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Abstract

Continual learning algorithms can adapt to changes of data distributions, new classes, and even completely

new tasks without catastrophically forgetting previously acquired knowledge. Here, we present a novel self-

organizing incremental neural network, GSOINN+, for continual supervised learning. GSOINN+ learns a

topological mapping of the input data to an undirected network and uses a weighted nearest-neighbor rule

with fractional distance for classification. GSOINN+ learns incrementally—new classification tasks do not

need to be specified a priori, and no rehearsal of previously learned tasks with stored training sets is required.

In a series of sequential learning experiments, we show that GSOINN+ can mitigate catastrophic forgetting,

even when completely new tasks are to be learned.

Keywords: catastrophic forgetting; concept drift; continual learning; incremental learning; supervised

learning

1. Introduction

A fundamental characteristic of how humans learn is that we acquire knowledge incrementally (Flesch

et al., 2018; Rios & Itti, 2019). By contrast, the dominant machine learning paradigm is characterized by a

distinct training phase and an application phase, which has been referred to as isolated learning (Chen &

Guestrin, 2016). Once the training phase is completed, the model is ready for deployment in the specified5

application domain. For example, a conventional multi-layer perceptron (MLP) that was trained to classify

images of cats and dogs can be used only for this specific purpose. The number of predefined classes (in this

example, two) determines the structure of the output layer. But let us suppose now that the requirements

change, and the model should be used to classify images of cats, dogs, and birds. It would be necessary to

change the structure of the output layer and retrain the network from scratch in order to accommodate the10

new, third class. However, a complete retraining using old data is inefficient and often not even feasible (Li

& Hoiem, 2016). In addition, machine learning models are generally designed for stationary environments,

in which the process that generates the data is assumed to be stable over time. In many real-world scenarios,

however, the data are generated by processes that evolve over time, so the underlying probability distribution

may change and give rise to a phenomenon known as concept drift.15
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Continual learning (or lifelong learning) denotes the machine learning paradigm that considers algorithms

that learn incrementally, so-called continual learners, which are capable of adapting to new classes and even

new tasks. Continual learners can assimilate new input without compromising previously acquired knowledge,

that is, without catastrophic forgetting (McCloseky & Cohen, 1989; Kirkpatrick et al., 2017). Continual

learning is an inherently incremental process, without a sharp distinction between a training phase and an20

application phase. A further characteristic is forward and backward transfer learning : ideally, the model

can leverage previously acquired knowledge to solve related new tasks; and conversely, new knowledge might

improve the performance on old tasks (Parisi et al., 2019; Ruvolo & Eaton, 2013). Often, constraints are

imposed on the learner’s capacity to process and store knowledge; for example, if the model is based on a

neural network, then the maximum number of nodes may be fixed to prevent boundless system growth.25

In this study, we consider classification problems in which a continual learner has to solve two tasks

sequentially, T1 and T2, from different domains. Each task is defined by learning a mapping fT : XT →

YT from an instance space XT ⊆ Rm of m-dimensional instances (or cases) xT to a set of j class labels

YT = {yT,1, yT,2, ..., yT,j}. Importantly, the final model that solves the first classification task must be

able to continue to learn and solve the second task without forgetting what it has learned before. Standard30

supervised learning algorithms, such as MLPs, are not suitable for this challenge, as the final, learned models

can be used only for that task for which they were initially trained.

Our primary research goal is to develop a continual supervised learner that is able to solve a sequence

of classification tasks from different domains without forgetting previously learned tasks. Here, we present

a novel self-organizing incremental neural network, GSOINN+. In sequential learning experiments, we35

demonstrate that GSOINN+ can solve a classification task T1 and then learn a completely different task,

T2, without catastrophically forgetting what it has learned before. GSOINN+ builds upon, and extends,

our recently developed neural network, SOINN+ (Wiwatcharakoses & Berrar, 2019, 2020). SOINN+ was

designed as an unsupervised method for learning a network topology from evolving data streams. Here, we

introduce the concept of ghost nodes (lending the “G” in the new method’s name). These virtual nodes play40

a pivotal role in the extension to supervised learning. Ghost nodes are created when real nodes die during

training. They carry information about the class membership of deceased nodes and can be “summoned”

when required. However, they have no influence on the evolution of the network during training. The novel

contributions of this article can be summarized as follows.

1. We present a new neural network for continual supervised learning, GSOINN+. This network is able to45

solve learning tasks from different domains without detrimentally altering previously learned structures.

GSOINN+ extends the unsupervised SOINN+ method to supervised learning. We also improve the

learning algorithm by using the concept of fractional distance, which is particularly beneficial for high-

dimensional feature spaces. In sequential benchmark experiments, GSOINN+ outperformed related

continual learners, the Associative Grow When Required (AGWR) network (Parisi et al., 2015) and50

the Associative Gamma-GWR (AG-GWR) network (Parisi et al., 2017).
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2. We introduce the concept of ghost nodes, which are virtual nodes carrying information about the class

membership of previously deleted nodes. However, as virtual nodes, they have no role to play in the

network evolution. Matlab source code is provided as supplemental information at the project website

https://osf.io/gqxya/.55

This article is organized as follows. After reviewing some related works, we focus on the algorithmic

details of GSOINN+ and how it extends SOINN+. In Section 4, we describe our benchmark data sets and

the learning experiments. Section 5 presents our results. We conclude the paper with a discussion and

outlook at future work.

