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Abstract 

Virtual humans and embodied conversational agents play diverse roles in real life, 

including game characters, chatbots, and teachers. In Augmented Reality (AR), 

such agents are capable of interacting with the real world. To distinguish between 

both types of virtual agents, AR agents were conceptually redefined as 

"holographic Artificial Intelligences (AIs)".  Holographic AIs are embodied virtual 

agents interacting with real objects in Augmented Reality (AR), and can respond to 

events both in virtual and real environments. This thesis provides a 

comprehensive investigation into holographic AIs, spanning from their design to 

their user experience. 

The purpose of this thesis is to investigate the creation and use of holographic AIs, 

by creating specific holographic AIs, and then examining how users perceive such 

entities in order to contribute to the improvement of the user experience. As a 

result, this thesis explores the design space for and methods for creating 

holographic AIs, proposing the novel PICS model which include the dimensions of 

persona, intelligence, conviviality, and senses.  

Following the PICS model, a set of holographic AIs are designed by using a 

method of semi-automatic reconstruction. An AI that resembles a human being in 

appearance and behaviour is endowed with multimodal interactions capable of 

creating the illusion of physicality. The initial proposed model is then refined based 

on the experience of creation. 

Basic body language gestures, such as nodding and opening the arms, are 

insufficient to engage users, particularly when it comes to intelligent tutoring 

systems. Therefore, this thesis specifically focuses on an open problem, the 

generation of re-usable standard instructional gestures. In an experiment, key 

instructional movements that can be employed by holographic AIs were identified 

and extracted as animations. The hitherto known range of representational 

gestures is, epistemologically, further expanded by transformational and imitation 

gestures, which show how humans manipulate spatio-motor information and 

characterise posture using hand motion. Therefore, the model can be extended to 

describe the holographic AI’s behaviour. 

Moreover, in order to assess the empirical validity of holographic AIs, this research 

explores learners' trustworthiness towards this novel technology - as a key 

criterion for efficacy of this AI approach. Trust and trustworthiness, in terms of 

holographic AIs, refers to a mindset that aids users in achieving objectives based 

on good intentions. Young learners’ perception of trust is largely influenced by 

affective aspects of trust, determined by how emotionally responsive a holographic 

AI is. 

These findings contribute to the design of personal holographic AIs that can 

perform a series of meaningful gestures that engage the learner’s attention for 

learning, which in turn fosters a reliable and trustworthy relationship. Both 

experiments are able to extend elements by adding gestures and holistic 

perception to this model.  
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Chapter 1 Introduction 

1.1 Introduction and Overview 

The technology of Augmented Reality (AR) has developed rapidly over past 

decades, becoming increasingly integrated into people’s lives. AR can be defined 

as an integration of physical and digital information that superimposes in real-time 

three-dimensional (3D) computer-generated objects into the user’s interactive real 

world surrounding. Therefore, AR can be described as “a midground between 

synthetic and real environment” (Herpich, Guarese and Tarouco, 2017). The main 

difference between AR and Virtual Reality (VR) is that VR only observes the virtual 

environment, whereas AR technology yields a sense of coexistence, i.e. occupies 

a mixed environment. This technology relies on multimedia, visual elements, real-

time tracking, and registration using optical cameras, inertia measurement units, 

and other sensors (Cheng et al., 2019).  

However, the visual graphics that are generated by AR are different from that of 

hologram technology. The latter relies on light diffraction emitted from 3D objects 

using laser beams to record light patterns into thin film (Elmahal et al., 2020; 

Shimobaba et al., 2022) such that 3D graphics later to be observed by the naked 

eye. Whereas the holographic in AR refers to the display consisting of miniature 

holograms in the lens, creating computer-generated information using wearable 

smart glasses.  

One weakness of hologram technology is that the 3D graphic lacks interactivity, 

and rely on other, additional equipment to receive information from the real world, 

such as voice recognition for speech interaction. The advantage of modern AR 

technology is the ability to recognize real-world spaces, sometimes referred to as 

‘marker-less’ AR, which means it not only can be utilised for manipulation, but also 

serves the automatically and stable placement in suitable positions. For example, 

spatial mapping is one of the important features of AR, which can identify and map 

a 3D mesh surfaces by scanning the user-surrounding interaction space. 

Therefore, 3D objects can blend in with physical objects in order to provide an 

enhanced sense of physicality. This cannot be conducted by the classic hologram 

technology, that is used, for example, on the silvery credit card logos. 

The application of 3D computer-generated graphics in AR is not limited to mere 

visual enjoyment, they also can be for user interfaces (UIs) capable of generating 

interactivity, and playing the role of embodied assistants that directly provide 

services. Such virtual embodied agents, including voice assistants and virtual 

agents/humans, have evolved in different domains, including education, 

entertainment, training, and for interacting with home devices. 

Definitions of what such virtual agents are diverse. For example, intelligent virtual 

agents can be defined as sharing the virtual world with users when providing 

learning guidance and content (Rickel, 2001). Embodied conversational agents 

with life-sized and humanlike appearances can partner with a real human in 

performing a presentation (Trinh, Ring and Bickmore, 2015), or they could be a 

virtual agent or virtual interviewer, which can implement text-based conversation 

(Li et al., 2017). The common feature of these definitions of virtual agents is that 
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these agents function in such a way that they can simulate to a certain degree a 

real human being.  

AR agents differ from screen-displayed virtual agents. These VR agents offer 

immersive interaction also using 3D vision stimuli, sometimes combined with 

haptic devices, in a fully virtual space. In such interactive environment, users can 

observe the virtual body via a third person’s point of view (can see fully body), or a 

first-person point of view (cannot see their heads).  

However, people have a tendency to compare a current interlocutor with previous 

social experiences and feelings, which can lead to stereotyping and bias 

(Bourgeois and Hess, 2008). Neither screen-displayed nor VR agents can perform 

face-to-face interaction in the real world. Therefore, there exists a certain shortfall 

in credulity in that virtual agents cannot deliver a plausible illusion of physicality. 

Although screen-displayed virtual agents are able to recognize the human user’s 

face, execute eye tracking, or perform gesture recognition, they cannot overcome 

the problem that the user and the agent are not in the same shared physical and 

virtual space.  

On the other hand, virtual agents in AR are endowed with a certain degree of 

awareness of the real surroundings, based on spatial mapping and tracking of real 

objects. This produces a sense of co-presence for the users. Most research 

regarding AR agents has been focused on narrowing the gap between semi-virtual 

and real perception by reconstructing the real in an interactive space (Park et al., 

2020).  

Proposed by Holz et al. (2011), the Venn diagram depicted in Figure 1.1 helps 

narrow down the three research areas that need to come together in the 

investigation of embodied AR agents for this thesis. The term ‘physical agents’ 

refers to robots that exist in the real world, while MR agents, or embodied AR 

agents, perform at the interface of both physical reality and virtual reality.  

 

Figure 1.1. A Venn diagram (Holz et al., 2011) 

However, due to the fact that screen-display, VR, and AR are different 

technologies, virtual agents in these environments have certain dissimilarities. 

Previous definitions of virtual agents, virtual humans, or embodied conversational 

agents cannot do justice to the AR characteristics. Holz et al. (2011), for example, 

envisioned “an agent embodied in a mixed reality agent”, which illustrates that 
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such agent has a visible body that can be projected into the real-world for 

interaction. This does, however, not provide a comprehensive and systematic 

investigation into the key characteristics of such AR agents.  

To avoid confusion, this thesis prefers the term ‘holographic artificial intelligence’, 

first proposed in Huang, Wild and Whitelock (2021). The term holographic AIs 

equips agents with computer-graphics AR technology to respond to both events in 

the real and digital realm.   

In order to create such agents with AR features, prior studies emphasize the study 

of how virtual and real-world information can be conveyed in real time, such as 

verbal/non-verbal interaction, physical-virtual recognition, or animations (Barakonyi 

and Schmalstieg, 2004; Hartholt et al., 2013; Chetty and White, 2019). There are 

different requirements for creating AR agents. For example, creation of a particular 

virtual agents may not require language generation, only verbal input interaction, 

and thus relies on different modules mixed together (Hartholt et al., 2013). For 

example, Ali et al. (2019) provided a basic architecture for creating the 

appearance of an anthropomorphic AR agent, from body design to body 

animation, and facial animations. 

However, current models or frameworks for holographic AI are disparate, and 

there is a clear need for a cohesive structure to determine the requirements of 

holographic AI. Therefore, it is necessary to identify which elements of a potential 

harmonised model could feed into a specific holographic AI, and explore all 

possible permutations. Such a taxonomy, therefore, should be considered when 

customising a holographic AI’s features and requirements. A first step towards this 

goal is a systematic literature review.  

Furthermore, it is crucial to distinguish between the definitions of a research model 

and a research framework. A research model can produce formal and visual 

representations that elucidate specific areas, enabling the description of 

influencing factors and their interrelationships (Fettke, 2009; Wand and Weber, 

2002; Naffziger, Hornsby and Kuratko, 1994). Conversely, a research framework 

offers a foundational structure of ideas for exploring a phenomenon, incorporating 

conceptual and design elements derived from theories, concepts, and 

methodologies (Lester, 2005; Lithner, 2007). Therefore, this study is dedicated to 

developing a model for holographic AI—focusing on the components that 

constitute it—rather than a framework. 

Holographic AIs, especially those with humanlike appearance, can produce a 

certain sense of realism and presence for the user (Reinhardt, Hillen and Wolf, 

2020), which in turn facilitates the fidelity of social interaction and influence. 

Furthermore, static holographic AIs are unable to exhibit behavioural realism, 

which is particularly important for intelligent tutoring systems. Therefore, a 

holographic AI should have two basic elements that are similar to those of 

embodied virtual agents: appearance and animation. Holographic AI appearance 

can indicate a character’s level of friendliness (Dryer, 1999), which can influence 

the user’s perception of the holographic AI’s personality (Catrambone, Stasko and 

Xiao, 2002). Holographic AI behaviour can be defined as its ability of recognising 

and interacting with virtual and real objects. However, the Uncanny Valley 

hypothesis predicts that a character with humanlike appearance, but which is 
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lacking certain human traits, can trigger a feeling of eeriness (Mori, MacDorman 

and Kageki, 1970). When a holographic AI with humanlike appearance and 

behaviours is projected into the real world, the incongruity between cartoon-like 

animation and realistic traits produces an unsettling mismatch of appearance and 

behaviour (McDonnell, Breidt and Bülthoff, 2012). Therefore, a holographic AI’s 

appearance, behaviours and voice should be consistent with its functionality. 

In creating a 3D representation of a holographic AI, the traditional approach is to 

build a basic human shape by sculpting a high-human likeness 3D model with high 

polygon counts to replicate good facial details, and then convert it to low-polygon 

counts. The process in question is complex, necessitating not only a thorough 

understanding of human anatomy and musculature but also sophisticated software 

capable of creating the avatar's clothing, textures, and 3D mesh arrangements for 

movement. As such, traditional methods may be unsuitable for designers with 

limited experience in avatar creation. Achenbach et al. (2017) proposed 3D 

scanning for generating 3D models. They used 8 cameras to generate 48 images 

of bodies and faces, and then generated a point cloud of an actor for model and 

texture reconstruction. The process of reconstruction is based on algorithms 

designed to align and match a template model, so that features of the actor, such 

as height and shoulder length, can be transformed to the template to produce the 

corresponding 3D meshes that are required to generate these types of 3D models. 

In order to be effective in a teaching scenario, the behaviour of the holographic AI 

should be meaningful with pertinent gestures which match the intention of the 

instruction. It has been documented that virtual humans employing gestures can 

improve learning outcome (Twyford and Craig, 2013; Mierowsky, Marcus and 

Ayres, 2020), and it is known that children can track a teacher’s gestures in order 

to discern which specific question or item the teacher is referring to (Wakefield et 

al., 2018). In the context of holographic AIs, Li et al. (2018) claimed that virtual 

agents with gestures can produce a higher sense of presence. Instructional 

gestures can maintain user attention, yet limited research identifies which specific 

gestural animations should be employed. Simple repetition of gestures, such as 

greeting, open-armed inviting, and relaxing movements, may be perceived 

negatively if performed in a mechanical fashion. 

In investigating the influence of holographic AI features (understanding of physical 

objects and surroundings), studies have focused on the users’ sense of social 

presence or co-presence (Li et al., 2018; Kim and Bruder, 2019; Schmidt, Ariza, 

and Steinicke, 2020). However, this aspect of user experience alone cannot be 

used to determine whether a holographic AI can cultivate a trusting relationship 

with users and maintain long-term positive interaction.  

In social interaction, trust is fundamental, whether it is interpersonal or virtual. 

Golemiewski and McConkie (1975) claimed that “There is no single variable which 

so thoroughly influences interpersonal and group behaviour as does trust.” The 

definition of interpersonal trust has multiple facets: it can be a willingness 

(Moonrman, Zaltman and Deshpandé, 1992), passion (Thomas, 1750), or 

expectation (Rempel, Holmes, and Zanna, 1989), “emotional security” (McAllister, 

1995) or “reliance” (Rolin, 2021). These scholars also emphasised that by placing 

his/her trust in someone else, a person is taking a risk (Sheppard and Sherman, 

1998; Bhattacharya, Devinney and Pillutla, 1998).  
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According to Borum (2010), trust involves cognitive perception that is contingent 

on judgements that inspire one’s confidence in the knowledge and capabilities of 

others. The perception of a person being trustworthy is based on cognition, and 

such cognitive trust is dictated by the agent’s competence and behaviours. On the 

emotional dimension, affective trust on the part of the person is determined by the 

concern and care shown by the other (ibid).  

Although intelligent assistants endowed with ‘human’ capabilities can give rise to 

natural reactions (Krämer, Rosenthal‐von der Pütten and Hoffmann, 2015), the 

definition of trust may be different in the context of human-computer interaction 

(HCI). Söllner et al. (2012) claimed that trust should be based on system 

attributes, such as functionality. Therefore, trust can be defined as the user’s 

attitude stemming from the belief that he/she can achieve a goal under an agent’s 

guidance in a vulnerable situation (Lee and See, 2004). Qiu and Benbasat (2009) 

investigated the sense of trust towards virtual human in shopping system. They 

found that a virtual human with voice output generally cultivates a stronger sense 

of trust, and that gestures can also stimulate a trusting perception (Parenti et al., 

2022). Therefore, they claimed people prefer to interact with a virtual agent that 

has salient features of humanness. Holographic AIs should mimic a real person’s 

appearance, behaviour, and cognitive ability a shared interactive space. The 

important questions being debated by scholars in the field are whether users’ trust 

towards such agents is similar to human-human interpersonal trust, and what 

factors influence users’ sense of trust in holographic AIs.     

A child’s perception is based on the specifications of the task, and empathy (Van 

Straten et al., 2018; Kory-Westlund, 2023), while adults’ perceived trust depends 

on their objective feelings in relation to technology, such as technological 

functions, ability, and integrity (Sebo, Krishnamurthi and Scassellati, 2019).  Adults 

can change their views on whether they consider a technology as a synthetic or 

real (‘alive’) product (Sweeney, 2020). By contrast, the cognitive foundation of trust 

in young children (for example, 3-year-old children, according to a study by 

Geiskkovitch et al. (2019)) is less stable (Calvo-Barajas and Castellano, 2022). 

Therefore, trust in the context of children is defined as dynamic process based on 

expectation and beliefs (Bernath and Feshbach, 1995; Calvo-Barajas and 

Castellano, 2022).  

Prevailing research typically utilizes definitions of embodied virtual agents in VR or 

on screens, failing to consider the nuances of AR or to address the myriad 

considerations in creating a purpose-built holographic AI. While Norouzi et al. 

(2020) surveyed current trends in holographic AIs across different research fields, 

their review does not articulate the elements of a design model specifically, nor 

does it illustrate how to implement features like multimodal interaction within the 

holographic AI. 

Additionally, the proposed model has not been empirically validated nor verified 

through the creation of a holographic AI, which limits the exploration of potential 

elements beyond this model. Ali et al. (2019) described a traditional approach to 

create a holographic AI based on their architecture of multimodal interaction, but 

failed to explicate the development of this structure, resulting in some elements 

being either redundant or overlooked. For instance, multimodal interaction 

encompasses object recognition, and virtual characters may incorporate chatbots. 
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The importance of body language is also often disregarded, a prevalent issue in 

the literature. Mechanistic and repetitive gestures do not effectively facilitate HCI. 

Moreover, much of the existing research focuses on isolated factors affecting user 

experience rather than a comprehensive understanding of user perception. 

Studies have shown that physical-object interaction outperforms recognition in 

terms of co-presence (Schmidt, Ariza and Steinicke, 2020), yet they neglect other 

crucial aspects such as the holographic AI's usability or trustworthiness. 

Thus, while the literature offers various recommendations, it often leaves gaps or 

presents contradictory information, leaving designers and developers uncertain 

about how to pragmatically construct holographic AI. Additionally, these findings 

are not synthesised into a model that would enhance the understanding of 

holographic AI or succinctly summarise its characteristics. 

The objective of this doctoral project is to enhance the understanding of 

holographic AI. Based on a systematic literature review, this thesis constructs a 

novel model for developing holographic AI that exhibits humanlike performance, 

integrating attributes such as appearance, voice, and behaviour. It establishes an 

overall taxonomy for such agents and identifies their key characteristics. 

Moreover, the thesis examines the design of holographic AIs with physically 

plausible features and coherent behaviours to validate the model. Building upon 

the foundational model, the requirements for educational holographic AIs, 

including instructional gestures, have been analysed in depth. Experiments 

regarding the development of instructional gestural animations have been 

conducted, which have the potential to expand the elements of the model. To 

determine which factors can influence learners' trust, this study considers how a 

trusting relationship between children and holographic AI might be fostered 

through AI features, examining the holistic user experience and trustworthiness of 

the AI. Consequently, this study proposes a set of design guidelines and 

recommendations for holographic AI. These guidelines aim to provide designers 

and system developers with a better comprehension of the overlooked aspects of 

holographic AI, guiding the selection of appropriate components based on its type 

and intended functions. The insights from case studies and experiments are 

detailed, suggesting the design of a pedagogical holographic AI that is capable of 

fostering a sense of trust in children. Furthermore, the study conducts a 

comprehensive investigation and enhancement of the holographic AI model 

through case studies and experimentation, assessing its user experience and 

feeding back into the model's refinement. 

Throughout this thesis, detailed findings from empirical studies will be presented 

while proposing a series of recommendations for developing human-holographic 

AI interaction. This chapter also offers an overview of the thesis discussing the 

motivation for this research its scope and contribution to the field. 

1.2 Research Motivation and Objectives  

For holographic AIs, anthropomorphism plays an important role in mimicking 

human performance, from appearance to thinking to a model for decision-making. 

Such a holographic AI undergoes changes in virtual interactive space, generating 

visual and communicative plausibility and immersion. Therefore, it can provide a 
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series of services in various domains. However, there does not yet exist a 

harmonised model of holographic AIs which is grounded in an anthropomorphic 

taxonomy, and there are certain features of holographic AIs which differ from 

those of VR and screen-displayed agents. VR agents only recognize virtual 

objects in the virtual surrounding, screen-displayed agents can barely interact with 

users. Holographic AIs employ multiple interaction dimensions to deal with both 

virtual and physical contexts, and the users in real-time. 

In order to arrive at a feasible proposed model for holographic AI design, the 

processes of creating a holographic AI be examined. It should be noted that 

holographic AIs are computer-generated 3D dynamic graphics, consisting of 

representation (appearance) and behaviour (animations), it is necessary to find a 

semi-automatic means of generating user’s own 3D avatars that can be employed 

in specific AR domains.  

Holographic AI interactivity should in its behaviour be able to offer an illusion of 

physicality. This is especially critical for intelligent tutor systems, where, for 

example, instructional gestures can be utilised to express complicated and 

abstract definitions to help students understand these types of concepts. However, 

not all gestures are beneficial to learning. If a holographic AI can only perform 

basic interactive gestures, such as greeting, opening arms, and closing, its 

behavioural animation lacks affordance in that the holographic AI does not react 

seamlessly to physical contexts by its subsequent behaviours. Further, Hostetter 

(2011) found that too much overlapping information synchronously expressed by 

co-speech gestures reduce learning gains. Too much gestural expression 

accompanying utterances in a learning space may also produce a negative 

influence. For that reason, this thesis focuses on key instructional gestures which 

should be employed by an educational holographic AI.   

In terms of interaction, trust can be a crucial factor in deciding whether a 

holographic AI induces a positive user experience. The concept of trust introduced 

in this thesis includes cognitive and affective aspects of HCI (Sousa, Lamas and 

Dias, 2014). Cognitive-based trust relates to the capacity of a holographic AI to 

direct users in the completion of tasks, and therefore is a rational perspective， 

and affective-based trust concerns users’ emotional reactions. By measuring trust, 

the researcher essentially measures the number of degrees of willingness of a 

user to interact with a holographic AI, as well as propensity of engagement. 

Further, children’s sense of trust can reflect children’s attitude towards this recent 

technology, and the technology’s acceptability. 

Cummings et al. (2007) proposed the FINER criteria for research questions, which 

encompass feasibility, interest, novelty, ethics, and relevance. This suggests that 

the current study is feasible, engaging, innovative, safe, and has the potential to 

contribute meaningfully to the scientific community. Moreover, effective research 

questions should be articulated with clear motivations and defined research 

objectives (Thuan et al., 2019), enabling these questions to be addressed and 

operationalized through appropriate methodologies and resources, thereby 

fostering the advancement of pertinent research areas. Consequently, the goal of 

this study is to develop holographic AIs from their initial conception to their 

subsequent evaluation via case studies and empirical research. Specifically, it 

investigates the nature of holographic AI, its creation process, and the factors 
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affecting user perception. Using the model derived from this study, holographic AIs 

are constructed within this study, which serves to evaluate the factors influencing 

user trust. Additionally, this case study validates the model and refines it, 

elaborating on its components. Therefore, research questions (RQs) guiding this 

project are presented below: 

• RQ1: What elements and design dimensions constitute the holographic AI? 

• RQ2: How to create an anthropomorphic holographic AI in practice, 

following this model? 

• RQ3:  What key instructional gestures should be used by an educational 

holographic AI?  

• RQ4: What factors affect the user’s sense of trust towards an educational 

holographic AI? 

To achieve these aims, diverse types of holographic AIs in previous studies are 

analysed in order to arrive at a formal definition and a model for the construction 

holographic AIs, then building a novel taxonomy with explicit characteristics. 

Consequently, Chapter 2 delineates an extended avenue of inquiry by 

incorporating a subsidiary research question, denoted as RQ1-1. This extension is 

necessitated by the recognition that, within the domain of holographic AI systems, 

it is advantageous to discern the distinctions in their application-specific 

implementations. This inquiry contrasts with the identification of shared 

components that are ubiquitous across the spectrum of holographic AI systems. 

Based on this model, the overall stages of holographic AI creation can be 

illustrated, including 3D computer-generated graphics, animations, and natural 

language processing, which enables to address RQ2 as well as provide a series of 

recommendations.  

To advance an area of the model, i.e. behaviour, an experiment is designed to 

identify key instructional gestures that can be used in holographic AIs. Results 

from the experiment conducted are reported, using AR glasses and motion 

capture. Chapter 4 expands upon RQ3 by formulating additional, more precise 

hypotheses concerning gestural generation, aiming to examine how these non-

verbal cues can convey the holographic AI's intent. 

To investigate the validity of the overall approach and the holographic AIs created 

as part of the investigations, a second experiment is conducted, pulling out a key 

aspect, i.e. trustworthiness, of those new types of AIs. The experiment focuses on 

learners’ sense of trust, results from the empirical study are reported in Chapter 5 

to answer RQ4. For this, a new metric scale for measuring trust was developed, 

which can investigate the influencing factors that establish trust. Children’s 

perceptions regarding trust were investigated, leading, finally, to the discussion of 

a series of recommendations for enhancing trust, as well as integrating findings 

into the initial model. 

The structure of the thesis is as follows: The initial model, based on a literature 

review, is detailed in Chapter 2, addressing RQ1. Subsequent validation through 

case studies and experiments is conducted in Chapters 3, 4, and 5, tackling RQ2, 

RQ3, and RQ4 respectively. Each chapter refines the model in light of the 

empirical findings. Finally, the mature model is presented in Chapter 6, revisiting 

RQ1. 
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1.3 Scope of the Thesis Research 

The research on holographic AI presented in this study is inherently 

interdisciplinary, rooted primarily in digital media and computer science. Moreover, 

it intersects with game design, MR, AR, and HCI. The holographic AI is designed 

to communicate through a variety of modalities, including visual appearance, body 

and facial animations, interactions both virtual and physical, as well as natural 

language processing. 

This thesis therefore presents an overall approach for the development of 

holographic AIs in the field of digital media or digital media production, ranging 

from 3D modelling, animation, dialogue management for natural language 

processing, physical recognition to user experiment measurement. Although the 

development of holographic AI could be broadened to include a remote and 

synchronous collaboration with other users, this research only focuses on one-to-

one interaction with the holographic AI.  

The input channel of a holographic AI built in this thesis includes user’s input, i.e. 

speech to text service, and output channels consists of vision (i.e. appearance, 

body movements, gestural animations, emotions, lip-sync animations), user 

recognition, and utterance (i.e. dialogue management and text-to-speech).  

The aims of this thesis are to investigate a holographic AI in an intelligent tutoring 

system, and the effects of trust on learners’ perception to inform the development 

of holographic AIs.  

The limitation of the scope of this investigation is that the holographic AI cannot 

yet directly recognise physical objects and manipulate physical objects flexibly and 

openly, though a model for that is included in the thesis, but it can interact with 

users and virtual objects. It will be shown that the holographic AI can exhibit 

plausible behaviour to react to both virtual and physical surroundings based on a 

predefined scenario.  

The research with respect to prototyping an executable holographic AI is based on 

a novel model. Factors influencing trustworthiness of holographic AIs is also 

investigated. In order to ensure the application’s validity, i.e. showing that the 

holographic AI can be used in life-like settings, the thesis does not use controlled 

experiments such as ‘Wizard-of-Oz’ (Woz) testing, but conducts empirical 

experiments. Other than popular Woz studies, therefore, this thesis can observe 

current shortcomings of holographic AI technology much more precisely, outlining 

a path for future development and propose improvement aspects and identifying 

development trends. 

