

izes are the main challenges for object detection algorithms. 
In this paper, we train a version of the Faster R-CNN architecture

roposed by Ren et al. ( 2015 ). We chose an object detection algorithm
 v er object instance segmentation algorithms, like Mask R-CNN (He
t al. 2017 ), as we are mainly interested in the object localization and
RASTAI 3, 174–197 (2024) 
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Figure 1. Schematic view of the Faster R-CNN architecture. The input image 
is fed into the backbone feature extractor and the resulting feature maps are 
used as input for the RPN and the detector network. Sample anchor points 
(dots in the upper right galaxy image) and anchor boxes (rectangles in the 
upper right galaxy image) are shown for the RPN. The detector network then 
uses the region proposals from the RPN and the feature maps from the feature 
extraction backbone to output the final, classified detections of class 1 objects 
(rectangles with label 1 in the lower right galaxy image) and class 2 objects 
(rectangles with label 2 in the lower right galaxy image), for example. 
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Table 1. Reductions applied for the final galaxy sample. 

Selection Galaxy count 

GZ2 304 122 
With spectroscopic redshift 243 500 
With 0.02 ≤ z ≤ 0.25 225 085 
With f featured > 0.5 (GZCS) 53 613 
After consensus aggregation 20 683 
With bulge markings remo v ed 20 646 
After padding 18 772 
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xpect that the resolution of our imaging data is too low to extract
seful segmentation masks of detected objects. 
Briefly, FRCNN models comprise three components. First, a CNN

s used as a ‘backbone’ to extract spatial hierarchies of patterns or
eatures from an input image. These features are then used as input
o two separate sub-networks (Fig. 1 ). 

The first is called the Region Proposal Network (RPN) and
dentifies (or proposes) regions in the image that are likely to contain
bjects. It sets anchor points at every pixel location of the output
eature map of the feature extracting backbone and places at each
nchor point position a set of k anchor boxes with default sizes
nd aspect ratios. The RPN optimizes these initial anchor boxes
epending on the o v erlap with the ground-truth object boxes from
he training set and generates a twofold output. The prediction scores
‘objectness’) for the two generic classes, ‘object’ and ‘background’,
nd for each of the k anchor boxes are one output. The other output
re regression coefficients for each of the four attributes: centre
oordinates x , y , the width w , and the height h , of the k anchor boxes.

The second sub-network, the detector network, is then used to
lassify the contents of the proposed regions of class ‘object’ into
ne of the n final object categories using the corresponding features
or those parts of the image that were extracted by the backbone
NN. It also further refines the predicted bounding boxes. 
The final output of the FRCNN model is a collection of rectangular

ounding boxes identifying groups of pixels in the image that contain
bjects and a classification identifying the type of object that each
ox contains. 

.  DATA  

n this section, we describe the criteria used to select the galaxy
mages that we use to train our models and the methods used to label
hem. Table 1 lists the number of galaxy images that remain after
ach stage of our image selection and labelling pipeline. 
ASTAI 3, 174–197 (2024) 
Our starting point in this paper is the set of galaxy images that were
sed for the GZCS citizen science project (Adams et al. 2022 , see also
ppendix A1 for a brief description of the image creation process).
ZCS ran on the Zooniverse platform ( www.zooniverse.org/) from

he 2019 September 19 to the 2021 February 11. For the GZCS
roject, the participating volunteers were asked to annotate visible
lumps on image cutouts of 53 613 SDSS galaxies. These were
elected from o v er 300 000 galaxies that were classified by volunteers
ho contributed to the ‘Galaxy Zoo 2’ citizen science project (GZ2,
illett et al. 2013 ). For GZCS, galaxies were selected for which the
ajority of GZ2-volunteers answered with ‘No’ to the question: ‘Is

he galaxy simply smooth and rounded, with no sign of a disc?’,
ince it seemed unlikely that galaxies containing prominent GSFCs
ould match this description. The sample was further reduced to only

ontain galaxies with a documented spectroscopic redshift between
.02 ≤ z ≤ 0.25. The redshift constraint was applied to ensure that
ost of the clumps, which were anticipated to be of ∼kpc size,

ppear as point-like sources throughout all sample images (see also
ppendix A1 ). 
Volunteers who participated in the GZCS project were asked to

dentify the locations of the clumps within the selected galaxies. The
nnotation process is described in detail by Adams et al. ( 2022 ), but a
rief summary is given here. First the volunteers were asked to mark
he central bulge of the galaxy to help them recognize that this should
ot be interpreted as a clump even though it has a similar appearance.
he volunteers were also equipped with a ‘normal clump marker’
nd an ‘unusual clump marker’. The latter allowed volunteers to
ark foreground stars which might o v erlap with the centre galaxy’s

patial extent and could look similar to clumps in terms of colours
nd being a comparable point source in the SDSS images. We used
he volunteers’ markings for normal and unusual clumps as the
lassification label in our training set and further refer to them as
normal’ and ‘odd’ clumps, respectively. 

Each galaxy image was inspected and annotated by at least 20
ndependent volunteers and their markings were then aggregated to
erive consensus clump locations. Dickinson et al. ( 2022 ) developed
 framework to aggregate two-dimensional image annotations into a
onsensus label which further reduced the sample to 20 683 clumpy
alaxies (Table 1 ). 

Fig. 2 shows that the vast majority of the aggregated clumps
 ∼ 99 per cent ) fall into a central square of half the original side
ength of each image with the target galaxy at its centre. To reduce
he computing time needed to train the network and to make the
lgorithm focus on the central galaxy only, the outer area was
ater cropped to the size of the central square during the image
ugmentation step for model training. Furthermore, any remaining
ulge markings and clumps located within a 10 per cent pixel margin
rom the borders of each image were remo v ed. This resulted in
 final set of 18 772 galaxies containing 39 745 aggregated clump
nnotations (Table 1 ). 

art/rzae013_f1.eps
https://www.zooniverse.org/
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Figure 2. Spatial distribution of the clump centroids within the image 
dimensions from the final set of 18 772 galaxies containing 39 745 annotated 
clumps, before central bulge markings and clumps too close to the cropped 
image dimensions have been removed. The cropped imaged dimensions are 
marked by the square and contain ∼ 99 per cent of the annotated clumps. 
After the image creation process, the median corresponding value for 1 pixel 
in the RGB-composite images is ∼0.2 arcsec (see Appendix A1 ). 

Figure 3. The galaxy stellar mass as a function of redshift for the galaxies 
used for developing the object detection models. Overlaid with contours are 
the galaxies from the parent GZ2 sample with spectroscopic redshifts. The 
dashed lines mark the median of each distribution. 
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Fig. 3 illustrates the mass-redshift distribution of our final sample 
f galaxies with at least one off-centre clump we used for developing
he object detection models. We did not apply further limits to our
election of host galaxies as these are used primarily to train the
bject detection models. Stellar mass estimates for galaxies in our 
nal sample were taken from the SDSS DR7 MPA-JHU value-added 
atalogue (Kauffmann et al. 2003 ; Brinchmann et al. 2004 ) and range
n order of 10 7 M � � M � � 10 12 M �. 
.  D E V E L O P I N G  T H E  O B J E C T  D E T E C T I O N  

O D E L  

n the following sections, we describe the specific FRCNN- 
mplementation with the different feature extraction backbones that 
e compare with each other (Section 4.1 ). The training set-up and
 x ecution is co v ered in Section 4.2 and in Section 4.3 we explain
he post-processing steps that we perform. Finally, in Section 4.4 the
etection performance is e v aluated. 

.1 Feature extraction backbone 

he CNN as a feature extraction backbone plays an important role
n the FRCNN object detection framework. With its ability to extract
eatures from the input images it provides crucial inputs for the
PN and the region classifier or detector network. In this paper, we

nvestigate the performance of five backbone CNNs that use different 
nitial weight configurations and training strategies (Table 2 ). 

The Zoobot model is a CNN developed to classify galaxies based
n their morphological features by Walmsley et al. ( 2023 ). We use
 version of Zoobot based on the ResNet50 architecture (He et al.
016 ), which has been trained to morphologically classify galaxies in
DSS, HST , and DECaLS imaging data. In total, our Zoobot version
as been trained using more than 1000 000 classified galaxy images,
nd training on more images is still on-going. 

The domain-specificity of the Zoobot model, combined with the 
iversity of instruments that provided its training data, suggests that: 

(1) Its weights may extract features that are very well suited for
he task of identifying clumps in galaxies and, 

(2) Using it as an FRCNN feature extraction backbone may allow 

he FRCNN model to be more easily adapted to no v el imaging data
ets using fewer labelled training examples. 