2. Related Work60

Emulating human-like continual learning capabilities remains one of the grand challenges for AI. One

step towards this goal is the mitigation of catastrophic forgetting when new tasks are being learned (Rios

& Itti, 2019). Early approaches relied on memory-based systems that keep old training data for rehearsal;

however, this approach is not efficient, and it might even be impossible when storing old data is not feasible

(Lomonaco & Maltoni, 2017). Various alternatives have been proposed, which can be categorized as (i)65

regularization methods; (ii) complementary learning systems; and (iii) dynamic architectures (Parisi et al.,

2019).

Regularization methods prevent drastic changes of those model parameters that are essential for main-

taining a high performance on the old tasks when new tasks need to be learned. Aljundi et al. (2019)

proposed a regularizer for active neurons, so that some capacity is reserved for future tasks. Penalizing70

weight updates in elastic weight consolidation (EWC) (Kirkpatrick et al., 2017) is another regularization

technique. When the network faces a new learning task, EWC prevents the weight update for those nodes

that are crucial for solving the old task. Complementary learning systems, such as the dual-memory self-

organizing architecture (Parisi et al., 2018), are inspired by the episodic and semantic memory functions

of the brain. In dynamic architectures, new system components are generated when new tasks need to be75

learned; for example, progressive networks grow new subnetworks sequentially (Rusu et al., 2016).

Another example of dynamic architectures are self-organizing incremental neural networks (SOINN)

(Shen & Hasegawa, 2006; Shen et al., 2007; Shen & Hasegawa, 2008; Nakamura & Hasegawa, 2017). Briefly,

a SOINN finds a topological mapping of the input data to a network of nodes by competitive learning.

Learning means that nodes can move, merge with other nodes or remain as singletons, be deleted, and edges80

between nodes can be created or deleted. A node can be thought of as a microcluster of input cases that are

close to each other because they share common traits, for example, they may belong to the same class. Nodes

are connected by (undirected) edges if they are considered related, for example, if they belong to the same

macrocluster. Conceptually, SOINN belong to the broad family of topology learners, which include self-

organizing maps (Kohonen, 1982), growing cell structures (Fritzke, 1994a), dynamic cell structures (Bruske85

& Sommer, 1995), and growing neural gas (Fritzke, 1994b).
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All previous SOINN variants have in common that nodes and edges are deleted at user-defined, fixed

intervals. In our recently developed SOINN+, however, “forgetting” is an intrinsic part of the learning

process (Wiwatcharakoses & Berrar, 2020). The deletion of edges and nodes no longer depends on arbitrary

user-defined thresholds but on the current state of the network. Thereby, “forgetting” is learned. SOINN+90

can detect clusters of arbitrary shapes in noisy data streams with concept drift; however, as an unsupervised

method, it cannot be used for classification. To our knowledge, the methods that are conceptually most simi-

lar to SOINN+ are the Grow When Required (GWR) network (Marsland et al., 2002) and the Gamma-GWR

network (Parisi et al., 2017). Like SOINN+, both of these networks are unsupervised learners. They delete

edges that exceed a user-defined maximum age, and the nodes that thereby become unconnected are then95

removed. Parisi et al. extended GWR and Gamma-GWR to supervised methods, called Associative GWR

(AGWR) (Parisi et al., 2015) and Associative Gamma-GWR (AG-GWR) (Parisi et al., 2017), respectively,

by updating an associative matrix of class membership values for the nodes. The maximum number of nodes

in AGWR and AG-GWR has to be specified by the user, whereas SOINN+ can grow indefinitely in theory.

Learning a SOINN+ network works as follows. The network is initialized with three randomly selected100

training cases. An m-dimensional input x = (x1, x2, ..., xm), where xi is the ith feature value, is represented

as a single node (singleton) in an undirected graph. New training cases are processed sequentially. After

processing one training case, one iteration1 is complete. Training cases are either added as new nodes, or

they are merged with existing nodes, depending on a similarity threshold τ : if a new case is quite different

from existing nodes, then it is considered as representing new knowledge and added as an unconnected node;105

if, on the other hand, a new case is close to an already existing node, then it is merged (Wiwatcharakoses

& Berrar, 2020). A node can be linked to other nodes, or it can remain unconnected. Edges can only be

created between first and second winner nodes after a new node has been merged with its first winner node.

Whether an edge for a node a is created or not depends on the trustworthiness of that node: the more

often a has been selected as first winner, the more trustworthy it is. Hence, trustworthiness is a function110

of a node’s winning time (Wiwatcharakoses & Berrar, 2020). An edge is deleted if its lifetime exceeds an

adaptive threshold λedge. This threshold depends on the lifetimes of previously deleted edges. Unconnected

nodes are candidates for deletion. A node is deleted based on an unutility measure, which is calculated as

the ratio of its idle time to its winning time. A high value of unutility means that the corresponding node

was relatively rarely selected as first winner; hence, it is considered less important for the network and has115

a higher chance of being pruned as learning continues (Wiwatcharakoses & Berrar, 2020).

