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Elastic confinements are an important component of many biological systems and dictate the
transport properties of suspended particles under flow. In this chapter, we review the Brownian
motion of a particle moving in the vicinity of a living cell whose membrane is endowed with a resis-
tance towards shear and bending. The analytical calculations proceed through the computation of
the frequency-dependent mobility functions and the application of the fluctuation-dissipation theo-
rem. Elastic interfaces endow the system with memory effects that lead to a long-lived anomalous
subdiffusive regime of nearby particles. In the steady limit, the diffusional behavior approaches
that near a no-slip hard wall. The analytical predictions are validated and supplemented with
boundary-integral simulations.

Key words: Anomalous diffusion, cell membrane, singularity methods, biological fluid dynamics.

CONTENTS

I. Introduction 1

II. Membrane model 3
A. Overview
B. Membrane parametrization
C. Traction jump equations

III. Green’s functions 4
A. Mathematical formulation
B. Fourier transform technique

IV. Particle hydrodynamic mobility 6
A. Self-mobility functions
B. Pair-mobility functions
C. Perpendicular steady motion

V. Brownian motion nearby membranes 9
A. Generalized Langevin equation
B. Fluctuation-dissipation theorem
C. Diffusion nearby cell membranes

VI. Conclusions 11

Acknowledgments 12

References 12

∗ ider@thphy.uni-duesseldorf.de
† stephan.gekle@uni-bayreuth.de

I. INTRODUCTION

The interactions of nanoparticles with cell membranes
play an important role in a variety of biomedical and
biotechnological applications. Prime examples include
drug delivery and chemotherapy via nanocarriers [1–
4], targeted phototherapy [5, 6] and biosensing applica-
tions [7–9]. During uptake by a living cell via endocy-
tosis [10–12], nanoparticles often come into close vicinity
of cell membranes which alter their motion in a complex
fashion.

At small length and time scales of motion, the dynam-
ics of the fluid around suspended particles is governed
by the steady Stokes equations as long as viscous effects
dominate over inertial effects. In these conditions, a full
description of the particles’ motion is achieved by the hy-
drodynamic mobility function which bridges between the
particles’ velocities and the forces exerted on their sur-
faces. Particle motion in bulk is well understood and
has been studied extensively since the pioneering work
of Stokes [13]. However, in realistic situations, motion of-
ten occurs in geometric confinements where the mobility
is significantly changed relative to its corresponding bulk
value. The effect of confining boundaries on nearby parti-
cles in a viscous fluid plays an important and crucial role
in a variety of technological processes ranging from the
rheology of colloidal suspensions [14–19] to the transport
of nanoparticles and various molecules through nanochan-
nels [20, 21].

The first attempt to address the effect of boundaries
on the motion of a suspended particle dates back to
Lorentz [22] who employed the image solution technique
to compute the Stokes flow induced by a point-force singu-
larity acting near an infinitely extended planar hard-wall.
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This solution technique is applicable when the particle is
located at a moderate distance from the wall. A fully an-
alytical solution has later been proposed by Brenner [23]
using bispherical coordinates to address the slow motion
of a truly finite-sized particle axisymmetrically moving
towards a plane surface. The viscous translational mo-
tion parallel to a planar wall has further been investi-
gated using matched asymptotic expansions [24, 25] find-
ing that the wall introduces a coupling between rotation
and translation. Both the translational and rotational mo-
tions have later been reconsidered by Perkins & Jones who
expressed the particle mobility in terms of a set of scalar
functions that depend on the sphere radius and distance
to a free [26] or a rigid interface [27]. Lorentz calcula-
tions have been extended to account for a finite frequency
of motion by Wakiya for the motion parallel to a hard
wall [28].

Particle motion through a channel between two adja-
cent walls has received researchers’ attention since a long
time ago. The most simple and intuitive approach to cal-
culating the particle mobility function is due to Oseen [29]
who suggested that the mobility of a sphere confined be-
tween two rigid walls could conveniently be approximated
by superposition of the leading-order terms from each sin-
gle wall. A more diligent approach has been proposed by
Faxén [30, 31] who computed the particle mobility for the
parallel motion to the walls for the particular situations
when the particle is in the mid-plane or the quarter-plane
between two hard walls [32]. For an arbitrary position
between the two walls, a first-order reflexion theory valid
when the particle is far away from the walls has been pro-
posed by Ho & Leal [33]. Exact analytical solutions have
later been obtained and expressed in terms of a conver-
gent series using the image solution technique for both in-
compressible [34, 35] and compressible flows [36–38]. For
a truly extended particle, multipole expansions [39, 40]
in addition to joint analytical-numerical solutions have
been presented for the perpendicular [41] and parallel mo-
tions [42]. Further theoretical investigations have been
carried out near two perpendicular walls [43] and for a
sphere confined on the centerline of a rectangular chan-
nel [44].