Ho we ver, neither of these hypotheses are necessarily true. CNNs
sed in computer vision applications have been very often pre-trained 
n massive ‘terrestrial’ data sets. The high-level abstraction of such 
 CNN might have reached a high enough generalization level after
eing pre-trained on a sample like the ImageNet data set, which
onsists of 1.2 million images belonging to more than 1000 classes
nd has become a standard challenge for benchmarking DL models 
n computer vision (ImageNet Large Scale Visual Recognition 
hallenge, Russako vsk y et al. 2015 ). 
To test whether an FRCNN model with Zoobot as a feature ex-

racting backbone (henceforth named Zoobot-backbone ) does indeed 
rovide better performance and flexibility, we tested the performance 
ersus a ResNet50 feature extraction backbone that has been pre- 
rained using the ImageNet data set. We refer to the backbone trained
sing these terrestrial images as Ima g enet-backbone . 
In addition to the unmodified Zoobot model, we also tested a

ersion of Zoobot that we specifically train as a classifier to distin-
uish clumpy and non-clumpy galaxies ( Zoobot-clumps-backbone ). 
ith this approach we address the possibility that specific objects 
ight have been underrepresented in the data set used for training
oobot and the feature extraction backbone has not learned to extract
eatures resembling GSFCs in galaxies well enough. We outline the 
ne-tuning process in Appendix B . 
We kept the weights of the ResNet50 architecture with 48 

onvolutional layers in four blocks (see He et al. 2016 for details of
he ResNet architecture) fixed for all three models described abo v e
nd only allowed the additional layers of the RPN and the detector
etwork to adjust during training. In this mode, we tested the transfer
earning ability of the three backbone feature extractors. 
RASTAI 3, 174–197 (2024) 
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Table 2. Backbone classifiers used during the Faster R-CNN model development. 

Model name Feature extractor Weight Learning mode Trainable 
architecture initialization blocks 

1 Ima g enet-backbone ResNet50 ImageNet Transfer learning –
2 Ima g enet-backbone-finetuned ResNet50 ImageNet Fine-tuning 2, 3, and 4 
3 Zoobot-clumps-backbone ResNet50 Zoobot Clumps Transfer learning –
4 Zoobot-backbone ResNet50 Zoobot Transfer learning –
5 Zoobot-backbone-finetuned ResNet50 Zoobot Fine-tuning 2, 3, and 4 
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For testing a fine-tuning approach, we added two more variants of
he Ima g enet-bac kbone and Zoobot-bac kbone models, in which some
eights were allowed to vary during the FRCNN model training.
pecifically, we allowed the upper ResNet50 blocks (2, 3, and 4) to
ary their weights. We refer to these partially trainable backbones as
ma g enet-backbone-finetuned and Zoobot-backbone-finetuned . 

All five FRCNN models (Table 2 ) were parametrized in the same
ay. The models expect the same RGB-composite images used for
ZCS (see Appendix A1 ) as input together with a list of bounding
ox corner pixel-coordinates and class-labels as derived from the
onsensus aggregation process (Dickinson et al. 2022 ). As the galaxy
utouts were scaled to a size of 400 × 400 pixels for GZCS, they
ary in pixel scale between 0 . 1 and 1 . 3 arcsec pixel −1 with a median
f 0 . 2 arcsec pixel −1 , depending on the angular size of the central
alaxy. The RPN was initialized with default anchor box sizes of 32

32, 64 × 64, 128 × 128, 256 × 256, and 512 × 512 pixels and
spect ratios of 0.5, 1.0, and 2.0. 

.2 Model training 

e trained the models o v er 20 runs each with increasing training
ample sizes, which we divided into random train/validation/test
plits of size 70 per cent/20 per cent/10 per cent (see Appendix C
or details). The images were augmented by random horizontal and
ertical flips and cropped to a size of 200 × 200 pixels, keeping
he central galaxy but removing the parts where very few clumps
ave been marked (see Section 3 and Fig. 2 ). This helped to impro v e
raining time and made the FRCNN model focus on the central galaxy
hile removing the parts which would only produce unnecessary

nchor boxes not containing any clumps. 
For all models and run-groups we used the ‘adaptive moment

stimation’ optimiser ( Adam , Kingma & Ba 2014 ) with an initial
earning rate of 10 −4 . We trained every configuration over 120 epochs
ach using PYTORCH ’s ‘distributed data parallel’ configuration on a
ulti-GPU environment of eight NVIDIA A100 GPUs and used

atch sizes of 32. 
We monitored the training and validation loss at each epoch. Fig. 4

hows examples for run 2 (423 training samples), run 10 (1949
raining samples), and run 20 (13 140 training samples). Training and
alidation loss converge at the beginning of the training runs for all
odels. We observed overfitting for the models Ima g enet-backbone ,

ma g enet-bac kbone-finetuned , and Zoobot-clumps-bac kbone where
he validation loss diverges from the training loss again. Overfitting
educes with increasing size of the training data set for the models
ma g enet-bac kbone and Zoobot-clumps-bac kbone (e.g. run 2 versus
un 20, Fig. 4 ), but remains strong for the FRCNN model Ima g enet-
ackbone-finetuned . In contrast, both unchanged Zoobot models,
oobot-backbone and Zoobot-backbone-finetuned are stable at all
ample sizes tested and express a rob ust beha viour o v er all 120
pochs. 
ASTAI 3, 174–197 (2024) 
.3 Post-processing 

.3.1 Non-maximum suppression 

he output of an object detection model consists of many overlapping
ounding boxes with different objectness scores attached. We applied
 process called non-maximum suppression (NMS) which uses the
accard distance J ( A , B ) (Jaccard 1912 ) to determine the Intersection
 v er Union (IoU) of the areas A and B : 

 ( A, B) = 

A ∩ B 

A ∪ B 

(1) 

nd keeps only the bounding box with the highest score from the
 v erlapping bounding boxes. 
Fig. 5 illustrates the result of NMS after being applied to a sample

alaxy image. In most cases the raw model proposals consisted of
ultiple small bounding boxes which were fully contained within

arger boxes with a lower objectness score. A threshold of IoU ≥
.2, which we applied in this paper, pro v ed to be suitable to discard
ost of those larger bounding box proposals while keeping partially
 v erlapping, adjacent clump proposals. 
The output of this step is a set of clump candidates with either the

normal’ or ‘odd’ classification. 

.3.2 Spatial exclusion and a g gregation of clump candidates 

ith the seeing of SDSS, clumps are assumed to appear as point-
ike sources (see also Section 3 ) with a light profile equal to the
nstrumental point spread function (PSF). Therefore, we merged
djacent clump candidates not further apart than one r -band PSF-
ull width at half-maximum (FWHM) in each subject image into
ne single detection. We measured the distance between the clump
entroids, i.e. the midpoint of the surrounding bounding boxes, and
et the new location of the merged clump to the midpoint between
he clump centroids. A new label was assigned so, that if at least one
f the clumps is classified as an ‘odd’ clump, that label is assigned
o the new aggregated clump (Fig. 6 ). 

Ne xt, we remo v ed all clump candidates located outside the e xtent
f the host galaxy. For each galaxy, we smoothed the r -band image
o generate a segmentation map with the PHOTUTILS Python package
Bradley et al. 2023 ), that outlines the extent of the host galaxy. The
 -band images were smoothed using a Gaussian kernel with the size
f the corresponding r -band PSF-FHWM. Accounting for the low
urface brightness of the galaxy outskirts, we applied a threshold of
 σ per pix el abo v e the background noise to outline the central galaxy.
lumps located outside the galaxy outline were discarded (Fig. 7 ). 

.4 Detection performance 

e used a two-step approach to e v aluate detection performance.
n the first step, during the model training phase, performance was
 v aluated on the validation sample set of each run-group (20 per cent ,
ee Section 4.2 ) after each epoch. Based on the general detection
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Figure 4. The mean training and validation loss of the Faster R-CNN for run 2 (423 samples), run 10 (1949 samples), and run 20 (13 140 samples), where the 
shaded areas show the corresponding 1 σ standard error of the loss. 

Figure 5. Comparison of bounding boxes for a sample galaxy before and 
after NMS. 
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Figure 6. If the distance between clump centroids is less than the r -band PSF- 
FWHM, the clumps are merged into one with a new location at the midpoint 
between the clump centroids. If at least one of the clumps is classified as an 
‘odd’ clump, that label is assigned to the new aggregated clump. 
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erformance and taking into account when the model first showed 
igns of o v erfitting (e.g. Fig. 4 ), we determined a best model version
or each run. In the second step, we compared the trained model
ersions in an astrophysical context using the test sample set of each
un-group (10 per cent , Section 4.2 ). 

.4.1 Determining the best model using the COCO metrics 

e e v aluated the detection performance simultaneously on the 
alidation set during the training process for all models using the 
etrics from the COCO Object Detection Challenge (Lin et al. 2014 ).
 short description of the metrics can be found in Appendix D . 
We exported a current model version after each epoch during the 

raining process and calculated average precision (AP) and average 
ecall (AR) and F 1-scores for detection score thresholds ranging 
rom 0.1 to 0.9 after post-processing (see Section 4.3 ) the results.
ased on the F 1-score the best models were chosen from this pool of
odel versions, separately for each training run. The model versions 
e chose for training run 20, which used all of the 18 772 galaxy

mages for training, validation, and testing, are listed in Table 3 . 