1.4 Contribution 

Prior research has not provided an exhaustive analysis of the development and 

deployment of holographic AI systems. This study initiates a thorough examination 

of the definitions and attributes of holographic AIs, aiming to facilitate a detailed 

investigation into their component parts. For instance, conventional VR and 

screen-based agents fail to meet the unique criteria and functionalities inherent to 

AR technologies such as spatial mapping. Moreover, the characteristics of 

preceding virtual agents are clearly delineated from AR agents. This distinction 
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necessitates a deeper understanding from users and designers regarding the 

rationale for the adoption of holographic AIs. For example, the work of Norouzi et 

al. (2020) and Ali et al. (2019) falls short in fully delineating the classifications and 

unique attributes of holographic AIs, as well as in thoroughly examining their 

shared or distinct functions and features. Therefore, a model and taxonomy of 

holographic AIs are proposed, also to satisfy the requirement of specific 

application domains, so that different dimensions and elements can be selected 

based on the holographic AI features and a typology can be mapped out for 

specific feature combinations and settings required for particular applications.  

This study scrutinizes case studies that delve into the design, creation, 

reconstruction, and intelligence enhancement of holographic AIs. A 3D scanning 

technique is utilized to generate anthropomorphic holographic AIs, which are then 

assessed in comparison to conventional creation methods. Additionally, this study 

presents an analysis of the processes involved in producing facial and lip-sync 

animations. The amalgamation of animation techniques, natural language 

processing, user movement tracking, and spatial awareness is leveraged in the 

development of interactive modalities, thereby enabling a comprehensive set of 

recommendations for future holographic AI advancements. The goal is to equip 

developers and designers with the knowledge required to conceptualize and 

implement holographic AIs within an MR environment. Furthermore, the proposed 

model undergoes refinement and extension within this study, with a focus on 

removing ambiguous and superfluous elements. 

In order to develop holographic AI animations to enhance behavioural realism, it 

then provides results from an extensive investigation on what key instructional 

gestures that can be used in holographic AIs, especially for intelligent tutoring 

systems. The holographic AI instructional hand movements can enrich the variety 

of representational gestures, which can match the holographic AI’s utterances and 

intentions. This study discovers novel categories of gestures in instruction, which 

is beneficial for animation designers to select appropriate gestures for an 

educational holographic AI or training system, aiming at promoting its motivation 

and emotional conversation, rather than repeatedly performing limited behaviours.  

Trust is critical in forming both transient and enduring relationships. Nevertheless, 

previous studies have not concentrated on a trust questionnaire specifically 

devised for holographic AI systems. For example, Kim et al. (2018) concentrated 

on trust in technology to evaluate the safety of holographic AI systems. While 

holographic AIs are a part of technological progress, their unique interactive 

methods, environmental integration, and visual presentations demand a 

specialised trust metric. Therefore, this study appraises user experiences 

specifically within the holographic AI context.  

To investigate the validity of holographic AIs, the key element of trust in 

holographic AIs is investigated, for which a new questionnaire is developed. This 

(re-)defines what trust means and how it can be measured, and it is applied 

directly to a holographic AI culminating from a series of prototypes, assessing the 

found sense of trust of learners towards this holographic AI. Each dimension of the 

model enables analysis of what contributing factors can influence user perception. 

While, children’s trust perception is different to adults, this thesis makes six 

recommendations based on the collected feedback from young learners.  
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Overall, the aim of this study is to construct a comprehensive model with the intent 

of offering design recommendations that can bolster the development of 

holographic AIs for developers, designers, and users alike. This study presents a 

set of guidelines derived from case studies and empirical research, intended to 

reveal previously unconsidered factors. For instance, the use of representational 

gestures is proposed to enrich the diversity of gestural interaction, thereby 

facilitating the effective conveyance of the holographic AI's intents and 

motivations. The trust scale is developed to examine factors influencing user 

experiences, with an emphasis on discerning the particular needs of children to 

amplify their trust in holographic AIs. 

The principal contribution of this study lies in the establishment of a theoretical 

framework for interactions between human users and holographic AI systems, as 

well as in the development of a trust measurement model within MR environments. 

Additionally, this study advances the creation of educational holographic AIs, 

fostering a symbiotic relationship between such agents and the learning 

experience. 

The findings and conclusions further refine and expand upon the model for 

holographic AI and offer recommendations to surmount the limitations in exploiting 

body language performance and sustaining user engagement. While this study 

primarily focuses on the design and study of educational holographic AIs, the 

results have broader implications for physical robots and various MR/AR/VR 

agents. Instructional gestures, for example, can be adapted for use in both 

educational and robotic contexts. The development of holographic AIs is an 

interdisciplinary endeavour, intersecting HCI, artistic design, and user experience. 

This study synthesizes these diverse elements into a succinct set of design 

guidelines for interactions between humans and holographic AI, which will 

significantly contribute to future research aimed at enhancing interactions with 

screen-based, AR/MR agents, and fostering enduring interactive relationships. 

1.5 Organization of the Thesis 

This thesis explains a holographic AI’s model, and holographic AI creation based 

on this structure, and what key instructional gestures can be used by holographic 

AIs. Moreover, it investigates trustworthiness of the holographic AIs and reports 

findings.  

Chapter 1 provides a brief introduction to the impetus for developing holographic 

AIs. An overview of the thesis was provided with a conceptual structure, which 

illustrates the rationale for investigating holographic AIs. 

Chapter 2 proposes a model for holographic AIs on the basis of a systematic 

literature review. It also presents a taxonomy and characteristics of holographic 

AIs based on different application domains and user perceptions.  

Chapter 3 describes the processes of a holographic AI creation, based on the 

model that was proposed in Chapter 2. It also compares two ways of creating 

holographic AIs. In addition, it details the generation of body and facial animations 

using motion capture. This chapter discusses multiple interaction approaches 

using natural language processing and user tracking techniques. Based on this 
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experience, this chapter concludes with a series of recommendations, and the 

initial model is refined. 

Chapter 4 reports on an experiment, the aim of which is to identify key 

instructional gestures that can be utilised by holographic AIs. It proposes a 

methodology for specifically recording and capturing instructional movements, and 

re-categorises representational gestures (i.e. iconic, deictic, emblematic, 

metaphoric, transformational, and mimicking gestures). The chapter concludes 

with a proposal for a holographic AI with instructional gestures and natural 

language processing, which allows to extend the model regarding performance of 

body language. 

Chapter 5 proposes a new metric scale for measuring trust, targeted at 

holographic AIs. It presents 5 dimensions (competence, integrity, benevolence, 

compassion, and relationship) and 11 factors of trust. Based on the scale, this 

chapter reports on an experiment designed to measure children’s sense of trust 

towards the holographic AI, the design of which is detailed in previous chapters. 

The chapter concludes with six recommendations for developing and improving 

trust in the relationship between children and holographic AIs. It further enhances 

the model with respect to user experience. 

Chapter 6 draws conclusions on the findings of previous chapters and the 

experiments, and considers future work stemming from the research findings 

presented in the main chapters. Unique contributions to the field, as well as 

limitations of, this doctoral research are discussed, and recommendations for 

further research are prescribed. 
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Chapter 2 Systematic Literature Review and Model 

The purpose of this chapter is to review the current state of the art in Augmented 

and MR agents. In the first section, a definition of virtual agents and Augmented 

and MR agents followed by a comparison of traditional virtual agents for VR and 

screen-display will be provided. This chapter will also illustrate how artificial in AI 

can be utilised for building intelligent agents in AR. 

2.1 Introduction 

 

Figure 2.1. An example of holographic AI (own graphic) 

Virtual humans mimic both the appearance and behaviour of real humans. They 

are often defined as ‘autonomous agents’ (Rizzo et al., 2016) or ‘artificial agents’ 

(Traum, 2009) in that they possess an anthropomorphic body, express a human-

like range of emotions, and engage in natural communication (both verbally and 

non-verbally).  

For example, NEON has developed realistic AI assistants that appear on a screen 

(NEON, 2023), and the KRAFTON company has created a virtual female with a 

hyper-realistic appearance (KRAFTON, 2022), the latter which has become a 

digital celebrity. The capabilities of traditional virtual humans, however, often are 

inhibited by the restrictions inherent in the delivery devices currently available, 

even though screen displays can recognize the user’s behaviours by sensors. 

While, VR cannot capture information concerning real-world surroundings. 
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By contrast, AR can overcome this limitation by sharing both the real and digital 

spaces with the user directly. Guided by spatial mapping, virtual characters can 

obtain real-time information about the physical surroundings while generating both 

corresponding virtual representations of world and objects. AR endows virtual 

agents with a certain degree of ‘space intelligence’, i.e. physical awareness, 

enabling them to respond and react to external, real-world events.  

AR agents’ sense and project into the physical world to process and display 

information in real-time (see Figure 2.1). In this context, the term ‘holographic’ is 

often used substituted for AR. This term should not be confused with holograms, 

which are different from holographic displays and user interfaces. Holograms are 

the resulting 3D images produced by light refraction that reconstitute the reflection 

as if it came from real objects. Holographic agents require a specific delivery 

system, typically a waveguide display, to realize their 3D embodiment and to 

extend the users’ real-time experience of their physical surroundings (K. J. Kim et 

al., 2020; Carrozzi et al., 2019). Such devices include Microsoft’s HoloLens, 

Lenovo’s Think Reality glasses, Magic Leap, or others of a growing class of AR 

glasses. In order to distinguish from VR agents, it is preferable to use the term” 

holographic AI” over “virtual agent” or “virtual human” (Huang, Wild and Whitelock, 

2021).  Essentially, a holographic AI provides a humanoid interface through which 

the user interacts with physical and virtual surroundings in the mixed world. 

Although the number of studies regarding AR assistants has grown substantially 

over the last decade, academia is divided over the right terminology, and the 

differences between VR humans and AR agents are often blurred, with these 

terms referring to the same foundational definitions of ‘embodied agent’ 

(Techasarntikul et al., 2020), ‘intelligent virtual embodied agent’ (Iqbal, Mangina 

and Campbell, 2019), or ‘virtual human’ (Lampen, Lehwald and Pfeiffer, 2020).  

For example, in researching traditional virtual agents, Knote et al. (2019) 

conducted a systematic literature review and a cluster analysis, from which they 

identified five categories of intelligent personal assistants (i.e. adaptive voice 

(vision) assistants, chatbot assistants, embodied virtual assistants, passive 

pervasive assistants, and natural conversational assistants). Their cluster analysis, 

however, does not clearly single out characteristics. Given that both natural 

conversation assistants and adaptive voice (vision) assistants use natural 

language processing, Knote et al. (2019) merely postulate that adaptive voice 

assistants combine it with visual interaction, not acknowledging the complexity of 

natural conversation assistance.  

Huang, Wild and Whitelock (2021) have proposed an additional early taxonomy for 

AR agents, and have conducted a comparative analysis exploring nine AR 

anthropomorphic agents, including game characters, simulation agents, chatbots, 

and intelligent tutors. However, while the study is informative, it samples only nine 

commercial products, the findings of which cannot robustly support the 

generalization of the extracted features of holographic AIs.  

Norouzi et al. (2020) have presented a systematic review of work covering the 

holographic AIs’ appearances, behaviours, spatial interactivity, displays, and social 

distance (50 papers in total). Their study also considers future directions in the 

development of holographic AIs and head-mounted displays. However, although 
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they consider the holographic AI as a companion which can collaborate with users 

and possess personality, their study focuses more on head-mounted displays, 

rather than the holographic AI itself and the advancement of its abilities. 

Physical recognition is a critical characteristic, as mentioned in two studies 

regarding holographic AIs (Huang, Wild and Whitelock, 2021; Norouzi et al., 

2020). However, scholars have yet to fully investigate and categories different 

situations in terms of the level of physical interaction or spatial recognition needed 

to avoid improper holographic AI performance. Another critical research avenue is 

the development of, and the reliance of holographic AIs on, the ancillary AI tool of 

physical-object management for tracking or influencing objects’ states, and 

realising mutual conversion of dynamic and static states.  

Additionally, a holographic AI can work only for one application, which means it 

cannot fully transit multiple scenarios. If the holographic AI cannot express a 

comprehensive set of human emotions, or automatically produce its own storylines 

and experience, it will fail to attract and maintain audiences’ interests, and be 

relegated as a short-lived virtual influencer or product.  

Therefore, there is a need for an updated and comprehensive review which 

provides an overview of the current limitations of holographic AIs, and novel 

development tendencies in the field. In order to address the knowledge gap and 

answer the first research question, this chapter applies a systematic review of 

specific characteristics and corresponding implementations of holographic AIs.  

The purpose of a systematic literature review is to identify, select, evaluate, 

interpret, and analyse sources of evidence (Moher et al., 2015). It classifies the 

background, conditions, and features of the phenomenon in question, and 

provides transparency and comprehensiveness. To avoid an ambiguous 

characterization of holographic AIs and their application scope, this chapter builds 

a taxonomy by exploring representative features by the way of the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). 

This investigation reviews published articles regarding AR embodied agents during 

the years 2009-2022. The critical objectives of this study are to consider explicitly 

what AR agents are, explore their integration in high-tech applications, and then 

summarize the current status of holographic AI research and development.  

This study is dedicated to constructing a model that captures the distinguishing 

characteristics of holographic AI systems. It aims to explore the capabilities of 

these agents, including their visual representations, interaction modalities, and the 

overall user experience. In this context, it is deemed beneficial to devise a 

taxonomy of holographic AI to help further understand its distinct primary 

components. Within the range of holographic AIs, it is beneficial to understand 

how holographic AIs differ in their application, as opposed to which components 

are common to all holographic AIs (RQ1). For this, RQ1-1 (see below) has been 

added.  

This desktop-based research study seeks to evaluate the full range of holographic 

AI capabilities via a systematic approach, by identifying their working principles, 

exploiting their future development tendencies, and then presenting a set of 

recommendations.  
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The objectives of this systematic review are as follows: 

• What elements and design dimensions constitute the holographic AI? 

(RQ1) 

• What are categories of the holographic AI based on this model for creation? 

(RQ1-1) 

It should be clearly mentioned that there are other fields of study intersecting of AI 

with AR, which lie outside the scope of this chapter. Most notably, probably, one 

should mention Deep Fakes and AR filters in this context, where AI technology is 

used to augment the appearance and voice of a physical person to make them 

appear to be someone else (much like AR filters). In this case, the difference to 

what is studied here is that AI is understood in its narrower definition of solving 

specific problems with machine learning, while here it aims more at the production 

of general intelligence.  

The rest of this chapter is structured as follows. In Section 2.2, the methodology of 

the review is described, and in Section 2.3, a summary of the results is presented, 

mainly highlighting the holographic AI features. Section 2.4 summarizes how 

studies investigate user experience. The findings are discussed in Section 2.5, 

and Section 2.6 summarizes holographic AI's development trend at the end of this 

chapter. 

2.2 Methodology of the Review 

A comprehensive evaluation of the concepts, features, and categories of a 

phenomenon by means of a systematic review can provide clear insights into 

available data, and also serves to identify existing research gaps and future 

development possibilities. The quality of a systematic reviews is dictated by the 

coverage and quality of the primary studies considered: the more fragmented 

evidence, the harder it is to extract and support generalizable results. There are 

three pillars of a systematic review: keywords, databases, and screening criteria. 

To avoid information retrieval and relevance issues, advanced literature search 

engines including Harzing’s Publish or Perish tool were employed to collect all 

relevant studies, and the PRISMA methodology was applied (Page et al., 2021). 

2.2.1 Identification 
The goal of this review was to select studies that either explicitly investigate visual 

intelligent agents embedded into AR, or which describe general features of 

holographic AIs. The following keywords of article titles were considered: 

(“augmented reality” OR “mixed reality” OR “extended reality”) AND (“agent” OR 

“intelligent agent” OR “assistant*” OR “embodiment” OR “virtual human” OR 

“virtual agent” OR “embodied”).  

In an effort to identify more relevant papers, an enlarged keyword search 

employing the aforementioned keywords, plus “virtual human”, “augmented 

reality”, “conversational agent”, “mixed reality”, and “hologram”, was conducted.  

The electronic databases utilised in this review included ACM DL, CEUR-WS, 

Frontiers, Google Scholar, IEEE Explore, IMD Lab, ISCA, MDPI, ScienceDirect, 

Springer Link, and SciTePress. The review covers studies publications from 2009 
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to 2022, including earlier reviews (Cipresso et al., 2018). In total, 321 papers were 

retrieved, and 5 papers are not free to read were discarded. 

 

Figure 2.2. PRISMA flow 

2.2.2 Study selection 
On the screening stage, 30 duplicates, as well as 10 articles that were not 

published in English, were eliminated, leaving 276 studies. The eligibility criteria 

are structed upon the definition of holographic AIs provided by Huang, Wild and 

Whitelock 2021). Abstracts satisfying the following criteria were selected for 

review: (1) studies clearly revealing visual agents in an AR environment; (2) 

studies concerning animated holographic AIs; (3) abstracts for journal articles, 

conference papers, and doctoral dissertations. 

In total, 276 abstracts were considered eligibility in accordance with the above 

criteria. Discarded studies were re-evaluated, and reasons for their exclusion were 

discussed below, ensuring no essential literature was missed.  

Based on the preferred reporting items for systematic reviews and meta-analyses 

2015 statement, Figure 2.2 shows the PRISMA flow diagram.  

Twenty-eight studies that did not specifically concern AR technology were 

excluded. A further 199 studies were excluded as they did not use or investigate 

visible 3D agents in AR (n=79), or they concerned voice assistants (n=44), AR 

animation (n=25), AR shopping systems (n=26), or AR learning systems (n=18), or 

they were Bachelor and Master degree level-based dissertations (n=7). 
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This left 49 eligible full-text papers, including one PhD dissertation (Kim, 2018a) 

that consists of four studies (Kim et al., 2019, 2016, 2018; Kim, Bruder and Welch, 

2017) with two additional articles published (Schmidt, Nunez and Steinicke 2019; 

Schmidt, Ariza and Steinicke, 2020). 

2.3 Result 

As mentioned, all studies in line with the selection criteria were published between 

2009 and 2022 (see Figure 2.3), and concern virtual characters in AR. It is 

indicated in Figure 2.2 that the 2010s witnessed a general increase in academic 

studies on holographic AIs, a trend which appears to have been arrested during 

the Covid-19 pandemic: 77.6% of the studies were published in the last four years 

(from 2022 to 2018), including 7 studies in 2018, and nearly double that in 2019. 

Additionally, 49 studies concern the development of wearable smart glasses for 

observing holographic AIs, and 10 studies concern the application of mobile AR in 

screen display. 

The selected studies were subsequently analysed in depth in terms of the 

following categories: definitions of holographic AIs, features of holographic AIs, 

interaction methods, areas of interest, and user experience in terms of interaction 

with holographic AIs. 

 

Figure 2.3. Publications retained by year 

2.3.1 Definition, model, and taxonomies of holographic AIs 
Several of the papers use the following words “virtual human” or “virtual 

agents/assistants/animals” to indicate the agent having a visible body in AR, and 

frequently employ the words “embodied (conversational) agents” in their concepts 

and titles to replace “virtual agents/ humans”. Some of them suggest that the 

holographic AI’s visual representation is based on (3D) computer-generated 

graphics sharing the same space with the user. Some definitions reflect specific 
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interactive abilities, such as environmental understanding, real object recognition, 

translation, verbal communication, remote collaboration, translation, and 

educational training (n=31, see Table 2.1). Importantly, Table 2.1 shows that some 

studies explain an interactive environment by using the phrases “in the physical or 

real space”, “interact with the real world”, “share the physical space”, “integrate 

into a virtual or physical space”, “project into the physical world”, and “in the MR 

environment”. Only three studies propose that the holographic AI delivers plausible 

interactions by imparting on the human user a subjective illusion of physicality in 

the real world and the feeling of being together. The holographic AI overlays on 

the physical environment via wearable headsets or smartphones, and it is neither 

physically present in the environment nor sharing the same (real) space as the 

user; rather, it shares the same MR space.  

The concept of holographic AIs is often loosely defined. These studies only 

describe one or two features of holographic AIs, such as appearance, abilities, or 

functions, but do not comprehensively define what holographic AIs are. For 

example, Lee et al. (2021) defined the virtual human in AR as a humanoid 

computer graphical representation that can share the real environment with users. 

This definition reflects two elements: visible humanlike appearance, and 

interactive space. Although Lee et al. (2021) provided more details later regarding 

the holographic AI’s abilities, their general definition does not highlight its key 

features. Among the papers, the majority of definitions either suggest that the 

holographic AI has embodiment in the real world, or only focus on specific 

interactive capabilities. For instance, the holographic AI is capable of verbal and 

non-verbal communication (Wang, Smith and Ruiz, 2019), understanding the 

user’s context (K. J. Kim et al., 2020), or performing real-time interaction (Verma et 

al., 2020). A definition focusing on a single functionality or characteristic makes it 

rather difficult for researchers to explain why users need these AIs with AR 

support. Such a definition fails to explain the particularity of an AR interactive 

environment, nor can it distinguish the AIs from virtual agents in VR or screen 

displays. For example, Nasution et al. (2020) created a translation system for a 

holographic AI that can teach English; however, with this arrangement the 

holographic AI could be replaced by text-input. Besides, the term ’embodied 

agents’ or ’embodiment’ consider coexistence with the user in a place, but cannot 

accurately indicate the spatial levels of interaction, such as virtual interaction, 

mixed surrounding interaction, or physical awareness and interaction. 

The holographic AI and virtual human/agent have common features in 

appearances, verbal/non-verbal abilities, or application domains. However, 

holographic AIs can generate the illusion of physical presence in the real world 

because of their visualization and performance in multiple interactive spatial 

dimensions. Physical and virtual interactive spaces are not in the same horizon, 

thus the holographic AI or virtual object cannot occupy the real environment since 

it lacks physical instantiation, and also because it does not completely rely on the 

virtual social context. As mentioned above, these definitions cannot convey more 

information in terms of certain aspects of difference between different holographic 

AIs, even though the common feature among holographic AI is a certain degree of 

interactive ability in the physical surroundings. Therefore, a comprehensive 

definition should clearly present what the holographic AI looks like, the holographic 

AI’s abilities, where it displays, and its aims. Table 2.1 highlights the unclear and 



20 
 

contradictive definitions (Chu et al., 2012; Kim 2018b; Park and Jeong 2019; Lee 

et al., 2019; Pimentel and Vinkers 2021; Norouzi et al., 2022; Huang et al., 2022). 

Description of 

virtual agents in 

AR 

Definitions Studies 

Virtual human is a humanlike computer graphics 

manifestations that gives the illusion of 

physical presence. 

Kim et al. 

(2021b) 

Virtual human is a 3D computer-generated embodied 

agent in a physical environment. 

Pimentel and 

Vinkers (2021) 

Virtual human is a human like computer graphics 

representation that can display in a virtual 

surrounding or share a real interactive 

world with the user. 

Lee et al. 

(2021) 

Virtual human is an intelligent virtual agent that is able to 

produce social influence by its presence in 

the shared interactive surrounding with the 

users”. 

Kim (2018b) 

Virtual human  is a computer graphics with animations 

that can generate an illusion of physicality. 

Kim (2018a) 

Virtual human can produce an illusion of physicality in the 

physical surrounding world by its 

appearance and their behaviour. 

Kim, Bruder, 

and Welch 

(2017) 

Virtual human has humanlike representation that is able 

to perceive and interact with users verbally 

and nonverbally. 

Hartholt et al. 

(2019) 

Emotive virtual 

human 

is a virtual patient that can help medical 

students practice interviewing. 

Zielke et al. 

(2018) 

Virtual human 

agent 

creates a social context in which users can 

interact or collaborate with it in the same 

environment. 

Huang et al. 

(2022) 

Intelligent virtual 

agent 

has appearance and animations that is 

able to communicate with users in a natural 

way by recognizing interactive environment 

and influencing physical objects. 

Kim et al. 

(2018) 

Intelligent virtual 

assistant 

is an intelligent collaborative entity that can 

verbally command and identify user’s 

context to be  

K. Kim et al. 

(2020) 
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Virtual agent can improve the capability of a user to 

interact with the real surrounding by MR 

devices.  

Lang, Liang 

and Yu (2019) 

Digital personal 

assistant 

is a speech input and output interface that 

is able to interact in real-time, identify and 

finish user commands. 

Verma et al. 

(2021) 

Indoor dialog 

agent 

can interact with nearby users in a real-

world space. 

Park and 

Jeong (2019) 

Virtual 

conversational 

agent 

shares the same space with users and can 

control physical objects at the very 

position. 

Miyake and Ito 

(2012) 

Desktop assistant has a visible body allows it to share the 

same physical environment with users, 

allowing it to move freely in all directions. 

Chu et al. 

(2012) 

AR machine 

translation agent 

is able to translate a text from Indonesian 

to English by voice. 

Nasution et al. 

(2020) 

Interactive agent allows to experience flower gardening over 

a real book. 

Oh and Byun 

(2012) 

Blended agent is able to control a real object associated 

with its location and surface material. 

Schmidt, 

Nunez and 

Steinicke 

(2019) 

Intelligent 

blended agent 

can react to both real and virtual objects. Schmidt, Ariza 

and Steinicke 

(2020) 

Virtual animal is a computer-generated graphics that can 

be projected into a real or digital world. 

Norouzi et al. 

(2019) 

Embodied agent is computer animated characters that can 

be applied in various applications across a 

variety of display modes and setups. 

Norouzi et al. 

(2020) 

Embodied 

conversational 

agent 

is a natural speech interface with 

humanlike appearance. 

Wang, Smith 

and Ruiz 

(2019) 

Embodied 

conversational 

agent 

utilizes 3D VR and AR technologies to 

provide tangible benefits for human-to-

human communication and interpersonal 

skills development. 

Chetty and 

White (2019) 
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Embodied 

conversational 

assistant 

mimics real human voice, appearance, and 

behaviour. 

Reinhardt, 

Hillen and Wolf 

(2020) 

3D embodied 

agent 

is able to identify user’ requirement and 

perform interaction in the real world.  

Norouzi et al. 

(2022) 

3D virtual walking 

partner 

has humanoid appearance to provide 

exercise services. 

Yoo and 

Tanaka (2022) 

Mini-Me is a novel adaptive avatar for remotely 

collaborating on MR with redirected gaze 

and gestures. 

Piumsomboon 

et al. (2018) 

MiRa has embodiment in the MR surrounding. Holz et al. 