During the past few decades, particle motion in con-
fined geometries regained greater interest after the ad-
vent of elaborate experimental techniques which allow an
accurate and reliable measurement of the mobility near
interfaces. Among the most efficient techniques that have
been utilized are laser [45, 46] and optical tweezers [47–
54], fluorescence [55, 56] and digital video microscopy [57–
64], evanescent wave dynamic light scattering [65–78] and
the three-dimensional total internal reflection velocime-
try technique [79]. Analytical calculations of the mobil-
ity functions have been extended to include particles near
interfaces with partial slip [80–82], interfaces separating
two mutually immiscible liquids [83] and inside a thin liq-
uid film between two incompressible fluids [84]. Further,
explicit analytical expressions for the flow field induced

by a point force acting close to a fluid-fluid interface have
been obtained using the image solution technique [85]. For
a truly extended particle, analytical solutions have been
proposed by Lee and coworkers using a generalization of
the method of Lorentz [86] and “exact” bipolar coordi-
nates [87]. The effect of small deformations of an initially
flat fluid interface on the force and torque experienced by
a nearby translating or rotating sphere has also been con-
sidered [88, 89]. Additional works have been carried out
near a viscous interface [90–92] and an interface covered
with surfactant [93–95].

Unlike fluid-solid or fluid-fluid interfaces, elastic mem-
branes stand apart as they endow the system with mem-
ory effects. Particle motion near a planar fluid mem-
brane endowed with surface tension [96, 97], bending re-
sistance [98] or membrane elasticity [99, 100] has been the-
oretically studied, where it has been found that the steady
mobility is universal and identical to that near a no-slip
hard wall. Analytical calculations have be carried out near
a realistically modeled elastic red blood cell (RBC) mem-
brane endowed simultaneously with both shear and bend-
ing rigidities [101–109] finding that the elasticity of the
membrane induces at intermediate time scales an anoma-
lous subdiffusive regime on the nearby particle. Further
theoretical investigations have been recently carried out
by Salez and collaborators via thin-film soft lubrication
theory [110–112]. Experimentally, particle motion near
elastic cell membranes has been investigated using opti-
cal traps [113–116], magnetic particle actuation [117] and
quasi-elastic light scattering [118–120] where a significant
decrease in the mobility normal to the cell membrane has
been observed in line with theoretical predictions. Addi-
tionally, near-membrane dynamics has been used in inter-
facial microrheological experiments as an efficient and reli-
able way to extract membrane unknown moduli [115, 121].

In this contribution, we provide an overview on the
fluid-mediated hydrodynamic interactions and Brownian
motion near an elastic cell membrane. The analyti-
cal predictions proceed through the determination of the
Green’s function representing the solution of the fluid flow
equations due to a point force acting near a membrane.
The frequency-dependent mobility functions of finite-sized
particles can then be obtained by combing Faxén’s theo-
rem and multipole expansion. The mobilities can be ex-
pressed in terms of finite series of the ratio between parti-
cle radius and membrane distance for the self mobilities,
and between radius and interparticle distance for the pair
mobilities. The near-membrane Brownian motion can be
addressed using a generalized Langevin formalism and the
fluctuation-dissipation theorem.

The reminder of this chapter is organized as follows. In
Sec. II, we present a relevant model for the membrane and
state the traction jump equations stemming from shear
and bending deformation modes. In Sec. III, we outline
the derivation procedure of the Green’s functions associ-
ated with a point-force singularity acting near an elas-
tic membrane. We then review in Sec. IV analytical and
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Figure 1. A model elastic membrane consisting of the lipid
bilayer. From Peletier and Röger, Arch. Rational Mech. Anal.,
193, 475 (2009), copyright 2009 Springer.

numerical results for the particle self- and pair-mobility
functions. In Sec. V, we address the Brownian motion of
a particle diffusing near a membrane and discuss the dif-
fusional motion parallel and perpendicular to the mem-
brane. We provide in Sec. VI concluding remarks and
summaries.

II. MEMBRANE MODEL

A. Overview

The RBC membrane consists of a bilayer composed of
amphiphilic lipids that provides the membrane a resis-
tance towards bending. The latter is well modeled by the
Helfrich Hamiltonian [122] which is characterized by the
bending modulus κB in addition to the Gaussian curva-
ture modulus κK [123] (see Fig. 1 for a cartoon schematic
of a lipid bilyer.) Additionally, RBC membranes are en-
dowed with cross-linked cytoskeleton networks that allow
the mechanical flexibility required to cope with the shear
stresses encountered during cell motion in the microcir-
culation. The membrane shear elasticity is commonly de-
scribed by the Skalak model [124] which incorporates into
a single strain energy functional both the resistance to-
wards shear and area conservation. The Skalak model is
characterized by a shear modulus κS in addition to an area
dilatation (extension) modulus κA [125–130]. The latter
is typically very large compared to κS to mimic mem-
brane area incompressibility. Further elastic models have
been proposed in the literature including the neo-Hookean
model [131] and the zero-thickness shell model [132] both
of which are characterized by a unique shear modulus κS.

B. Membrane parametrization

The membrane is modeled as a zero-thickness, two-
dimensional elastic sheet that is infinitely extended along
the plane z = 0 in the absence of external loads. The pres-
ence of a nearby particle creates an imbalance in the stress

tensor across the interface which leads to the membrane
deformation.

We adopt a local coordinate system {x, y} for the un-
deformed membrane surface and describe a mapping that
assigns each pair (x, y) to the position vector A defined
in the Cartesian coordinate system as [133]

A(x, y) = xex + yey . (1)

After deformation, the position vector reads

a(x, y) = (x+ ux)ex + (y + uy)ey + uzez , (2)

where ux, uy and uz are the Cartesian components of the
displacement vector u(x, y). Hereafter, we will use capital
and small roman letters for the undeformed and deformed
states, respectively. The membrane can be defined by the
covariant base vectors

g1 :=
∂a

∂x
, g2 :=

∂a

∂y
, (3)

which are tangent to the membrane surface. The unit
normal vector reads

n =
g1 × g2
|g1 × g2|

. (4)

The covariant components of the metric tensor are de-
fined by the scalar product gαβ = gα ·gβ . The contravari-
ant tensor gαβ (conjugate metric) is the inverse of the
metric tensor.