1The processing of one single training case causes an update of the network state. We refer to this update cycle as one

iteration and not epoch because the latter term usually implies that all training cases have been processed.
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3. GSOINN+: concepts and algorithms

GSOINN+ uses the same algorithms for adding, merging, and deleting nodes and edges as SOINN+.

The main differences are the ghost nodes and the weighted nearest-neighbor rule based on the fractional

distance for classification.120

3.1. Fractional “distance”

How to measure closeness in high-dimensional space was identified as an open problem in SOINN+

(Wiwatcharakoses & Berrar, 2020). Here, we consider the Minkowski-like fractional distance as a possible

solution. The fractional “distance” is an `p quasinorm for two m-dimensional vectors a = (a1, a2, ..., am)

and b = (b1, b2, ..., bm), when 0 < p < 1,125

distp(a,b) =

( m∑
i=1

|ai − bi|p
) 1

p

(1)

Strictly speaking, the fractional “distance” is no longer a proper distance metric because the triangle

inequality is violated. However, it was shown to be more meaningful than the Euclidean metric to measure

closeness in high-dimensional space (Aggarwal et al., 2001; François et al., 2007).

3.2. Ghost nodes130

The basic notation used in the following equations and algorithms is as follows.

t iteration of network update. t ∈ N

ai,t coordinates of node ai at iteration t

ya class label of node a

n1 first nearest neighbor (= first winner)

n2 second nearest neighbor (= second winner)

g ghost node

kmax maximum number of nearest neighbors

hk number of ghost nodes of the kth nearest neighbor

δ(α, β) Kronecker delta; 1 if α = β and 0 otherwise

Ga set of ghost nodes of node a

Yg
a set of class labels of ghost nodes of node a

N1 set of nodes with an edge to first winner n1

WT (a) winning time of node a. WT ∈ N (i.e., how often was a selected as first winner?)

IT (a) idle time of node a. IT ∈ N (i.e., for how many cycles was a not selected as the first winner?)

η pull factor during node merging
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Figure 1: (a) A network of three nodes a, b, and c and associated class labels 1 and 2. (b) A new training sample, x, is

presented to the network and the two nearest neighbors (here, a and c) are retrieved. (c) The new sample x is merged with

its nearest neighbor, a. Each merging increases the inertia of a node (represented by larger circles). An edge between the

two nearest neighbors is created. (d) Another new training case, x, is processed and its first and second nearest neighbors are

retrieved (a and b, respectively). (e) x is merged with a. As x and a have different class labels (2 and 1, respectively), the

class label of the merged node is unknown (marked by ?) and the original nodes x and a remain as ghost nodes. (f) This

panel illustrates the classification of a test case x based on a k-nearest neighbor search, with kmax = 3 (cf. Algorithm 2). As

a has no class label, the labels of its ghost nodes are used, and kmax = 3− 1 + 2 = 4. The classification score for each class is

calculated according to Eq. 4. The distances between x and the nodes are indicated by the dashed red lines. In this example,

S(y = 1|x) = ( 1
1

+ 0 + 0 + 1
6

)/( 1
1

+ 1
2

+ 1
3

+ 1
6

) = 0.583 and S(y = 2|x) = (0 + 1
2

+ 1
3

+ 0/( 1
1

+ 1
2

+ 1
3

+ 1
6

) = 0.417.

Ghost nodes are the central idea underpinning the extension to supervised learning. Although ghost

nodes do not appear as real “living” nodes in the network and thus do not influence the network evolution,

they solve the problem of keeping track of class labels when nodes of different classes are being merged. This

idea is illustrated in Figure 1. The first panel shows a simple network of three, still unconnected nodes a,135

b, and c and their respective class labels 1 and 2. We consider now only two classes for illustration, but the

idea generalizes to multiple classes.

When a new training case, x, is processed (Figure 1b), GSOINN+ retrieves its first and second nearest

neighbors, which are a and c in this example. Nodes a and c are called “winner nodes” and labeled as n1

and n2, respectively. Based on a similarity threshold, x is considered close to a and therefore both nodes are140

merged. The similarity threshold τ(ni) for a winner node ni, i = 1, 2, is defined as follows (Wiwatcharakoses

& Berrar, 2020):
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τ(ni) =


max
aj∈Ni

‖ ni − aj ‖ if Ni 6= Ø

‖ ni −m ‖ otherwise

(2)

where ‖ · ‖ denotes a distance; Ni is the set of nodes that are directly linked to node ni, aj is a node in the

network, and m is the second nearest neighbor of ni.

Furthermore, an edge between the merged node and the second nearest neighbor, c, is created in Figure 1c.145

Merging implies that the original, to-be-merged nodes “die” and are replaced by a new (merged) node. In

Figure 1c, the merged node is half-way between n1 and x. But each time that a node n1 merges with another

node, the inertia of n1 increases (represented by the slightly bigger node a in Figure 1c). The inertia of a

node is quantified by its winning time. When an already merged node is the first winner and when it merges

again with another training case, the position of the newly merged node will, therefore, be closer to the150

already merged node. In addition, all nodes that are linked to the first winner will be pulled slightly towards

the new position (cf. lines 17-19 in Algorithm 1).