(2011) 

AuARs has embodiment in AR environment. Campbell et al. 

(2014) 

Holographic AI is a humanoid user interface that is able to 

identify and interact with real and virtual 

surroundings.  

Huang, Wild 

and Whitelock 

(2021) 

Table 2.1. Definitions 

In Table 2.1, some of the studies use virtual humans/agents in VR and screen 

displays to describe embodied agents in AR, and their definitions also apply to the 

traditional concepts applied to virtual humans/agents. Even though virtual humans 

and holographic AIs have similarities, their interactive spaces and extended 

capabilities in terms of physical and virtual recognition are different. By explicitly 

defining holographic AIs, users can understand better whether a holographic AI 

can react to the physical context.   

In terms of taxonomical analyses, Holz et al. (2011) introduced agency, a sense of 

co-presence, and interactive ability, which was then subdivided into weak and 

strong levels. They cite over 25 projects in their exploration of four types of agents 

based on the relationship between the physical and the virtual environment. 

Stronger virtual embodiment focuses on the virtual domain. Virtual agents with 

spatial awareness can deliver contextual information about the real world, but 

cannot influence their surroundings. Robot agents with stronger corporeal 

presence integrate into virtual environments for navigation and positioning. MR 

agents have both strong real and virtual co-presence, and they have virtual 

representations showing on screen-displays on real robots (ibid).  

This taxonomy, however, includes diverse agents that are not fully virtual, which lie 

outside the scope of the holographic AI. As mentioned above, Huang, Wild, and 

Whitlock (2021) presented a comparative survey of how holographic AIs are 

developed. By inputting keywords such as “HoloLens virtual human”, “holohuman”, 

and “holographic system”, the authors identified relevant products on Google and 

YouTube. The nine agents they identified can be categorized into four usage 
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types: game characters, simulation AIs, chatbots, and intelligent tutors. These four 

types of holographic AIs differ greatly in terms of appearance, behaviour, 

intelligence, and responsiveness. For example, the AR game character uses 

storylines and performs various animations.  

Norouzi et al. (2020) have classified 50 papers concerning holographic AIs using 

head-mounted displays based on research categories, application areas, and 

appearances. Their taxonomy of holographic AIs includes human, animal, robot, 

and other kinds. Other types of the holographic AI (fourth in the list) include 

cartoons, monsters, and humanoid objects, and this vague category ensures that 

these AR virtual objects have interactivity, or are merely decorations in the AR 

environment, such as anthropomorphic sun. The holographic AI’s appearance is 

only one branch of the classification, which cannot differentiate application 

domains or affordances. The authors also classify holographic AIs into application 

areas, including assistive/collaborative, entrainment and interactive media, 

healthcare, and training. Healthcare-related holographic AIs are design to improve 

the health of specific users, or serve as a teaching tool. However, the study does 

not specify the differences between the health and training groups, and both types 

of holographic AI can also foster a collaborative relationship. 

In terms of technical architecture, Chetty and White (2019) have proposed a 

multilevel architecture of a sense-think-act cycle, including a cognitive level, 

sensor-fusion level, and an environment simulator level. The cognitive level 

applies decision-making in accordance with user goals. The sensor fusion in the 

second level integrates inputs and outputs from a variety of sensors. The 

environment simulator level ensures the holographic AI is able to interact with 

different contexts, environments, and other agents. The model relies on a 

reasoning model of belief-desire-intention (Wadsley and Ryan, 2021), but the 

authors do not explain how this model contributes to the cycle they propose, or 

how the sensor fusion level performs a transformation from input to output.  

Similarly, a process of creating holographic AIs with full-sized cartoons and 

animations is presented by Ali et al. (2019). Interaction ensures that the 

holographic AI can identify objects the user gazes at, as well as express body 

language and emotions. Scalability incorporates anchor maps based on image 

recognition and physical tracking to build an interactive area for the tracking of real 

objects. Empowered with these qualities, the holographic AI can recognize real 

flowers and perform face-to-face communication. This architecture fits the model 

proposed by Huang, Wild and Whitelock (2021).  

Chu et al. (2012) postulated that the holographic AI has four elements: static and 

dynamic appearances, physical understanding, and user behaviour recognition. 

The static visual appearance emphasizes naturalism/stylization and the size of 

agents. Animation in dynamic, while visual appearance should be consistent with 

static appearance. Physical awareness follows physical norms and avoids conflicts 

with real objects. User action recognition conducts gesture interaction and deictics 

expressions. However, their study does not prove insights into why this structure 

should be rational. Two of the examples AR desktop agents in this study do not 

exhibit these elements, and neither agent is visible. 
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In these studies, the taxonomy of the holographic AI is dependent on application 

domains. Holographic AIs in the collaboration, training, scenario simulation, and 

intelligent tutor system are instructive and educational. The simulation agent 

utilises memetic events or plots to potentially guide users to achieve an 

experience, and to learn strategy and risk assessment knowledge in different 

situations. The holographic AI in the simulation does not strictly have to be a 

virtual teacher, but can be any characters which triggers tasks. The holographic AI 

is an intelligent tutor system provides the one-to-one tutoring (Jiménez et al., 

2018). Therein, the holographic AI is a virtual teacher or coach, which no longer 

requires a specific surrounding to drive storyline occurrence. Norouzi et al. (2020) 

proposed that a collaborative holographic AI performs assistive functions 

(examples include personal agents and virtual coaches), while a holographic AI in 

a training is designed to teach a specific skill. Their classification relies on the 

holographic AI’s roles instead of application domains; thus, a training agent may 

exist in both simulation and intelligent tutor systems, while a personal assistant 

performs a particular function, and might even be a chatbot.  

The model of the holographic AI in the above three studies relies on the interactive 

circulation levels and key elements. Each element is not independent. The user’s 

behaviour and context are stimuli for the holographic AI’s perception and reception 

of interactive information, the transmission of which is governed by a decision tree. 

2.3.2 Characteristics 
Table 2.1 highlighted 31 definitions which capture distinctive features of the 

holographic AI, such as appearance, interactive surrounding, and abilities; these 

do not form a robust holographic AI component architecture. Therefore, the aim of 

this section is to investigate inclusive characteristics identified in 49 studies. The 

findings are grouped according to the four key characteristics of persona, 

intelligence, conviviality, and senses.  

Regarding persona, aspects of parametric appearance incorporate size-mapping 

and realism to represent what holographic AIs will look like. Procedural animation 

refers to behavioural aspects such as facial and body animation. Intelligence can 

be defined as ways of interaction, and refers to the abilities which holographic AIs 

possess. These include environmental responsiveness, in that the holographic AI 

is able to interact with virtual and physical environments. Conviviality is normative 

sociability, referring to the ability of an agent to socialise, but aligned to an 

underlying purposiveness. Senses refers to the human senses augmented by the 

intelligent agent, i.e. its supported interaction modalities (Kim et al., 2021). 

2.3.3 Persona 
In terms of psychology, the term persona means a person’s social face that 

performs in the real world (Jung, 2016). It also can present a person’s personality 

(Leary and Allen, 2011). In the conversational agent, the term is defined as 

“elements of identity” (Li et al., 2016), such as profiles and ways of expression. 

Wang (2014) claim that a virtual persona consists of a humanlike face, behaviour, 

and character’s background. Therefore, the persona of the holographic AI is able 

to define its external characteristics that can be directly observed. According to the 

definition of persona, this section focuses on appearances and behaviours.  
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2.3.3.1 Parametric appearance 

Holographic AIs with realistic human-shaped appearance are widely use (see 

Table 2.2). According to studies’ aims and functions of the holographic AI, seven 

studies examine how body representation, realism, size, and the presence of 

holographic AIs affect user experience (Kim et al., 2018; Li et al., 2018; Wang, 

Smith and Ruiz, 2019; K. Kim et al., 2020; Reinhardt, Hillen and Wolf, 2020; 

Mostajeran, Reisewitz and Steinicke, 2022; Norouzi et al., 2022).  

Regarding the influence of the holographic AI’s embodiment, five studies proved 

that the holographic AI with more humanlike features is able to enhance social 

presence or user perception. For example, Kim et al. (2018) have discussed 

whether a holographic AI requires a body representation. Their study compares a 

voice assistant, a holographic AI with gestures and speech, and a holographic AI 

with speech, gestures, and locomotion. These three types of holographic AIs 

interact with physical objects via Wi-Fi, such as turning a lamp on/off, to help the 

user check the surroundings. They found that the holographic AI with gesture and 

locomotion achieved the best user experience, since this assistant can increase 

the user’s confidence. Similarly, Reinhardt, Hillen and Wolf (2020) also compared 

invisible voice assistants, a full-sized wireframe-shaped agent, and life-sized 

realistic holographic AIs. They assigned short communication tasks, such as 

asking time, telling a joke, and sending a message. The realistic holographic AI 

was found to trigger better visual attention and provide more social cues. 

Mostajeran et al. (2022) classified levels of anthropomorphism to range from voice 

assistant, virtual lip, virtual head, holographic AI with upper-body, and full-body but 

small-sized to measure presence. Authors find that the level of realism correlates 

positively with social presence and cognitive performance, but negatively with 

response time. K. Kim et al. (2020) further validated whether users prefer to 

complete a task alone, work with a voice assistant, or collaborate with a 

holographic AI. Their experiment was an AR desert survival task, whereby the 

user placed physical image markers of the survival items in order. The voice 

assistant and holographic AI help users to achieve a higher score, but with the 

holographic AI with facial expressions and behaviours it was found that it could 

help reduce workload and produce higher social presence. Li et al. (2018) also 

proved that the user prefers to interact with humanlike holographic AI compared to 

the robot. 

On the contrary, two studies demonstrated that the humanoid holographic AI may 

negatively affect user experience. Wang, Smith and Ruiz (2019) investigated the 

impact of sizes of holographic AIs by comparing voice assistance tool with full-

sized and mini-sized holographic AIs. They found that the full-sized holographic AI 

produced the uncanny valley effect, whereby the participants believed that size 

was too humanlike, even though the holographic AI’s performance is not as same 

as that of a real human being. Therefore, the mini-sized holographic AI enjoyed a 

higher acceptance rate. a holographic AI with a highly realistic human appearance 

can leave the user feeling stressed. For example, in a study of interactivity and 

user affection, Norouzi et al. (2022) compare a virtual dog and a virtual female. 

Both types of holographic AIs acted as companions with users by performing facial 

and head animations, such as smiling and nodding. The participants took on a 

heart rate monitor and were required to finish a subtraction task under two 

different conditions. However, it was observed that although the virtual human was 
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more interactive, the users experienced greater difficulty with completing the task 

with the virtual female and felt that the virtual dog was more supportive. The 

participants claimed that the virtual female’s behaviour was too distracting, while 

the presence of the virtual dog itself engendered a sense of comfort.  

Appearances Studies 

Life-sized and human-

like 

Obaid et al. (2012); Campbell et al. (2014); Kim 

(2018a); Peters et al. (2018); Kim et al. (2018, 2016); 

Kim, Bruder and Welch (2017); Kim (2018b); Li et al. 

(2018); Lee et al. (2018); Hartholt et al. (2019); Zielke 

et al. (2018); Wang, Smith and Ruiz (2019); 

Randhavane et al. (2019); Miller et al. (2019); Kim et 

al. (2019); Lee et al. (2021); Schmidt, Nunez and 

Steinicke (2019); Schmidt, Ariza and Steinicke 

(2020); Reinhardt, Hillen and Wolf (2020); Kim et al. 

(2021b); Pimentel and Vinkers (2021); Huang, Wild 

and Whitelock (2021); Mostajeran et al. (2022); 

Norouzi et al. (2022); Mostajeran, Reisewitz and 

Steinicke (2022); Yoo and Tanaka (2022); Wolf et al. 

(2020); Wolf et al. (2022); Huang et al.(2022) 

Mini-sized and human-

like 

Zhou et al. (2009); Wang, Smith and Ruiz (2019); 

Nasution et al. (2020); Huang, Wild and Whitelock 

(2021) 

Life-sized robot Li et al. (2018); Peters et al. (2018); Lang, Liang and 

Yu (2019) 

Mini-sized robot Lang, Liang and Yu (2019); Verma et al. (2021) 

life-sized cartoon Norouzi et al. (2019); Ali et al. (2019); Huang, Wild 

and Whitelock (2021); Norouzi et al. (2022) 

Mini-sized cartoon Oh and Byun (2012); Aramaki and Murakami (2013); 

Miyake and Ito (2012); Park and Jeong (2019); 

Chahyana and Yesmaya (2020); Li et al. (2021); Kim 

et al. (2021a); Huang, Wild and Whitelock (2021);  

Life-sized simplified 

wireframe 

Reinhardt, Hillen and Wolf (2020) 

 

Table 2.2. Appearance 

2.3.3.2 Procedural animation behaviour 

Most of the studies indicate that holographic AIs exhibit animations (see Table 2.3) 

or mention the importance of behaviours (Chu et al., 2012; Chetty and White, 

2019; Norouzi et al., 2020; Huang, Wild and Whitelock, 2021). Nevertheless, not 

all of them explain what animations they created (Nasution et al., 2020) or identify 
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the differences between original postures and dynamic states, such as animations 

of activating models (Verma et al., 2021).  

In terms of body animations, gestures (n=31) account for the most, including hand 

wave, thumbs up, pointing, writing, playing golf, and moving tokens. ‘Idle’ standing 

and ‘walking’ are the most popular basic animations.  

Facial animations fall into the category of display of emotions and lip-syncing. 

However, most papers declare that holographic AIs have emotions, but do not 

exemplify emotional animations.  Pleasure indication such as smile expressions 

are very frequently used for the holographic AIs (n=4). Lip-syncing animations 

depend on whether the holographic AI can talk. Only one study (by Ali et al., 2019) 

features a holographic AI with a diversity of facial expressions (over 10) linked to 

the content of the speech, which exude different degrees of angry, fear, and 

sadness. Importantly, none of the studies below describe the smoothening of 

transitions between animations, especially when the holographic AI transforms 

from idle state to, for example, the display of an emotional reaction to its users. 

Behaviours Studies 

Body 

gestures 

Obaid et al. (2012); Campbell et al. (2014); Kim et al. (2016); 

Piumsomboon et al. (2018); Kim, Bruder and Welch (2017); 

Kim et al. (2018, 2019); Wang, Smith and Ruiz (2019); Kim 

(2018a); Kim (2018b); Li et al. (2018); Lee et al. (2021); Lang, 

Liang and Yu (2019); Kim et al. (2021b); Schmidt, Nunez and 

Nunez (2019); Ali et al. (2019); Reinhardt, Hillen and Wolf 

(2020); Schmidt, Ariza and Steinicke (2020); Kim et al. (2020a, 

2021a); Oh and Byun (2012); Li et al. (2021); Huang, Wild and 

Whitelock (2021); Mostajeran, Reisewitz and Steinicke (2022) 

Walking Aramaki and Murakami (2013); Piumsomboon et al. (2018); 

Peters et al. (2018); Kim et al. (2018); Kim (2018a); Lee et al. 

(2018); Miller et al. (2019); Randhavane et al. (2019); Schmidt, 

Nunez and Nunez (2019); Schmidt, Ariza and Steinicke (2020); 

K. Kim et al. (2020); Kim et al. (2021b); Kim et al. (2021a); Yoo 

and Tanaka (2022)  

Climbing Kim et al. (2021b) 

Jumping Zhou et al. (2009); Lee et al. (2018) 

Falling down Zhou et al. (2009) 

Sitting Miller et al. (2019); Norouzi et al. (2022) 

Idle Miyake and Ito (2012); Lee et al. (2018); Miller et al. (2019); K. 

Kim et al. (2020); Kim et al. (2021b); Li et al. (2021); Huang et 

al. (2022); Mostajeran et al. (2022); Kim, Bruder and Welch 

(2017) 
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Head 

motion 

Randhavane et al. (2019); K. Kim et al. (2020); Norouzi et al. 

(2022) 

Greeting Wang, Smith and Ruiz (2019); Randhavane et al. (2019); 

Pimentel and Vinkers (2021);  

Motion 

tracking 

Wolf et al. (2020, 2022) 

Animal’s 

behaviours 

Norouzi et al. (2019); Chahyana and Yesmaya (2020); Huang, 

Wild and Whitelock (2021); Norouzi et al. (2022) 

Gaze Peters et al. (2018); Kim (2018a); Kim et al. (2019); 

Randhavane et al. (2019); Schmidt, Nunez and Nunez (2019); 

Wang, Smith and Ruiz (2019); Reinhardt, Hillen, and Wolf 

(2020); Schmidt, Ariza and Steinicke (2020); Pimentel and 

Vinkers (2021); Norouzi et al. (2022)  

Speaking Miyake and Ito (2012); Kim et al. (2016); Kim, Bruder and 

Welch (2017); Kim et al. (2018, 2019); Kim (2018a); Kim 

(2018b); Hartholt et al. (2019); Miller et al. (2019); Schmidt, 

Nunez and Nunez (2019); Wang, Smith and Ruiz (2019); 

Reinhardt, Hillen, and Wolf (2020); Kim et al. (2021b); Schmidt, 

Ariza and Steinicke (2020); K. Kim et al. (2020) 

Facial 

expression 

Kim (2018a); Schmidt, Nunez and Nunez (2019); Kim et al. 

(2019); Schmidt, Ariza and Steinicke (2020); Pimentel and 

Vinkers (2021); Kim et al. (2016, 2018); Kim, Bruder and Welch 

(2017); Kim (2018b); Zielke et al. (2018); Li et al. (2018); Ali et 

al. (2019); K. Kim et al. (2020); Li et al. (2021); Huang, Wild 

and Whitelock (2021); Huang et al. (2022) 

Table 2.3. Behaviour 

While, out of 49, only two studies explored that behaviours affect user experience 

(Li et al., 2018; Obaid et al., 2012). For example, open-arms postures of 

holographic AIs foster within users a greater willingness of interaction, compared 

to closed-arms animations (Li et al., 2019). Obaid et al. (2012) conducted an 

investigation into whether a holographic AI with different culture-specific 

behaviours can influence users’ physiological response. They created two 

holographic AIs that simulate German and Arab cultural stereotype behaviours. 

They found that when either of the holographic AI did not perform the behaviours 

in line with users’ cultural norms, the resulting psychological arousal of the users 

was higher. 

In order to investigate a system of friendly performance, Randhavane et al. (2019) 

developed animation algorithms based on motion capture, and a hierarchical 

skeleton that ensure positions of each joint. The algorithms trigger gestures and 

gaze to match corresponding contexts. The friendly model consists of different 

degrees of arm opening (e.g. waving, arm-crossing), head movement, eye gazing, 
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and walking gaits. In order to achieve a standard friendliness-based measure of 

gait, the participants in the experiment rated three levels of friendly walking, and 

calculated the holographic AI’s position. They reported that animations considered 

by the participants as more friendly generate better social presence, and result in 

higher levels of participants’ confidence in the holographic AI’s spatial 

understanding.  

2.3.3.3 A summary of persona (P) 

This study includes in the aspect of emotional expressiveness, because focus is 

on appearance aspects and character expressiveness. Therefore, investigation 

into the effects of the holographic AI’s persona is conducted by Kim et al. (2018), 

Li et al. (2018), Wang, Smith and Ruiz (2019), Obaid et al. (2012), and 

Randhavane et al. (2019). Their studies outline the functions of such agent. In 

contrast, the remaining studies employ visual representations or animations 

without comparative analyses of different styles or explanations of the selection of 

a particular holographic AI. Instead, they primarily focus on other facets of the 

virtual agent, such as natural language processing or the comprehension of spatial 

or physical objects, which leads to different objectives of the holographic AI 

utilization. 

Based on the studies’ objectives and findings, the visual realism of the holographic 

AI can improve user perception. However, it is important to note potential 

shortcomings, such as distractions or an uncanny valley feeling, especially with 

the life-sized holographic AI (Norouzi et al., 2022; Wang, Smith and Ruiz, 2019) 

since this agent with a wider amplitude of movement attracts more visual attention 

in the limited interactive space, which potentially amplifies the effect of 

mechanized animation. Besides, Norouzi et al. (2022) prove that the user is 

stressed when interacting with this type of appearance. On the other hand, the 

humanlike but mini-sized holographic AI can alleviate the user’s pressure in 

collaboration (K. Kim et al., 2020). It allows users to focus on the task itself or 

other places that require more visual attention when he/she interacts with a mini-

sized holographic AI with unobservable animations. However, the miniature 

holographic AI is inappropriate for all scenarios, such as face-to-face educational 

systems, where decision-making relies on the agent’s reaction. 

The visual representation of the holographic AI has an impact on the user's 

perception. For example, voice assistants or wireframe-shaped agents cannot 

exhibit facial expressions (Reinhardt, Hillen and Wolf, 2020). Lee et al. (2018) 

demonstrate that the interactive impact of a robotic virtual agent is comparatively 

lower than that of a humanlike counterpart, attributed to users' stronger inclination 

to engage with real humans or robots rather than virtual agents since the latter 

tend to be conceived as artificial. The absence of emotions in robotic appearances 

further contributes to this preference. Moreover, the animal appearance is more 

acceptable than that of the humanoid virtual agent (Norouzi et al., 2022). Despite 

the virtual dog's ability to simulate human-like emotions, the user perceives it as 

devoid of judgment. The holographic AI’s execution of random emotional 

expressions, such as nodding and smiling, regardless of the accuracy of the user's 

answers to mental arithmetic questions, contributes to an additional sense of 

pressure when engaging with the humanoid holographic AI. Conversely, in the 

experiment conducted by K. Kim et al. (2020), the holographic AI collaborates with 
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the user to assist the user in task completion rather than merely observing the 

user. 

Vision is the fundamental subsystem of perception for sensing the environment 

(Thalmann, Musse and Kallmann, 2000; Huang, Wild and Whitelock, 2021). Body 

language behaviours should be able to represent how the holographic AI reacts to 

the user. Both believable appearance and realistic animations are indispensable to 

creating an element of realism (Capin et al., 1997). Further, the user’s perception 

of interactive space is also influenced by behaviour. However, the studies 

mentioned above narrow their focus to a restricted set of animations for the 

holographic AI, such as idle, standing, walking, and arm-opening. Consequently, 

the visible behaviour of the holographic AI tends to exhibit a mechanical quality. 

The execution of natural behaviours in the physical environment should be 

initiated by the user's command, as remaining periods of idleness may have a 

detrimental impact on the user's emotional state within the context of the virtual 

agent's consciousness. In interpersonal communication, body language is often 

accompanied by speech, and individuals must ensure that their actions, 

particularly gestures, align with the context in which they occur. However, the 

existing research has not considered the semantic interpretations of gestures or 

their underlying motivations. The generation of gestures holds a crucial role in 

academic research. For example, the only interpretation of arm-opening (Li et al., 

2018; Randhavane et al., 2019), ‘holding the paper’ gesture (Kim et al., 2019), or 

emotional gestures (K. Kim et al., 2020) is that the holographic AI is dynamic. The 

pointing gesture is represented in the study by Piumsomboon et al. (2018). To 

date, key gestures in holographic AI interaction constitutes one AI research area 

with considerable scope for further research and development. 

In addition, facial animations reflect emotions or affective aspects of 

consciousness, and yet the holographic AI design in these studies have tended to 

overlook emotional reactions, and even basic facial animations, such as gaze and 

smiling, fail to meet basic requirements for embodiment and social interaction. The 

impact of dialogue and narratives in evoking emotional responses has been well 

acknowledged (Wright and McCarthy, 2008). Dialogue and storylines trigger 

emotional expressions, but none of the studies explain how to transition emotions 

in a realistic, believable way. 

2.3.4 Intelligence 
Intelligence refers to the way in which the holographic AI interacts with the user 

and context to achieve goals (Kim and Im, 2023; Huang, Wild and Whitelock, 

2021). Out of 49 studies, 16 focus on intelligence development, such as physical-

object recognition and spatial understanding, natural language processing, 

learning systems, computer vision, AR plugin development, and the user’s motion 

tracking (see Table 2.4). These studies demonstrate the main methods employed 

for intelligence development through their titles and abstracts. For example, Kim et 

al., 2021a use ways of silhouettes to develop physical-object recognition, as 

reflected in its study title that emphasizes the enhancement of realistic 

interactions. 
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Intelligence Studies 

Spatial understanding Lang, Liang and Yu (2019) 

Physical-object 

recognition/interaction 

Kim et al. (2021a); Zhou et al. (2009);  

Natural language 

processing 

Miyake and Ito (2012); Park and Jeong (2019); Nasution 

et al. (2020) 

Learning systems Oh and Byun (2012); Zielke et al. (2018); Hartholt et al. 

(2019); Li et al. (2021); Huang, Wild and Whitelock 

(2021) 

Computer vision Verma et al. (2021) 

AR plugin 

development 

Campbell et al. (2014) 

Synchronization with 

the user’s behaviours 

Piumsomboon et al. (2018); Wolf et al. (2022, 2020); 

Yoo and Tanaka (2022) 

Table 2.4. Intelligence 

 

Figure 2.4. An example of the holographic AI with spatial understanding (Lang, Liang and 
Yu, 2019). 

2.3.4.1 Spatial understanding 

Lang, Liang and Yu (2019) have developed an enhanced holographic AI with 

spatial understanding, in order to locate appropriate position and orientation (see 

Figure 2.4). The system recognizes the geometry of the scene, and generates 

textures of 3D objects by applying spatial mapping and capturing a video steam. A 

segmentation mask produced from the steam video is used for separating colours, 

classifications, and boundaries, after which the key objects are mapped to the 

corresponding 3D models. In their study of spatially aware placement algorithms 

for positioning the holographic agent, the authors compared a novel approach for 

placement based on visibility cost, with a so-called ‘traditional’ approach whereby 

the user identifies first the relevant plane, and the agent places randomly (with 

orientation facing the user in angles of -30°to +30°), with positioning directly in 
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front of the user. In their experiments, they demonstrated that the placement 

based on visibility cost is considerable superior, with the visibility cost calculated 

from visual occlusion of key objects by the virtual agent, penalizing additionally if 

the occlusion is more central rather than peripheral. Moreover, spatial placement 

takes into accounts the visual cost, penalizing whenever the agent’s placement is 

too close or too distant. 

2.3.4.2 Physical-object recognition/interaction 

In order to enhance holographic AI interaction with physical objects, Kim et al. 