C. Traction jump equations

Depending on the biological composition of the cell, the
membrane may exhibit a resistance towards shear and/or
bending. Hereafter, we will state the traction jump equa-
tions stemming from the membrane shear and bending
resistances.

1. Shear

In order to account for the shear deformation mode, we
introduce the in-plane transformation gradient [134]

daα = Fαβ dAβ , (5)

bridging between the infinitesimal displacements in the
deformed and undeformed spaces. Eq. (3) leads to an
expression of the transformation gradient tensor in term
of the dyadic product F = gα ⊗Gα .

We now define the right Cauchy-Green deformation ten-
sor Cαβ = FγαFγβ whose invariants are given by Green
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and Adkins as [135, 136]

I1 = Gαβgαβ − 2 , (6a)

I2 = detGαβ det gαβ − 1 . (6b)

Provided knowledge of the membrane constitutive law,
the contravariant components of the stress tensor ταβ can
readily be obtained from [126]

ταβ =
2

JS

∂W

∂I1
Gαβ + 2JS

∂W

∂I2
gαβ , (7)

wherein W is the areal strain energy functional and JS :=√
1 + I2 is the Jacobian determinant, representing the ra-

tio between the deformed and undeformed local surface
areas.

The tractions jumps due to shear can be obtained by
writing the equilibrium equations balancing between the
membrane elastic forces and external loads, as it has been
detailed in Ref. 101.

2. Bending

According to the Helfrich model, the bending energy for
a flat sheet is described by a quadratic curvature-elastic
continuum model as [137]

EB =

∫
S

2κBH
2 dS +

∫
S

κKK dS , (8)

where H and K are the mean and Gaussian curvatures,
respectively. The traction jump equations across a mem-
brane endowed with a resistance towards bending can
readily be obtained via a variational approach by min-
imizing the sum of the bending and external potential
energy to obtain [138]

∆f = −2κB
(
2(H2 −K) + ∆‖

)
H n , (9)

and it is commonly denominated the Euler-Lagrange
equation [139–142]. The mean and Gaussian curvatures
are respectively expressed by

H =
1

2
bαα , K = det bβα , (10)

with bβα being the mixed version of the curvature tensor.
The resulting linearized traction jumps across a mem-

brane endowed with both shear and bending rigidities read
[101]

∆fβ = −κS
3

(
∆‖uβ + (1 + 2C)e,β

)
, β ∈ {x, y} , (11)

∆fz = κB∆2
‖uz , (12)

where ∆‖f = f,xx + f,yy is the Laplace-Beltrami of a
given function f . It can clearly be seen that at leading
order in deformation, shear does not introduce a normal

traction jump. Additionally, bending as derived from the
Helfrich model does not introduce a jump in the tangential
traction [138].

Having introduced a model for the membrane and
stated the underlaying traction jumps, we present in the
next section the methodology for computing the Green’s
functions associated with a point force acting near a mem-
brane.

III. GREEN’S FUNCTIONS

A. Mathematical formulation

In the Stokes regime, the fluid flow around a particle
obeys the steady Stokes equations [143]

η∇2v(r)−∇p(r) + F δ(r − r0) = 0 , (13)

∇ · v(r) = 0 , (14)

where the fluid velocity v and pressure field p are due
to a concentrated point force F δ(r − r0) induced by a
point-particle immersed at the position r0. The solution
of these equations for the velocity are expressed in terms
of the Green’s function

vα(r) = Gαβ(r, r0)Fβ , (15)

which in an unbounded and infinite fluid is commonly
known as the Oseen tensor,

GOαβ(r, r0) =
1

8πη

(
δαβ
s

+
sαsβ
s3

)
, (16)

wherein s := r − r0 and s := |s|. The pressure field is
expressed as p = PβFβ where Pβ = sβ/(4πs

3).

The presence of an elastic membrane introduces a cor-
rection to the Green’s function that is dependent on the
point-force position and the actuation frequency of the
system, as it is explained below.

B. Fourier transform technique

The Stokes equation near a planar membrane are more
conveniently solved using 2D Fourier transform technique.
The latter consists of transforming the partial differential
equations (13) and (14) governing the fluid motion into
ordinary differential equations for the out-of-plane coor-
dinate z.

We now assume that the point-force F is acting at the
position r0 = (0, 0, z0) with z0 > 0, above an elastic mem-
brane infinitely extended in the plane z = 0 (see Fig. 2
for an illustration of the system setup.) Without loss of
generality, we assume that the fluid has the same and con-
stant dynamic viscosity η on both sides of the membrane.
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z0

a

Figure 2. Illustration of particle motion near an elastic mem-
brane. The membrane is extended in the xy plane and the
solid particle of radius a is located above the membrane at
z = z0.

We define the spacial 2D (forward) Fourier transform

F{f(ρ)} = f̃(q) =

∫
R2

f(ρ)e−iq.ρ d2ρ , (17)

together with its inverse transform

F−1{f̃(q)} = f(ρ) =
1

(2π)2

∫
R2

f̃(q)eiq.ρ d2q , (18)

where ρ = (x, y) is the projection of the position vector r
onto the xy plane, and q = (qx, qy) is the Fourier trans-
form variable.