At iteration t, the coordinates of the first nearest neighbor are n1,t = (n11,t, n12,t, ..., n1m,t). Like in

SOINN+, the updated coordinates of this node after merging with node x are calculated as

n1,t+1 = n1,t +
x− n1,t

WT (n1,t) + 1
(3)

where WT (n1) denotes the winning time of node n1, that is, how often this node has been selected as the155

first nearest neighbor. Since both a and x have the same class label (here, 1 in Figure 1c), the same label is

also assigned to the merged node.

However, there is a problem when two nodes are merged with different class labels. This scenario is

shown in Figure 1d. Here, the new training case x is a member of class 2. The case is closest to node a

and therefore merged (Figure 1e). But which class label should we assign to the newly merged node? The160

training case x has class label 2, whereas a has class label 1. Therefore, the class label of the newly merged

node is uncertain, which is represented by the question mark in Figure 1e.

To solve this problem, two ghost nodes are created (represented by the white, unnamed circles in Fig-

ure 1e). The coordinates of these ghosts are the same as the coordinates of the nodes before merging. Loosely

speaking, merging of two nodes implies that the original nodes cease to exist, but here the ghosts of the165

original nodes remain. Being ghosts, however, they have no further role to play in the network evolution;

for example, they cannot be linked to other nodes or influence their inertia. However, they remember the

original class labels and can be “summoned” when required. This is illustrated in Figure 1f where x repre-

sents a test case that is to be classified. The network consists of nodes a (with two ghost nodes), b, c, and

d (with two ghost nodes).170

The classification is based on a weighted k-nearest neighbor rule. In Figure 1f, we consider the Euclidean

distance and use k = 3 only for the purpose of illustration. The first three nearest neighbors of x are a, d,
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and b. The class label of b is 2, but the labels of a and d are unknown. However, the nearest ghost node

of a has the label 2, and the nearest ghost node of d has the label 1. Thus, a classification based on the

inverse distances to the ghosts (shown as red dotted lines in Figure 1f) becomes possible (Algorithm 1).175

Algorithm 1: GSOINN+: merging nodes and creating ghost nodes.

1 x ← new training case

2 yx ← class label of x

3 n1 ← first winner of x

4 WT (n1) ← WT (n1) + 1 // Increment winning time of first winner node.

5 if class label of n1 6= yx then

6 if set of ghost nodes of n1 is empty, Gn1 = ∅, then

7 add n1 to set of ghost nodes: Gn1 ∪ {n1}

8 add class label of n1 to set ghost labels: Ygn1
∪ {yn1}

9 add x to set of ghost nodes: Gn1 ∪ {x}

10 add class label of x to set of ghost labels: Ygn1
∪ {yx}

11 n1 ← n1 + x−n1
WT (n1)

// Merge test case and first winner node.

12 N1 ← set of nodes with an edge to n1

13 η ← 100 // Pull factor.

14 for all nodes in N1 do

15 ai ← ith node in N1

16 ai ← ai + x−ai
ηWT (ai)

// Pull connected nodes.

17 IT (n1) ← 0 // Reset idle time.

Given a test case x, GSOINN+ calculates the class membership score S(y|x) for a class y as

S(y|x) =

∑kmax

k=1

[
[dist(x,nk)]−1 δ(hk, 0) δ(yk, y) +

∑hk

i=1[dist(x,gik)]−1 δ(ygik
, y)
]

∑kmax

k=1

[
[dist(x,nk)]−1 δ(hk, 0) +

∑hk

i=1[dist(x,gik)]−1 δ(ygik
, y)
] (4)

where kmax denotes the user-defined maximum number of nearest neighbors; dist(x,nk) is the distance

between x and the kth nearest neighbor, and yk is its class label; δ(α, β) = 1 if α = β and 0 otherwise;

hk is the number of ghost nodes of the kth nearest neighbor; gik is the ith ghost node of the kth nearest

neighbor; and ygik
is its class label. Note that the second sum in the numerator (and denominator) is empty180

for all nearest neighbors that carry a class label (i.e., have no ghost nodes). The score S(y|x) is normalized

between [0, 1], but it is not a posterior class probability, since it is based on the inverse distances to the

nearest neighbors. Algorithm 2 is the pseudocode for calculating the classification score in GSOINN+.

Our primary research goal is to develop a continual supervised learner that learns to solve classification

tasks from different domains without catastrophic forgetting. More specifically, we are interested in the185

following questions:

1. What is the effect of the distance metric used to measure closeness between nodes when the network
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Algorithm 2: Classification score.