.4.2 Completeness and purity for model detections 

n astrophysical applications, domain-specific post-processing steps 
re very often necessary and detections need to be reassessed with the
elp of additional morphological and physical parameters. Moreo v er, 
he appropriate object detection score threshold (or objectness thresh- 
RASTAI 3, 174–197 (2024) 
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Figure 7. Applying the galaxy segmentation map to exclude detections 
located outside the host galaxy. 

Table 3. Best model versions chosen for training run 20, based on a 
prediction score threshold of ≥0.3 and IoU threshold of ≥0.5. 

Model name Epoch AP AR f 1 

Ima g enet-backbone 20 0.40 0.39 0.40 
Ima g enet-backbone-finetuned 20 0.42 0.82 0.56 
Zoobot-clumps-backbone 60 0.07 0.73 0.13 
Zoobot-backbone 120 0.44 0.68 0.54 
Zoobot-backbone-finetuned 120 0.44 0.67 0.53 

o  

a  

a
 

r  

a  

t  

G  

c  

c  

o
 

t
f  

i  

b  

m  

w  

e  

d  

b  

c  

s
 

m  

(

4

G  

o  

r  

f  

n  

Figure 8. Purity and completeness for all five models. The detection score 
threshold c n is increasing from 0.0 (right) to 0.9 (left) as indicated by the 
annotations. A clump candidate is considered to be a True Positive (TP), if 
the distance between the centroid of a predicted clump candidate and the 
centroid of the ground-truth clump is less than 0.75 of the image-specific 
PSF-FWHM. All models have been trained on the full sample size (run 20). 
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ld, see Section 2 ) very often depends on the scientific questions
sked. A complete sample can be a more appropriate outcome than
 pure sample and vice versa . 

As our clumps are based on assumed point-like sources not
esolved by SDSS, we applied a method which is different to the IoU
pproach used by the COCO metrics (see Appendix D ) to compute
he o v erlap between the ground-truth (i.e. the volunteers’ labels from
ZCS) and our model detections. A successful clump candidate is

ounted, if the distance between the centroid of a predicted clump
andidate and the centroid of the ground-truth clump is less than 0.75
f the image-specific PSF-FWHM. 
Fig. 8 shows completeness against purity for the final models from

raining run 20 and with an increasing detection score threshold c n 
rom 0.0 to 0.9. The models using a feature extraction backbone
nitialized with the unmodified Zoobot weights generally show a
etter detection performance compared with the Ima g enet-backbone
odel. Only if we allow the ImageNet-based model to adjust its
eights for the last convolutional blocks of the backbone feature

xtractor ( Ima g enet-backbone-finetuned ), completeness and purity
o reach similar levels. The object detection model which uses a
ackbone feature extractor pre-trained on detecting clumps ( Zoobot-
lumps-backbone ) appears to not benefit from the even more domain-
pecific initialization. 

We observe a similar performance ranking of the different FRCNN
odels if completeness is plotted against purity for all training runs

Fig. 9 , as an example for a score threshold of ≥0.3 ). 

.4.3 Performance per relative clump flux bin 

uo et al. ( 2015 ) suggested a GSFC definition based on the ratio
f clump to host galaxy UV-luminosity. A clump needs to exceed a
atio of 8 per cent to be classified as a GSFC and not as a normal star-
orming region. We used this definition to determine the complete-
ess and purity of our FRCNN models in terms of astrophysically
ASTAI 3, 174–197 (2024) 
ele v ant GSFC-detections and also applied a 3 per cent flux ratio
hreshold, similar to Adams et al. ( 2022 ). 

We measured the u -band flux from SDSS for each clump candidate
for details see Appendix E ), as it is closest to UV, and retrieved the
ost galaxy u -band flux from the SDSS DR15 PhotoPrimary table
Aguado et al. 2019 ). The log of the ratio of clump to host galaxy
ux was grouped into equally spaced bins of size 0.5. 
We then compared the completeness of the disco v ered clumps

gainst the log of the relative flux for each model and each training
un. As an example, Fig. 10 a plots completeness for the models
rained on 5061 galaxy images (run 15), which is considerably
maller than the full set of training samples. The figure shows the
ighest completeness for the model Zoobot-backbone o v er most of
he flux ratio range. Only for the faintest clumps does the complete-
ess drop to 0.4 and below the completeness values of the model
ma g enet-bac kbone-finetuned . Zoobot-bac kbone-finetuned reaches
imilar completeness levels within the error margins but the remain-
ng two models, Zoobot-clumps-backbone and Ima g enet-backbone ,
re significantly lower in completeness. 

Note, that the completeness is already high ( � 0.8) in the
ux ratio ranges of ≥ 3 per cent and ≥ 8 per cent for the FRCNN
odel Zoobot-backbone after we trained the model on only 5061

alaxy images. For comparison, Fig. 10 b shows the completeness
 ersus relativ e flux ratio for run 20, where we trained the models
n the full set of training samples. If trained on the full set of
3 140 galaxy images, Ima g enet-backbone-finetuned now reaches the
ighest completeness values, although the completeness of the other
odels, apart from Ima g enet-backbone , are similar in the clump-

pecific flux ratio ranges. 
The completeness shown by the two FRCNN models using a

ersion of the unmodified Zoobot as their feature extraction backbone
s similar after either being trained on a reduced train set (run 15) or
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Figure 9. Model completeness and purity for a score threshold ≥0.3. Error 
bars show the 95 per cent confidence interval. The different points for each 
model represent different training runs with different sample sizes but are not 
labelled for better visibility. 
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n the full train set (run 20). This indicates that a reasonable detection
erformance can already be achieved through a relatively small 
abelled training sample. Figs 10 a and b also show, that Ima g enet-
ackbone-finetuned and Zoobot-clumps-backbone require a larger 
raining set to achieve comparable completeness performance. Fine- 
uning a terrestrial feature extraction backbone, in our case Ima g enet-
ackbone-finetuned , does result in a high completeness performance 
ut only through using a large data set. In contrast, applying the same
odel in transfer learning mode ( Ima g enet-backbone ) does not result

n comparable completeness levels as seen from the FRCNN models 
ith domain-specific feature extracting backbones. 
We also calculated purity for the same flux ratio bins for all
odels and training runs. Figs 11 a and b show the two resulting
igure 10. Model completeness with respect to the volunteers’ labels from GZCS
f 5061 and 13 140, respectively, and for a score threshold of ≥0.3). Shaded areas
hreshold for the flux ratio are indicated with vertical dashed lines. 
lots after training run 15 and 20. The achieved purity levels are
ighest for relatively bright clumps (flux ratios > 3 per cent ). The
urity of the model detections tend to be closer together for all
odels except the Zoobot-clumps-backbone model. Unlike before, 
here we compared the completeness, there does not appear to be a

lear difference between models with terrestrial and domain-specific 
eature extraction backbones. 

To further illustrate the differences between the five feature 
xtraction backbones and the increase in purity and completeness, 
f the clump candidates are limited to rele v ant flux ratios, we show
ompleteness against purity plots for clump candidates with a u -band
ux ratio of ≥ 3 per cent in Fig. 12 a and for a ratio ≥ 8 per cent in
ig. 12 b. 

.  DETECTI ON  RESULTS  

e applied the five different FRCNN models to two different data
ets, (1) GZCS (SDSS images) and (2) Hyper Suprime-Cam (HSC) 
mages. 

In Section 5.1 , we compare the detections from each model on
DSS imaging data to the ground-truth data set, which consists of

he GZCS galaxies with annotated clumps from the volunteers. In 
ection 5.2 , we describe a first test of transferability of the object
etection models after we applied the models ‘out-of-the-box’, i.e. 
ithout any additional training, on the HSC imaging data. 
Unless otherwise indicated, all clump candidate detections were 
ade with models developed on the full training set (run 20) of the
ZCS sample and for detection scores ≥0.3. 

.1 Clump candidate detection – GZCS images 

.1.1 Visual comparison 

e first compared the detections by the five FRCNN models visually
ith each other and with the GZCS volunteers’ labels. Fig. 13

hows the differences in detection performance (Section 4.4 ) for 
ne example galaxy. 
This example illustrates the general observations we made while 

he resulting detections went through a visual vetting process. 
oobot-clumps-backbone tends to produce far bigger bounding 
oxes whereas the model Ima g enet-backbone generally detects fewer 
RASTAI 3, 174–197 (2024) 

 per relative clump flux for training run 15 and run 20 (training sample size 
 showing the 95 per cent confidence interval. The 3 per cent and 8 per cent 
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Figure 11. Model purity with respect to the volunteers’ labels from GZCS per relative clump flux for training run 15 and run 20 (training sample size of 5061 
and 13 140, respectively, and for a score threshold of ≥0.3). Shaded areas showing the 95 per cent confidence interval. The 3 per cent and 8 per cent threshold 
for the flux ratio are indicated with vertical dashed lines. 