(2021a) have proposed an approach using silhouette meshes. The information of 

real objects is extracted from images of real animal dolls. Following the collection 

of images, the input size and pixel accuracy of datasets is optimized to reduce 

network cost. A corresponding segmentation mask consisting of real doll 

silhouettes enables substitution of virtual surfaces for the real object. A mobile 

phone camera detects the interactive objects, and it then produces bounding 

areas and their points in a virtual plane. Then, the volume of real dolls is 

calculated, and the value of the distance between the camera and the virtual floor, 

a parameter, is used to position the silhouette mesh. In addition, the system 

identifies pre-defined dolls to avoid collision and mutual occlusion. The study by 

Kim et al. (2021a) have assessed spatial recognition, the sense of presence, 

perceived naturalness, object occlusion, and physical interaction ability. The study 

proved that the silhouette mesh methods provide realistic interaction with the real 

object, and improves spatial presence as well. 

Zhou et al. (2009) developed a holographic AI whose physical-object awareness 

consists of tracking fiducial markers pasted in real-life cubes. The holographic AI 

reacts to the user action and follows physical norms (for example, if the user flicks 

the cube, it falls down). However, although this holographic AI offered better user 

experience compared to that of the other holographic AI in the study which lacked 

physical interaction, the authors did not describe how relevant user perception 

data could be gathered. 

2.3.4.3 Natural language processing 

 

Figure 2.5. Translation chatbot (Nasution et al., 2020) 

Three studies focused on natural language processing (Nasution et al., 2020; Park 

and Jeong, 2019; Miyake and Ito, 2012).  

In the study by Nasution et al. (2020), the holographic AI in mobile AR 

bidirectionally translates from Indonesian to English, and it does not require an 
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image marker to position itself (see Figure 2.5). The translation system has two 

categories. The corresponding output words depend on whether the user input can 

be recognized in a special category.  

Likewise, an indoor dialogue agent has been developed by Park and Jeong 

(2019). Unfortunately, neither holographic AI can perform natural language 

processing via a speech-input service.  

Miyake and Ito (2012) developed virtual conversational agents that can control 

home devices via voice commands. The smartphone camera points at an image 

marker of a target object to project the holographic AI into the physical 

surrounding, and interact with it through dialogue. The network manipulates the 

home device, such as turning a TV or air conditioner on or off. The study also 

compares a voice assistant with the holographic AI. One clear advantage of the 

holographic AI is that its existence enhances fluency, as it has the ability to 

increase accuracy of response. 

2.3.4.4 Plugin development 

Campbell et al. (2014) explained the motivation for employing agents in AR. 

Probabilistic estimation, for example, makes it possible to deal with uncertain 

situations in a stochastic environment. Dynamic and episodic environments 

require the agent to update plans for achieving goals, continually perceiving, and 

adjusting context in real-time. Campbell et al. devised an experiment which 

compared three types of navigation agents, which showed that a virtual character 

proved superior to an arrow system and a bubble navigation system. In order to 

achieve the shortest route and correct direction, they developed a plugin with 

multiple sensors which is able to identify the real environment. The study, 

however, used AR simulators, and relied on a VR system to evaluate HCI; further, 

the achieved experience was utilized in AR. 

2.3.4.5 Synchronization with the user’s behaviours 

The user’s motion tracking means that the holographic AI can directly reflect or 

preform the user’s behaviours, rather than communicating with him/her. Therefore, 

the interactive feature of the user’s motion tracking is that the holographic AI 

follows the user movement or interact with other partners or holographic AIs. 

There are four studies develop the user’s motion tracking, including a remote 

collaborative platform (Piumsomboon et al., 2018), a walking system (Yoo and 

Tanaka, 2022), and two AR mirror systems (Wolf et al., 2020, 2022). 

Mini-me (Piumsomboon et al., 2018) is a special case (see Figure 2.6) in that the 

users cannot directly interact with the holographic AIs. The authors have 

developed an asymmetric remote collaboration system, in which virtual avatars of 

VR users remotely guide local AR users in the same virtual and real environments. 

The AR user observes their own avatars, a life-sized avatar of the remote VR user, 

and a changeable sized avatar (Mini-me) which can follow the local AR user’s 

gaze. When the local AR user gazes away from the life-sized avatar, the adaptive 

Mini-Me in the scene appears, and the adaptive avatar disappears when the AR 

user gazes back to the life-sized avatar. In the VR environment, the VR user can 

change viewpoints by scaling the avatar’s size, and it aligns to the Mini-Me’s 

position when it turns miniature. The experiments by Piumsomboon et al. (2018) 

compare the existence and non-existence of Mini-Me to evaluate social 
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compresence and usability in asymmetric and symmetric tasks. In the asymmetric 

task is that the VR user navigates the AR user to pick up and place a tea box on a 

specific shelf, while the VR and AR users work together in the symmetric task. 

Consequently, the Mini-me system achieves a higher social presence, can save 

time, and reduce the difficulty of cooperative work. 

 

Figure 2.6. MiniMe (Piumsomboon et al., 2018) 

Other three studies report notable developments in user’s motion tracking that 

allows the holographic AI follows the user’s movement. For example, Yoo and 

Tanaka (2022) have designed a virtual walking companion to motivate physical 

exercise. The life-sized, realistic, and personalized avatar has two modes: walking 

with the holographic AI, or walking with a remote user’s holographic AI. The 

holographic AI is able to avoid physical collision, recognize the user’s speed, 

capture the remote user’s camera position to implement synchronized movement, 

and track the user’s gaze to adjust direction. However, the holographic AI only can 

interact in a pre-defined scenario, and so users cannot casually select a position 

for the holographic AI.  

Wolf et al. (2020, 2022) have developed an AR mirror system for users with 

obesity and misperception of body weight. In the first study, the application relies 

on an AR and VR see-through devices, in which the user’s pose and behaviour is 

tracked and displayed by an avatar. The system detects movements of the head, 

hand, hip, and feet, and then it generates a humanoid body pose. The authors 

then explore body weight perception in terms of the user’s body-mass-index by 

analysing the difference between the avatar real body-mass-index and the user’s 

feeling of the avatar’s weight. The user wears VR and AR devices and follows 

instructions to perform movements, such as raising arms, waving, and stretching 

arms. The sense of spatial presence, however, is lower in the AR system, but the 

embodiment level is similar in both systems. In their second study, Wolf et al. 

(2022) proposed an improved AR system based on optical see-through. For this, 

they set up eight cameras on the ceiling to conduct markless motion capture, and 

head and hand movement recording by wearable AR headset so that the user can 

observes the avatar performs the same behaviour. However, the avatar cannot 

fully perform each corresponding movement, especially elbows and fingers, and 

even the new AR system has a lower sense of presence.  

2.3.4.6 Learning systems 

An intelligent tutoring system can be defined as a computer-based systems that 

provide a natural language interface and deploys adaptive educational strategies 

to support learners (Sottilare, 2018). Out of 16, 4 studies mention or develop 
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learning systems (Oh and Byun, 2012; Zielke et al., 2018; Hartholt et al., 2019; Li 

et al., 2021). 

For example, Hartholt et al. (2019) develop virtual humans to help users with 

Autism Spectrum Disorder (ASD) improve their job interviewing techniques. Their 

holographic AI uses an automated review phase to generate real-time feedback by 

analysing eye gaze, eye blinking rate, head orientation, speech delay, and 

speaking volume. The study, however, does not provide details on the accuracy of 

generated feedback. 

Zielke et al. (2018) introduced an emotive virtual human system which aids remote 

clinical training of medical students. The holographic AI acts as a virtual patient 

which exhibits symptoms and is designed to improve learners’ body language 

interaction. In addition, the holographic AI can mimic real teachers when providing 

feedback, while real tutors evaluate the student performance by remotely 

observing the student’s performance. 

Oh and Byun (2012) created an interactive virtual bird which teaches children how 

to grow flowers. When the user ignores the holographic AI’s feedback and selects 

the wrong factors, the holographic AI adopts an anxious expression, and the 

flowers start to fade in colour. The holographic AI is superimposed on the pages of 

a physical book and tracks the pages of the book. In the experiment, it was 

observed that the child participants preferred to interact with the animated 

holographic AI, rather than a static one. 

The FaceMe system is a 3D AR game displayed on a computer, which is designed 

to help children with ASD learn how to recognize and perform diverse types of 

facial expressions (Li et al., 2021). Wooden cubes labelled with image markers 

manipulate the emotions of a 3D character model. These help them remember, 

select, and follow the facial expressions that the holographic AI expresses. In this 

step, facial recognition assesses children’s performance. The survey results in Li 

et al.’s study provide evidence showing that children can identify rude emotions 

whenever a holographic AI adopts an angry countenance.  

2.3.4.7 Computer vision 

In computer vision, the image frame undergoes a pre-processing stage to identify 

and extract the edges and contours of the marker image. Computer vision is 

essential for spatial understanding and physical-object awareness or interaction 

(Ghasemi et al., 2022). Nevertheless, the studies as mentioned above, such as 

the FaceMe system (Li et al., 2021), synchronization with the user’s motion 

(Piumsomboon et al., 2018; Wolf et al., 2022, 2020; Yoo and Tanaka, 2022), the 

utilization of silhouette meshes (Kim et al., 2021a), and spatial understanding 

(Lang, Liang and Yu, 2019), fail to provide a comprehensive illustration of the 

application or advancement of computer vision technology. For instance, Lang, 

Liang and Yu (2019) directly employ spatial mapping. Kim et al. (2021a) utilize 

deep learning techniques to extract data pertaining to the silhouette of actual dolls, 

with a specific emphasis on understanding physical objects. 

On the other hand, Verma et al. (2021) presented low-level OpenCV for marker 

tracking to avoid radial distortions. The holographic AI detects and recognizes real 

words, translates English to French, and executes voice commands. Although this 

method could be replaced with diverse plugins and technologies, the latter offers 
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limited advantages. For example, Vuforia is an AR mobile development kit to track 

marker, which projects the holographic AI by a way of a markerless technique. 

Although the holographic AI proposed by Verma et al. can perform voice chat, 

physical word recognition, and translation, the authors do not explain how these 

functions work. 

2.3.4.8 A summary of Intelligence (I) 

The aforementioned experiments explicitly explore the development of holographic 

AI, encompassing eight distinct domains: spatial understanding, physical-object 

recognition/interaction, natural language processing, AR plugin development, 

computer vision, learning systems, adaptivity, and synchronization with users’ 

behaviours. Additionally, some studies assess user experience in relation to 

intelligence development. 

Natural language processing is one of the main channels of interaction of AI 

systems, and it relies on using a large corpus to find related and appropriate 

output. Natural language processing, however, lacks the capacity to enter into a 

debate with the user in such a way as to project a holographic AI that provides 

opinions conflict with those of the user. 

In terms of physical interaction and awareness, the holographic AI can capture 

and reconstruct real environments and objects to place the holographic AI (Kim et 

al., 2021a; Lang, Liang and Yu, 2019). Although aforementioned studies declare 

that the holographic AI is able to recognize real surroundings and physical objects, 

this does not imply it can manipulate physical objects. Only five studies clearly 

display the holographic AI capable of performing physical-object interaction via Wi-

Fi, sensors, and activated systems (Schmidt, Nunez and Steinicke, 2019; Schmidt, 

Ariza and Steinicke, 2020; Lee et al., 2021; Miyake and Ito, 2012; Huang, Wild and 

Whitelock, 2021). For example, Azuma Hikari (see Huang, Wild and Whitelock, 

2021) can reciprocally exchange information on both the virtual and physical 

surroundings. Using multisensory technology, it can check room temperature, 

manipulate physical objects, and send messages to the user. 

Moreover, the user model and adaptivity constitute primary characteristics of 

holographic AI (Aroyo et al., 2006). An adaptative holographic AI can maintain 

user models through engagement in processes such as storing, updating, 

removing, and encapsulating assumptions related to various aspects of the user's 

plans and tasks, preferences, goals, and knowledge levels. This functionality 

enables the implementation of customized services. The user model is crucial in 

educational systems as well, although only two studies introduce how adaptive 

systems can collect and analyse user information (Huang, Wild and Whitelock, 

2021; Hartholt et al., 2019). Nevertheless, Hartholt et al. (2019) represent that a 

holographic AI as monitoring user performance and generating corresponding 

feedback. Besides, the user model and adaptivity can effectively handle 

unforeseen circumstances or predict the user’s utterance and performance. This 

adaptivity can be achieved by the utilization of probabilistic estimate techniques 

(Campbell et al., 2014) or the implementation of predictive models (Skantze, 

2021).  
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2.3.5 Conviviality 

Conviviality aspects Studies 

Co-presence and social 

presence 

Kim et al. (2021b); Kim (2018a); Kim, Bruder 

and Welch (2017); Pimentel and Vinkers (2021); 

Kim et al. (2019); Lee et al. (2021); Schmidt, 

Ariza, and Steinicke (2020); Reinhardt, Hillen, 

and Wolf (2020); Kim et al. (2016); Kim (2018b); 

Miller et al. (2019); Schmidt, Nunez and 

Steinicke (2019); Norouzi et al. (2019) 

Social facilitation and 

inhibition 

Mostajeran, Reisewitz and Steinicke (2022) 

Proxemics Aramaki and Murakami (2013); Li et al. (2018); 

Lee et al. (2018); Peters et al. (2018); Huang et 

al. (2022);  

Table 2.5. Conviviality 

Conviviality can reflect a quality of social interaction (Caire, 2010; Caire and van 

der Torre, 2009). Therefore, conviviality refers to the social, but purposive, ability 

of individuals to interact with others, typically targeted to satisfying their (and own) 

needs. 

In relation to the dimension of conviviality, 20 studies investigate user experience, 

including co-presence, proxemics, and social facilitation and inhibition (see table 

2.5). As previously indicated, the focus of these holographic AIs lies in intelligence 

to engage in physical-object awareness or natural language processing. However, 

their intended purpose is to gauge user perception rather than foster intelligence 

development. Consequently, this section does not delve into studies that assess 

intelligence through user perception. 

2.3.5.1 A sense of co-presence 

Two studies by Kim et al. (2021b) and Kim, Bruder and Welch (2017) examine the 

impact of conflict with physical objects on social presence. Kim et al. (2021b) 

created fade-in/out and flare-up effects and set out to determine which is able to 

improve the sense of co-presence, when holographic AIs conflict with the physical 

objects and real human. The study compares four conditions: two different visual 

effects, collision-free conditions, and overlapping with real objects. In the collision-

free condition, the holographic AI recognizes real objects and avoids collision. As 

a result, fade-in/out provides a less noticeable but more comfortable feeling. The 

collision-free setting is found to be the most optimal. Although visual effects are 

able to influence user experience, they seem too deliberated. Earlier, Kim, Bruder 

and Welch (2017) also investigated overall user experience towards the 

holographic AI. In that study, the holographic AI sits in a wheelchair and moves 

around the room, and it either passes through real objects or avoids collision. The 

authors measured walking trajectory to observe whether the user passes through 

or avoids collusion with the holographic AI. The project results indicated that 
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conflicts produce negative perception, but that the user might not necessarily 

perform natural locomotion behaviour to avoid conflicts. 

 

Figure 2.7. Measuring the sense of co-presence (Pimentel and Vinkers, 2021) 

Two studies investigate how physical-object and spatial understanding influence 

the sense of co-presence (Kim et al., 2019; Pimentel and Vinkers, 2021). Pimentel 

and Vinkers (2021) have considered how the reaction of a holographic AI impact 

the feeling of presence in a physical event. For example, the holographic AI in 

Figure 2.7 does/does not turn its head, and gazes at a real fallen broom. The 

sense of co-presence refers to how one feels ’there’, how the holographic AI 

responds to this place, and whether the interactive environment feels like reality 

(Bulu, 2012). In addition, Kim et al. have considered how contextual 

responsiveness affects social presence (Kim et al., 2019). This study consisted of 

two experiments, although the first task applied a projection screen to display a 

virtual human, a technology which falls outside the scope of this thesis. One 

scenario showed a virtual sheet of paper and curtain fluttering in the breeze of a 

physical fan whilst the holographic AI interviews the user. The holographic AI 

either does or does not recognize this situation, in the former case by restraining 

the fluttering paper and looking at the fan. Both studies confirm that the highest 

sense of co-presence results from the holographic AI with spatial awareness. 

Norouzi et al. (2019) designed virtual walking dogs in order to investigate the 

influence of the AR animal on user experience and behaviour. In their experiment, 

the participant is permitted to give commands, such as walking, sitting, digging, 

and drinking. The experiment consists of the following conditions: the 

experimenter wears/not wearing a headset, and exhibiting recognition/non-

recognition of the dog, and the dog reacting/not reacting to the real human’s foot 

movements. By comparing the walking path of the user in the existence and 

absence of the virtual dog, the authors observed that the participants assigned 

space for the virtual dog in a walking situation; that the presence of the virtual 

animal affects users’ behaviour, locomotion levels, and walking speed; and, that 
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the virtual dog exuded a higher sense of co-presence when it recognizes the 

experimenter. 

Similarly, three studies focus on how physical-object interaction influences 

emotional responses of the user, co-presence, and perceived plausibility (Lee et 

al., 2018; Lee et al., 2021; Schmidt, Nunez and Steinicke, 2019; Schmidt, Ariza 

and Steinicke, 2020).  

Lee et al. (2021) created a board game, within which, to provide a holographic AI 

with physical illusions, a magnetic actuator surface controls the physical tokens in 

a game, and a magnet attracts metal tokens. A motorized translation stage moves 

in parallel the magnet on a tabletop, and a tracking system conveys information of 

movement. In their first experiment, the holographic AI controls a virtual token, 

thus making comparisons with the moving physical token. The aim behind the 

physical interaction is to optimise the sense of co-presence and user experience, 

so that the user experiences a sense of expecting the holographic AI to perform 

like a real human being. The authors observed that the participants could notice a 

lag between the gesture of the holographic AI and the movement of the actual 

token, and so their study assesses the user’s perception of latency with regard to 

directionality and magnitude. Slight latency is able to improve the level of realism.  

Kim et al. (2016) conducted an experiment to determine the influence of the user’s 

personality on social presence, in which they compared ignoring/inconsistency and 

requesting/consistency conditions. In the inconsistency condition, the holographic 

AI cannot recognize and avoid physical objects; with the opposite condition it can 

avoid collisions and asks for help from users to move real objects. Each 

experiment commenced with the holographic AI assessing the user’s extraversion 

and introversion, in order to explore how personality influences social presence, 

and how the user evaluates interactive experience according to their emotions. 

The authors found that extrovert users are more likely to experience a higher level 

of social presence whenever the holographic AI asks for help, and that they 

maintain longer eye contact than introverts. 

Lee et al. (2018) considered how visual factors influence the locomotion behaviour 

and proxemics of holographic AIs. Their study tested two visual settings: the user 

being able to observe central and unpigmented regions (unrestricted condition), 

whereby the user can see the holographic AI appear and disappear; and the user 

only seeing the central field (restricted condition). The primary obstacles are a real 

human and a full-sized holographic AI, and the secondary obstacles are virtual 

and real human movements. In the study, two levels of vibrotactile footstep 

feedback for the holographic AI were analysed, whereby the user could sense a 

vibration whenever the holographic AI jumps and walks. It was observed that the 

social distance with the holographic AI was large in the restricted condition, with 

less walking and speeding since the user interacts with the holographic AI 

infrequently, and the AI cannot change its movements to avoid the collision. The 

study also reports that in unrestricted conditions, the user glances less frequently 

at the real human, and the obstacle position affects spatial awareness. Further, 

the vibrotactile footstep feedback increases the sense of co-presence.  

Schmidt, Nunez and Nunez (2019) and Schmidt, Ariza and Steinicke (2020) have 

developed a robotic ball and a thermal table with which a holographic AI can 
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interact. The robotic ball simulates the pathway and movement of a real golf ball 

based on a script, and temperature changes trigger thermochromic ink to write on 

paper. Their experiments consisted of four situations related to interaction abilities: 

virtual/real golf ball interaction, and virtual/real writing. As a result, it proves that 

physical-object interaction can produce positive effect of the user’s emotional 

responsiveness.  

2.3.5.2 Social distance 

Li et al. (2018) conducted an experiment on social distance and sense of presence 

in interacting with a real human, a real robot, a virtual robot, and a humanlike 

holographic AI. On the basis of user preference and willingness of interactive 

characters, the participants firstly ranked pictures of different postures, including 

smiling, open arms, and head orientation. Over the course of the experiment, the 

authors varied the user-to-agent distance at which the agent’s behaviour would be 

triggered by the user’s approach. (For example, the agent might activate arm 

stretching once the user comes within 2.5 meters.) The authors observed that 

interaction with the real human was connected with the highest level of social 

presence, interaction level, body language, and interdependence. In other words, 

the user is more willing to interact with animated humanlike agents with emotions, 

rather than with that bearing a robot appearance. They also found that a higher 

willingness for interaction was engendered by a wider openness of the agent’s 

arms. The level of social interaction, however, did not appear to be closely dictated 

by the five postures (neutral, open, and closed postures, facing forward direction, 

and head orientation) and three emotions (positive/negative/neutral).  

Aramaki and Murakami (2013) investigated the spatial relationship between users 

and holographic AIs in order to develop a communicative system, and to 

determine whether social distance influences the holographic AI’s size and height. 

In the first experiment, the holographic AI’s height was set at 0.20 meters, and it 

was placed an initial distance of 1 meter away from the users. In their experiment, 

the holographic AI walks closer or steps further away until the user feels 

comfortable enough to communicate with it. It was found that 0.43 meters was the 

preferred distance. The heights of the holographic AI in the second experiment 

were 0.5 meters, 0.15 meters, and 0.25 meters. During the experiments the 

holographic AI’s height and size were altered in an effort to determine the optimum 

proportions from the users’ perspective. It was observed that the most appropriate 

height and distance of the holographic AI with 18 cm and 0.7 meters.  

Peters et al. (2018) explored social distance between real humans, full-sized 

holographic AIs, and two virtual robots of different sizes. Participants rated each 

agent’s appearance, height, gender, likeability, and realism. The original distance 

is 3 meters, and the general stopping distance between agents and users was 

observed to be 1.23 meters. 

Huang et al. (2022) have designed a scenario, where participants ask holographic 

AIs’ help for directions in an AR gallery, in order to understand how the 

holographic AI’s personal space affects users’ behaviour and arousal. The users 

walk toward or pass through the holographic AI from the original distance of 2.5 

meters until they feel comfortable enough to communicate with it. Almost 74% of 

the participants in this study preferred a distance range of 0.46– 1.22 meters, and 

a closer social distance when the anthropomorphic holographic AI appears. In 
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addition, Huang et al. set obstacles, including asking participants to walk through 

the holographic AI to produce a value of physiological arousal caused by 

electrodermal activity. Passing through the holographic AI increases participants’ 

skin conductance level, leading to physiological arousal. 

2.3.5.3 Social facilitation and inhibition 

Miller et al. (2019) have demonstrated that the present and absent of the 

holographic AI can influence social facilitation and inhibition, as well as user 

performance. In their experiment, participants can complete more easy anagram 

tasks when the holographic AI exists. While social inhibition is confirmed by 

participants solving more difficult tasks in alone environment. The second 

experiment in this study tested whether the user follows social norms when 

interacting with the holographic AI. In it, the holographic AI sits on one of two real 

chairs, and the user puts on an AR headset in order to select a chair – as opposed 

to the other condition, where the user takes off the headset after the hologram sits 

down, and then selects a chair. It was observed that the participants tended to 

follow social norms and avoided sitting in the same chair as the holographic AI. 

Mostajeran, Reisewitz and Steinicke (2022) have recently investigated the effects 

of holographic AI social facilitation and inhibition as well. In their experiment, the 

holographic AI maintains eye contact with users, and follows their heads in two 

tasks. In the cognitive task, the participants had to quickly repeat lists of numbers, 

and it was found that they made more mistakes in the presence of the real human 

and holographic AI, which, respectively causes social facilitation and inhibition. 

The second coordination task required the participants to stand on a balance 

board either with two feet or on one foot. It was observed that the participants 

performed better when assisted by a real human, but struggled to maintain their 

balance on one foot in the presence of a real person and holographic AI. 

2.3.5.4 A summary of conviviality (C) 

The Woz methodology represents a technique wherein experimenters simulate AI 

by manually orchestrating behaviours and responses. In this approach, a human 

operator clandestinely manipulates the actions and responses of a virtual entity, 

thereby preserving the illusion of autonomous AI for the user. Within the scope of 

user interaction, 14 distinct studies have employed remote control to activate 

predetermined animations and dialogue choices (Aramaki and Murakami, 2013; 

Kim, 2018a,b; Li et al., 2018; Norouzi et al., 2019; Kim et al., 2016, 2018, 2019; 

Kim, Bruder, and Welch, 2017; Schmidt, Nunez, and Steinicke, 2019; Schmidt, 

Ariza, and Steinicke, 2020; Kim et al., 2021b; Pimentel and Vinkers, 2021; Li et al., 

2021). In the domain of user experience research, it is evident that the holographic 

AI's capacity for perceiving dynamic events is not an intrinsic feature. 

Consequently, the primary aim of employing holographic AI in these studies is to 

evaluate user experience with respect to the perceived capabilities of the system, 

rather than to advance the AI's intelligence. Furthermore, while investigations into 

the effects of persona on user interaction have been identified and scrutinized in 

Section 2.3.3, this section avoids reiterating those findings to eschew redundancy. 

In interactions with holographic AI, users tend to adhere to societal norms, actively 

avoiding discord or friction with the AI system. Moreover, there appears to be a 

user preference for smaller-scale holographic AI representations, with dimensions 

approximately between 0.15 and 0.18 meters (Aramaki and Murakami, 2013; 
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Wang, Smith and Ruiz, 2019), as evidenced by the utilization of miniaturized 

holographic AIs in the study by Aramaki and Murakami (2013). It is also 

noteworthy that the interpersonal distance between the user and the holographic 

AI is not uniform, varying from 0.43 to 1.22 meters, indicating variability in the 

spatial comfort levels of users during interaction. 

Miller et al. (2019) and Mostajeran, Reisewitz and Steinicke (2022) have 

elucidated that the presence and absence of holographic AI can exert both 

facilitative and inhibitory effects on user interaction. In a distinct investigation, Kim 

et al. (2020) found that the incorporation of holographic AI can engender positive 

outcomes in the context of collaborative tasks and services. Users interact with a 

holographic AI characterized by augmented responsiveness, superior spatial 

awareness, and the capacity for physical-object interaction, which collectively 

foster a more pronounced perception of human-like qualities. However, it is noted 

that the holographic AI is limited to performing static animations such as standing 

or sitting. 