It turns out to be convenient to employ the orthogonal
coordinate system previously introduced by Bickel [96, 98]
in which all the vector fields are decomposed into longi-
tudinal, transverse and normal components. For a given
Fourier transformed quantity Ã, whose horizontal compo-
nents in the Cartesian coordinate basis are (Ãx, Ãy), its
components in the new orthogonal base are given by the
following orthogonal transformation(

Ãx
Ãy

)
=

1

q

(
qx qy
qy −qx

)(
Ãl
Ãt

)
, (19)

where Ãl and Ãt refer to the longitudinal and transverse
components, respectively, and q := |q| is the wavenum-

ber. Clearly, the normal component Ãz is left unchanged
by this transformation. We note that the inverse transfor-
mation is also given by the same transformation matrix
in Eq. (19).

As the membrane shape depends on the history of par-
ticle motion, we will perform further a Fourier analysis in
time. For a function f(t) expressed in the temporal space,
its (forward) Fourier transform to the frequency domain
is defined as

f(ω) =

∫
R
f(t)e−iωt dt , (20)

and the inverse Fourier transform back to the real space

reads

f(t) =
1

2π

∫
R
f(ω)eiωt dω . (21)

Since both the spatial and temporal Fourier transforms
are performed here, we will adopt the convention where
the two functions f(t) and f(ω) are distinguished only by
their argument. The tilde will therefore be reserved for
the spatial 2D Fourier transform.

The projected Stokes equations (13) and (14) upon 2D
Fourier transformation result in four ordinary differential
equations with the variable z [96]. The components of the
Green tensor in Fourier space are [101] ṽz

ṽl
ṽt

 =

 G̃zz G̃zl 0

G̃lz G̃ll 0

0 0 G̃tt

 Fz
Fl
Ft

 . (22)

The governing equations are subject to the boundary
conditions at the undisplaced membrane, namely (a) the
natural continuity of the velocity components and (b) the
discontinuity of the fluid stress tensor caused by mem-
brane shear and bending described in the previous section.
Technical details regarding the derivation of the Green’s
functions have been discussed in Refs. 101 and 104.

For future reference, we define at this point the char-
acteristic frequency for shear and bending, respectively
by

β =
12z0ηω

(1 + C)κS
, βB = 2z0

(
4ηω

κB

)1/3

. (23)

Moreover, we define the reduced bending modulus,
quantifying the coupling between the shear and bending
deformation modes as EB = κB/(κSz

2
0).

In the vanishing-frequency limit, or equivalently for in-
finite membrane shear and bending rigidities, the Green
tensor near a hard wall is recovered [144]

GB(r) = GO(s)− GO(R) + GD(R)− GSD(R) , (24)

and it is commonly denominated the Blake tensor [145].
Here R := r− r0 with r0 = (0, 0,−z0) being the position
of the Stokeslet image and we recall that s := r − r0.
Furthermore, r := |r| and R := |R|. Here GD is the force

(Stokeslet) dipole and GSD is the source dipole, respec-
tively given by

GDαβ(R) =
2z20(1− 2δβz)

8πη

(
δαβ
R3
− 3RαRβ

R5

)
, (25)

GSDαβ (R) =
2z0(1− 2δβz)

8πη

(
δαβRz
R3

− δαzRβ
R3

+
δβzRα
R3

− 3RαRβRz
R5

)
. (26)

It is worth noting that near a single membrane, shear
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z0

a a

γ λ
x

h

Figure 3. Illustration of a pair of particles near a planar elas-
tic membrane. The particles labeled γ and λ have the same
radius a and are located at rγ = (0, 0, z0) and rλ = (h, 0, z0),
respectively.

and bending present a decoupled nature. As a result, the
Green’s functions near a membrane endowed simultane-
ously with both shear and bending rigidities can appropri-
ately be determined by linear superposition of the Green’s
functions associated with membranes with pure shear and
pure bending as obtained independently. However, this in-
teresting feature is not observed near two parallel elastic
membranes [102] or curved membranes [105–108] where a
strong coupling behavior occurs.

The near-membrane Green’s functions serve as basis for
the determination of the effect of elastic membranes on
the motion of suspended particles. Particularly, we will be
interested in the particle self- and pair-mobility functions.

IV. PARTICLE HYDRODYNAMIC MOBILITY

We consider a representative configuration of a pair of
particles denoted γ and λ located a distance z0 above
a planar elastic membrane and a distance h apart, as
schematically sketched in Fig. 3. Assuming a force density
fλ acting at the particle λ located at rλ, the disturbance
velocity field at r can be written as

v(r, rλ, ω) = vS(r, rλ) + v∗(r, rλ, ω) , (27)

where a Fourier transformation has been applied to the
temporal dependence of all fields. Here vS denotes the
induced fluid flow in an unbounded and infinite fluid and
v∗ is the flow field required to satisfy the boundary con-
ditions at the membrane, also known as the reflected flow
field. The disturbance field can be written as an integral
over the surface of the sphere λ as

v(r, rλ, ω) =

∮
Sλ

G(r, r′, ω) · fλ(r′, ω) d2r′ , (28)

where G is the Green’s function associated with a point-
force acting at a point located at r′ belonging to the sur-
face of the particle λ. Similar, the Green’s functions can

be split up into two distinct contributions,

G(r, r′, ω) = GO(r, r′) + GM(r, r′, ω) , (29)

where again GO is the Oseen tensor given by Eq. (16) and

GM represents the frequency-dependent correction to the
Green’s function due to the presence of the membrane.