1 kmax ← maximum number of nearest neighbors

2 δ(α, β) ← 1 if α = β and 0 otherwise

3 dist(a,b) ← Eq. 1 (distance metric)

4 sumk ← 0

5 summ ← 0

6 y ← class label for which the score is to be computed

7 for k from 1 to kmax do

8 nk ← kth nearest neighbor of x

9 hk ← number of ghost nodes of nk

10 if hk > 0 then

11 for i from 1 to hk do

12 gik ← ith ghost node of nk

13 ygik
← class label of gik

14 sumk ← sumk + [dist(x,gik)]−1 · δ(y, ygik
)

15 summ ← summ + [dist(x,gik)]−1

16 else

17 yk ← class label of nk

18 sumk ← sumk + [dist(x,nk)]−1 · δ(y, yk)

19 summ ← summ + [dist(x,nk)]−1

20 S(y|x) ← sumk · (summ)−1
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is learned? Are there performance differences, depending on the distance metric? What is the effect

of k, the number of nearest neighbors used for classification?

2. Can GSOINN+ mitigate catastrophic forgetting, that is, can the model solve an entirely new classifi-190

cation task and still perform well on the previously learned task?

3. How does GSOINN+ perform against similar methods, AGWR (Parisi et al., 2015) and AG-GWR

(Parisi et al., 2017)?

4. Materials and Methods

4.1. Data sets195

We used three benchmark data sets: the MNIST and Balanced data sets (Cohen et al., 2017) and

the Fashion-MNIST data set (Xiao et al., 2017). The entire MNIST data set contains 70 000 images of

handwritten numbers 0 to 9. The training set, MNIST-train, contains 60 000 images (6000 images per class)

and the test set, MNIST-test, contains 10 000 images (1000 images per class). The Balanced data set consists

of images of handwritten numbers (0 to 9) and the upper- and lowercase letters A to Z. Lowercase letters200

that look identical to their uppercase letters were removed; the discarded characters are c, i, j, k, l, m, o, p, s,

u, v, w, x, y, and z. The training set, Balanced-train, has 112 800 images (2400 images per class) and the test

set, Balanced-test, has 18 800 images (400 images per class). The Fashion-MNIST data set contains 70 000

images of various garments from 10 classes, with 7000 images per class (Xiao et al., 2017). The training

set, Fashion-train, has 60 000 images (6000 per class) and the test set, Fashion-test, has 10 000 images (1000205

per class). In all data sets, each image is represented as a 28 × 28 matrix of gray-scale pixels, which we

pre-processed into a 1-dimensional feature vector of length 784 by concatenating the rows.

4.2. Experiments

We designed two different types of experiments to evaluate the performance of GSOINN+ and its ability

to mitigate catastrophic forgetting. The goal of the single-task experiment was to address our first question,210

that is, to assess the classification performance as a function of the new distance metric (Equation 3.1, for

different fractional distances p = 0.1, 0.3, 0.5, 0.7, 0.9, and p = 1 for the Manhattan distance, and p = 2 for

the Euclidean distance) and the number of nearest neighbors (k = 1, 2, 3, 4, 5) to be used for the classification

score (Equation 4). Figure 2 shows a schematic overview of the single-task learning experiments.

To address the second question and test our hypothesis that GSOINN+ can mitigate catastrophic for-215

getting, we designed a series of sequential learning experiments (Figure 3). First, we trained GSOINN+ on

the training set Atrain from domain A. After processing all training cases only once, we immediately con-

tinued with processing the training set Btrain from domain B. Then, we applied the resulting model to the

corresponding test sets: first, Atest and second, Btest. Then, we reversed the training sequence and applied

the resulting model again to the test sets. Hence, for each pair (Atrain, Btrain), there are four sequences:220

1. Atrain → Btrain → Atest
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Figure 2: Single-task learning experiments. For each data set, five randomly selected images are shown as examples.

Figure 3: Sequential tasks learning experiments. For each data set, five randomly selected images are shown as examples.
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2. Atrain → Btrain → Btest

3. Btrain → Atrain → Atest

4. Btrain → Atrain → Btest

Here, the notation “Atrain → Btrain” means that the network is first built by processing all training225

cases from Atrain. The resulting network then immediately faces training cases from Btrain. The notation

“→ Atest” means that the final model is then applied to classify the test cases from Atest.

The rationale for these sequences is the following. If our hypothesis is false (i.e., if the model forgets

catastrophically), then the performance on Atest in sequence #1 should be substantially worse than that in

sequence #3. Under the assumption of catastrophic forgetting, learning a new task would severely affect230

or even erase the knowledge that was learned before. Similarly, the performance in sequence #4 should be

substantially worse than that in sequence #2. By contrast, if our hypothesis is true (i.e., the model does

not forget catastrophically), then the performance in sequences #1 and #3 and in sequences #2 and #4,

respectively, should be similar. In other words, the order of learning tasks should not have a strong influence

on the performance. We considered all combinations of sequences for MNIST-train, Balanced-train, and235

Fashion-train, leading to six different experiments (Figure 3). We used exactly the same experiments for the

comparison with AGWR (Parisi et al., 2015) and AG-GWR (Parisi et al., 2017).