A multitude of research endeavours have sought to delineate the myriad factors 

influencing the efficacy of holographic AI, including but not limited to physical-

object interaction, persona recognition, and user personality traits, given the 

inherently hybrid interactive milieu in which the holographic AI operates. Yet, the 

influence of dialogue content on user experience remains an area shrouded in 

ambiguity. Prior research has also not satisfactorily explored how the intelligence 

or perceived sentience produced by holographic AI might facilitate the 

establishment of trust between the user and the AI entity. The social presence 

evoked by holographic AI can engender a semblance of tangibility within a co-

occupied space, prompting inquiries into the user's trust perception towards the 

holographic AI. In light of these considerations, this dissertation intends to 

scrutinize the construct of trust as it pertains to user conviviality in Chapter 5, 

thereby endeavouring to rectify the identified research shortfall. 

2.3.6 Senses 
Both parts pertaining to intelligence and conviviality have addressed the use and 

impact of holographic AI perception, specifically in terms of spatial understanding 

and awareness of physical objects. However, these intelligence sections lay no 

stress on the specific perception abilities employed by the holographic AI. 

Consequently, it is challenging to comprehend the mechanisms through which the 

virtual agent acquires information and its capacity to generate a corresponding 

response for sustaining ongoing interaction. Therefore, this section discusses the 

senses that the holographic AI uses.  

The human perception includes vision, audition, touch, smell, and taste, and 

modality applies a particular sense to receiving stimuli (Turk, 2014). In terms of 

HCI, modality can be seen as corresponding to the human senses. For instance, a 

camera can be considered as sight, and a microphone considered hearing. Both 

appearance and behaviour can be seen as visual effect, language is an auditory 

sense. Therefore, the sense can be regarded as a ‘modality’ of interaction that 

converts the provided information into manifested behaviour, mirroring the 

motivations and intentions of the virtual agent (Blanke and Metzinger, 2009). 
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One sensory modality of holographic AIs refers to a single input or output pathway, 

such as gesture recognition, natural language processing, and facial recognition. If 

used in isolation, it is unimodal (Nizam et al., 2018). For example, although the 

holographic AI can perform basic movements, but its animations do not factor in 

the user's behaviour or motivations, as noted by Nasution et al. (2020). A 

holographic AI system developed by Zhou et al. (2009) has the capacity to 

recognize physical objects, yet it lacks the ability to engage in more complex 

interactions with users. 

Nevertheless, sensing the external environment does not rely solely on one 

channel, and multimodal interaction is prevalent. Take the FaceMe system as 

another example; it integrates holographic AI that relies on the implementation of 

natural language processing and facial recognition technologies, as documented 

by Li et al. (2021). Besides, research by Schmidt, Nuñez and Steinicke (2019), 

along with Schmidt, Ariza and Steinicke (2020), introduced a robotic ball and a 

thermal table that create the illusion of handwriting and playing golf, respectively. 

Kim et al. (2018) utilized Wi-Fi technology to control a lamp, thus creating the 

illusion of a holographic AI interacting with physical objects.  

Natural language processing as key interaction modality is typically combined with 

animation, physical-object awareness, eye gaze tracking, position detection, or 

posture interaction. However, since animations or verbal communication cannot 

actually interact with the user, the performance of holographic AIs only reflects the 

current interactive situation or serves to improve immersion, which cannot 

influence the user behaviour. Interaction in human-computer relationship refers to 

the behaviours of two entities that can influence each other (Hornbæk and 

Oulasvirta, 2017). For example, the holographic AI in Lee et al. (2021) uses 

recorded audio to show the game result, whereby the holographic AI says ’yes’, 

when it wins. 

Interaction modalities Studies 

Non-verbal 

communication 

interaction 

Zhou et al. (2009); Holz et al. (2011); Campbell et al. 
(2014); Piumsomboon et al. (2018); Li et al. (2018); 
Miller et al. (2019); Pimentel and Vinkers (2021) 

Verbal interaction Miyake and Ito (2012); Oh and Byun (2012); Zielke et 

al. (2018); Hartholt et al., (2019); Wang, Smith and 

Ruiz (2019); Lang, Liang and Yu (2019); Schmidt, 

Nunez and Steinicke (2019); Ali et al. (2019); 

Reinhardt, Hillen, and Wolf (2020); Schmidt, Ariza 

and Steinicke (2020); Huang, Wild and Whitelock 

(2021); Kim et al., (2021a) 

Physical-object 

awareness 

Holz et al. (2011); Lang, Liang and Yu (2019); 

Schmidt, Nunez and Nunez (2019); Schmidt, Ariza 

and Steinicke (2020); Huang, Wild and Whitelock 

(2021); Kim et al. (2021a,b ) 
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Eye gaze tracking Ali et al. (2019); Hartholt et al. (2019) 

Position detection Park and Jeong (2019) 

Posture interaction Li et al. (2018) 

Table 2.6. Interaction modalities 

2.4 Validation Methodologies in the Literature  

Experimental designs found in the literature concerning holographic AIs fall into 

two classes: comparative experiments, and controlled experiments. 

The comparative experiment aims to determine which of the conditions is most 

likely to produce a positive or negative impact on user experience. For example, 

the independent variables could be hitting a golf ball and handwriting, and the 

dependent variables could be physical or virtual interaction (Schmidt, Ariza and 

Steinicke, 2020).   

Several cited studies (e.g. Kim et al., 2016; Zielke et al., 2018; Wolf et al., 2020) 

use the same experimental design, whereby participants are assigned to a 

condition. For example, Miller et al. (2019) conducted two experiments. For the 

second experiment, they developed 4 conditions and 24 interactive orderings, and 

invited 60 participants to complete an ordering of the four conditions. The 

holographic AI’s presence or absence is a between-subjects factor, while task-

based difficulty versus ease is a within-subjects factor. The main difference is that 

time influences the effects of the former factor. In the first experiment, the 

participant randomly assigned one of the four conditions into sequence, in an effort 

to increase their anagrams puzzle scores over time. In the second experiment, the 

user randomly chooses one of conditions either wearing the AR headset or without 

the AR headset.  

In randomised-block design, users (participants) are divided into different groups, 

and each group randomly assigned to testing a condition. One example is the 

study by Campbell et al. (2014), in which 3 groups of 54 participants test one of 

negative agents. Similarly, the study by Zielke et al. (2018) randomly assigned 

participants into three groups - monitor-based and VR, monitor-based and AR, and 

VR and AR - to compare the efficiency of delivery methods of medical 

interviewing.  

There are 16 studies which have implemented within-subjects studies, whereby 

each participant repeatedly evaluates all conditions (Zhou et al., 2009; Miyake and 

Ito, 2012; Kim et al., 2018; Kim, Bruder and Welch, 2017; Li et al., 2018; 

Piumsomboon et al., 2018; Lee et al., 2018; Norouzi et al., 2019; Randhavane et 

al., 2019; Lee et al., 2021; Wang, Smith and Ruiz, 2019; Kim et al., 2021a; Huang 

et al., 2022; Mostajeran, Reisewitz and Steinicke, 2022; Norouzi et al., 2022; 

Mostajeran et al., 2022). For example, Kim et al. (2021a) have recently compared 

the silhouette mesh method with conditions of free-occlusion and faulty occlusion, 

by arranging for 30 participants to watch three videos’ clips. Li et al. (2018) 

conducted an experiment that is similar to that of Miller et al. (2019). In this case, 

each participant could access a total of 24 possible trials, with four types of 
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agents, and randomly chosen orderings. In another experiment, Lang, Liang and 

Yu (2019) divided participants into three groups of 10 randomly and tasked them 

with comparing each task in order. Each participant scored the holographic AI’s 

performance in terms of location, direction, and overall impression.  

A controlled experiment requires a controlled group to reduce or control the 

influence of factors other than the independent variable. In a recent experiment, 

Kim et al. (2021b) compared four conditions with two types of visual effects, with 

overlapping with the physical objects being the control condition. It consists of six 

steps whereby the holographic AI passes through different physical objects. 

Therefore, the 16 participants in the experiment need to repeat similar tasks with 

multiple levels of independent variables. Other independent variables, such as 

interaction time, collisions with virtual parts of the body, and gestures, were 

isolated. K. Kim et al. (2020) have conducted a within-subjects study, in which 36 

participants completed a task three times. The baseline condition is that the user 

performs the survival task alone, and the voice assistant and holographic AI are 

the experimental groups.  

The study by Pimentel and Vinkers (2021) analysed the users’ actions by testing 

each condition. In their experiment the control condition is defined as no event 

occurrence in the real space, while a comparative condition is the holographic AI 

either ignoring or reacting to the falling broom. A mixed within-between design 

defines the interactive environment as a within-subjects factor, while holographic 

AI responsiveness is a between-subjects factor.  

Kim et al. (2019) evaluated the physical/virtual responsiveness of the holographic 

AI using a within-subjects design with three conditions. Reinhardt, Hillen, and Wolf 

(2020) applied within-subjects design so that all 18 participants in their experiment 

could assess three tasks with different levels of realism of agents. The authors 

report that Latin square design can be used to avoid ordering of the three tasks, 

and that it is the same as the method by Miller et al. (2019). The problem with the 

Latin square method, however, is that it does not indicate what the control 

condition is.  

Wolf et al. (2022) have conducted a controlled comparative study with between 

design to investigate optical see-through AR, video see-through AR, and video 

see-through VR technologies. The studies by Nasution et al. (2020) and Oh and 

Byun (2012) lack detailed reasoning on the assigning of participants, as well as 

the contents of questionnaires. Even though the study by Oh and Byun (2012) 

compared the levels of child satisfaction in the conditions of animated and static 

holographic AIs, it does not demonstrate the effectiveness of the holographic AI in 

completing a collaborative task. As mentioned, the two studies merely list the 

experimental results, without analysing the user experience in depth. 

The methodologies of the studies include comparative/controlled experiments with 

within/between subject designs. Some studies do not clearly explain how long 

each experiment lasts (e.g. Lee et al., 2018; Lee et al., 2021; Kim et al., 2019; 

Norouzi et al., 2019; Reinhardt, Hillen and Wolf, 2020; Nasution et al., 2020; Kim 

et al., 2021b), or indicate whether the user has enough time to engage in 

interaction with the holographic AI. In the within-subjects design, each participant 

must test all conditions in the same scenarios with different conditions, a long and 
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repetitive process which results in eye strain and depleting immersion, as reported 

by Reinhardt, Hillen and Wolf (2020). With the between-subjects design there 

exists the problem of individual variability, and the group lacks homogeneity. 

Another concern with the cited studies is that participant numbers vary greatly, 

from 9 (Miyake and Ito, 2012) to 65 participants (Pimentel and Vinkers, 2021).  

These studies rely on questionnaires, interviews, open-ended questions, 

behavioural measurement, general feedback, and scoring for holographic AIs and 

user choice (Lang, Liang and Yu, 2019; Miller et al., 2019). Even though the 

questionnaires might have been extract from other studies, authors tend not to 

explain how and why they incorporate or combine certain statements or questions 

to make a new questionnaire, and the extracted questionnaires are not specifically 

created for the AR environment or holographic AIs. 

For this review of applied methodologies, it was decided to exclude three papers 

(Kim, 2018a,b; Schmidt, Nunez and Steinicke, 2019), since they refer to the same 

studies (Kim et al., 2019, 2018, 2016; Kim, Bruder and Welch, 2017; Schmidt, 

Ariza and Steinicke, 2020). Moreover, Nasution et al. (2020) and Li et al. (2021) 

conducted surveys, but did not reveal how they collected data from the users. 

Experimental design Studies 

Comparative 

experiments 

Zhou et al. (2009); Miyake and Ito (2012); Campbell et 

al. (2014); Lee et al. (2018); Zielke et al. (2018); 

Piumsomboon et al. (2018); Wang, Smith and Ruiz 

(2019); Lee et al. (2021); Lang, Liang and Yu (2019); 

Norouzi et al. (2019); Kim et al. (2021a); Schmidt, 

Ariza, and Steinicke (2020) Kim et al. (2016, 2018); 

Kim, Bruder and Welch (2017); Li et al. (2018); Miller 

et al. (2019); Wolf et al. (2020, 2022) 

Controlled 

experiments  

Kim et al. (2019, 2020a); Reinhardt, Hillen, and Wolf 

(2020); Kim et al. (2021b); Pimentel and Vinkers 

(2021) 

Questionnaire survey Zielke et al. (2018); Lee et al. (2021); Schmidt, Nunez 

and Steinicke (2019); Schmidt, Ariza and Steinicke 

(2020); Kim et al. (2016, 2017, 2018, 2019); Li et al. 

(2018); Wang, Smith and Ruiz (2019); Reinhardt, 

Hillen, and Wolf (2020); Nasution et al. (2020); Kim et 

al. (2021b,a); Pimentel and Vinkers (2021); 

Miyake and Ito (2012); Oh and Byun (2012); Campbell 

et al. (2014); Piumsomboon et al. (2018); Norouzi et 

al. (2019); Lee et al. (2018); Wolf et al. (2020, 2022) 

 

Interview Li et al. (2018); Zielke et al. (2018); Norouzi et al. 

(2019); Lee et al. (2018); Reinhardt, Hillen, and Wolf 

(2020); K. Kim et al. (2020); Wolf et al. (2022) 
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Open-ended 

questions 

Norouzi et al. (2019); Lee et al. (2021); Schmidt et al. 

(2020, 2019) 

Behavioural 

measurement 

Kim et al. (2016); Lee et al. (2018); Norouzi et al. 

(2019); Lee et al. (2021); Kim et al. (2021b) 

General feedback Piumsomboon et al. (2018); Kim et al. (2021b,a) 

Questionnaires 

extracted from other 

studies 

Kim et al. (2016, 2018, 2019); Kim, Bruder and Welch 

(2017); Li et al. (2018); Piumsomboon et al. (2018); 

Lee et al. (2018);Lee et al. (2019); Wang, Smith and 

Ruiz (2019);  Schmidt, Ariza and Steinicke (2020); K. 

Kim et al. (2020); Norouzi et al. (2019); Reinhardt, 

Hillen and Wolf (2020); Kim et al. (2021b,a); Wolf et al. 

(2020, 2022) 

Table 2.7. Experimental Design 

2.5 Discussion 

This section summaries the features of all holographic AIs pertinent to RQ1 and 

RQ1-1, it also analyses shortcomings through the lens of 49 identified articles and 

provides corresponding potential solutions and future development tendency. 

The concept of the holographic AI depends on the areas of interest and 

functionality. Some concepts, however, do not explain differences between AR 

agents, VR virtual assistants, and screen-based agents. Over half of the studies 

provides inadequate definitions of interactive space. Although these studies 

emphasize spatial relationship or environmental aware behaviour, the holographic 

AI in these studies only performs virtual interaction or possess physical/spatial 

understanding. Furthermore, a holographic AI does not exist in the real world, nor 

does it share the same space with the user; instead, the holographic AI overlays 

on or embodies in the real world. The words ’virtual human’ and ’virtual agent’ 

cannot be equated, as they have different limitations in terms of appearances and 

behaviours. Thus, the concept of the holographic AI is an embodied virtual agent 

that exits in the MR world to play different roles, and which responds to and even 

influences virtual and physical surroundings. 

2.5.1 Model of the holographic AI 

 

Figure 2.8. PICS model for Holographic AIs 

The total of 49 studies were reviewed, showing that holographic AIs involve four 

major hallmarks that can be integrated into a novel model. This section proposes 
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the following novel model for holographic AIs – persona (P), intelligence (I), 

conviviality (C), and senses (S) – PICS (see Figure 2.8). 

 

Figure 2.9. Persona 

Persona identifies a specific human being (Burden and Savin-Baden, 2019), and is 

a manifestation of the holographic AI by way of its body and behaviour (see Figure 

2.9). Visual identity portrays a person’s physical features, personality, and even 

abilities for social interaction. Most of the cited studies feature photorealistic, 

humanlike, animated, and life-sized virtual agents. One study (Wang, Smith and 

Ruiz, 2019) suggests that shrinking a humanoid holographic AI to miniature size 

helps to reduce the uncanny valley effect. However, such an agent is unsuitable 

for intelligent tutor systems in interview and medical training. In terms of 

behaviour, a holographic AI cannot solely perform standing and waiting, as it 

cannot observe differences. Gaze, lip-sync animations, neural, and positive and 

negative expressions are commonplace emotional expressions. While the studies 

highlight plausible behaviours of holographic AIs that can affect user perception, 

their holographic AIs do not show clear and manifold emotional expressions that 

are aligned with the body animations and contexts. Meanwhile, some animations 

cannot influence the user decisions and performance that do not belong to 

interaction modalities. None of the cited studies investigates which gestures can 

affect the holographic AI’s effect, or how users understand non-verbal interaction. 

For example, arm-opening and crossing, waving, and slightly arm gestures do not 

have communicative meanings; these basic gestures merely prove that the 

holographic AI is dynamic. 

Persona and function belong in the same horizontal line for conveying precise 

body language and emotions. By contrast, monotonous emotional expressions 

(e.g. pleasant sensation) and movement (e.g. repeated gestures and standing) do 

not benefit the performance or identify potential cues. For example, although a 

holographic AI can recognize physical objects and perform corresponding 

behaviour, its facial expression remains constant. Even though the holographic AI 

intelligence does not depend on the appearance or animations, this lacklustre 

performance triggers within the user a lack of confidence in the holographic AI’s 

abilities. 
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Figure 2.10. Intelligence 

The intelligence of a holographic AI refers to its abilities. Figure 2.10 shows that 

the dimension of intelligence involves computer vision, natural language 

processing, spatial mapping and understanding, responsiveness to physical-object 

and environmental interaction, and multimodal adaptivity. Computer vision is 

fundamental to identifying the user environment, detecting location, and overlaying 

virtual information on the real-world scene. Five studies use AR mobile (or mobile 

augmented reality) (Oh and Byun, 2012; Miyake and Ito, 2012; Park and Jeong, 

2019; Nasution et al., 2020; Kim et al., 2021a), and two rely on markers (Miyake 

and Ito, 2012; Oh and Byun, 2012). For example, Oh and Byun (2012) identified 

key points on images for tracking pages of a book using an open library (Lepetit 

and Fua, 2006). Additionally, Schmidt, Ariza and Steinicke (2020) used computer 

vision to detect eye contact based on the facial features of the user. Their system 

collected the user images, and analysed the position of eyes and mouth to ensure 

their position. Then, the authors built a pre-trained model for each aligned image, 

so that the system could receive and categorize video frames for face recognition. 

Natural language processing is the primary interactive channel. In the cited 

studies, proposed methods simulate specific events, dialogue contents, or 

answers, but they cannot satisfy a daily pattern of communication, especially when 

the speech is not intonated. In addition, the mobile AR chatbot agents described in 

the studies rely on dialogue and text-input, and do not take advantage of voice 

assistants in AR; nor do any studies explain why project chatbot agents project 

into the physical space. Further, pre-structured dialogue flow and voice output 

should attach a sentiment engine to trigger corresponding contexts, to stimulate 

within the user the feeling of being together with the agent in one space. 

Additionally, AR intelligent tutor systems simulate both patients and teachers, 

possessing more complex virtual human architectures. The demand for 

pedagogical holographic AIs, especially medical assistants, cannot be satisfied 

with basic appearances, facial and body animations, and predefined dialogues 

alone. These features do not enable virtual patients to fully express a painful 

situation by way of tone, rhythm, and even modal particles. The holographic AI 

needs to accurately simulate the patient’s emotions, collect and analyse data of 

trainer’s performance, and provide real-time feedback from users. 

Spatial mapping and understanding allows the holographic AI to recognize 

physical objects, avoid conflicts, and project them into an appropriate place. It is 

not enough, however, to accurately capture the dynamic environment. For 
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example, the holographic AI in the study by Lang, Liang and Yu (2019) scans and 

reconstructs the interactive space, but only identifies static objects. Therefore, 

even if the holographic AI reacts to physical surroundings and controls virtual 

information, it should mimic and perform multiple behaviours in order to conceal 

the weaknesses of not being able to actually manipulate physical objects. A 

number of researchers have developed their own methods and systems for 

optimizing holographic AI physical awareness, such as an optical tracking system, 

silhouette mesh, and AR navigation toolkit. Although the holographic AIs in some 

studies are able to interact with real objects or perform multi-modal interactivity, 

they only recognise fixed, real objects. Therefore, physical-object recognition is 

different from physical interaction. Holographic AIs capable of physical recognition 

only can recognize real objects, whereas physical interaction allows holographic 

AIs to manipulate physical objects, such as turning on a light or changing some 

other property. In terms of spatial awareness, the holographic AI recognizes 

contexts and performs behaviours, but it cannot execute physical interactions.  

In recognition of these limitations, two categories are proposed: unidirectional 

interaction, and bidirectional interaction. The unidirectional interaction allows the 

holographic AI to identify, track, response to physical surroundings, but the real 

environment does not affect the holographic AI. On the other hand, bidirectional 

interaction occurs when physical and virtual objects are able to interact and 

influence one another. For instance, six studies proposed apparatuses and 

multiple systems enabling bidirectional interaction, such as a magnetic actuator 

surface (Lee et al., 2021), a thermal table and a robotic ball (Schmidt, Nunez and 

Steinicke, 2019; Schmidt, Ariza and Steinicke, 2020), Wi-Fi control(Kim et al., 

2018), control centre of home devices (Huang, Wild and Whitelock, 2021), and 

voice control (Miyake and Ito, 2012). However, a holographic AI capable of 

bidirectional interaction might not be able to manipulate every physical object in 

the interactive setting. Further, this type of interaction is hard to implement, 

especially in the dynamic event. Moreover, the mutual conversion of objects from 

static and dynamic one is also a significant challenge posed by directional 

interaction. For example, when the user holds a real book to read, this action 

status changes from static to dynamic. The holographic AI may need to identify 

this behaviour and physical book by its position or the user hand gestures.  

Adaptivity is defined as a holographic AI’s capacity for self-adjustment in 

accordance with the user’s preference and requirement. Such a holographic AI 

should position itself in an appropriate place and perform different animations 

based on spatial understanding and physical-object awareness therein (Lang, 

Liang and Yu, 2019). However, the methods in the cited studies regarding user 

experience measurement do not focus on adaptivity, but tend to employ Woz to 

remotely control the holographic AI. Nevertheless, for a pedagogical holographic 

AI, adaptability is crucial to the implementation of personalized training, adaptive 

teaching materials, and real-time feedback, as well as allowing students to expand 

their thinking. Although Zielke et al. (2018) proposed an emotive holographic AI for 

medical education, they failed to explain how the system aligns with the student’s 

requirement, and did not even provide sample lessons. A similar example is the 

holographic AI proposed by Hartholt et al. (2019), which provides immediate 

feedback after training by analysing eye gaze, blink rate, head movement, and 

voice; however, the authors did not assess the accuracy of its feedback. 
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Figure 2.11. Conviviality 

Conviviality is defined as the user’s perception of social interaction and level of 

satisfaction with a holographic AI (see Figure 2.11). Over half of the cited studies 

conducted comparative and controlled experiments with different assignments 

being completed by participants. Photorealistic holographic AIs convey a stronger 

degree of user experience and even usability. It is obvious that users prefer to 

interact with a humanoid holographic AI with spatial understanding and physical- 

object awareness, as it conveys a stronger sense of togetherness. In proxemic 

experiments the holographic AI impacts on the user’s locomotion and attention. 

Although the holographic AI is virtual, the user follows social norms to avoid 

collisions. Social distance is also hard to determine, since it depends on the size of 

the holographic AI. Besides, in normal social interaction, the user does not walk 

repeatedly towards a holographic AI, or a real human. Some studies do not 

indicate interactive time, and do not explain the reasoning behind the 

measurements chosen for the questionnaires. 

 

Figure 2.12. Senses 

Senses in Figure 2.12 enable a holographic AI to perceive and react to the user 

and undergo context changes via different abilities. As mentioned before, such an 

agent relies on natural language processing, gaze tracking, gesture interaction, 

and physical interaction/awareness. Although interaction modalities are dependent 

on the holographic AI’s performance, not all animations or dialogues need be 

interactive. For example, if a holographic AI only speaks to the user at the end of 

the interaction, it does not exert any such influence. 

Generally, in the PICS model, persona is the external representation of the 

holographic AI, and intelligence is inner core that control its performance, 

interactivity, and responsiveness. Sense is the information acceptor, located at the 

periphery of intelligence to receive, select, and categorize interactive content. 

Conviviality establishes a relationship between the holographic AI and the user, 

such as social presence and proxemics.   
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2.5.2 Five categories of the holographic AI 
Pivoted on the 49 cited studies, the above PICS model enables to contrast and 

group different types of holographic AI, relying on studies’ aims and holographic 

AIs’ main functions. Each type of holographic AI can match primary elements. For 

example, natural language processing is important for the chatbot, but not a key 

criterion for the game character. Therefore, a novel taxonomy of the holographic 

AI is provided below: it involves user avatars, simulation agents, intelligent tutor 

systems, game characters, and chatbots.  

2.5.2.1 User avatars 

The purpose of a user avatar is to develop consistent alignment with the user's 

actions, achieved through head-tracking or position-tracking techniques 

(Piumsomboon et al., 2018; Yoo and Tanaka, 2022; Wolf et al., 2020, 2022). 

However, these holographic AIs are constrained by their limited range of facial 

expressions, body language, and natural language processing capabilities. For 

example, in the Mini-me system, users in AR engage with VR avatars using air-tap 

gestures, but the VR avatar is restricted to pointing motions (Piumsomboon et al., 

2018). In addition, the emotions of the user cannot be reflected through a virtual 

mirror (Wolf et al., 2020, 2022). Yoo and Tanaka (2022) created a walking avatar 

capable of emotional expression, such as victory and sadness, in competitive 

scenarios, but direct interaction with this avatar is not possible. 

Therefore, the user avatar, including both life-sized and mini-sized 

representations, does not necessarily mirror the user's appearance. In terms of 

behaviour, this virtual agent can track the user's basic movements or execute 

predetermined animations under specified circumstances. Moreover, the Mini-me 

and walking system enable the user to engage in communication with other 

AR/VR users rather than merely interact with the user avatar itself. 