Figure 12. Purity and completeness for all five models for clumps and clump candidates with a measured u -band flux ratio compared with the host galaxy of 
≥ 3 per cent and ≥ 8 per cent . The detection score threshold c n is increasing from 0.0 (right) to 0.9 (left) as indicated by the annotations. Error bars show the 
95 per cent confidence interval. All models have been trained on the full sample size (run 20). 
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lump instances than the other models, which explains the relatively
ow completeness for Ima g enet-backbone . 

We observed that the models often predict additional clump
nstances which were not marked by the volunteers. These can
e non-blue objects like foreground stars but in many cases these
etections show typical visual clump characteristics and were not
arked by a high enough number of volunteers for a consensus label.
his can be seen from the second image in in Fig. 13 , which shows

he original GZCS volunteers’ annotations before the aggregation
rocess (see Section 3 and Dickinson et al. 2022 ). 
Figs G1 , G2 , and G3 in the Appendix provide additional compar-

sons of SDSS galaxy examples. 
ASTAI 3, 174–197 (2024) 

b  

o

.1.2 Comparison to the GZCS sample 

e determined the number of detected normal and odd clumps
redicted by the FRCNN models and the clump per galaxy ratios
Table 4 ). 

The clump predictions vary considerably between the models.
 or e xample, the models Zoobot-clumps-backbone and Ima g enet-
ackbone-finetuned predict far more clumps than the other models
nd what has been originally annotated by the volunteers. These mod-
ls detect clumps in almost all galaxies from the GZCS set, whereas
he models Zoobot-backbone and Zoobot-backbone-finetuned both
etect ∼ 15 per cent fewer clumpy galaxies. The model Imagenet-
ackbone predicts the lowest number of clumps in only ∼ 60 per cent
f the GZCS galaxies. 
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Figure 13. Clump candidates for a SDSS galaxy for all models. From left to right, top row: GZCS volunteers’ labels, original GZCS volunteers’ labels before the 
aggregation process, and Ima g enet-backbone and Ima g enet-bac kbone-finetuned . From left to right, bottom row: Zoobot-clumps-bac kbone , Zoobot-bac kbone , and 
Zoobot-backbone-finetuned . Normal clumps are marked with green boxes, odd or unusual clumps with red boxes. The images are labelled with the SDSS-DR7 
object number of the host galaxy. Detection score threshold is ≥0.3. 

Table 4. Clumpy galaxies, clumps, and clumps per galaxy ratios for the final models per u -band clump/galaxy flux ratio for a detection threshold of ≥0.3. 

Model u -Band flux ratio Clumpy galaxies Clumps, all Clumps, normal Clumps, odd 
f u, clump / f u, galaxy Count Count Average Count Average Count Average 

GZCS All 18 772 39 745 2.12 29 619 1.89 10 126 1.20 
≥0.03 7329 10 106 1.38 7464 1.34 2642 1.07 
≥0.08 2810 3406 1.21 2007 1.22 1399 1.05 

Ima g enet-backbone All 11 191 17 804 1.59 16 223 1.57 1581 1.05 
≥0.03 4427 5359 1.21 4382 1.22 977 1.03 
≥0.08 1796 2015 1.12 1277 1.14 738 1.03 

Ima g enet-backbone-finetuned All 17 836 48 659 2.73 46 271 2.66 2388 1.06 
≥0.03 8300 12 698 1.53 10 995 1.54 1703 1.04 
≥0.08 3085 3882 1.26 2592 1.33 1290 1.04 

Zoobot-clumps-backbone All 17 491 69 966 4.00 14 625 1.61 55 341 3.95 
≥0.03 8472 15 149 1.79 2802 1.23 12 347 1.76 
≥0.08 2951 4027 1.36 605 1.20 3422 1.32 

Zoobot-backbone All 15 858 31 199 1.97 29 018 1.93 2181 1.05 
≥0.03 7210 9712 1.35 7913 1.35 1799 1.05 
≥0.08 2752 3272 1.19 1879 1.23 1393 1.04 

Zoobot-backbone-finetuned All 15 937 32 923 2.07 30 301 2.03 2622 1.07 
≥0.03 7122 9684 1.36 7800 1.36 1884 1.06 
≥0.08 2821 3330 1.18 1871 1.22 1459 1.05 
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These differences result not only from normal clump candidates 
ut also from the number of detected odd clump candidates. While 
oth models based on the unmodified Zoobot feature extractor, detect 
 similar number of normal clumps, they detect fewer odd clumps 
ompared with the number marked by the GZCS volunteers. We also 
bserved, that Ima g enet-backbone-finetuned detects ∼ 60 per cent 
ore normal clumps, whereas a model like Zoobot-clumps-backbone 

redicts more than five times the number of odd clumps annotated 
n the GZCS sample. 
Comparing the number of clumps per galaxy (Table 4 ), we noted
hat the models Zoobot-backbone and Zoobot-backbone-finetuned 
re closest to the distribution of the GZCS sample but tend to find
lightly more normal clumps per galaxy. 

Considering the redshift of the host galaxies, the normal clump 
andidates predicted by Zoobot-backbone and Zoobot-backbone- 
netuned are close to the GZCS-distribution of the normal clumps. 
lthough these models do detect fewer clumps for host galaxies 

t redshift 0.02–0.04, the other models differ substantially from 
RASTAI 3, 174–197 (2024) 
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Figure 14. Histograms of detected clump candidates per redshift bin by 
the five different models, separately for normal and odd clumps. Detection 
score threshold is ≥0.3. The underlying shaded distributions are from GZCS 
volunteers’ labels. 
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he GZCS distribution (Fig. 14 a). Specifically, the model Ima g enet-
ackbone-finetuned predicts far more clump candidates on the full
edshift range of our sample of host galaxies, whereas the model
ma g enet-backbone detects fewer clumps compared with the number
f clumps resulting from the GZCS project. We also observe that
he number of predicted normal clumps from the model Zoobot-
lumps-backbone is far lower for redshifts � 0.08 but much higher
or predicted odd clumps at all redshifts (Fig. 14 b). 

We also applied the same thresholds for the clump to host galaxy
 -band flux ratio as we did for assessing the detection performance
f the models (see Section 4.4.3 ). The number of detected clumps
ith a u -band flux ratio of ≥ 3 per cent ( ≥ 8 per cent ) reduces

o ∼ 20 −30 per cent ( ∼ 6 −11 per cent ). Again, the normal clump
andidates predicted by the models Zoobot-backbone and Zoobot-
ackbone-finetuned are close to the GZCS-distribution of the normal
lumps if either of the flux ratio thresholds are applied, but now the
umber of detected odd clumps is also similar to the number of odd
lumps identified from the GZCS project (Table 4 ). 

Plotted on a ( g − r )/( r − i ) colour–colour diagram, the normal
lump candidates predicted by most of the models (Fig. 15 ) tend to
e bluer than the clumps marked by the volunteers from GZCS. Only
he normal clumps detected by Zoobot-clumps-backbone are redder
n comparison to the GZCS sample (Fig. 15 c). 

The predictions from this model also differ notably for odd clumps
Fig. 16 ). Zoobot-clumps-backbone not only detects far more odd
lumps, but they also tend to be bluer and spread o v er a wider ( g −
 ) and ( r − i ) range than the GZCS-distribution. This is in contrast to
he odd clump candidate detections made by the other models which
re closely resembling the ( g − r ) and ( r − i ) colour distribution from
ASTAI 3, 174–197 (2024) 
he GZCS sample and are following a tight locus of the colour–colour
pace, indicative of foreground stars. 

To see whether the host galaxy has an effect on our model
redictions, we further compared the host galaxies’ sSFRs, stellar
asses, and redshifts for which our models did detect normal clumps

o the host galaxies for which the volunteers from GZCS have
arked normal clumps. We obtained stellar masses M � and sSFR

or the host galaxies from the SDSS DR7 MPA-JHU value-added
atalogue (Kauffmann et al. 2003 ; Brinchmann et al. 2004 ). We
aution the reader that these figures are only intended to compare
he performance characteristics of our models with the performance
haracteristics of the GZCS volunteers. We make no claims about the
rue distribution of clumpy galaxies as a function of redshift, stellar

ass, or sSFR. 
Apart from Zoobot-clumps-backbone , the distributions of the sSFR

f the host galaxies containing predicted clumps are similar to those
f the GZCS galaxies (Fig. 17 ). The majority of the normal clump
andidates are found in star-forming [log 10 (sSFR) � −11.2] galaxies.
t the higher end of the redshift range of our sample galaxies ( z
 0.05), the distributions of the predicted clumps still resemble

hat of the GZCS-distribution for the models Zoobot-backbone
nd Zoobot-backbone-finetuned (Figs 17 d and e). Ho we ver, the
odel predictions from Ima g enet-backbone and Ima g enet-backbone-

netuned are notably different compared with the GZCS-galaxies for
og 10 (sSFR) � −11 (Figs 17 a and b). 