Far away from the particle λ, the integration vector
variable r′ in Eq. (28) can conveniently be expanded
around the particle center rλ following a multipole ex-
pansion approach. Up to the second order and assuming
a constant force density over the particle surface, the dis-
turbance velocity can be approximated by [146, 147]

v(r, rλ, ω) ≈
(

1 +
a2

6
∇2
rλ

)
G(r, rλ, ω) · F (ω) , (30)

where ∇rλ stands for the gradient operator taken with
respect to the singularity position rλ. For a single sphere
in bulk, the flow field given by Eq. (30) satisfies ex-
actly the no-slip boundary conditions at the surface of
the sphere [148].

Using Faxén’s theorem, the translational velocity of the
adjacent particle γ in this flow reads [146, 147]

Vγ(ω) = µ0Fγ(ω) +

(
1 +

a2

6
∇2
rγ

)
v(rγ , rλ, ω) , (31)

where µ0 := 1/(6πηa) denotes the usual translational bulk
mobility given by the Stokes law. We further emphasize
that the disturbance flow v incorporates both the dis-
turbance from the particle λ and the disturbance caused
by the presence of the membrane. By inserting Eq. (30)
into Faxén’s formula stated by Eqs. (31), the frequency-
dependent translational tensor can be obtained from the
total Green’s functions as [103]

µγλ(ω) =

(
1 +

a2

6
∇2
rγ

)(
1 +

a2

6
∇2
rλ

)
G(rγ , rλ, ω) .

(32)
For the self-mobilities, only the correction to the flow
field v∗ due to the presence of the membrane in Eq. (27)
should be considered in Faxén’s formulas. Therefore, the
frequency-dependent self-mobility tensors are directly de-
termined from the correction to the Green’s functions to
obtain [103]

µγγ(ω) = µ0 1 + lim
r→rγ

(
1 +

a2

6
∇2
r

)
×
(

1 +
a2

6
∇2
rγ

)
GM(r, rγ , ω) ,

(33)

where 1 denotes the unit tensor. The self- and pair-
mobilities in the often-used point-particle approximation
are readily obtained by taking the vanishing radius limit
in Eqs. (32) and (33), respectively.
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A. Self-mobility functions

We denote by µγγ = µS the self-mobility tensor which
can conveniently be expressed in terms of power series of
ε := a/z0. The self-mobility tensor near a planar mem-
brane has the form

µS =

 µS
xx 0 0
0 µS

yy 0
0 0 µS

zz

 , (34)

where the xx and yy components of the self mobility are
equal since they are both associated with a motion parallel
to the membrane. The zz component is associated with
the axisymmetric motion perpendicular to the membrane.

For a planar membrane, the total mobility correction is
obtained by linear superposition of the individual contri-
butions due to shear and bending. Analytical expressions
can be found in Ref. 103. The known mobility correc-
tions near a hard wall with stick boundary conditions are
recovered in the vanishing frequency limits, namely

lim
β,βB→0

∆µS
zz

µ0
= −9

8
ε+

1

2
ε3 − 1

8
ε5 . (35)

for the perpendicular motion, and

lim
β,βB→0

∆µS
xx

µ0
= − 9

16
ε+

1

8
ε3 − 1

16
ε5 , (36)

For the motion parallel to the membrane [31, 40].

In Fig. 4 a), we show the particle scaled self-mobility
corrections versus the scaled frequency β, for a particle
located above a membrane at z0 = 2a. We consider a
reduced bending modulus EB = 2/3 corresponding to
βB = 2(β/B)1/3 for which shear and bending manifest
themselves equally [103]. We observe that the real part
is a monotonically increasing function with respect to fre-
quency while the imaginary part exhibits the typical bell-
shaped dependence on frequency. In the limit of an infinite
actuation frequency, both the real and imaginary parts of
the mobility correction vanish, and thus one recovers the
behavior in bulk fluid. For the perpendicular motion, we
observe that the particle mobility correction is primarily
determined by the bending-related part and that shear
does not play a major role.

In order to assess the appropriateness and accuracy of
our analytical predictions, computer simulations based on
the boundary integral method (BIM) [149, 150] have been
performed. Technical details regarding the numerical im-
plementation can be found in Refs. 102 and 151. A very
good agreement has been obtained between the analyti-
cal predictions and numerical simulations over the whole
range of applied frequencies. Additionally, the validity of
the point-particle approximation employed in Ref. [101]
is probed. While this approximation somehow underesti-
mates the particle mobilities, it surprisingly can lead to a
good prediction, even though the particle is set only one
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µ
S x
x
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Figure 4. (Color online) The scaled frequency-dependent cor-
rection to the particle self-mobility versus the scaled frequency
for motion perpendicular (a) and parallel (b) to the membrane.
The particle is set at z0 = 2a. The membrane parameters are
z20κS/κB = 3/2 and C = 1. The analytical predictions are
presented as dashed lines for the real part, and as solid lines
for the imaginary part. Symbols correspond to BIM simula-
tions. The shear- and bending-related contributions are shown
in green and red, respectively. The dotted-dashed line shown
in blue corresponds to the leading-order correction in the par-
ticle self-mobility, determined in Ref. [101]. Horizontal dashed
lines represent the mobility corrections near a hard-wall as
stated by Eqs. (35) and (36). From Daddi-Moussa-Ider and
Gekle, J. Chem. Phys., 145, 014905 (2016), copyright 2016
American Institute of Physics.

diameter above the membrane.