Further, traditional avatars in VR or screen-displays have first-person and third-

person viewpoints. First-person viewpoint shows only the hands and lower part of 

the body, whereas four papers detailing AR avatars present a third-person 

viewpoint. Therefore, gesture (or body) and environment synchronization are the 

main issues. In encountering remote collaboration or companions, the user may 

move physical objects or act out of pre-defined contexts, which can leave the user 

struggling to fully understand the local holographic AI’s performance. Motion 

capture provides a one-to-one mapping of movement in order for the user to 

control avatars, but it has problems dealing with dynamic scenarios, especially 

outdoor activities, since it cannot label sensors everywhere. This type of 

holographic AI can utilize technologies of screen scanning and silhouette meshes. 

Spatial mapping identifies static objects and their distances, and silhouette 

meshes recognize human body shapes to avoid collision with other persons.  

2.5.2.2 Simulation agents 

The simulation agent mimics a real-life role in a specific scenario, and this is useful 

to assess user experience or develop training applications. According to these 

studies’ main objectives and motivation, 27 papers used simulation agents as a 

tool to measure factors affect user experience, such as social presence, degree of 

realism, collaboration, physical-object/environment interaction, or social distance 

(Kim et al., 2021b; Reinhardt, Hillen and Wolf, 2020; Pimentel and Vinkers, 2021; 

Miller et al., 2019; Kim et al., 2018a; Kim et al., 2019; Kim et al., 2018; Kim, Bruder 
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and Welch, 2017; Kim et al., 2016; Kim, 2018b; Li et al., 2018; Li et al., 2018; K. 

Kim et al., 2020; Norouzi et al., 2019; Lee et al., 2018; Kim et al., 2021a; Lang, 

Liang and Yu, 2019; Zhou et al., 2009; Chetty and White, 2019; Norouzi et al., 

2022; Mostajeran, Reisewitz and Steinicke, 2022; Huang et al., 2022; Aramaki and 

Murakami, 2013; Randhavane et al., 2019; Peters et al., 2018; Obaid et al., 2012; 

Wang, Smith and Ruiz, 2019). While, 3 studies evaluated user feelings of the 

holographic AI by game approaches (Lee et al., 2021; Schmidt, Ariza and 

Steinicke, 2020; Schmidt, Nunez and Steinicke, 2019), which are simulation as 

well, since for users the holographic AI is game characters, but for researchers, it 

is a way for measurement, and all scenarios mimic real tasks. 

This type of holographic AI simulates different appearances, behaviours, and 

degrees of intelligence in a specific scenario to compare different conditions. The 

other situation that required this agent is the simulation of a specific environment, 

where leaners achieve hands-on knowledge by using both virtual and physical 

instruments, and can use previous knowledge and practical experience to address 

problems (Andreu-Andrés and García-Casas, 2011; Vlachopoulos and Makri, 

2017). For example, the holographic AI could simulate real patients’ behaviour to 

describe symptoms, and then students need to diagnose them based on dialogue, 

the holographic AI’s emotions, and provided additional information on virtual 

panels (Huang, Wild and Whitelock, 2021; de Barcelos Silva et al., 2020; Zielke et 

al., 2018). The simulation system has a navigation function to guide trainers in 

developing particular skills and experience. For example, the holographic AI can 

record and analyse the users' voice so that stress can be measured, and diction 

can be improved during a virtual interview based on human pose estimation 

(Voulodimos et al., 2018).   

When employed for user experience measurement, the simulation agent can 

exhibit a certain level of substitutability. For instance, Kim et al. (2021b) utilize a 

life-sized and humanlike holographic AI to compare visual effects in conflict 

conditions. It is conceivable to substitute two holographic AIs and a voice assistant 

with alternative personas. In addition, this simulation agent can emulate real 

human characteristics and simulate real-life possibilities and tasks as part of an 

educational program (Ahmed and Sutton, 2017). 

However, out of the 49 papers, none consider holographic AIs in connection with 

the Internet of things (IoT), neural networks, or fuzzy inference system. IoT can 

manipulate and transfer data of real objects and training performance to 

interaction devices. For instance, Ghorbani et al. (2022) have developed a serious 

game which publishes information detailing the movements of elderly patients for 

the attention of their caregivers, via IoT. A simulation agent utilising IoT should 

have resource management to enhance scalability (Ahmad et al., 2022). Thus, 

tasks can be selected by trainers based on their learning requirement. Learning 

processes and physical-virtual interaction should be recorded and data analysed 

to generate enhanced personalized services based on artificial neural networks. 

Further, fuzzy inference allows holographic AIs to generate emotional states and 

optimal behaviours (Liu, He and Song, 2008). Such a holographic AI in the 

simulation can play different characters to trigger plot development, and facilitate 

the learner’s ability of decision-making and risk assessment. Therefore, the 

storyline setup and multimodal interaction approaches are critical requirements. 
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2.5.2.3 Intelligent tutor agents 

Similarly, the holographic AI simulates a real teacher or coach to help learners 

gain knowledge. The intelligent tutor differs from the simulation agent. This 

intelligent tutoring system does not focus on narrative changes but on teaching 

content itself. The intelligent tutor holographic AI cannot offer practical experience. 

It can manage learning paths, provide one-on-one tutoring, and facilitate user-

centred learning experiences (Zawacki-Richter et al., 2019; Churi et al., 2022). 

Alrakhawi, Jamiat and Abu-Naser (2002) proposes a model consisting of a student 

model, an expert model, a pedagogical model, and an interface. The assessment 

of students' academic achievement is conducted through a student model that 

incorporates learners' cognitive abilities, knowledge acquisition, and emotional 

disposition. A model of competence refers to a collection of instructional resources 

(Chang et al., 2020). The pedagogical model encompasses guidelines, problem-

solving approaches, mechanisms that ensure requirement fulfilment among 

students, and assessment of student learning. Besides, the holographic AI is 

required to retrieve and analyse the data for implementing the users' emotion 

recognition and contextual responses, a process of machine learning (Joshi and 

Kanoongo, 2022). Additionally, the UI model involves verbal and non-verbal 

communication between students and the holographic AI. Huang, Wild and 

Whitelock (2021) introduce a virtual tutor for sports training that effectively meets 

four critical criteria. The system collects personal information (i.e., the student 

model) to generate corresponding exercises (i.e., teaching material), evaluates 

user emotions and performance outcomes (i.e., the pedagogical model), and 

utilizes the holographic AI as a UI.  

The intelligent tutor system distinguishes itself from the simulation system in that, 

while simulation may facilitate user collaboration in teams, it does not directly offer 

instructional materials. However, learners should effectively apply acquired 

knowledge in their engagement with the simulation system. 

2.5.2.4 Game characters 

In the case of the game character, behaviours of players trigger the holographic 

AI’s reaction and storylines, and so it is necessary for the game character to have 

a pre-defined storyline which can activate victory or defeat, but not be compulsory 

for the simulation agent. For example, a holographic AI in GhosttPacer (Huang, 

Wild and Whitelock, 2021) is a company and navigator, rather than an opponent.  

Game characters cannot support users and enable them to obtain a learning 

experience of a domain. The holographic AI in this game does not require a 

specific environment. Instead, spatial mapping scans the user’s surrounding and 

produces a game area, and head movement tracking and eye tracking establish 

the user’s position and orientation. However, users cannot perform certain 

movements in their interaction with the holographic AI, such as jumping. In view of 

the recent developments and increased availability of motion capture and smart 

gloves technologies, it may be predicted that wearable devices might improve AR 

playability. 

In contrast, serious games serve distinct educational purposes (Ahmed and 

Sutton, 2017), with the primary objective of facilitating learning in a specific 

domain, such as the FaceMe application (Li et al., 2021). While Chahyana and 

Yesmaya (2020) created a pet simulator game that enables users to gain insights 
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into pet behaviour, the primary focus of this game is on enjoyment rather than 

teaching. Serious games incorporate independent learning principles and a reward 

mechanism (Whittaker et al., 2021; Laamarti et al., 2014), setting them apart from 

the simulation or intelligent tutor system. For example, children use physical 

wooden markers to interact with the holographic AI (Li et al., 2021). Children 

employ a physical controller to select factors influencing flower growth (Oh and 

Byun, 2012). Therefore, the holographic AI acts as a navigational tool that 

indirectly guides the user through the provision of feedback.  

2.5.2.5 Chatbot agents 

As mentioned before, three studies developed the holographic AI with natural 

language processing (Nasution et al., 2020; Park and Jeong, 2019; Miyake and 

Ito, 2012). The chatbot agents used natural language processing primarily as an 

interactive approach, which is often used in translation systems (Nasution et al., 

2020). The system relies on a database of words to match corresponding answers 

but does not perform any multi-modal interaction such as gestures or eye tracking. 

Although Huang, Wild and Whitelock (2021) introduced Azuma Hikari (2023) that 

can apply different body languages to control home devices and interact with 

users, the purpose of this holographic AI is to address and answer the user's 

questions through conversation rather than gestural response.  

There is ongoing debate as to whether a virtual chatbot agent needs to be 

deployed in the real world if the holographic AI relies only on text input, and cannot 

perform reaction or responsiveness. Natural language processing also uses deep 

reinforcement learning and a Recurrent Neural Network (RNN) to provide 

responses based on past dialogues. For example, Chuang et al. (2023) have 

recently developed an educational chatbot in AR, which employs the ARCS model 

(attention, relevance, confidence, and satisfaction) to improve teaching materials 

and arouse users’ attention. The chatbot can track students’ learning processes, 

and provide an online cognitive service via IoT to generate relative news discovery 

(Sheth et al., 2019). An AR chatbot can also introduce and display virtual artworks 

(Guazzaroni, 2022). Therefore, the holographic AI may replace museum 

interpreters to recognize and introduce physical cultural relics. However, as 

mentioned before, such a chatbot cannot generate contradictory arguments or 

opinions to persuade users, as it lacks self-cognition. 

2.5.2.6 A summary of taxonomy of the holographic AI 

 

Figure 2.13. Comparison for five types of holographic AIs 

This section analyses the differences and similarities among five categories of 

holographic AIs. (see Figure 2.9).  

As mentioned before, other holographic AIs, aside from user avatars, can engage 

in conversations, although some depend on Woz to select appropriate dialogue. 

The user avatar is designed to represent the user's actions (e.g., running, walking, 
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or gesturing). However, it is unable to engage in direct communication with the 

user but capable of conversations with other virtual partners. 

Game characters are designed for entertainment, as opposed to holographic AIs 

in the serious game. Learning systems may incorporate intelligent tutor systems, 

simulation agents, or serious games. For example, simulation systems and serious 

games feature pre-defined narratives wherein the user's selection influences 

scenarios or the performance of the virtual agent. Engagement in these activities 

allows users to gain practical experience and apply acquired knowledge. 

Nevertheless, the simulation agent adheres to real-life social rules, whereas the 

serious game establishes independent interaction rules and reward mechanisms 

not bound by fundamental social interactions. For example, Huang, Wild and 

Whitelock (2021) introduced the HoloPatient application, wherein the conduct of a 

simulated patient is contingent upon the evaluation conducted by a student. 

Besides, the simulation agent can be utilized to gather and analyse user 

experience. In the serious game, learners interact with the holographic AI through 

a designated channel. For example, the holographic AI generates emotional 

animations to demonstrate whether the learner chooses appropriate elements to 

cultivate virtual flora (Oh and Byun, 2012). At the same time, the intelligent tutor 

system emphasizes knowledge and instructional content. In the simulation and 

serious game, the holographic AI facilitates collaboration among fellow students, 

whereas the intelligent tutor system offers one-to-one educational assistance.  

The simulation agent, intelligent tutor system, and gaming character (including the 

serious game) are equipped with natural language processing capabilities. These 

holographic AIs may engage in behaviours or exhibit cues directly inside the 

context of games or simulations. However, chatbots primarily operate in a 

question-answering mode, and the virtual agent integrates into chatbot systems to 

offer users translation capabilities and personalized recommendations in response 

to their specific needs (Huang, Wild and Whitelock, 2021). 

With this PICS model, the avatar can synchronize with the user's behaviour. The 

chatbot agent not only provides recommendations but also controls home devices 

through frequent question-answering dialogues. In the simulation system, the 

holographic AI assesses user experience and contributes to the learning system. 

Hence, it involves dimensions of conviviality, senses, and intelligence elements, 

such as physical-object recognition/interaction, spatial understanding, natural 

language processing, or adaptivity. The game character shares similar features, 

yet it prioritizes the delivery of entertainment through diverse storylines and 

personas. In contrast, the intelligent tutor system prioritizes personalized 

instruction that enables students to acquire knowledge through direct interaction 

with the holographic AI instead of relying on experiential learning. 

On the other hand, future development in the holographic AI technology may entail 

the emergence of new types and categories. For example, simulation agents can 

serve a practical purpose, and chatbot services can generate follow-up course 

plans and solve students’ questions to update learning goals. The next few years 

might witness the rollout of chatbot holographic AIs for smartphones. Such an 

intelligent tutor system featuring a chatbot could teach and help students review 

theoretical knowledge, and simulations could provide practice sessions. Therefore, 

in foreseeable future, holographic AIs may automatically transmit data in diverse 
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application domains and feature in derivative products. Future holographic AI 

research and development is likely to focus less on single characters and their 

functions, and more on intelligence integration to create a more human-like virtual 

character. Therefore, natural language processing, adaptivity, and interaction 

modalities can be used for this agent. 

2.5.3 Validity and shortcomings of the PICS model 
The objective of this study is to understand the essence of holographic AI and its 

distinct features in order to establish a model for such systems. The ensuing 

chapters will validate this model by demonstrating how holographic AI systems 

can be developed based on its structure. Given that holographic AI will be 

implemented in intelligent tutoring systems, specific elements of the model will be 

selected and adapted to meet particular requirements, such as learning goals and 

interaction approaches. For example, Chapter 3 details various methods of 

creation, encompassing aspects like persona, intelligence, and sensory 

capabilities. The holographic AI will create personalized workout animations, thus 

addressing the need for personalization and user-centric design. Section 2.4 

shows that prior studies have utilized quantitative research methodologies to 

gather and analyse user experience data, a practice that is appropriately applied in 

Chapter 5 to investigate user experience. 

The PICS model, constructed from 49 studies, has limitations in its scope, 

potentially omitting other relevant research or types of holographic AI, which limits 

its generalizability. For instance, it may not accommodate future enhancements 

that could be integrated into diverse holographic AI systems. Additionally, this 

study focuses on the effect of singular dimensions like intelligence or persona on 

user friendliness, overlooking the combined impact of multiple dimensions on user 

experience and the interplay between these dimensions or components. While 

Section 2.4 outlines approaches for measuring user friendliness, it does not 

investigate the nuances across different user demographics. There is also some 

overlap among these components, which might not be universally applicable to all 

types of holographic AI. For example, computer vision is essential for physical- 

object recognition, spatial mapping, and marker-based augmented reality. 

Besides, the aim of educational systems is to develop an application, not a 

capability that is transferable across multiple platforms. The conviviality dimension 

is currently composed of just three elements, each assessing a single influence. 

This study does not delve into attributes, such as gender, career, hair, and clothing 

styles of holographic AI, to avoid overcomplicating the creation process. Norouzi et 

al. (2022) investigate the effect of a virtual canine and a female holographic AI on 

user experience but do not justify the choice of a cartoon-like appearance for the 

dog, the decision to use a female representation, or whether stereotypes exist that 

suggest female holographic AI might offer emotional support. Additionally, prior 

research has not primarily focused on rendering and compression techniques. 

Elements such as interaction processes, content, and devices have been 

overlooked, which emphasizes system interaction and programming rather than 

the holographic AI as a whole. 

Future research will therefore investigate the potential influence of combined 

dimensions on user friendliness and explore additional dimensions and features. 
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This will help to develop a more holistic and nuanced understanding of holographic 

AI systems. 

2.6 Summary 

This chapter presents the review of 49 studies regarding AR agents published 

between 2009 and 2022. The literature has excluded ‘pure’ voice assistants, 

navigation systems, AR shopping agents, and motion tracking systems. Besides, 

this study does not analyse the holographic AI’s clothing, hair, careers, and 

gender. It also excludes robots, compression, rendering, interaction content, and 

interaction equipment, since these elements are beyond the scope of the 

holographic AI research. 

This chapter has reviewed examples of holographic AIs in different areas of 

interest (i.e. conviviality and intelligence development). It has focused on concepts 

and features of holographic AIs, and has proposed the novel PICS (i.e. persona, 

intelligence, conviviality, and sense) comprehensive model for the design and 

study of holographic AIs. 

The concepts of the holographic AI are not uniform in these studies. For example, 

the holographic AI detailed in the studies do not exist in the same real interactive 

space with the user, but instead employ MR merging both virtual and real 

surroundings in order to create the illusion of physicality, and provide the user a 

sense of togetherness. In short, a holographic AI is an embodied virtual agent or 

user interface in the MR that is capable of interacting with both physical and virtual 

environments.  

The chapter then conducted a thorough analysis of the selected studies to identify 

and categorise specific characteristics of holographic AIs. For instance, the 

interactive approach postulates dividing holographic AIs between the two groups 

of unidirectional interaction and bidirectional interaction, based on physical- 

object/spatial understanding. It has been found that the user model and adaptivity 

are easily ignorable but critical factors affecting the design of personalized 

services for managing interactive multimodal features. 

The integrated features of the holographic AI described in the 49 studies make up 

the PICS model, based on this, a taxonomy of holographic AIs consisting of user 

avatar, chatbots, game characters, simulation agents, and intelligent tutors has 

been proposed. The model can be used to guide the design of different types of 

the holographic AI; further details on holographic AI creation will be represented in 

the next chapter. In future trends, it is likely that the holographic AIs may provide 

an integrated service, that their functionality will not be limited in a single 

classification, but instead take the form of a mixed AI agent.       
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Chapter 3 Creation of the Holographic AI 

3.1 Introduction 

Following the analysis of the ‘PICS’ model and holographic AI features, this 

chapter describes the holistic processes for creating anthropometric holographic 

AIs, presenting viable approaches for each of the PICS dimensions of persona, 

intelligence, conviviality, and sensory modalities. Based on the model, this chapter 

considers contributions in the field in terms of the development of anthropometric 

holographic AIs, including a number of relevant case studies.   

It is critical to show that this theoretical model (postulated from literature) can be 

applied in practice and is ready for use, and that the investigation of user 

experience can be explained under this foundation.  

The first section of this chapter illustrates a novel process of creating ‘persona’ of 

the holographic AI, based on an effective and operable way of using 3D scanning 

technology and motion capture for generating animations.  

Appearances are created via 3D scanning, automatically generating point clouds 

and meshes with textures. I show how to clean data of the scanned 3D model, and 

compare the difference of the approach to a manual way of creating an avatar. 

This part about appearances is documented in Section 3.1.1. 

These 3D generated holographic AIs by 3D scanning should be equipped with 

behaviours, intelligent communicative abilities, and spatial awareness in order to 

implement interaction. Therefore, motion capture will be explained further in 

Section 3.1.2, using examples of rehabilitation exercises, lip sync, and facial 

expressions.  

The created holographic AI is then embedded into different applications to 

investigate how to establish elements of intelligence (Section 3.2), conviviality 

(Section 3.3), and sensory modalities (Section 3.4). 

The first was part of an exercise to create holoCARE (Wild, Loesch and Huang, 

2019). holoCARE was a collaborative project aimed at building a personal virtual 

fitness coach for cancer surgery survivors, capable of instructing patients of the 

right rehabilitative workout exercises. For this, I used motion capture to create a 

rich inventory of workout exercises, while a bespoke app composed of a speech 

and gesture interaction decision tree with speech and gesture interaction for 

selecting the right exercises was built with the assistance of consultants.  

This informed the second case study, where my animations were later integrated 

by the development team of MirageXR (Wekit ECS, 2022) into the core of the AR 

learning experience authoring tool and player. Together with my supervisor, Prof 

Wild, I co-authored DAIMON (see Section 3.2, intelligence), which formed the 

basis for this integration into MirageXR. This included an extension for procedural 

animations triggered by dialogue, as well as a plan for further extension with 

parametric procedural animations.  

This extension towards parametric procedural animations motivates the 

investigation of instructional gestures in Chapter 4. 
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In terms of intelligence, Section 3.2 discusses persona, natural language 

processing, physical-object awareness and interaction. This part includes 

documentation of DAIMON and its technical based on IBM Watson (IBM, 2023), 

which facilitates integration with the 3D model. Originally, DAIMON was built as an 

extension of holoCARE (Wild, Loesch and Huang, 2019) to extend the more rigid 

keyword-based speech recognition and gesture interaction by implementing 

dialogue understanding services. 

Therefore, this chapter is to demonstrate how to create an anthropomorphic 

holographic AI in practice, following this model (i.e. RQ2). 

Section 3.2 represents ways of creating holographic AIs. Section 3.3 investigates 

the aspect of intelligence, especially social awareness and some special 

deliberations about the use of a user model in this context. Section 3.4 discusses 

the dimension of conviviality. Senses in the Section 3.5 discusses explains how to 

implement interaction modalities in physical and virtual environments. Finally, a 

summary and recommendations for developing holographic AIs follows in the 

Section 3.6. 

3.2 Persona 

Persona is what the holographic AI looks like, and it is the first impression 

regarding the user’s visual perception. The persona dimension refers to the two 

exterior traits of a holographic AI 3D model are its behaviour and appearance. 

Social attribute can determine the extent to which the character is motivating by its 

appearance (Baylor, 2009). Such agents can be full-sized or mini-sized, and are 

imbued with humanlike appearance and characteristics, as well as different levels 

of personification. In this context, the appearance consists of realism and size 

mapping. 

There are two components of behaviour: expressiveness, and animation. The 

latter refers not to mere animations, but to subtle expressions which are carefully 

connected to both explicit and potential information contained in storylines and 

conversations. With game characters there is strong focus on body movements. 

According to Carroll (1996), emotions expressed in the game environment must 

possess a context-based functional capability. Chatbot agents are expected to 

exhibit realistic facial expressions (smiling, frowning, etc.) during the course of AI-

user communication. Users’ choices, and dialogue content and events should 

dictate such animations. The appearance and engagement of intelligent tutors are 

built on behavioural structure scaffolding, which in turn consists of key visual cues 

(including nodding, gaze, gestures and other facial expressions) employed in 

affective feedback. 

3.2.1 Parametric Appearance 
Modern non-contact sensor technology-based 3D scanners are capable of in situ 

capturing of human body shapes and surfaces, and can provide efficient 

diversification and individuation of virtual characters. One example is the Occipital 

Structure sensor, which is used to capture textures and meshes, and which can 

gather feedback quickly on the iPad platform. In this project, the static scan 

process of the Occipital Structure sensor is combined with motion capture to 
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develop a method of recording dynamic joint behaviours via tracking of body-

attached markers. 

In this context, the quality of 3D avatars is affected by the following factors: real 

actor poses (A-pose or T-pose), scan time, and both scanning equipment and 

background. Lighting is another critical factor: ideally, the lighting should appear 

natural and balanced, and neither too strong nor too dark, in order to reduce 

blurring, distortion and overexposure. 

Nevertheless, there will always be a slight dissimilarity between the appearance of 

a real human actor and that of the reconstructed model. 

This chapter details my efforts to strike a reasonable balance between AI 

hologram quality and the attendant technical effort, using the Smart Glasses 

(Microsoft HoloLens) equipment.  

Workflow-wise, the scanned 3D model is exported into Unity (Unity, 2023), a game 

engine, to implement interactive behaviour.  

One example of our Unity-generated 3D characters is provided in Figure 3.1 

below. To ensure compatibility with the HoloLens, the number of polygons for each 

of the body models’ avatars has been optimized to meet the HoloLens 

requirements. Otherwise, the failed meshes impact negatively on animations, and 

a model with high polygon counts can affect GPU and CPU speeds. 

 

Figure 3.1. A reconstructed avatar (own graphic) 
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As detailed in Figure 3.2, the avatar reconstruction process includes 3D scanning, 

reconstruction and animation. This process of reconstructing an animated 

holographic AI is based on the persona of the PICS model.  

The scanning environment comprises a capacious room, the ceiling of which 

contains five long-shaped light sources, ideally.  

At this point it should be noted that certain parts of the body cast shadow under 

this intense lighting, particularly the nose and neck. To compensate for this 

problem, an LED light source mounted on the iPad was used to attain a more 

balanced level of brightness across the actor's face. The actor’s head and body 

were scanned separately, during which scanning time, the actor’s height and head 

characteristics were observed. 

 

Figure 3. 2. The process (own graphic) 

3.2.1.1 3D scanning 

The recent advances in the field have facilitated the application of 3D scanning 

across a wide range of fields, namely entertainment, fashion design, and 

archaeology (namely digital capturing of cultural relics).  

The different methods for constructing a virtual human have been reviewed by 

Peng et al. (2016). One approach is to scan the human body using a 

reconstruction facility, by taking multi-view colour photographs (front, side, back), 

and amending the shapes of 3D virtual humans to fit target models. Peng et al. 

also cited a full-body cloning method, the algorithm of which can define and 

construct a humanoid agent using graphics produced in low lighting conditions. A 

valuable tool is silhouette extraction, which can exploit data from the edges of the 

graph to convey textures, colours and greyscales. There are three main types of 

contour extraction methods identified by Peng et al. (2016): approaches using 

prior knowledge, gradient-based methods, level-set methods, and active contour-

based methods. Bartol et.al. (2021) proposed an overview on the three different 
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categories of 3D scanning technologies for 3D human shape construction: passive 

stereo, structured light, and time-of-flight imaging.  

When the 3D human is created using passive stereo, images of the real body from 

multiple perspectives (or from two subsequent frames of a moving camera image) 

are used. Structured light is an alternative to that, able to avoid failed texture 

generation of the passive stereo approach, using observations of light pattern 

deformations to reconstruct 3D models. The third option, time-of-flight, measures 

return time of light projected onto the real human body to generate the virtual 

body.  

Bartol et al. (ibid) also propose preparation, scanning, feature extraction, model 

fitting, and measurement extraction as five stages of 3D scanning.  

The actor must wear labelled markers in order for their human shape to be 

identified, and must retain a specific pose until the scanning is finished so that a 

3D point cloud is generated. The features of the actor’s body and silhouettes are 

extracted to calculate a 3D T-pose graphical model. The aim of the model fitting 

step is to generate a statistical body mesh. Thereafter, the body feature, T-pose 

model, images, and 3D scanning data are fed into the body measurement.    