We also observed, that the model Ima g enet-backbone tends to
redict fewer normal clumps in more massive galaxies [log 10 ( M � ) �
.4] for redshifts z < 0.05 (Fig. 18 a), whereas Ima g enet-backbone-
netuned detects more normal clumps in comparison to the GZCS-
istribution for galaxies with stellar masses of log 10 ( M � ) � 10.2
Fig. 18 b). Zoobot-clumps-backbone , on the other hand, produces
ormal clump candidates which are predominantly located in higher
edshift galaxies with log 10 ( M � ) � 10.2 (Fig. 18 c). The Zoobot-
ackbone and Zoobot-backbone-finetuned models closely resemble
he host galaxy distribution with clumps labelled by the GZCS
olunteers (Figs 18 d and e). 

.1.3 Clump catalogue release and use 

e applied the model Zoobot-backbone on the 53 613 galaxies from
he original GZCS set (Table 1 ) and released a catalogue containing
he detected clump candidates and their estimated properties along
ith this paper. The catalogue contains normal and odd clump

andidates for a detection score ≥0.3 together with measured fluxes
nd magnitudes for each of the ugriz -filter bands from SDSS. Table 5
escribes the columns in compact form. 
When using the catalogue, we recommend excluding entries

ith the label ‘odd clumps’ as these are very likely non-clump
andidates (i.e. foreground stars, background galaxies, or other point-
ike sources). Currently, our model framework does not include a
lassification score for the labels ‘normal clump’ and ‘odd clump’
hat would allow for a more specific selection. Purity and complete-
ess can be varied by filtering on the detection score, where a higher
core threshold results in higher purity and vice versa (see Fig. 8 ). 

We also caution the reader that we did not apply any survey
ompleteness limits to this catalogue. Such completeness limits need
o be applied for further scientific analysis of our sample. For an
xample, where galaxy stellar mass and redshift limits were applied,
ee Adams et al. ( 2022 ). 
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Figure 15. Colour–colour diagrams for normal clump candidates with a u -band clump/galaxy flux ratio of ≥0.08 for each of the five models. The colour bars 
indicate the specific counts of normal clumps for each ( g − r )/( r − i ) bin (with bin size of 0.1). The small histograms on the top and right side of the plots 
are showing the distributions of ( g − r ) and ( r − i ), separately. The colour–colour distribution of the clumps annotated by the GZCS volunteers are o v erlaid 
with contours and small histograms. Vertical and horizontal lines mark the median colour determined for the normal clumps, which are annotated with the 
corresponding values. 
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.2 Clump candidate detection – HSC images 

he HSC SSP (Aihara et al. 2018 ) partly o v erlaps with the SDSS
ootprint, but the wider aperture of the Subaru Telescope allows 
or much deeper imaging with the HSC and e xposes man y more
orphological details. 
We did not train the models specifically for the HSC imaging data

et or reproduce exactly the same image pre-processing as for the 
DSS galaxy images (see Appendix A ). We note, ho we ver, that the
oobot -based feature extraction backbones had some existing ‘mem- 
ry’ learned from galaxy images with a higher spatial resolution than 
DSS as such images have already been used in their pre-training as
lassifiers. 

A cross-match between the GZCS-catalogue and the HSC- 
atalogue found 2424 objects surv e yed by SDSS and the HSC SSP
or the GZCS sample, which we used for a direct visual comparison
f the clump candidates on images with different spatial resolution. 
ig. 19 shows such a comparison of two sample galaxies from both
atalogues with the clump candidates o v erlaid. The higher resolution 
f HSC is immediately apparent and the Zoobot-backbone is capable 
f detecting multiple clump candidates with varying sizes of the 
ounding boxes on galaxy images from this source. 
From visual inspection, the Zoobot-backbone model appears to 

roduce the most reasonable detections. A comparison with the 
odel Ima g enet-backbone can be seen from the additional examples 
n Figs G4 , G6 , and G6 in the Appendix. Ima g enet-backbone appears
o find far fewer clumps and some bounding boxes for detected
bjects are too large for clump-like objects. 

.  DI SCUSSI ON  

e have used a set of galaxy images annotated with clump markings
rom the GZCS citizen science project (Adams et al. 2022 ) to train
aster R-CNN models for object detection which are capable of 
roducing plausible predictions of clump locations within the host 
alaxies. 

This supervised DL approach faces several challenges. The first 
hallenge concerns the training (or ground-truth) data from which the 
odels learn. Observational data have the advantage o v er simulated

ata as it does not require prior assumptions of the photometric and
hysical properties of the objects to be detected. On the other hand,
ven if the completeness of the sample has been corrected against
xpert labels and probabilistic algorithms applied to aggregate 
he volunteers’ annotations into a consensus location and label 
Dickinson et al. 2022 ), it is likely that the training set contains
isidentifications and is missing genuine clump instances. 
Another challenge lies in how the imaging data are presented to

he neural network. In this study, we have used three channels per
mage as input for our models (e.g. gri bands converted into RGB for
RASTAI 3, 174–197 (2024) 
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R

Figure 16. Colour–colour diagrams for odd or unusual clump candidates with a u -band clump/galaxy flux ratio of ≥0.08 for each of the five models. The 
colour bars indicate the specific counts of odd clumps for each ( g − r )/( r − i ) bin (with bin size of 0.1). The small histograms on the top and right side of the 
plots are showing the distributions of ( g − r ) and ( r − i ), separately. The colour–colour distribution of the odd clumps annotated by the GZCS volunteers are 
o v erlaid with contours and small histograms. Vertical and horizontal lines mark the median colour determined for the odd clumps, which are annotated with the 
corresponding values. 
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he SDSS and HSC images). We expect this approach to be superior
o using only single-channel input data (e.g. Huertas-Company et al.
020 ), but this still needs to be validated. 
In comparing the performance of Zoobot as a feature extraction

ackbone against CNNs trained on ‘terrestrial’ data sets, we have also
imited ourselves to these three channels. From the SDSS imaging
ata, two additional channels are available, namely the u and z band.
o o v ercome these limitations, we are considering using the feature
xtraction backbones in an ensemble configuration in future works.
ossible configurations could consist of: 

(1) Two ResNet-based feature extraction backbones, where the
ixth channel will be left unused, 

(2) An ensemble of five backbones, one backbone for each of the
griz bands. 

Furthermore, fine-tuning a classification network before being
sed as a feature extraction backbone, like we tried with the Zoobot-
lumps-backbone model (see Appendix B ), leads to a worse detection
erformance. This is possibly caused by the feature extraction
ackbone ‘forgetting’ previously learned features and now relying on
ifferent features for classifying clumpy galaxies. We expected the
oobot-clumps-backbone model to more closely resemble the GZCS
opulation but instead, the model produces much bigger bounding
oxes (Fig. 13 ), many more odd clump candidates (Fig. 14 b) and
ASTAI 3, 174–197 (2024) 
he normal clump candidates are mainly detected in more massive
alaxies compared with the GZCS sample (Fig. 18 c). 

From an astrophysical point of view, we fa v our a more complete
 v er a more pure set of detections. As Dickinson et al. ( 2022 ) pointed
ut, the volunteers’ from GZCS tend to mark more faint features
n galaxies as clumps than experts, especially when those features
ppear blue in colour. The authors also noted, that volunteers are
ore likely to mark a clump as ‘normal’, despite being labelled by

xperts as ‘unusual’ or ‘odd’. 
This disagreement makes the GZCS sample less suitable for

cting as a benchmark to determine the purity of the model outputs.
nstead, we argue that a higher completeness is better suited to
cientific analyses. We find support for the robustness of our model
ompleteness after we tested them on galaxy images with simulated
lumps from Adams et al. ( 2022 , see Appendix F ), where they
ere able to produce similar performance results. We therefore

uggest that a final clump selection process needs to include a
efinement of the model output by considering directly observable
lump characteristics or derived photometric or physical properties
e.g. colour, flux, and stellar mass estimates of the clumps). 

Taking into account the detection performances of the five FRCNN
odels as described in Section 4.4 and the resulting clump population

tatistics in comparison to the GZCS data set, we selected the FRCNN
odel Zoobot-backbone as the best and most robust detection model.
e argue that: 
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Figure 17. sSFR versus redshift z of the host galaxy for normal clump candidates with a u -band clump/galaxy flux ratio of ≥0.08. The colour bars indicate the 
specific counts of clumps for each log 10 (sSFR) and z bin (with bin sizes of 0.1 and 0.005, respectively). The small histograms on the top and right side of the 
plots are showing the distributions of log 10 (sSFR) and z , separately. The distribution of the normal clumps annotated by the GZCS volunteers are o v erlaid using 
contours and small histograms. The horizontal dashed line marks the separation between star-forming and quiescent galaxies at log 10 (sSFR) = −11.2. 
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(1) The detected clumps are closest to the GZCS population in 
erms of total number, clumps per galaxy, and identified galaxies 
ith at least one off-centre clump. 
(2) Completeness and purity are among the highest, especially for 

he clump-galaxy flux-ratio of ≥ 3 per cent . 
(3) The model performs well after only being trained on relatively 

mall data sets and is robust against o v erfitting. 
(4) It uses the unmodified Zoobot CNN as the backbone feature 

xtractor, for which no problem-specific fine-tuning is necessary. 
(5) This FRCNN model will likely benefit from the continued 

raining of Zoobot for galaxy classifications on more and more 
maging data sets. 