The mobility corrections in the parallel direction are
shown in Fig. 4 b). We observe that the total correction is
mainly determined by the shear-related part in contrast
to the perpendicular case where bending effect dominates.

B. Pair-mobility functions

We denote by µab,γλ = µab,P the pair-mobility tensor
which can be expressed as a power series of σ := a/h. For
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the present configuration, we have

µP =

 µP
xx 0 µP

xz

0 µP
yy 0

µP
zx 0 µP

zz

 . (37)

The off-diagonal components xz and zx of the pair-
mobility have same absolute value and differ only in sign.
We further note that µtrxz = µrtzx as required by the sym-
metry of the mobility tensors.

In an unbounded geometry, the bulk pair mobilities for
the motion perpendicular to and along the line of centers
can be obtained from the Oseen tensor as [152, p. 190]

µP
yy

µ0
=
µP
zz

µ0
=

3

4
σ +

1

2
σ3 ,

µP
xx

µ0
=

3

2
σ − σ3 , (38)

and µP
xz = µP

zx = 0. Physically, the parameter σ only
takes values between 0 and 1/2 as overlap between the
two particles is not allowed.

Near an elastic membrane, the corrections to the pair-
mobilities can readily be computed from Eq. (32) and are
conveniently expressed in terms of convergent infinite in-
tegrals [103]. In the vanishing frequency limit, the pair-
mobilities near a hard-wall with stick boundary conditions
are recovered, as first computed by Swan and Brady [146].

In Fig. 5, we plot the particle pair mobilities as func-
tions of the dimensionless frequency β for z0 = 2a and
h = 4a. We observe that the real and imaginary parts
have typically the same evolution as the self mobilities.
The membrane bending manifests itself in a more pro-
nounced way for the components zz and xz whereas shear
effect dominates for the components xx and yy. However,
we observe two remarkably different effects: Firstly, the
amplitude of the pair-mobility normal-normal component
zz even exceeds its bulk value in a small frequency range.
This enhanced mobility has not been observed for the self
mobilities and may result in a short-lasting superdiffusive
behavior [103]. Secondly, considering the components xx
and xz we find that, unlike the self mobilities, shear and
bending may have opposite contributions to the total pair
mobilities. For the xz component this implies the inter-
esting behavior that hydrodynamic interactions can be ei-
ther attractive or repulsive, depending on the membrane
properties and the geometric configuration of the pair of
particles. This behavior will be investigated in more detail
in the next subsection.

For future reference, we note that each component of
the frequency-dependent particle self- and pair-mobility
tensor can conveniently be cast in the form [103]

µ(ω)

µ0
= b+

∫ ∞
0

ϕ1(u)

ϕ2(u) + iωT
du , (39)

where indices and superscripts have been omitted for the
sake of readability. Here b denotes the scaled bulk mo-
bility, and the integral term represents either the shear-
or bending-related parts in the mobility correction. Note

that ϕ1 and ϕ2 are real functions which do not depend
on frequency. Moreover, ϕ2 ≥ 0 in the integration range
over u.

C. Perpendicular steady motion

In order to elucidate the change of sign in the particle
pair-mobility, it is judicious to consider the steady ap-
proach of two particles towards an elastic interface. For
hard walls, it is well known that hydrodynamic interac-
tions are repulsive [153, 154] leading to the dispersion of
particles on the surface. Near elastic membranes, the dif-
ferent signs of the shear- and bending-related contribu-
tions observed in the pair mobility (Fig. 5 b) point to a
more complex scenario including the possibility of particle
attraction.

The physical situation of a pair of particles being ini-
tially located at z = z0 and suddenly set into motion
towards an interface is described by a Heaviside step
function force F (t) = Aθ(t). Using the general form of
Eq. (39), the scaled particle velocity in the temporal do-
main is thus given by [103]

V (τ)

µ0A
=

[
b+

∫ ∞
0

ϕ1(u)

ϕ2(u)

(
1− e−ϕ2(u)τ

)
du

]
θ(τ) , (40)

where τ := t/T is a dimensionless time. At larger times,
the exponential in Eq. (40) can be neglected compared to
one and thus one recovers the steady-state behavior.

In corresponding BIM simulations, a constant force of
small amplitude A is applied on both particles towards
the membrane. For ε = 1/2 and σ = 1/4, Fig. 6 a) shows
the time dependence of the scaled vertical velocity, which
at first increases and then approaches progressively its
steady-state value. Fig. 6 b) shows the scaled relative
velocity between the two particles. Clearly, the motion
is attractive for an idealized membrane with negligible
bending resistance (such as a typical artificial capsule de-
signed for drug delivery) which is indeed the opposite of
the behavior near a membrane with pure-bending resis-
tance (such as a fluid vesicle) or a hard wall. For a mem-
brane with pure shear, it can be shown that the threshold
line where the shear-related contribution changes sign in
the xz component of the particle pair mobility function is
given up to fifth order in σ by [103]

εth =
√

2

(
σ − 4

3
σ3 +

17

27
σ5

)
+O(σ7) . (41)

For ε < εth, the hydrodynamic interactions are repulsive
whereas for ε > εth are attractive.