5. Results

5.1. Single task experiments

Figure 4 shows the average classification accuracies for the single-task learning experiments. In all three240

test sets, the performance was lowest for the Euclidean distance (p = 2). On MNIST-test and Balanced-test,

the best performances were achieved for fractional distances p = 0.5; on Fashion-test, the performance was

marginally better for p = 0.3. In all experiments, the lowest performance was observed for k = 1, with

only minute differences for k = 3, 4, 5. The highest accuracy on MNIST-test was 0.95 (for p = 0.3, 0.5 and

k = 2, 3, 4, 5). The highest accuracy on Balanced-test was 0.71 (for p = 0.5 and k = 3, 4, 5). The highest245

accuracy on Fashion-test was 0.81 (for p = 0.3 and k = 3, 4, 5).

For AGWR and AG-GWR, we used the default parameter settings for the maximum age of edges (µmax =

600) and the maximum number of nodes (nmax = 10000) (Parisi, 2020). Table 1 shows the point estimates

for the accuracies on the test sets, together with their 95% Bayesian posterior highest density intervals (HDI)

(assuming flat priors) for the out-of-sample prediction accuracy. Table 1 also shows the results for GSOINN+250

with fractional distance p = 0.5 and k = 3 nearest neighbors.

It is meaningful to define a region of practical equivalence (ROPE) around the null value of the parameter

of interest, i.e., the difference in performance, θ = 0 (Benavoli et al., 2017; Kruschke & Liddell, 2018;

Kruschke, 2015). If the posterior HDI of the parameter lies completely inside the ROPE, then all values

with the highest credibility are practically equivalent with the null value, and the null value is therefore255
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Figure 4: Average classification accuracy for single-task learning experiments. The experiments were repeated ten times for

different random initializations of GSOINN+. Fractional distances are p = 0.1, 0.3, 0.5, 0.7, 0.9, Manhattan distance (p = 1.0)

and Euclidean distance (p = 2). The number of nearest neighbors is k = 1, 2, 3, 4, 5.

accepted. If, on the other hand, the HDI falls completely outside the ROPE, then the null value is rejected,

since all practically equivalent values have low credibility. If the ROPE and HDI only partially overlap,

then no decision is made. The width of the ROPE should be specified for the application at hand. For the

comparison of classifiers based on accuracy, Benavoli et al. (2017) recommend a ROPE of [−0.01, 0.01]. Thus,

if the HDI for the difference in performance is outside this interval, then we conclude that the performances260

are not practically equivalent. Based on this criterion, GSOINN+ performs better than AGWR and AG-

GWR on all three test sets. On Fashion-test, the accuracies of AGWR and GSOINN are most similar, with

0.775 (95%-HDI [0.767, 0.783]) and 0.787 (95%-HDI [0.779, 0.795]), respectively. The HDI for the difference

in accuracy is [0.0104, 0.0147], which is just outside the ROPE of [−0.01, 0.01].
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Table 1: Classification accuracy (with 95% Bayesian posterior highest density interval (HDI) for the true out-of-sample accuracy)

on the test sets for AGWR and AG-GWR (µmax = 600, nmax = 10000) and GSOINN+ (p = 0.5, k = 3) in the single-task

learning experiments.

Training set Test set AGWR AG-GWR GSOINN+

MNIST-train MNIST-test 0.908 [0.902, 0.914] 0.893 [0.887, 0.899] 0.951 [0.946, 0.955]

Balanced-train Balanced-test 0.534 [0.527, 0.541] 0.514 [0.506, 0.521] 0.710 [0.703, 0.716]

Fashion-train Fashion-test 0.775 [0.767, 0.783] 0.744 [0.735, 0.753] 0.787 [0.779, 0.795]

5.2. Sequential learning experiments265

For the sequential learning experiments, we used the fractional distance metric with p = 0.5. For the

number of nearest neighbors, we considered k = 1, 2, 3, 4, 5. Table 2 shows the classification accuracy on the

test sets as described in Figure 3b.

Table 2: Classification accuracy of GSOINN+ (p = 0.5) on the test sets for the sequential learning experiments.

Training sequence Test set k=1 k=2 k=3 k=4 k=5

MNIST-train→Balanced-train
MNIST-test 0.85 0.86 0.88 0.88 0.89

Balanced-test 0.70 0.70 0.70 0.71 0.70

Balanced-train→MNIST-train
MNIST-test 0.86 0.88 0.90 0.90 0.91

Balanced-test 0.68 0.69 0.69 0.69 0.69

MNIST-train→Fashion-train
MNIST-Test 0.95 0.95 0.95 0.95 0.95

Fashion-test 0.80 0.81 0.81 0.82 0.81

Fashion-train→MNIST-train
MNIST-Test 0.95 0.95 0.94 0.94 0.94

Fashion-test 0.77 0.79 0.79 0.80 0.79

Balanced-train→Fashion-train
Balanced-test 0.68 0.69 0.70 0.70 0.70

Fashion-test 0.80 0.81 0.81 0.81 0.81

Fashion-train→Balanced-train
Balanced-test 0.68 0.69 0.70 0.70 0.70

Fashion-test 0.77 0.79 0.79 0.80 0.79

Let us focus on k = 3 (Table 2, highlighted) and the first training sequence, MNIST-train→Balanced-

train. The accuracy on the MNIST-test set is 0.88, which is lower than that from the single-task experiments270

(0.95, Figure 4a). Apparently, the additional task of learning to classify Balanced-train (after MNIST-

train) has led to a decreased performance on MNIST-test, but clearly not to a catastrophic forgetting. The

performance on Balanced-test is 0.70 and on par with that from the single-task experiment (0.71, Figure 4a).