Utilizing the ‘feature knowledge’ Zoobot has already acquired 
an help to facilitate the extension of DL-based object detection 
o a wide range of morphological features observed in galaxies, 
.g. bars, rings, or spiral arms. Furthermore, extending Faster R- 
NN from object detection to object instance segmentation will add 
 valuable alternative to ‘traditional’ segmentation methods using 
ontrast detection techniques with SEXTRACTOR (Bertin & Arnouts 
996 ), for example. A framework like Mask R-CNN (He et al. 2017 ),
hich uses a similar architecture to Faster R-CNN, will likely benefit 

rom a pre-trained feature extraction backbone like Zoobot . 
The ability of our models not only to detect clumps but also

o classify the detections into normal and odd clumps can greatly 
acilitate the removal of foreground star contamination in massive 
ets of galaxy images. We present in this paper first promising results
ut will continue to train and e v aluate our models with new training
ata which will be specifically labelled for this purpose. 

.  C O N C L U S I O N S  

his paper has presented a DL model for detecting GSFCs in low-
edshift galaxies. We developed object detection models using the 
aster R-CNN framework and trained the models on real observations 
rom the GZCS project. These 18 772 low-redshift galaxy images, 
aken from the SDSS, were annotated with clump markings by non-
xpert volunteers and aggregated to 39 745 potential clump locations 
sing a probabilistic aggregation algorithm. 
We tested five Faster R-CNN models with different feature 

xtraction backbones, all of which are based on the ResNet50 
rchitecture but initialized with either terrestrial or domain-specific 
re-trained weights in different training modes. We trained each 
odel on 20 different training sets with varying sample sizes, ranging

rom 500 to 18 772 galaxy images with marked clump locations. For
ll 100 training runs, we e v aluated the detection performance using
he standard COCO metrics and also determined completeness and 
urity within the GSFC-specific context after applying necessary 
ost-processing steps. 
The key results are summarized in the following points: 
RASTAI 3, 174–197 (2024) 
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Figure 18. Stellar mass M � versus redshift z of the host galaxy for normal clump candidates with a u -band clump/galaxy flux ratio of ≥0.08. The colour bars 
indicate the specific counts of clumps for each log 10 ( M � ) and z bin (with bin sizes of 0.1 and 0.005, respectively). The small histograms on the top and right side 
of the plots are showing the distributions of log 10 ( M � ) and z , separately. The distribution of the normal clumps annotated by the GZCS volunteers are o v erlaid 
using contours and small histograms. 

Table 5. Description of the clump catalogue for the GZCS galaxies. 

Columns Property Units Source 

1–2 Object IDs SDSS 
3–8 Clump candidate detection score, 

label and coordinates 
9–18 Clump ugriz -fluxes Jy 

and errors 
19–33 Clump ugriz -magnitudes AB mag 

and corrections 
34–37 Clump colours 
38–40 Est. clump/galaxy near-UV 

flux ratio ( u -band) 
41–45 Host galaxy coordinates, SDSS 

redshift and axis ratio 
46 Host galaxy stellar mass (log) log 10 (M �) SDSS 
47 Host galaxy sSFR (log) log 10 (yr −1 ) SDSS 
48–52 Host galaxy ugriz -fluxes Jy SDSS 
53–67 Host galaxy ugriz -magnitudes AB mag SDSS 

and corrections 
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(1) DL-based object detection models have been trained on large
amples of real observational data instead of simulated data. This
aper has shown that Faster R-CNN can be successfully applied for
etecting clumps in galaxy images. The models we present in this
aper are capable of producing clump candidate detections with a
ompleteness and purity of ≥0.8 on SDSS imaging data. 

(2) The same models can be used without additional training
‘out-of-the-box’) on imaging data from the HSC SSP, which have
ncreased spatial resolution compared with the data, that has been
sed for training the models. 
(3) Using Zoobot as a feature extraction backbone for the FRCNN
odel has shown the effectiveness of transfer learning within an

strophysical context. The models using the unmodified Zoobot
eature extractor are robust against overfitting and produce the best
esults for detecting GSFCs. 

(4) This paper has also sho wn ho w domain adaptation made it
ossible to apply FRCNN models to problem sets which are generally
oo small for a ‘training from scratch’ approach. The final model,
oobot-backbone , achieved a high detection performance while only
eing trained on ∼5000 samples or 39 per cent of the full training
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Figure 19. Clump candidates on two example HSC images. Column 1: SDSS image with volunteers’ labels from GZCS, column 2: SDSS image with detections 
by Zoobot-backbone , and column 3: HSC image with detections by Zoobot-backbone . Normal clumps are marked with green boxes, odd or unusual clumps 
with red boxes. The images are labelled with their SDSS-DR7 and HSC object numbers, respectively. Detection score threshold is ≥0.3. 
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et. To achieve good prediction results, the effort of creating labelled 
ata sets can be reduced as training the model does not require large
ata sets and will be less computationally e xpensiv e. 
(5) The model output can be made suitable for further scientific 

nalysis after necessary post-processing steps and corrections for 
ample completeness have been applied. 

ATA  AVA ILA BILITY  

he data underlying this paper were used in Adams et al. ( 2022 )
nd can be obtained as a machine-readable table by down- 
oading the associated article data from https:// doi.org/ 10.3847/ 
538-4357/ac6512 . The final models and code are made publicly 
vailable at: https:// github.com/ ou-astrophysics/ Faster- R- CNN- for- 
alaxy- Zoo- Clump- Scout. A detailed catalogue of giant star- 

orming clumps, detected for the full set of Galaxy Zoo: Clump
cout galaxies observed by SDSS, can be downloaded from https: 

/ doi.org/ 10.5281/ zenodo.8228890 . 
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Table A1. Parameters Lupton-scaling for g , r , and i bands. 

Parameter Band g Band r Band i 

Q 7 7 7 
Stretch α 0.2 0.2 0.2 
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PPENDI X  A :  CREATI NG  T H E  G A L A X Y  

MAG ES  

1. SDSS galaxy images 

he SDSS galaxy images were created as cutouts from the SDSS
R15 Le gac y surv e y data. To ensure a comparable visual size of

he target galaxies, we scaled the cutouts to six times the 90-percent
 -band Petrosian radius while keeping a scale of 0.396 arcsec per
ixel to match the native SDSS resolution. We then created RGB-
omposite images from the three single g -, r -, and i -band FITS,
here the g , r , and i map to red, green, and blue channels using

Lupton’-scaling (Lupton et al. 2004 ): 

 

′ 
x = 

1 

Q 

asinh 

⎡ 

⎣ Q ·
(

I x 
βx 

− m 

)

α

⎤ 

⎦ , (A1) 

here I x is the input pixel intensity in band x and I ′ x is the scaled pixel
ntensity. Table A1 lists the parameters used for the GZCS-cutouts. 

In a final step, we resized the RGB-composite images to 400 ×
00 pixels so that the visual sizes of each central galaxy is similar
ut with varying resolutions. 
hannel scales β 0.7 1.17 1.818 
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Table B2. Parameters used for training the Zoobot Clumps classification 
model. 

ResNet50 EfficientNetB0 

Python framework PYTORCH PYTORCH , TENSORFLOW 

Infrastructure NVIDIA A100 NVIDIA A100 
SXM4-40GB GPU SXM4-40GB GPU 

Batch size 32 32 
Optimiser Adam Adam 

Initial learning rate 10 −4 10 −4 

Epochs 100 100 
Accuracy 0.8291 ± 0.0109 0.8484 ± 0.0104 

(at epoch = 62) (at epoch = 74) 
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The SDSS DR15 PhotoPrimary table (Aguado et al. 2019 ) lists a
edshift range of 0.02 ≤ z ≤ 0.25 with a median value of z median =
.05 for the clumpy galaxies from GZCS. The r -band PSF-FWHM
rom SDSS for the individual observations varies from 0.60 arcsec 

PSF FWHM, r ≤ 2.08 arcsec with a median value of PSF median = 

.12 arcsec. For these redshift ranges, cosmological angular size–
edshift relations can be simplified giving a median size of objects 
een at an angle of one PSF-FWHM of 1.14 kpc. This corresponds
o the initial assumption that clumps with ∼1 kpc physical sizes are
nresolved with SDSS. We note, ho we ver, that clumps marked by
he volunteers in galaxies at the higher end of our sample redshift
ange are unresolved up to a size of ∼5 kpc and might not necessarily
epresent genuine GSFCs. 

2. HSC galaxy images 

e obtained the HSC galaxy cutouts using the command-line tools 
o access the PDR3 Data Access Service from HSC SSP. We applied
 field of view (FOV) of 60 arcsec which matches the median FOV
rom the GZCS cutouts. The g -, r -, and i -filter bands were used to
reate a RGB-composite image using an asinh stretch to the images: 

 

′ 
x = 

asinh ( e 10 I x ) / asinh ( e 10 ) + 0 . 05 

0 . 72 
, (A2) 

here I x is the input pixel intensity in band x and I ′ x is the scaled
ixel intensity . Finally , the RGB-composites were resized to 400 ×
00 pixels. 