The following section addresses the Brownian motion of
a particle diffusing near an elastic membranes. The afore-
mentioned membrane-induced memory effects will result
in a long-lived transient subdiffusion of the particle
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Figure 5. (Color online) The scaled corrections to the pair-mobility versus the scaled frequency. The two particles are located
above the membrane at z0 = 2a with an interparticle distance h = 4a. The color code is the same as in Fig. 4. The inset in a)
shows that the amplitude of the total pair-mobility component zz even exceeds its bulk value (dotted line) in a frequency range
around β ∼ 1. From Daddi-Moussa-Ider and Gekle, J. Chem. Phys., 145, 014905 (2016), copyright 2016 American Institute of
Physics.

V. BROWNIAN MOTION NEARBY
MEMBRANES

A. Generalized Langevin equation

The frequency-dependent mobilities presented in the
previous section can be used as input for the calculation
of the particle diffusion tensor. The dynamics of a Brow-
nian particle in the presence of an elastic membrane is
governed by a generalized Langevin equation [155, 156].
Restricting to one dimensional motion, we have

m
dV (t)

dt
= −

∫ t

−∞
γ(t− t′)V (t′) dt′ + F (t) , (42)

where m is the particle mass, V (t) is the particle transla-
tional velocity, γ(t) is the time dependent friction retarda-
tion function (expressed in kg/s2) and F (t) is a stochastic
random force modeling the effect of the background noise
caused by the fluid on the Brownian particle. The random

force is Gaussian distributed and satisfies the statistical
properties

〈F (t)〉 = 0 , (43)

〈F (t)F (t′)〉 = 2γ0kBTδ(t− t′) , (44)

where brackets mean ensemble average, kB is the Boltz-
mann constant and T is the absolute temperature of the
system. Here we assume that there are no other external
forces acting on the particle.

In the particular case when γ(t) = 2γ0 δ(t), with γ0 =
µ−10 = 6πηa being the bulk friction coefficient, Eq. (42) is
reduced to the classical non-retarded Langevin equation
in which the random force are assumed to be a purely
Gaussian process delta correlated in time.

The computation of the particle mean-square displace-
ment (MSD) requires as an intermediate step the deter-
mination of the velocity autocorrelation function via the
application of the fluctuation-dissipation theorem.
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Figure 6. (Color online) The scaled particle velocities per-
pendicular to the membrane (a) and relative to each other
(b) versus the scaled time for a constant force of amplitude A
acting downward on both particles near a membrane endowed
with pure shear (green), pure bending (red) or both rigidi-
ties (black). Solid lines represent the analytical predictions
given by Eq. (40). Symbols refer to BIM simulations. Horizon-
tal dotted and dashed lines stand for the bulk and vanishing
frequency limits, respectively. From Daddi-Moussa-Ider and
Gekle, J. Chem. Phys., 145, 014905 (2016), copyright 2016
American Institute of Physics.

B. Fluctuation-dissipation theorem

Evaluating the Fourier transform of both members in
Eq. (42) as defined by Eq. (20), we obtain

imωV (ω) = −
∫ ∞
−∞

e−iωt dt

∫ t

−∞
γ(t− t′)V (t′) dt′+F (ω) .

Using the change of variables u = t − t′, together with
the shift property of Fourier transforms, the particle ve-
locity is related to the fluctuating force via the frequency-
dependent mobility as

V (ω) = µ(ω)F (ω) , with µ(ω) =
1

imω + γ[ω]
, (45)

wherein γ[ω] is the Fourier-Laplace (also called one-sided
Fourier) transform of the retardation function, defined by

γ[ω] =

∫ ∞
0

γ(t)eiωt dt . (46)

In virtue of the fluctuation-dissipation theorem [155],
the frictional forces and the random forces are not inde-
pendent quantities, but they are rather related to each
other via the correlation

〈F (ω)F (ω′)〉 = φF(ω) δ(ω + ω′) , (47)

where φF(ω) is the Fourier transform of the velocity au-
tocorrelation function φF(t), known also in the literature
as the power spectrum of F (ω). In term of the friction
kernel, the power spectrum is given by

φF(ω) = kBT (γ[ω] + γ[−ω]) = 2kBT Re (γ[ω]) , (48)

noting that γ[ω] = γ[−ω], as can be inferred from Eq. (46).
The power spectra of V (ω) and F (ω) are thus related to
each other via the relation

φV(ω) =
φF(ω)

|imω + γ[ω]|2
. (49)

By making use of Eq. (48), we obtain

φV(ω) =
kBT

imω + γ[ω]
+ c.c. , (50)

wherein c.c. stands for complex conjugate. Provided that
γ[ω] is known, it is therefore possible to transform φV(ω)
back to the time domain, leading directly to the velocity
autocorrelation function

φV(t) := 〈V (0)V (t)〉 =
kBT

2π

∫ ∞
−∞

(
µ(ω) + µ(ω)

)
eiωt dω ,

(51)
after making use of Eq. (45).