Recall that MNIST-train does not contain any characters, only numbers. When we investigated the

classification confusion matrix (Figure 5) for the final model (i.e., after processing both MNIST-train and275

Balanced-train), we found that many of the errors occurred for letters and numbers that look similar; for

example, there are 1000 zeroes (“0”) in MNIST-test, and 119 of these were misclassified as the letter “O”.

Ninty-five times, “1” was misclassified as “I”, and 67 times, “5” was misclassified as “S”. It is plausible

14



that the model makes these errors after learning the second task, given that these particular characters and

numbers are indeed barely distinguishable.280

For the reversed training sequence, Balanced-train→MNIST-train, we observe that GSOINN+ performs

slightly better on MNIST-test, with an accuracy of 0.90; conversely, the performance on Balanced-test has

slightly dropped to 0.69. The differences, however, are only marginal and indicate that the order of the

learning tasks does indeed not entail a complete forgetting of the first task.

Consider now the third training sequence, MNIST-train→Fashion-train. The performance on MNIST-285

test did not deteriorate after the model was trained on Fashion-train, since the accuracy of 0.95 is the same

as in Figure 4a. So even after learning a task from a completely different domain (classification of images

of garments), the knowledge for solving the earlier task (classification of images of handwritten numbers) is

still available. Also, the performance on Fashion-test is comparable to that in Figure 4c.

MNIST-test Real Class
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s
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0 1 2 3 4 5 6 7 8 9

832 7 17 5 5 2 8 5 6 9

1 7 799 2 10 1 8 4 6

2 2 880 4 3 2 2 1

3 1 2 959 12 25 2

4 1 1 850 2 4 5 8

5 4 884 2 18 3

6 4 1 2 3 936 2

7 18 4 3 943 3 21

8 5 3 1 852 1

9 3 22 1 9 10 848

A 4

B 1 22

C 5 1 1 4 9 1
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E 1 5 3

F 2 1 3

G 1 1 9

H 3 1

I 1 95 2 3 1 2 2

J 2 5 4 1 7

K

L 1 91 4 3 2 1 2

M 1

N 1 1
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P 6 2

Q 1 2 1 3

R 3 1

S 11 67 2 2

T 1 2 10 1
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W 1
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Z 42 1

a 3 2 4 1 2

b 1 2 27 3

d 1 4 1 4 1 1

e 1 1 2

f 2 2

g 1 2 5 24

h 5 4 1

n 1 2 2 3

q 3 1 1 53

r 1 1 2 3 1 9

t 1 20 7

Figure 5: Confusion matrix of GSOINN+

for MNIST-test from the sequence MNIST-

train→Balanced-train. Most errors occurred due

to “0” being mistaken as “O”, “1” being mistaken

as “I”, and “5” being mistaken as “S”.

For the reversed training sequence, Fashion-train→MNIST-290

train, the performance on MNIST-test is comparable to that

in sequence MNIST-train→Fashion-train; however, the per-

formance on Fashion-test has dropped slightly. A similar ef-

fect is observed for the last two sequences. For Balanced-

train→Fashion-train, the performance on Balanced-test is the295

same as in the single-task learning experiments (Figure 4a),

which means that learning the new task of Fashion-train did

not overwrite the knowledge gleaned from Balanced-train. The

performance on Fashion-test is also the same as before (Fig-

ure 4c); again, this is not unexpected, given that Fashion-300

train was learned the last. For the reversed sequence, Fashion-

train→Balanced-train, the performance on Balanced-test did

not change; however, we observe again a drop in accuracy be-

tween 1% and 3% for Fashion-test. For all sequences, the num-

ber of nearest neighbors plays a negligible role, as the accuracies305

on the test sets are comparable.

Taken together, these results corroborate our hypothesis:

learning a new task does not lead to a catastrophic forgetting

of previously acquired knowledge in GSOINN+.

Next, we carried out the same experiments with AGWR and310

AG-GWR. For both methods, the important hyperparameter

is the user-defined maximum age of edges. First, we used the

default value of µmax = 600 (Parisi, 2020), which means that

edges whose age exceeds this value are deleted. Nodes that
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thereby become fully unconnected are deleted as well. Like315

for GSOINN+, we presented each training case only once to

AGWR and AG-GWR. Both models achieved test set perfor-

mances that are comparable to those observed in the single-task learning experiment (Table 1), but only

if the corresponding training sets appeared last in the training sequence. For example, in the sequence

Balanced-train→Fashion-train, the accuracy on Fashion-test is 0.78 for AGWR and 0.74 for AG-GWR (Ta-320

ble 3). However, the accuracy on Balanced-test dropped to 0%, which means that the knowledge from

Balanced-train has become completely overwritten. This effect can be explained by the fact that the age

of all edges is incremented after each training cycle. In the network that was learned for the first task, the

age of the edges are being incremented while new structures are learned for the second task. Eventually, all

those edges that exceed the maximum age are deleted, which leads to a complete forgetting of the first task.325

We then repeated the experiments, forcing the networks not to forget by setting µmax to +∞; thereby,

no edges (and consequently no nodes) could be deleted anymore. The maximum number of nodes was set

to be equal to the number of nodes (including ghosts) in GSOINN+ for the respective training sequences.