PPEN D IX  B:  F INE-TUNING  ZOOBOT F O R  

LASSIFYING  CLUMPY  G A L A X I E S  

e used the set of the GZCS imaging data after it has been reduced by
he aggregation algorithm from Dickinson et al. ( 2022 ) to develop
 classification CNN specifically for separating clumpy and non- 
lumpy galaxies ( Zoobot Clumps ). The 45 643 images were split
nto a training set (36 514 or 80 per cent ), validation set (4564 or
0 per cent ), and a test set (4565 or 10 per cent ) with the same
istribution of clumpy and non-clumpy galaxies as the full data 
et (Table B1 ). A galaxy containing at least one off-centre clump,
ither a ‘normal’ or ‘odd’ clump (see Section 3 ), after the consensus
abel aggregation from Dickinson et al. ( 2022 ), was given the class
clumpy’ and ‘w/o clumps’ otherwise. 

During training, the model was presented not only with the original 
et of input galaxy images but also with variations of it. This image
ugmentation helps to impro v e the generalization ability of the model
able B1. Train, validation, and test data sets for the Zoobot Clumps 
lassification model. 

abel ID Train Validation Test Total 

/o clumps 0 20 503 2541 2612 25 656 
(56.15 

per cent) 
(55.67 

per cent) 
(57.22 

per cent) 
(56.21 

per cent) 
lumpy 1 16 011 2023 1953 19 987 

(43.85 
per cent) 

(44.33 
per cent) 

(42.78 
per cent) 

(43.79 
per cent) 

otal – 36 514 4564 4565 45 643 
(100.00 
per cent) 

(100.00 
per cent) 

(100.00 
per cent) 

(100.00 
per cent) 
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nd increases the subset of the learning data. The variations were
ostly randomly applied and consisted of the following techniques: 

(1) Random resizing, keeping the aspect ratio between 0.9 and 
.1, 
(2) Random cropping to 224 × 224 pixels within a 10 per cent
argin of the original image, 
(3) Random horizontal flip, 
(4) Random rotation of 90 ◦, and 
(5) Normalization of the pixel values in each channel. 

We train two Zoobot Clumps versions, based on the ResNet50 (He
t al. 2016 ) and EfficientNetB0 (Tan & Le 2019 ) architecture, o v er
00 epochs without e xtensiv e hyperparameter tuning. Learning rate 
nd optimiser settings were varied around values gained from expert 
nowledge (Dickinson and Walmsley, private communication), but 
esulting model performance did not change significantly. We chose 
he Adam optimiser (Kingma & Ba 2014 ) o v er the standard stochastic
radient descent optimiser as it introduces an adaptive learning rate 
nd increases computation speed. We show the parameters used for 
eveloping Zoobot Clumps in Table B2 . 
The models with the best classification performance achieved 

n accuracy of 0.8291 ± 0.0109 and 0.8484 ± 0.0104 (within a 
 σ confidence interval) based on the ResNet50 and EfficientNetB0 
rchitecture, respectively. 

PPENDI X  C :  T R A I N I N G  RU N  DETA I LS  

or the several training runs, we randomly assigned the remaining 
8 772 galaxy images, after we have applied all exclusions (see
able 1 ), into 20 run-groups where the group size increased ex-
onentially from 500 to 18 772. Each run-group was further split
nto a training (70 per cent), validation (20 per cent), and test
et (10 per cent). The split was also done randomly but using
 stratification based on the ratio of odd (or unusual) to normal
lumps in each galaxy to maintain a comparable distribution of 
oth clump classes in all groups. For the whole data set the ratio
odd clumps/normal clumps) = 0.293 ± 0.004 and the ratio of 
clumps/galaxy) = 2.12 ± 0.009. Table C1 lists the sample sizes 
f the various run-groups and sets. 
Note, that only galaxies with at least one off-centre clump were

sed for training. True ne gativ e samples are obtained from areas
n the image where no instances of the objects to be detected are
ocated. Additional images containing no instances of the objects are 
sually not required as the number of ne gativ e and positive anchor
oxes need to be balanced for the RPN as otherwise a bias towards
e gativ e samples will occur (Ren et al. 2015 ). 
RASTAI 3, 174–197 (2024) 



192 J . J . Popp et al. 
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Table C1. Number of galaxy images and annotated clumps (in brackets) for 
each set per run-group. 

Run Training Validation Test Total 
group 

1 349 100 51 500 
(752) (223) (104) (1079) 

2 424 120 61 605 
(893) (244) (128) (1265) 

3 512 146 74 732 
(1056) (292) (151) (1499) 

4 620 177 89 886 
(1298) (366) (194) (1858) 

5 751 214 108 1073 
(1671) (456) (224) (2351) 

6 908 260 130 1298 
(1923) (557) (257) (2737) 

7 1,099 314 158 1571 
(2361) (685) (316) (3362) 

8 1330 380 191 1901 
(2788) (822) (429) (4039) 

9 1610 460 231 2301 
(3426) (953) (482) (4861) 

10 1949 557 279 2785 
(4145) (1190) (589) (5924) 

11 2358 674 338 3370 
(5027) (1426) (690) (7143) 

12 2855 816 408 4079 
(6082) (1733) (849) (8664) 

13 3455 987 494 4936 
(7323) (2076) (1095) (10 494) 

14 4181 1195 598 5974 
(8808) (2526) (1289) (12 623) 

15 5061 1443 724 7230 
(10 712) (3025) (1510) (15 247) 

16 6124 1750 876 8750 
(12 782) (3730) (1759) (18 271) 

17 7412 2118 1060 10 590 
(15 851) (4429) (2272) (22 552) 

18 8971 2563 1282 12 816 
(18 986) (5415) (2680) (27 081) 

19 10 857 3102 1552 15 511 
(22 959) (6633) (3259) (32 851) 

20 13 140 3754 1878 18 772 
(27 825) (7941) (3979) (39 745) 
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PPENDIX  D :  C O C O  METRICS  

or object detection models performance is typically e v aluated by
P metrics. A common set of metrics is used for the COCO Object
etection Challenge (COCO metrics, Lin et al. 2014 ). 
Given the prediction score (objectness) c i as the probability

hether an anchor box i contains an object or not, a threshold value
 0 ∈ [0, 1] is set so that if c i ≥ c 0 , box i is defined to contain an object
nd not, if c i < c 0 . We calculated the IoU (see Section 4.3 ) for each
ounding box containing objects with respect to the ground-truth, in
his case the annotations from the GZCS-volunteers. If the IoU is
0.5, e.g. the detection is a TP, otherwise a False Positive (FP). On

he other hand, if a bounding box has high enough o v erlap with a
round-truth object (IoU is ≥0.5) but the objectness score is below
he threshold, so c i < c 0 , then this is called a False Negative (FN).
he IoU-threshold can be varied depending on the specific task. 
ASTAI 3, 174–197 (2024) 
Precision p can then be defined as 

( c 0 ) = 

#TP ( c 0 ) 

#TP ( c 0 ) + #FP ( c 0 ) 
(D1) 

nd recall r as 

( c 0 ) = 

#TP ( c 0 ) 

#TP ( c 0 ) + #FN ( c 0 ) 
, (D2) 

here #TP ( c 0 ), #FP ( c 0 ), and #FN ( c 0 ) are the number of TPs, FPs,
nd FNs, respectively, depending on the prediction score threshold
 0 . 

Precision and recall are equi v alent to purity and completeness,
espectively, which are more commonly used in an astrophysical
ontext. Completeness is the number of objects in a data set that
re detected o v er the number that exists. Purity is the number of
rue detections o v er the number of all detections. High values for
oth metrics show that a detector is returning accurate results (‘high
recision’) as well as returning a majority of all true results (‘high
ompleteness’). 