From the general form of the mobility given by Eq. (39),
it can clearly be seen that the contribution from the sec-
ond term in Eq. (51) vanishes for t > 0 since the integrand
has simple poles ω = −iϕ2(u)T and thus is analytic in the
upper half plane in which Imω > 0. As a result, the ve-
locity autocorrelation function for t > 0 reduces to [157]

φV(t) =
kBT

2π

∫ ∞
−∞

µ(ω)eiωt dω . (52)

C. Diffusion nearby cell membranes

Having computed the velocity autocorrelation func-
tion φV, the MSD can thus be calculated from [157]

〈x(t)2〉 = 2

∫ t

0

(t− s)φV(s) ds . (53)
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Figure 7. Mean-square displacement (red line) of a Brown-
ian particle of radius a=100nm, located at z0=153nm above a
RBC membrane in parallel (top) and perpendicular (bottom)
direction as predicted by theory at T = 300K. For short times
t . 50µs the MSD follows bulk behavior (black dashed line)
while for long times it follows hard-wall behavior (blue dash-
dotted line). In between, a long-lived subdiffusive regime is
evident extending up to 10ms and beyond. Insets show the
local scaling exponent which goes down until 0.92 for parallel
diffusion and 0.87 for perpendicular diffusion. Adapted from
Daddi-Moussa-Ider, Guckenberger and Gekle, Phys. Rev. E,
93, 012612 (2016), copyright 2016 American Physical Society.

The particle long-time diffusion coefficient is computed as

D∞ := lim
t→∞

〈x(t)2〉
2t

=

∫ ∞
0

φV(s) ds . (54)

An alternative way to quantify the slowing down of the
particle and departure from standard diffusion is to inves-
tigate the time-dependent scaling exponent of the MSD,
defined as the logarithmic derivative of the MSD such that

α(t) :=
d ln〈x(t)2〉

d ln t
. (55)

If diffusion is normal (standard), then the scaling expo-
nent is one. Anomalous subdiffusion is characterized by a
scaling exponent that is less than one and is often encoun-
tered in biological media with obstacles [158] or binding
sites [159].

A similar methodology can be adopted to investigate
the diffusional dynamics of a pair of particles near a mem-
brane, notably to calculate the collective and relative dif-
fusion coefficients. These have been considered in details

in Ref. [103].
As a system setup, a spherical particle with radius

a = 100nm is located at a distance z0 = 153nm above
a membrane and exhibits diffusive motion. The elas-
tic membrane is endowed with a shear modulus κS =
5 × 10−6 N/m, a bending modulus κB = 2 × 10−19 Nm,
and a Skalak coefficient C = 100 which are typical values
for red blood cells [160]. The fluid properties correspond
to blood plasma with dynamic viscosity η = 1.2mPas.

Fig. 7 shows the MSD for parallel as well as perpen-
dicular diffusion as obtained from theory. For short times
(t < 50 µs) the MSD follows faithfully a linear behav-
ior with the normal bulk diffusion coefficient D0 = µ0kBT
given by Einstein’s relation [161] since the membrane does
not have sufficient time to react on these short scales. As
the time increases, we observe a downward bending of the
MSD which is a clear signature of an anomalous subdif-
fusive behavior. Indeed, as shown in the insets of Fig. 7,
the local exponent may go as low as 0.92 in the parallel
and as low as 0.87 in the perpendicular direction. The
subdiffusive regime extends up to 10 ms in the parallel
and even further in the perpendicular direction, which is
long enough to be of possible physiological significance.
Finally, for long times, the behavior turns back to stan-
dard diffusion with α → 1. Compared to the short-time
behavior, however, the diffusion coefficient is now signifi-
cantly lower and approaches the well-known behavior near
a no-slip hard wall. It turns out that diffusion for suffi-
ciently long times to be universal and independent of the
membrane properties.

VI. CONCLUSIONS

In this work, we have discussed the hydrodynamic in-
teractions and Brownian motion near an elastic cell mem-
brane possessing both shear and bending rigidities. The
analytical methodology proceeds through the calculation
of the Green’s functions which are solutions of the linear
Stokes equations due to a point-force singularity acting
near the membrane. Thereupon, the hydrodynamic mo-
bility functions which couple the particles’ velocities to the
forces applied on their surfaces have been determined. For
that purpose, a combination of multipole expansion and
Faxén theorem has been employed to yield analytical ex-
pressions of the particle self- and pair-mobilities obtained
directly from the Green’s functions. The corrections to
the mobility functions have been expressed as a power se-
ries of the ratio between particle radius and distance from
the membrane for the self-mobilities, and between particle
radius and interparticle distance for the pair-mobilities.

It turned out that the particle mobilities near a planar
membrane can appropriately be expressed as a linear su-
perposition of the contributions stemming from shear and
bending as obtained independently. Moreover, the shear-
and bending-related parts may have additive or suppres-
sive contribution to the total mobility, depending on the
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membrane properties, the distance from the membrane
in addition to the interparticle distance. This interesting
behavior has been elucidated by considering the startup
motion of two particles suddenly set into motion towards
a membrane. The interaction near a membrane with pure
bending resistance is always repulsive, i.e. as in the case
of a hard wall, while near a membrane with pure shear,
the interaction may be attractive. The theoretical pre-
dictions have been confirmed by full-resolved boundary
integral simulations of truly finite-sized particles.

The calculation of the particle MSD characterizing the
diffusion process reveals that elastic membranes induce
a long-lived anomalous subdiffusion on nearby particles.
This behavior can significantly enhance residence time
and binding rates nearby membranes and thus may in-

crease the probability to trigger the uptake of particles
via endocytosis.
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