This “enforced remembering” came at a high computational cost: on a standard PC, one sequence involving

MNIST-train and Fashion-train took around one day, and one sequence involving Balanced-train took around330

five days (implementation in Python). Interestingly, for µmax = +∞, AGWR and AG-GWR do not nec-

essarily remember the last task the best. For example, consider the sequence MNIST-train→Fashion-train

(Table 3). Both models achieved an accuracy of 0.95 on MNIST-test. However, when the training sequence

was reversed, the performances dropped to 0.82 and 0.79, respectively. Like for GSOINN+, we had expected

that the last training set would be remembered better than the first one, but that was not the case: a better335

performance was achieved for the test set of the first task. As a possible explanation, the models might have

used up the allocated maximum number of nodes during the first learning task, so that insufficient resources

were available for learning the second task.

An important factor that determines performance, specifically for high-dimensional data sets, is the

choice of the distance metric. To classify a test case, GSOINN+ uses the fractional distance (Equation 3.1),340

whereas AGWR and AG-GWR use the Euclidean metric. It is tempting to speculate that the performances

of AGWR and AG-GWR could be improved by using the fractional distance.

6. Discussion and Conclusions

We developed a novel self-organizing incremental neural network, GSOINN+, for continual supervised

learning. GSOINN+ is based on our recently proposed unsupervised SOINN+ (Wiwatcharakoses & Berrar,345

2020), which learns a topological mapping of the training data to a network structure. GSOINN+ extends

SOINN+ to supervised learning via the new concept of ghost nodes. As virtual nodes, they play no role in

the evolution of the network structure during training; however, they enable the network to retrieve those

class labels that otherwise would be lost due to the merging of nodes with different labels.
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Table 3: Classification accuracy on the test sets for AGWR and AG-GWR in the sequential learning experiments, for the

default maximum age of edges (µmax = 600) and for “enforced remembering” (µmax = +∞).

Training sequence Test set AGWR
µmax=default

AG-GWR
µmax=default

AGWR
µmax=+∞

AG-GWR
µmax=+∞

MNIST-train→Balanced-train
MNIST-test 0.57 0.54 0.81 0.79

Balanced-test 0.56 0.51 0.72 0.69

Balanced-train→MNIST-train
MNIST-test 0.90 0.88 0.89 0.86

Balanced-test 0.21 0.22 0.71 0.68

MNIST-train→Fashion-train
MNIST-Test 0.01 0.01 0.95 0.95

Fashion-test 0.69 0.69 0.67 0.64

Fashion-train→MNIST-train
MNIST-Test 0.86 0.89 0.82 0.79

Fashion-test 0.01 0.03 0.82 0.80

Balanced-train→Fashion-train
Balanced-test 0.00 0.00 0.72 0.70

Fashion-test 0.78 0.74 0.69 0.65

Fashion-train→Balanced-train
Balanced-test 0.55 0.51 0.71 0.67

Fashion-test 0.03 0.05 0.83 0.79

We evaluated the performance of GSOINN+ in two different experimental settings, (i) single task exper-350

iments and (ii) sequential learning experiments. The single task experiments were standard classification

experiments using the benchmark data sets MNIST, Balanced, and Fashion-MNIST (Cohen et al., 2017;

Xiao et al., 2017). Here, no learning across disparate domains was required. We compared the classification

accuracy of GSOINN+ with that of two related methods, AGWR and AG-GWR. Based on a region of prac-

tical equivalence of ±1% for the difference in performance, GSOINN+ performed better than its competitors355

in these experiments.

Our primary research goal was to develop a continual learner that is able to mitigate catastrophic for-

getting when entirely new tasks are to be learned. We therefore carried out a series of sequential learning

experiments where we reversed the order of the training sets. The challenge was to maintain the performance

on the previously learned task after the new task has been learned. Such incremental learning is useful when360

a rehearsal with old training data is not possible, for example, when such data are no longer accessible, or

when a rehearsal would be inefficient, or when completely new classes are to be learned. Our experiments

showed that GSOINN+ can indeed mitigate catastrophic forgetting. For example, in the training sequence

MNIST-train→Fashion-train, GSOINN+ achieved an accuracy of 95% on MNIST-test and 80% on Fashion-

test. Remarkably, the knowledge from MNIST-train was not erased, although Fashion-train is a training set365

from an entirely different domain.

GSOINN+ has several limitations, though. In our current model, there is no limit for the maximum

number of nodes, which means that the network can grow indefinitely, at least theoretically. Ideally, however,

a continual learner should have a bounded system size (Rebuffi et al., 2017), so that resources are used most

efficiently. In our future work, we will address this problem. Another scope for our future work is forward-370
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and backward transfer learning, which is another hallmark of a continual learner.

Note

Supplemental material including Matlab source code is available at the project website at https://osf.io/

gqxya/.
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