We observed a trade-off between precision and recall which
s typically for object detection problems. High precision can be
chie ved with lo w-score thresholds c 0 which results in a lower
ecall and vice versa (see Fig. 8 for an example where purity and
ompleteness are used instead of precision and recall). Plotting
recision against recall for a discrete set of score thresholds, e.g.
 n ∈ [0.0, 0.1, . . . , 1.0], the area under this curve is used as a model
omparison metric, called AP: 

P = 

∑ 

n 

( r n − r n −1 ) p n , (D3) 

here r n and p n are the corresponding values for recall and precision
pecific to the score threshold c n . In other words, the AP summarizes
uch a r –p plot as the weighted mean of precision achieved at each
hreshold, using the step increase in recall from the previous threshold
s the weight. A value close to 1 represents both high recall and high
recision. 
For multiclass detection problems the mean average precision ( AP )

s defined by 

P = 

1 

k 

k ∑ 

i= 1 

AP i , (D4) 

or the k > 1 classes. 
Instead of iterating through discrete values of the detection score

 n , different thresholds for the IoU are used for calculating the AR.
rom the recall–IoU curve, where IoU ∈ [0.5, 1.0], the area under

he curve, multiplied by two, is used as the value for AR: 

R = 2 
∫ 1 . 0 

0 . 5 
r( IoU ) d ( IoU ) . (D5) 

his is then averaged over all classes k to define the mean average
ecall ( AR ): 

R = 

1 

k 

k ∑ 

i= 1 

AR i . (D6) 

AP and AR can be combined into a single performance metric.
his metric is called F 1-score f 1 and is defined as 

 1 = 2 × AP AR 

AP + AR 

. (D7) 

he F1-score can be used to compare different models, especially
f they vary in precision and recall and if both metrics are equally
mportant for e v aluating detection performance. 
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Figure E2. For clump photometry measurements the host galaxy 
background and the other clumps are masked for correct background 

subtraction. 
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PPEN D IX  E:  C L U M P  PHOTOMETRY  

he flux of each clump was measured from each of the ugriz -bands
ITS using the PHOTUTILS Python package (Bradley et al. 2023 ). 
ig. E1 shows the distribution of the sizes of the bounding boxes
escribed by the radius of a circle from the centre of the box to
he closest side of each box. Allowing for some margin, we chose
n aperture with a radius of 1.125 × the band-specific PSF-FWHM 

entred on the clump midpoint. We acknowledge, that this fixed 
perture is not suitable for the wider range of bounding box sizes
utput by the model Zoobot-clumps-backbone . As this model tends 
o produce bigger bounding boxes for similar object detections (see 
ection 5.1 , Figs G1 , G2 , and G3 in the Appendix), we kept the same
perture size for all models for better comparison. 

Annuli spanning three to five PSF-FWHM where used to compute 
he median background flux around the aperture. We multiplied this 
er-pixel value with the aperture area and then subtracted the result
rom the flux measured in the clump aperture. 

Here, background refers to the diffuse light of the host galaxy 
n which the clumps are embedded. There are several factors that 
an impact the background flux estimate for each clump. For 
lumps close to the rims of the galaxy the background estimate 
ill be affected by the area outside the galaxy extent and not only

esulting from the diffuse light of the host galaxy. Also, adjacent 
lumps might fall into the area of the annulus and will obscure the
ackground estimate. To mitigate these effects, we took photometry 
easurements after masking the area outside, and all other identified 

lumps within, the host galaxy (Fig. E2 ). 
We also corrected the background-subtracted fluxes for the flux 

oss due to the small aperture sizes as it was assumed that the clumps
re unresolved at this scale. Using a Gaussian profile for the PSFs,
he fluxes were multiplied by a factor of ∼1.03 for the aperture
orrection. 

Flux values as observed by SDSS are reported in nanomaggies 
Stoughton et al. 2002 ) and were converted into Jansky using the
actor 3.631 × 10 −6 Jy per nMgy. Also, we converted the flux values
 into AB magnitudes m AB (Oke & Gunn 1983 ) using 

 AB = 22 . 5 − 2 . 5 log 10 ( f ) . (E1) 

Further corrections to the AB magnitudes were applied for galactic 
 xtinction. F or each clump location the reddening E ( B − V ) is
etrieved from the Schlegel, Finkbeiner & Davis ( 1998 ) dust maps
nd converted into an extinction A λ applied to each ugriz AB
agnitude using the tabulated factors from Schlafly & Finkbeiner 
igure E1. Distribution of bounding box sizes for all five models as fractions 
f the r -band PSF-FWHM. The size of a bounding box is described by the 
adius of a circle from the centre of the box to the closest side of the box. The 
nnotations show the median values of the sizes. 

F
w
c

 2011 ). We determined the clump colours ( u − g ), ( g − r ), ( r − i ),
nd ( i − z ) as differences between the background-subtracted clump
agnitudes. 

PPENDI X  F:  G A L A X Y  IMAG ES  WI TH  

IMULATED  CLUMPS  

esides the real observational data, galaxy images containing sim- 
lated clumps were made available from Adams et al. ( 2022 ).
his data set consists of 84 565 clumps placed in 26 736 galaxies
ith comparable characteristics with the main GZCS sample. The 

imulated clumps were placed randomly within the central galaxy’s 
patial extent but with a higher probability for inner-galactic area ( p
 0.75) compared with the outer, low surface brightness area ( p =

.25). 
Luminosity, mass, and spectral properties of the artificial clumps 

ere carefully modelled to span a wide property range allowing for
 robust completeness and purity assessment of the object detection 
odels. The detailed process for generating these images with 

imulated clumps can be found in Adams et al. ( 2022 ). 
We e v aluated our models on the set of 26 736 galaxies with

imulated clumps and measured lower o v erall completeness and 
urity compared with the levels reached by the models after we
pplied them to the real clumps. The simulated clumpy galaxies 
reated by Adams et al. ( 2022 ) contain many more faint clumps
RASTAI 3, 174–197 (2024) 

igure F1. Model completeness per relative clump flux for training run 15 
ith a training sample size of 5061 at a score threshold of ≥0.3 (simulated 

lumps). Shaded areas showing the 95 per cent confidence interval. 
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R

Figure F2. Model completeness per relative clump flux for training run 20 
at a score threshold of ≥0.3 (simulated clumps). Shaded areas showing the 
95 per cent confidence interval. 
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hich were used for probing the volunteers’ reco v ery capability
nd completeness during the GZCS project. As faint clumps have
arely been labelled by the volunteers in the data sets with real
bservations used to train the FRCNN models, we expected detection
erformance to be lower for faint clumps and, hence, in o v erall
etection completeness. This can be seen from Figs F1 and F2 , where
ompleteness drops for a clump-galaxy flux ratio below 3 per cent
or all models. 

With focus on the clump-specific flux ratio ranges the ranking
f the models in terms of completeness performance is similar
o what we observed from the detections on the real imaging
ata. Both FRCNN models using a version of the unmodified
ASTAI 3, 174–197 (2024) 

igure G1. Comparison of detections on SDSS images from all models. Column
etections by Ima g enet-backbone , column 3: with object detections by Ima g enet-b
olumn 5: with detections by Zoobot-backbone , and column 6: with object detect
oxes, odd or unusual clumps with red boxes. The images are labelled with their SD
oobot as their feature extraction backbone are reaching the highest
ompleteness lev els re gardless of how man y samples were used
or training. Ima g enet-backbone-finetuned is capable of reaching
imilar completeness levels but only after intensive training. The
ompleteness curve for this model is rising after being trained on
061 samples (Fig. F1 ) to 13 140 samples in the training set (Fig. F2 ).
gain, Zoobot-clumps-backbone and Ima g enet-backbone are much
orse compared with the other models. 

PPENDI X  G :  A D D I T I O NA L  VISUAL  

XAMPLES  O F  DETECTED  CLUMPS  IN  SDSS  

N D  HSC  G A L A X Y  IMAG ES  

he following images show nine different examples of galaxies anno-
ated by the volunteers from GZCS, where we compare the detections
rom all five FRCNN models with the volunteers’ markings. All
odels were trained on the full training set (13 140 galaxies, Table 1 )

nd for all detections we applied a detection score threshold of ≥0.3.
Similar to Fig. 13 , we compare the clump candidates for SDSS

alaxies in Figs G1 , G2 , and G3 . The galaxy images were chosen
o co v er man y of the challenges the models can face during the
bject detection inference process, e.g. prominent foreground stars
nd image artefacts (e.g. Fig. G3 ). 

In addition, Figs G4 , G5 , and G6 compare the clump markings and
etections on the same nine galaxies with detections made on HSC
alaxies, for which we found a cross-match with our GZCS sample.
e compare only the detection results from the models Ima g enet-

ac kbone and Zoobot-bac kbone for clarity and to highlight the
ifferences between a terrestrial and a domain-specific/astrophysical
eature extraction backbone. 
 1: SDSS image with volunteers’ labels from GZCS, column 2: with object 
ac kbone-finetuned , column 4: with detections by Zoobot-clumps-bac kbone , 
ions by Zoobot-backbone-finetuned . Normal clumps are marked with green 

SS-DR7 object numbers. Detection score threshold is ≥0.3. 
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Figure G2. Comparison of detections on SDSS images from all models. Images and detections as described in the previous figure. 

Figure G3. Comparison of detections on SDSS images from all models. Images and detections as described in the previous figure. 
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Figure G4. Comparison of detections on SDSS and HSC images. Column 1: SDSS image with volunteers’ labels from GZCS, column 2: SDSS image 
with object detections by Ima g enet-backbone , column 3: SDSS image with detections by Zoobot-backbone , column 4: HSC image with object detections by 
Ima g enet-backbone , and column 5: HSC image with detections by Zoobot-backbone . Normal clumps are marked with green boxes, odd or unusual clumps with 
red boxes. The images are labelled with their SDSS-DR7 and HSC object numbers, respectively. Detection score threshold is ≥0.3. 

Figure G5. Comparison of detections on SDSS and HSC images. Images and detections as described in the previous figure. 
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Figure G6. Comparison of detections on SDSS and HSC images. Images and detections as described in the previous figure. 
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