However, it should be noted that, owing to lack of interoperability among different 

methods and standard editing tool chains, few state-of-the-art methods are 

currently applied in industry. A professional environment likely demands hundreds 

of depth cameras, as well as green screens and balanced lighting, altogether a 

substantial assembly of resources which requires high financial investment.  

In Figure 3.3, ItSeez3D is depicted, an iOS-compatible 3D scanning tool which 

runs on the Cloud, within which it processes data sourced from the Structure.io 

structured light scanner. There are three types of scanning that ItSeez3D can 

perform: body scans, bust scans, and object scans. For the T-pose to be captured, 

the person being scanned needs to maintain the T-pose throughout the scan, 

which usually takes between 1 and 2 minutes. 

 

Figure 3.3. ItSeez3D and Structure sensor scanning body model of a female (photo: 
Mikhail Fominykh) 
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It can be seen in Figure 3.4 that certain artefacts in the 3D scanned model are 

similar to those of the human model (e.g. hair), while others are falsely coloured 

(e.g. clothing, furniture, wall in background). The whole human actor is scanned 

from head to toe, the human actor maintaining the same position throughout, and 

the two scans of the head are compared. 

Nevertheless, collected data may be incomplete. As shown in Figure 3.5, data for 

the top of the actor’s head are missing, the meshes of the head and ears clash, 

resolution is low, and the facial textures are distorted. The sensor also fails to 

recognise and capture in full the actor’s extended fingers.  

As illustrated in Figure 3.6, some data for the hands are missing, and redundant 

meshes of the fingers can collide. Following scanning, the high-quality 3D scan 

models were selected and used to recreate. 

Using ItSeez3D, it is necessary to produce two body models of good quality, and 

assess the scan quality using the cloud render preview function, and not just the 

local preview function in ItSeez3D.  

At least 2 high-quality head and hair scans should be collected. Standard models 

for hands and feet can be used from Wrap 3 gallery (Russian3DScanner, 2023), 

among other online open-source libraries. It should be noted that 3D scanning 

often fails to generate models which meet the quality bar for models on these 

websites, possibly due to the sensors used or the human actor failing to remain 

motionless throughout the scan. 

 

Figure 3.4. Different scans of the same actor (Huang, Twycross and Wild, 2019) 

 

Figure 3.5. Artefacts and mesh distortion for the ears,  
when actor scanned in full body model (Huang, Twycross and Wild, 2019) 
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Figure 3.6. Scanning errors and artefacts of actor’s hands (Huang, Twycross and Wild, 
2019) 

3.2.1.2 Reconstruction 

In order to ensure the 3D scan model can be animated, the failed meshes and 

textures should be cleaned. This process is called reconstruction.  

3D scan errors like false colours and distorted limbs (e.g. hands) can be corrected 

with Photoshop, and 3D scan models and textures can be sanitized with Wrap 3.4 

(2021).  

A wide range of low-polygon models with corresponding UV maps (2D 

representation of the 3D model) are available on Wrap 3 (Russian3DScanner, 

2023). Each of these models consists of a human body, with limbs and head of 

unique proportions. These templates can be matched with 3D scan models in 

terms of the sizes of body features (nose, eyes, feet, shoulders, etc.), and this 

matching process is used to reproduce avatar model with high polygon counts, as 

well as produce high-resolution textures using nodes. The stages required for 

head reconstruction using Wrap 3 are illustrated in Figure 3.7. As shown in Figure 

3.7(1), SelectPoints is used to align the markets on the template model with those 

of the scanned model. Transformation of the scanned avatar model to the low-

polygon model is conducted using the ‘wrapping node’ (Figure 3.7(2)), and 

automatic generation of the texture is achieved using the ‘TransferTexture’ node.  

As shown in the figures below, it is successfully reconstructed the head and full 

body meshes separately. However, there is some distortion in the reconstructed 

hands, some incorrect colours in the texture, and distortion in the shape of the 

actor’s feet (Figure 3.8). These errors are addressed in the subsequent 

reconstruction stage. 
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Figure 3.7. Reconstructing the head model in Wrap 3 (Huang, Twycross and Wild, 2019) 
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Figure 3.8. Since the full body model 
template does not wear shoes, meshes 
of toes cannot be transformed properly 

on actors wearing shoes (Huang, 
Twycross and Wild, 2019) 

Figure 3.9. Reconstructed body and head 
models, as well as newly created hand 

models (Huang, Twycross and Wild, 2019) 

 

 

Figure 3.10. Body rigger for T-pose (Huang, Twycross and Wild, 2019) 

As shown in Figure 3.9, the transformed template of the human body is composed 

of small quadrangles which are not aligned with one another. All points need to be 

merged together before being exporting from Wrap 3 into Maya. In the 

reconstruction, it is necessary to substitute ‘raw’ scan data for out-of-scale 

meshes.  

For example, vestigial portions of the real body which normally are covered (head, 

hands, and shoes) may have to be replaced by the individual head and the newly 
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created models of these body parts and enveloping clothing (e.g. shoes). In order 

to minimise the number of polygons, some unnecessary edges, such as navel, 

should be cleaned. 

All meshes should be smooth, and failed colours are corrected by stamp copying 

over correct colours by Photoshop. Human body textures can be imported where 

relevant data is missing or requires embellishment. As shown in Figure 3.10, 

rigging is used to convert from A-pose to T-pose by rigging. However, although an 

integrated texture can be produced using Wrap3, the resulting size is smaller than 

that in the UV map, necessitating a time-consuming process of matching adjacent 

parts of the mesh not occupying neighbouring positions in the UV layout. 

3.2.1.3 Comparing with manual design 

 

Figure 3.11. The base mesh model 
(own graphic) 

 

Figure 3.12. Reshaping the model (own 
graphic) 

There are three steps of manually designing a realistic holographic AI shape: 

building a basic low polygon model; sculpting the low-polygon mode to a high- 

polygon model; transforming the high-polygon model to a low-polygon model with 

details.  

This section determines which of these methods produces the best-quality 

holographic AI. In order to avoid repeating the description of steps for the 

reconstruction of the 3D scan model, this section will amplify how a realistic head 

for the holographic AI may be created, since the face is critical to delivering a 

person’s appearance features during interaction. 

In order to capture the structure of facial muscle, a male head model with 5,922 

faces has been downloaded from the Wrap3.4 gallery. It provides a basic mesh of 

head and a clear facial skeleton (see Figure 3.11). This model then is imported to 

Zbrush which is used to sculpt and repaint a high-poly model. The shape of this 

mesh is different from the actor, thus for the basic model the ‘Move’ tool of Zbrush 

is used to re-shape the face, according to the real actor’s pictures with different 

angles. This requires following human skeleton and muscle models, such as the 

directions of the orbicularis oculi muscle or brow ridge. It is unnecessary to 

subdivide the model until the shape of the base mesh is similar to the actor’s 



69 
 

appearance (see Figure 3.12). Next, the model is turned into an unfolded UV in 

Maya and Unfold3D. In order to provide more details in textures and consider the 

HoloLens CPU, the UV map cannot be over one tile, but if the screen output can 

over 2048*2048 pixels then it will show more details on 3-4 UV tiles (see Figure 

3.13). Therefore, in this study, one UV tile of 2048 * 2048 size is used, and this 

parameter matches the requirement of the game character design (see Figure 

3.14). 

 

Figure 3.13. UV maps (own graphic) 

 

Figure 3.14. One UV map (own graphic) 

The actor’s model then needs to be enriched with more details, such pore, wrinkle, 

moustache, and hair.  First, in order to create realistic and well-proportioned pores 

in the face, the model should be subdivided four or five times to generate a 

smooth and high-poly model for creating its skin. The skin pore is a primary detail 

for realistic texturing. The skin pore density is higher around the two sides of the 

nose, and the mouth. The size and coverage of pores depend on age, gender, 

sunlight situation, and diet (Flament et al., 2015). Males have bigger and deeper 

pore size and diversity. Therefore, three types of pore brushes were created for 

different parts of the face (see Figure 3.15). 

 
 

  

Figure 3.15. Three types of pore brush (own graphic) 
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These skin details need to be checked via high-resolution pictures to understand 

the growth directions of the muscle and wrinkle. Finally, a high-poly model is 

produced (see Figure 3.16). 

 

 

 

Figure 3.16. The high-poly model (own graphic) 

In order to avoid excess polygons, the hair and moustache were not created. The 

details in the high poly model serve to bake a normal map to the low-polygon 

model again. Again, the high-polygon model needs to produce a normal map for 

the low-poly model, as well as create textures for the low-ploy model in Substance 

Painter (see Figure 3.17 and 3.18). 

 

Figure 3.17. Normal map (own 
graphic) 

 

Figure 3.18. Texture (own graphic) 
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Figure 3.19(1). The eye 
model (own graphic) 

 

Figure 3.19 (2). Iris (own 
graphic) 

 

Figure 3.19 (3). Normal 
map of the eye (own 

graphic) 

 
 

Figure 3.20. The final low poly models of head and eyes (own graphic) 

Regarding the aspect of eyes – an eye is not just a ball, but is composed of iris, 

pupil, and sclera (see Figure 3.19). Therefore, after these elements have been 

constructed, the whole irises are exported to Zbrush to generate the texture and 

bake its normal to low-ploy model. 

Then the low poly model of the head and eyes is rendered in Maya (see Figure 

3.20). In total, the head model has 15260 polygons. 

Based on this method, two full body models of holographic AIs with adjustable size 

and cartoon appearance have been created (see Figure 3.21). 
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Figure 3.21 (1). Sarah Figure 3.21 (2). Hanna 

In order to create clothes for both holographic AIs, the fashion design software 

tool, Marvelous Designer was selected. For example, the character model, Sarah, 

was imported into this software, so that a dress’s size and shape can be created 

based on her height and weight. After the six parts of the dress are connect to one 

other, a high-ploy model of the dress is generated (see Figure 3.22). Then, the 

dress needs to be transferred to the low polygon model with unfold UV map again. 

 

Figure 3.22 The dress design 

There now exits 3D scanning technology aimed at users whose experience of art 

and painting is limited, which is capable of directly generating a high-polygon 

count model. However, 3D reconstruction of the scanning model is more complex. 

The 3D scanning firstly generates 3D cloud points followed by disordered 

triangular faces, which cannot be used directly in animations. This requires re-

arranging of failed faces, as well as transfer to square meshes for animation.  

Unlike the realistic 3D scan avatar, the manual way of designing the holographic 

AI’s appearance can be stylized, compared to the realistic 3D scan avatar. 
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High/medium polygon counts and high-resolution affect the rending and 

processing speeds. In social media, virtual influencers with high-polygon counts 

are used the same way as for the film and television industry in order to create a 

robust sense of realism. 

3.2.2 Rigging 
The animation skeleton, along with body shapes hosting facial expressions and 

lip-sync, are generated in order to produce the final holographic AI avatar. The 

interaction modalities and social interactions of the holographic AI avatar are 

contingent on these foundational elements, which in turn are composed using 

Autodesk Maya. 

3.2.2.1 Blend shapes for facial animations 

 

Figure 3.23. Reference of phonemes (Huang, Twycross and Wild, 2019) 

Basic facial expressions include anger, disgust, fear, happiness, sadness, and 

surprise (Sato et al., 2019). From these, main phonemes such as AI, E, O, U, F, L, 

M, TH and WQ are constructed (Figure 3.23).  

Maya is used to deform the body geometry to create specific shapes. The mesh 

shape is altered using the grab tool, and the lip is separated using the smoothing 

tool. The technology captures the ever-changing shapes of the masseter and chin 

caused by muscular movements around the mouth during speaking (Figure 3.24). 

In order to blend the smiling face of the base model with the target model, the 

original character model substitutes as a base object.   
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Figure 3.24. Blend shapes. The left and right models are base objects, and the middle one 
is the target (own graphic). 

 

Figure 3.25. LipSync (Huang, Twycross and Wild, 2019) 

Using LipSync pro 1.5 (Unity, 2018), which can reset previously created facial 

expressions and support a blend shape system, facial animations can be edited, 

and corresponding lip shapes can be imported (see Figure 3.25). The program 

offers four emotions, nine phonemes, and an eye manager responsible for eyeball 

movement and blink rate. It can be used to simulate emotion-specific facial 

expressions such as smiling, eyebrow-raising, and frowning. Certain eyeball 

movements such as looking up and down are controlled by the blend shape, and 

need to be aligned with the appropriate phonemes. 

However, in the setup the eye trigger is set to ‘random looking’, thus bypassing the 

more complicated animation settings aforementioned. Using LipSync, phoneme 

markers are added manually; alternatively, corresponding phenomes are 

generated via integrated SoX sound exchange. Further, three scripts are used: lip 

script; the ‘record audio’ script; and the ‘save audio’ script, whereby the human 

actor records their voice in Unity, and the supported audio format in Unity is 

produced. The voice recording, stop capture and sound check steps are carried 

out using a user interface. Afterwards, the lip script is connected to the plugin, the 

audio script is saved, and the audio source is found. These steps precede 

automatic generation of lip animation by the character model. The sound recording 

process is illustrated in Figure 3.26. 
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Figure 3.26. The script for capturing audio 

Similarly, SALSA LipSync is another means of implementing facial animations in 

Unity. It does not demand manual addition of nodes of corresponding phonemes. 

Instead, it automatically generates lip animations based on audio, and this plugin 

also guides eye movement (see Figure 3.28).  

Figure 3.27 shows users can adjust parameters, such as animation timing, 

customized open-mouth size, and level of smoothness, until the interaction 

becomes natural.  

 

Figure 3.27. SALSA Lipsync sets up visemes 

MirageXR uses ThreeLS, which in turns provides three blend shapes: kiss, lips 

closed, and mouth open. ThreeLS is concise and is capable of configuring 

parameters easily as the visual parameters link to frequency-band specific 

energies, enabling the triggering of weights of blend shapes (Llorach et al., 2016). 

Therefore, although it only offers three blend shapes, these can be resized. 

Similarly, vocal tract length, smoothness, and degrees of sensitivity enables to 

altered in order to control length, smoothen animations, and eliminate environment 

noise (see Figure 3.29). However, the values of blend shapes cannot account for 

compressed lip, such as the M viseme. 
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Figure 3.28. Parameters of SALSA 

 

Figure 3.29. ThreeLS 

Generally, there are nine categories of phonemes (AI, E, U, O, CDGKNSTHYA, 

FV, L, MBP and WQ), and each type brings with it multiple shapes of lip. This 

range is sufficient for lip motion, whereby each category has its own diverse 

visemes, such as F and V.  

The scripts of Lipsync can automatically generate corresponding with recorded 

audio sources. ThreeLS offers three blend shapes; however, regarding tongue 

movement, facial expressions and the F, L, TH visemes, its output is lacking in 

detail. SALSA LipSync is more flexible, but it cannot be used to automatically 

mark-up which specific visemes are needed in an audio sequence to match a 

specific phoneme. For example, if the avatar pronounces ‘we’, the lip shape 

should be adjusted ‘w’ viseme by a lip controller in the plugin. 

Facial animation is a key component in human-to-human interaction, and AI 

technology can to a certain extent capture and interlink different emotions and 

facial expressions. 

However, the result might never feel as natural as that of real human-to-human 

interaction, not least because of subtle, less observable changes such as the 

generating of wrinkles by different emotional responses. 

3.2.2.2 Body animation 

Prior to recording, the actor dons a black suit with 57 markers on the key joints 

spread evenly on its surface (Vicon, 2023), and cameras are warming up. 

Exporting of body animations can take between 4 and 5 hours.  

Almost all animations appear natural and show smooth movements, albeit with 

small flaws such as incorrect finger movements in keyframes. One of the 

experiments featured the chair dip, a rehabilitative sports exercise involving a 
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chair, upon the edge of which the actor places their hands. The adjacent 

keyframes were used to replace ones with false movements, keyframes were 

joined to form a reasonable trajectory of motion by applying slight orientation 

adjustments. Delivering a realistic simulation is particularly difficult if the action 

being interpreted consists of fast non-smooth movements within a short time 

period. Among the 21 animations, painted skin weights (softening factors applied 

using a paint brush) are required only for the T-pose character model. 

The final rigged avatar shown in Figure 3.10 consists of two textures and 20,197 

polygons, involving a transparent texture for parts of the eyes and eyelashes, and 

head and body textures (both of which are high-quality resolution size (4096 x 

4096 pixels). In order to preserve facial expressions and animation, the fbx 

exported format is used. The avatar with 21 body movements and its facial blend 

shapes were imported into Unity (see Figure 3.30). 

 

Figure 3.30. The 21 animations and character are imported into Unity (Huang, Twycross 
and Wild, 2019)   

These capture the flexible movements of the legs and fingers, and demonstrate 

the ability of Unity to work with over 20,000 polygons in this case, and deliver an 

accurate representation of the actor’s actions. However, fidelity is limited due to 

the hair and clothes not being reproduced, hence the absence of movement during 

the rendering. This incomplete motion capture can be compensated by copying 

the right keyframes, although at the expense of smooth arm movement. The 

armpits are the most unnatural, less realistic regions, appearing distorted 

whenever the arms move. It explains the limited capacity of painted skin weights to 

prevent distortion of the cuff during arm movement, as the clothes and body are 

integrated into one model. Further, for capturing high-precision exercises, 12 

Vicon cameras are insufficient, particularly when the hands cover markers on 

shoulders, or when the arms stretch round the back. 

In summary, the holographic AI should be capable of delivering high resolution 

textures, smooth animation, and clean meshes, which altogether convey a realistic 

and compelling representation. The resulting virtual model appears realistic, but 

owing to reconstruction and editing factors, shares some dissimilarities with the 

original model. The positioning of some markers may lead to missing trajectories, 

limiting the fidelity in animation. This may prove to be a significant problem when 

recording movements. 
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3.2.3 Procedural animations 
The previous section has illustrated the processes for developing the holographic 

AI’s appearance and behaviours, and this section will present three case studies 

of different ways of generating animations for the holographic AIs, the outputs of 

which also serve as an open resource for the research community. 

Three cases are presented. The first one focuses on generating professional 

training exercises, created as part of the holoCARE project (Wild, Loesch and 

Huang, 2019), where a smart glasses application supports cancer-surgery 

survivors in choosing and then following a suitable set of exercises. This case 

uses optical, camera-based motion capture with the Vicon system. This case is 

presented in Section 3.2.3.1. 

The second presents the extraction of standard animations for MirageXR 

character models from a public database of full body animations, Adobe Mixamo 

(Mixamo, 2023). This case is presented in Section 3.2.3.2. 

The third case shows how to use an IMU-based motion capture suite, Rokoko 

(Rokoko, 2023). This case is presented in Section 3.2.3.3, while the outputs are 

further documented in Chapter 4. 

3.2.3.1 Extracting a standard set of animations for rehabilitation exercises 

In order to generate professional training exercises for the holoCARE project 

(Wild, Loesch and Huang, 2019), a female sports student and a male sports 

student helped me to record animations using Vicon cameras. One product design 

criterion is that cancer survivors are able to select a matching holographic AI, 

whose programmed movements are compatible with the user’s age, gender and 

health information. Users do not need to use additional fitness equipment; rather, 

they can observe and follow the holographic AI.  

This section considers the capture of all exercise motions (shown in Figure 3.31). 

Each exercise takes 5-10 second per time. After workout, the holographic AI will 

ask the user to provide feedback by asking questions concerning their feelings, 

and perceived difficulty of the exercise level. 
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Figure 3.31. Motion capture by Vicon 

3.2.3.2 Standard animations for virtual characters 

During a discussion with the wider project team, it was decided to include the 

following set of animations in MirageXR, extracted from the free repository Mixamo 

(Mixamo, 2023). Mixamo is an Adobe product which provides free animations of 

standard actions such as standing idle, waving, jumping, or fighting. These are 

useful, when, for example, the holographic AIs needs to introduce themselves. 

During such introduction, it should adopt the talking or standing-idle animations 

(see Figure 3.32). 

Pose Description 

 

Idles: 

Talking, relaxing,  

 

Duration: 30 frames per second 

Figure 3.32. Standing-idle 
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3.2.3.3 Rokoko motion capture 

 

Figure 3.33. Rokoko suit 

 

 

Figure 3.34. User profile 

Motion capture can also be conducted using the Rokoko motion capture suit (see 

Figure 3.33). This results in high frequency joint and limb 

movement/orientation/position data (~100Hz for 19 sensors). These sensors are 

labelled on the key joints of the suit, such as shoulder and hip.  

In order to review and adjust failed joint animations, it is necessary to record 

reference video (and audio) in parallel, providing a third person view to compare 

motions captured with the context in which it was delivered.  

Users can set up their own avatars in Rokoko to configure the motion capture (see 

Figure 3.34). Rokoko motion capture also produces facial animations, via Rokoko 

remote, but this is possible only on the iOS platform.  

Rokoko achieves the same stages of animation as the Vicon, from wearing the suit 

to cleaning data, but with body-worn (‘inside’) Rokoko sensors instead of over 40-

63 markers plus cameras for tracking. It is not necessary for users to decide where 

markers should be placed, as body parts will not be covered by others, and the 

suit is portable. There are, however, shortcomings with the sensor-based mocap 

suit. Rokoko sensors are sensitive to magnetism (see Figure 3.35), which leads to 

inaccurate raw data. Moreover, the hub can easily disconnect from the power 

bank, sensors can get damaged more easily than room-mounted cameras, leading 

to a malfunctioning suit. 
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Figure 3.35. Magnetism issue 

 

Figure 3.36. Broken sensors 

Figure 3.36 shows three sensors show up with status ‘white’ in the control panel 

on the right. This indicates that the corresponding sensors on these key joints 

have disconnected, and no data is recorded for movement of head, left lower leg 

and foot. In this situation, this further impedes processing as it affects the 

stabilisation algorithms that try to keep feet on the floor. Both feet should touch the 

ground or leave the ground at the correct moment if all sensors are functioning 

properly. Upon failure, it is required to clean these data manually in Maya or 

Motion Builder. For example, the Rokoko animation is imported to Maya in order to 

create a new animation layer for an adjusted joint and add keyframes, thus the 

original data need not be overwritten. Then the failed joint’s rotation and position 

can be edited and covered by the new keyframe.  

The Rokoko suit has high requirement in terms of environment. Metallic objects, 

such as legs of tables, chairs, cameras, or a watch, can visibly affect the quality of 

capture, possibly irreversible, or with the consequence that it takes a long time to 

fix resulting problems. 

3.2.4 Recommendations for persona configuration 
Based on the PICS model, the persona dimension includes attributes such as size 

and realism, and the animations consist of facial expressions and body 

movements. 

All cases use HoloLens to display created holographic AIs. Since these assistants 

are employed in the intelligent tutor system to display exercise animations, so they 

have life-sized and humanlike appearances and behaviours. MirageXR also has 

both a mobile and HoloLens versions, where the holographic AI’s size can be 

adjusted to fit the surrounding or display device of the user. The holographic AI 

with humanoid and stylised appearances can generate corresponding behaviours 

based on MirageXR scenarios that can crated by users and target clients. 

In addition, the antecedent studies have proved that the photorealistic appearance 

is able to enhance the sense of co-presence, and these holographic AIs also 
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perform animations for interaction, even though they cannot be fully as natural as 

human being. However, there is a relationship between persona and the so-called 

‘uncanny valley’. The uncanny valley theory claims that, generally, users’ positive 

perception of virtual humans improves with how much they resemble real human’s 

regarding appearance and behaviour. If, however, a virtual human appears 

almost, but not exactly like a real human, this elicits a feeling of uncanniness, and 

it finds those virtual humans that are close to real but just not simply eerie. In the 

PICS analysis, the presence of the holographic AI can cause inhibiting effect. For 

example, the holographic AI with realistic appearance but mechanized or 

unmatched animations cannot facilitate its effect of performance and intelligence, 

rather distraction.  

Wang, Smith and Ruiz (2019) suggested in their analysis in Chapter 2 that life-

sized holographic AI might induce a sense of the uncanny valley, whereas smaller-

sized AI typically does not. Nonetheless, the functionality and purpose of the 

holographic AI should take precedence. For example, a miniaturized holographic 

AI might be more suitable for use as a personal chatbot on an office desk, 

appearing more accessible; however, the range of motion for a life-sized 

holographic AI would be more extensive, taking up more space within the MR 

environment and possibly interfering with physical objects. The practicality of a 

smaller holographic AI is not always assured. For example, a holographic AI 

portraying a virtual patient may be too small for learners to discern its reactions, 

thus hindering their perception of the agent's responses. 

Therefore, a life-sized humanoid holographic AI is created to demonstrate 

exercises, enabling users to observe and mimic its movements in Section 3.2. If 

this holographic AI was to adopt a cartoonish or miniaturized form to circumvent 

uncanny valley effects, users might be unable to execute the exercises correctly, 

potentially leading to accidents and ineffective instruction. It is also crucial for the 

humanoid holographic AI to avoid using overstated animations, especially if they 

do not aid interaction, as this could distract the user. 

In a different approach, MirageXR presents a holographic AI feature known as 

"ghost tracks" (Huang, Wild and Whitelock, 2021). This particular holographic AI is 

designed with only a basic upper body with simplified gestural animations to assist 

users in aircraft maintenance tasks. Its design and animations do not detract from 

learners' performance because the application prioritizes real-time visualization 

and learning feedback. The simplistic design and unobtrusive animations are 

intentional, ensuring that learners remain focused on the task at hand. 

Based on above reconstruction of holographic AIs, a recommendation of designing 

persona shows below:  

• The size and appearance of the holographic AI should depend on the 

function and goal. Photorealistic appearance and animations benefit the 

sense of co-presence, but can also lead into the uncanny valley and 

distraction.  

3.3 Intelligence 

AI endows virtual humans with human likeness, and controls their performance on 

the basis of contextual understanding. Therefore, this section discusses how AR 
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agents can be embedded into user’s life. It focuses on verbal interaction, which is 

the main communicative approach for real humans, as well as spatial 

understanding and interaction.  

This section explores the use of natural language processing, dialogue 

management, and physical-virtual interaction (discussed back in Chapter 2) for 

improving usability and implementation ability of the holographic AI. Specifically, it 

will discuss (1) the use of a question-answering state machine to develop 

customized dialogue content, and (2) adaptation to surrounding space and 

embedded activity. 

 

Figure 3.37. IBM Watson: dialogue tree example 

3.3.1 Natural language processing 
IBM Watson is a cognitive system that is able to, among others, simulate human 

sound, and is capable of decision-making and answering question using natural 

language. It allows users to save their information into a repository, so that it can 

capture key words and automatically select corresponding responses. It provides a 

chatbot service which can hold users’ key words and the holographic AI’s answers 

in a question-response dialogue tree. This service is based on deep neutral 

networks incorporating with voice signals (Schmidt, Ariza, and Steinicke, 2020). It 

analyses users’ intents based on their voice input and transcript, and offers 

additional support to identify dates, time, numbers, or letters.  

IBM Watson is designed to consider the possibility of answers pertinent to the 

user’s input. Proper dialogue management is important for discerning intent from 

the raw speech-to-text input. 

For example, if the user utterance is “I want to work out”, the keywords group 

containing “work out” and “exercise” is activated, recognizing the user’s intent, if it 

has been featured in the currently active nodes of a dialogue tree. The activated 

node then helps find a relative output, the response, of the assistant. Next, child 

nodes in the dialogue tree are triggered by further recognised user intents, the 

dialogue unfolds sequentially from the nodes to their branching.  

Besides, the holographic AI enables to perform specific animations based on IBM 

Watson by capturing a key word (see Figure 3.38).   
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Figure 3.38. IBM triggers animations 

The dialogue tree only can provide a basic information base of the holographic AI, 

as all conversation content is pre-defined. The dialogue tree also can be 

interrupted due to failed recognition, or the environment being noisy.  

IBM’s AI discovery services could provide an extension here. They could be 

utilised to extend the corpus and to facilitate decision-making about what to 

include into the knowledge base and what to discard, identifying insights. The 

audio output of the holographic AI is also synthesized via text-to-speech in IBM 

Watson, so that the holographic AI finds appropriate voice models with different 

languages and gender to fit their appearance and characteristics.  

 

Figure 3.39. Assistant ID 

The Unity engine builds real-time 3D projects for AR platforms, and integrates with 

IBM Watson using the Watson SDK to perform the communicative and animated 

holographic AI. In the Unity project, it needs to utilize Watson SDK and must be 

first authenticated applying an API key and assistant ID. The service credentials 

(API key), endpoint URL, and assistant ID can connect the application with the 

web service (see Figure 3.39).  

In order to add a level of verbal interaction and translation service to the 

holographic AI, it needs five scripts: For activating holographic AI (‘Daimon’ 

manager script), dialogue service, speech input service, speech generation 

(output) services, and, optional, second language translation services. 

The activation script manages the holographic AI’s animator trigger, and speech 

input and output scripts in Unity. Figure 3.40 also displays how the script controls 

the holographic AI’s position of look by ‘lookTargets’, thus the holographic AI can 

recognize real objects and gaze at it.  

In the dialogue service, it connects other two speech to text, text to speech scripts, 

a user profile for recording health information or preference, and series of 

animations of exercise (see Figure 3.41). 

In this example, the aim of the holographic AI is to induce users into doing more 

exercise, and to let them follow the holographic AI’s performance.  
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Figure 3.40. Daimon manager class 

  
Figure 3.41. User profile and lists of exercises 

The speech to text service enables speech content to be transcribed and print out 

in different languages, before being transmitted to the dialogue tree. Written text is 

converted to audio by means of the text to speech function. In the DAIMON 

implementation, the holographic AI can translate English to German and Chinese 

using translation service (see Figure 3.42). However, the speech to text function 

can only accommodate articulation of a language in a certain accent, and 

provincial dialects will impair interaction. 

 

Figure 3.42. Translation script 

Furthermore, SALSA lip-sync can work with the Watson services in Unity, and so 

the holographic AI can simulate human social interaction using facial animation. 
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The key speech features will be mapped to lip parameters when the audio source 

has been analysed (Llorach et al., 2016), and then facial blend shapes will be 

driven and synchronized voice output. Figure 3.43 displays a workflow of natural 

language processing and facial animations. 

Lip and facial expressions represent a person’s attitude and identity 

(Dineshshankar et al., 2013). By combining natural language processing and lip 

sync, users can engage in hands-free interaction with their interlocutors, which 

satisfy two sensory. Further, IBM Watson provides tone analysis by capturing 

emotional written text, but it only recognizes tone, and does not engage in 

simulating and responding to proper intonation and speech rhythm.  

 

Figure 3.43. Workflow (own graphic) 

3.3.2 Spatial understanding and interaction 
Spatial awareness is one of the key features of AR as it enables the holographic 

AI to recognize physical surroundings and objects. As mentioned back in Chapter 

2, although unidirectional interaction only enables the holographic AI to build an 

understanding of physical objects and environment, it can prevent out-of-control 

situations. By contrast, with bidirectional interaction a pre-defined scenario for 

managing physical objects is required, and their states are changed using 

additional sensors. This sub-section illustrates how the holographic AI in 

MirageXR dynamically recognizes the user’s surroundings and executes 

unidirectional interaction. 
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Figure 3.44. ‘Follow Player’  

The holographic AI is capable of detecting and following the user’s position, if 

‘Follow Player’ switches on (see Figure 3.44). The aim of spatial mapping is to 

create a surface for placement of holographic AIs, enabling users to put virtual 

objects in their places. The holographic AI shown in Figure 3.43 can recognize the 

wall and floor by way of spatial mapping. Then, the relationship between the data 

of the camera and that of a known object in the scene are calculated, and rotation 

between the captured object and the camera are executed (Oufqir, El 

Abderrahmani and Satori, 2020). Therefore, it first calculates the distance between 

the camera’s coordinate position and the holographic AI’s location. The 

holographic AI’s new direction is updated continually, and it triggers walking 

animation when the distance is over a parameter, so that the holographic AI can 

follow users. Similarly, users can mark anchors in different directions and 

locations, and ask the holographic AI to follow the trajectory (see Figure3.45).  

 

Figure 3.45. The script for calculating distance between the holographic AI and the user 

The holographic AI in MirageXR cannot fully perform physical-object 

understanding (i.e. bidirectional interaction), but this application pursues a 

personalized open source of an AR training system. 

3.3.3 Recommendations for intelligence 
Intelligence refers to the holographic AI’s internal abilities that the user perceives 

its function after interaction, such as spatial understanding and natural language 

processing. In addition to adapting to explicit and implicit user demands, it is able 

to execute the tasks intended by the user.  
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The unidirectional interactive approach is reliant on physical-object recognition and 

spatial understanding. The holographic AI should be able to avoid colliding with 

physical objects by overlaying into an appropriate position in real time. In AR, 

physical-object interaction is reliant on simulation of a specific event, as well as an 

additional equipment, it can enhance an illusion of physicality, but it is harsh to 

deal with unexpected context.  

The holographic AI discussed in this chapter possesses spatial awareness, 

enabling it to recognize and track a user's movements. However, it cannot 

physically interact with or affect real-world objects, as it is designed for 

unidirectional interaction, which is determined by its intended use. 

Chapter 2 reveals that previous holographic AI systems provided standard 

services without the ability to tailor experiences to meet the individual needs of 

users. With advancements in natural language processing and adaptive learning 

technologies, the holographic AI can now generate personalized workout 

animations. Furthermore, natural language processing facilitates the control of 

specific body movements during these exercises. For example, if the user’s 

utterance is ‘Hi’, the holographic AI performs waving or greeting animations with 

smiling facial expressions, and then conducting next performance based on other 

conditions. 

Therefore, according to the reconstruction of holographic AIs and the PICS 

analysis, two recommendations of intelligence show below:  

• Verbal communication is a way to collect user information and provide 

customized services by adaptivity and user models.  

• The bidirectional and unidirectional interactions depend on whether the 

holographic AI is required to manipulate real objects. Although the 

bidirectional interaction can reinforce the sense of co-presence, the 

holographic AI only can influence pre-defined objects. 

3.4 Conviviality 

People prefer to interact with holographic AIs with more humanlike features, and 

they have a tendency to treat virtual humans in the same way as they do towards 

real people, in keeping with social norms (Miller et al., 2019). However, users are 

very sensitive to artefacts, and every single unnatural performance by the 

holographic AI can undermine social interaction. This problem may be magnified 

by face-to-face communication in AR. Although previous studies have considered 

various factors that could affect user experience, some aspects have generally 

been overlooked. 

User experience a sense of co-presence when they feel that the holographic AI 

coexists with them in the same space. This feeling stems from the illusion of 

physicality, since the holographic AI is not in the real world. Therefore, past 

studies have tended to focus on physical-virtual, bidirectional interaction, and 

various transitional approaches in the MR environment. Users can perceive the 

holographic AI is ‘being’ with them, as this sensation is from both physical and 

virtual interaction. Virtual presence refers to the way in which the holographic AI 

can interact with the virtual objects, and physical presence means that the 
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holographic AI can recognize or interact with real objects. For example, if the user 

delivers a virtual object to the holographic AI, the holographic AI needs to firstly 

track this virtual object, and then catch it from the user’s hand in a natural manner. 

Further, the holographic AI should exhibit social awareness in both virtual and 

physical situations. For instance, MirageXR provides a service, with which users 

can deposit virtual icons in an effort to determine where the holographic AI stands, 

and watch the holographic AI walk through the pathway of markers.  

Another important facet of the holographic AI is warm communication. For 

example, the holographic AI in MirageXR can be a chatbot which engages in a 

‘warm-up’ at the beginning of interaction. The holographic AI expresses empathy 

towards the user by asking inviting questions like ‘How are your feelings today?’. 

Although there is no evidence to prove that the warm dialogue can enhance the 

possibility of social interaction, it generally offers the user a better experience than 

output consisting of cold utterances.  

To build a user model, the holographic AI can collect the user’s data via natural 

language processing to produce a set of preferences. For example, the 

holographic AI in the holoCARE (Wild, Loesch and Huang, 2019) first needs to 

understand user’s requirements, health conditions, age, weight, etc., creating a 

user model that saves and updates this data. For adaptivity, it then extracts the 

data again, conducts self-learning, and makes decisions on which exercises to 

recommend for the user and stated needs.   

The holographic AI should exhibit social awareness by being imbued with the 

ability or initiative to stimulate the user’s interactivity by behaviours, language, and 

determination of the user’s preference. However, although such a holographic AI 

may appeal to those with no experience in AR or VR, it is possible that those users 

might lose interest in engaging in such further interaction.  

3.4.1 Recommendation for conviviality 
As the holographic AI operates within a MR environment, distinct from VR or the 

physical world, most studies in the last chapter focus on a single factor affecting 

co-presence or social presence. The research seeks to determine how the 

recognition of real-world objects can influence the user-friendly nature of the 

system, assuming that users are allowed to engage with the holographic AI. 

However, few studies consider whether users are willing to interact with the 

holographic AI, a perception crucial for building a positive and lasting relationship. 

There is also a shortage of research addressing the measurement of holistic user 

experiences. 

Mayer et al. (1995) define trust as the willingness to be vulnerable, a key 

determinant of a user's readiness to engage with the holographic AI. While Kim et 

al. (2016) measure trust, their focus is on safety rather than the user's disposition 

or attitude. If users do not trust the holographic AI, they may be reluctant to accept 

or continue using it. Therefore, Chapter 5 highlights the importance of trust in 

human-holographic AI interactions. The following recommendation is proposed: 

• Conviviality should represent the interactive quality and overall user 

experience with the holographic AI. Although holographic AIs differ in 

characteristics, they should aim for a comprehensive user experience. 
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3.5 Sense 

 
Input modalities 

(users – holographic AIs) 
Output modalities 

(holographic AIs – users) 

Real world 

• Temperature 

capturing, 

• Ray tracking, Spatial 

mapping, 

Spatial/physical-object 

understanding 

• Physical-object 

management / 

influence 

• Avoiding collision  

Virtual world 

• Virtual objects 

interaction,  

• Virtual and physical 

information connection 

• Information of the 

virtual context update 

User 

• Gaze tracking, 

• Voice input, 

• Head tracking, 

• Location tracking 

• Animation, audio, 

natural language 

processing, eye 

contact 

Table 3.1. Input and output modalities in AR 

Senses are related to interactive approaches, which are characterized by input 

and output modalities. Barakonyi and Schmalstieg (2005) proposed a table listing 

input and output modalities in the physical and virtual worlds. This section expands 

their table and its contents by dividing it according to three situations:  real world, 

virtual world, and the user (see Table 3.1).   

The term input modality concerns the cues which help the holographic AI 

recognize the user, such as their speech and dialogue, user gestures, eye gaze, 

space proximity (for following the user), or head tracking (the user to the 

holographic AI). 

The term understanding refers to the holographic AI’s ability to process data from 

the user during conversation and determine the user’s intentions.  

The term output modality concerns the holographic AI’s responses to the user, 

which in turn are composed of audio output, animations, eye contact, facial 

expressions, speech, and dialogue. In this vein, the term responsiveness is 

defined as the ability of the holographic AI to react intuitively and quickly both to 

the digital and physical spatial surroundings of the user, and to perceived 

activities, and therefore its ability to maintain a sense of corporeal presence 

(Campbell, 2014). The main ways by which users and holographic AIs interact are 

via gestures and speech, and so the measure of a holographic AI’s interactive 

ability is its ability to utilise data supplied by the user in such a way that its output 

matches the user’s needs (as discussed back in Section 3.2: Intelligence). 

The Input modality of a holographic AI should be such that it can track pre-defined 

real objects based on the objectives of the application, such as temperature, ray 

tracking, physical-object awareness, or spatial understanding.  
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One notable example is the ‘ghost tracks’ IoT (Internet of Things) tool developed 

by MirageXR, designed to facilitate XR-based learning by allowing experts to 

provide learners with holographic guidance in the form of ghost tracks with the use 

of smart glasses containing built-in sensors, which enable capture and anchored 

replay. The MirageXR tool contains floating agents capable of recognising objects, 

which can tutor learners by demonstrating tasks in the virtual environment. 

The term virtual input modality refers to virtual-object management and connection 

between real and digital contents. It can be activated by the user’s input and input 

tools, such as gesture and the voice controller.  

As mentioned in the previous section, speech and dialogue are integral to natural 

language processing as they capture the user’s ways of expression. Not only can 

a user’s gestures replace the clicks of a computer mouse, but they can also supply 

a virtual object with a more specific, user-defined gesture as a virtual output 

modality. For example, Wang et al. (2021) have developed the GestureAR system, 

which uses a visual programming interface that enables different types of hand 

gestures to match virtual objects’ performances, such as real hand can grab a 

virtual cup.  

Section 3.3.2 considered how the ability of the holographic AI to follow the user’s 

footsteps, i.e. spatial awareness. Previous studies have investigated social 

distance between the user and holographic AI, and have applied different fixed 

values for determining a proper distance. For example, introverted people either 

prefer to maintain a certain distance from the holographic AI, or prefer to stand 

closer to it. Therefore, the space trigger provides a satisfactory and user-defined 

approach for avoiding too-near or too- far interaction.  

Gaze tracking is also critical in input and output modalities. It can be used to avoid 

unintended behaviours and improve accuracy of eye movement (Papadopoulos et 

al., 2021). In the holographic AI to user interaction, eye contact is imperceptible 

yet important element of social interaction which enhances the user experience, 

and it has been demonstrated that eye movement is related to cognitive activity 

(Nikolaev, Pannasch and Belopolsky, 2014). Therefore, eye tracking enables the 

holographic AI to identify the user’s gaze orientation and garner data of the user’s 

visual attention. Eye tracking is based on saccade, fixation, and both time and 

space are factors of gaze duration at attractive objects (Lai et al., 2013). Kapp et 

al. (2021) have developed an open-source AR toolkit and R package for data 

analysis. HoloLens 2, which tracks the user’s eyes using infrared cameras, 

gathers the gaze data (including gaze position, gaze point, and reference), and 

transfers the data to Unity 3D where it is recorded, and its accuracy is evaluated. 

During the holographic AI’s interaction, eye tracking information based on the 

user’s gaze position is gathered. For example, Pfeuffer et al. (2021) have 

developed aRtention for gaze input. The additional interactive interface displays 

context/object – based information. The aRtention system has three dimensions: 

the first considers the volume proportion of the virtual information panel 

(transmission of virtual and physical information); the second enables the user to 

browse different levels of information via gaze interaction; and the third is task 

transitions, which can adapt to content based on the user’s choices via expanded 

information. aRtention system can serve as an intelligent tutor system, as trainers 
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using the program need not have to rely on book reading or other physical 

resources to convey knowledge and skill. 

3.5.1 Recommendation for senses 
While sensory perception is an aspect of intelligence, this discussion centres more 

on how holographic AI integrates various capabilities to perceive and respond to the 

context of interaction. Current AR technologies focus on different interrelated input 

and output modalities, and these multiple and mixed interactive approaches affect 

conviviality. However, previous holographic AIs limited interactions to one or two 

senses, such as natural language processing, spatial awareness, or object 

recognition, without addressing how the AI could simultaneously process 

information from user motivation, and from both virtual and physical environments, 

taking into account diverse contextual elements to achieve optimal results. 

Past studies have typically focused on one-to-one interactions, which means the 

holographic AI may not be designed to recognize and meet user-centred 

interactive needs and services, particularly in educational settings. For instance, a 

holographic AI that offers a uniform learning curriculum fails to address varying 

levels of student proficiency. Advanced students might engage in redundant 

review of known material, while beginners might struggle with the pace and 

complexity of the content. Thus, social awareness is proposed as an additional 

factor to enhance user experience. The development of a user model, as 

described in Section 3.3.1, aims to identify and satisfy user requirements through 

adaptivity. Additionally, students may not have a clear understanding of their 

objectives within a specific domain. Hence, the holographic AI should estimate and 

refine the user model by gathering and analysing user information and responses 

to facilitate a broad range of interactive and user-centric content. 

On the basis of the above discussion on interaction modalities, and in view of 

recent developments such as MirageXR, the following a recommendation is 

proposed: 

• The user model and adaptivity act as interfaces for interaction modalities, in 

that they capture user input within the user model. This model is designed 

to self-update throughout the interaction to enable adaptive responses, thus 

generating pertinent context in real-time. 

3.6 Model Revision 

 

Figure 3.46. The refined model 

According to this case study of creating the holographic AI, the previous PICS 

model is refined (see Figure 3.46). 
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The dimensions and components of the persona are taken into account when 

creating the holographic AI. Although 3D scanning and motion capture can 

generate realistic appearances and animations, the depiction of Sarah (refer to 

Figure 3.21) exhibits a cartoon-like portrayal with human characteristics by using 

traditional methods. The dimensions of the holographic AI can be tailored to meet 

user specifications. Although the body animations are contingent on the AI's 

functions and goals, this does not take into account whether the AI's verbal output 

aligns with its non-verbal cues. 

In the prototype model, learning systems are suitable for use in intelligent tutor 

systems, simulation agents, and educational games, with a focus on application 

development rather than mastering a particular ability. Consequently, this aspect 

has been omitted, yet it has been examined within the context of the holographic 

AI's classification. 

Computer vision is essential for recognizing physical objects, as well as for spatial 

mapping and understanding. Chapter 2 details how OpenCV has been 

implemented in marker-based augmented reality (Verma et al., 2021). 

Nevertheless, this facet was deemed redundant and overly broad in the initial 

PICS model, complicating the selection of specific intelligence components. For 

instance, both marker-based and marker-less AR are applicable to mobile devices. 

Marker-less AR permits the placement of virtual items in any location without 

markers. A trigger image can track the holographic AI, yet its visibility is lost when 

the camera angle shifts away from it. This case study utilizes spatial mapping to 

exhibit the holographic AI, which can be better described by AR alignment as it 

synchronizes. 

Campbell et al. (2014) state that holographic AIs can alter their state in a dynamic 

interactive space; otherwise, they remain static. The holographic AI resides in an 

MR environment, where virtual space can be easily manipulated, unlike in the real 

world. Prior studies have used sensors and controllers to interact with specific 

real-world objects. Thus, this interactive setting is deterministic, with each action 

being predictable (ibid). For instance, the holographic AI is capable of moving real 

tokens when following a pre-established interaction protocol (Lee et al., 2021). 

However, the classification of environments as random/deterministic or 

dynamic/static falls short in describing whether the holographic AI can perceive or 

influence a hybrid reality. Nonetheless, the prior chapter utilizes the concepts of 

bidirectional and unidirectional interactions to discuss physical-object recognition 

or interactions. Holographic AIs with bidirectional interaction capabilities can 

manipulate and influence physical objects, but should first recognize them. 

Unidirectional interactions, on the other hand, are limited to recognizing physical 

objects. For example, the holographic AI in MirageXR can locate the user. While it 

cannot manipulate physical objects, it can respond to stochastic behaviours by 

tracing the user's movements. As a result, bidirectional/unidirectional interactions 

replace physical-object recognition/interaction. 

The primary mode of engagement is natural language processing. This system 

encompasses dialogue management, language translation, and speech 

recognition and synthesis. The holographic AI system extracts predefined 

keywords to generate appropriate responses in line with the set topic and 

conversational context. If a user provides irrelevant input, the holographic AI may 
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not ascertain the user's intention. Therefore, the system should possess the 

capability to detect such deviations and steer the dialogue back to its intended 

trajectory. 

Conviviality denotes the quality and user experience of the interaction, a topic that 

will be explored in Chapter 5. Prior research has honed specific capabilities to 

assess whether the holographic AI can enhance user perception by comparing or 

manipulating variables. Consequently, the elements or factors that augment user 

experience are varied, encompassing physical-object interaction and recognition. 

These studies might be viewed as single-factor assessments since they evaluate 

the influence of the holographic AI's cognitive abilities or aesthetic on interactive 

engagements. However, a comprehensive evaluation of the holographic AI is also 

vital to determine its acceptance, reliability, and relationship with the user. The 

concept transcends a focus on a singular capability, function, or representation of 

the holographic AI. Therefore, conviviality involves both single-factor assessments 

and an overall perception. 

Sensory detection examines how the holographic AI perceives and responds to 

the environment and users, including eye tracking, facial recognition, and position 

sensing. Additionally, the holographic AI can utilize natural language processing to 

compile and refine a user model that enhances adaptability, thus providing a 

tailored and user-centric experience. As a result, adaptability extends to sensory 

detection and merges with the user model to facilitate personalized interactions. 

The differentiation between intelligence and sensory detection is in the manner of 

interaction with the user and the method of information exchange; intelligence, 

conversely, relates to the ability to perform tasks and solve problems. Therefore, a 

holographic AI can amalgamate sensory detection with varying levels of 

intelligence. For instance, Azuma Hikari is a holographic AI that engages in 

bidirectional interaction by recognizing specific hand gestures to control lighting 

(Huang, Wild and Whitelock, 2021), and learning feedback can be derived from 

integrating semantic analysis with eye tracking (Hartholt et al., 2019). Therefore, 

senses include interaction modalities and personalized interaction.  

In conclusion, the initial model is refined based on this case study. However, not 

all components are chosen for the development of the holographic AI in this 

chapter, such as bidirectional interaction, AR alignment, or co-presence 

measurement. 

Besides, the logical extension of the work presented here next would be to 

investigate further means and capabilities to fully implement unidirectional or 

bidirectional environmental interaction, equipping the holographic AI with IoT 

functionality.  

In referring to the PICS model and case experience, the elements of the model are 

optional, depending on the aim of application. However, they should be applied in 

such a way that the user is convinced of their need for the holographic AI and AR. 

Therefore, the following five recommendations are proposed:  

• Persona: The design and scale of the holographic AI must align with its 

intended purpose and objectives. Achieving a balance between 

photorealism and behaviour is crucial to avoid the uncanny valley effect, 

which may otherwise disrupt user engagement. 
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• Intelligence: For holographic AI, natural language processing serves as a 

critical method for initiating animations and gathering user data. It should 

also be adept at recognizing and rectifying erroneous inputs.  

• Intelligence: Both bidirectional and unidirectional interactions can handle a 

limited array of predetermined objects in real-time, bidirectional interactions 

necessitate a designated space for the management of physical entities. 

• Conviviality: The user experience with holographic AI is influenced by 

multiple factors, such as the degree of interactive capabilities and the AI's 

persona. However, it is essential to consider the overall user perception, 

which includes trust, usability, and acceptance. 

• Senses: Multimodal interaction must cater to user preferences and 

requirements, ensuring a fluid integration of the virtual and physical realms 

to deliver personalized experiences. 

3.7 Summary 

This chapter builds upon Chapter 2, which details the elaboration of the PICS 

(persona, intelligence, conviviality, and senses) design model to form a 

comprehensive process for designing a holographic AI, including 3D scanning, 

reconstruction, animation creation, and intelligence development. Additionally, the 

case study refines and validates the preceding PICS model by restructuring and 

consolidating similar or redundant elements. The result is a more succinct and 

focused model. These considerations have been incorporated into the proposed 

guidelines to underscore the crucial aspects of holographic AI development. 

The first section of this chapter has examined the process pipeline and 

approaches for 3D scanning and reconstruction of body movements, specifically 

facial expressions. A high-quality reconstruction model is capable of scanning a 

large flux of data, and delivering textures with no distortions or missing meshes.  

The kind of 3D reconstructed character described earlier in this chapter is different 

from traditional humanoid ones used in games and social media, such as Lil 

Miquela, a virtual influencer. Reconstruction is complicated task: sculpting high-

poly models with skin textures is a tenuous process during which some data are 

lost, and the resulting the high-poly 3D model might be missing certain details or 

structures. For example, eye parts include the lower/upper eyelids, palpebra, 

lacrimal gland, lacrimal sulcus, and lacrimal sulcus, and 3D scanning might fail to 

capture all these tiny structures. The approach of directly baking normal maps and 

ambient occlusion maps from 3D scan models does not circumvent the problem as 

it yields a blue graphics for the normal map and a wrong white image for the latter 

kind. 

As detailed above, two methods for generating animations have been developed: 

an optical, camera-based system (Vicon, 2023) working with key markers, and a 

body-worn smart suit system (Rokoko smart suit) for sensor-based capture. The 

quality of animations from the multiple cameras are more stable, but it encounters 

the problems of some markers being covered by others. 

The sensor-based capture of the Rokoko suit is more portable, but it has strict 

magnetism requirements. For example, if the suit touches metal objects, legs, or 
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arms of the avatar will be distorted, and it can be difficult to clean up later requiring 

the failed parts of body movements to be reconstituted (key) frame by (key) frame.  

Three Unity plugins were compared for producing facial animations and lip sync, 

and found that SALSA works better than the others, but has licensing restrictions. 

It provides more optional parameter of blend shapes, integration with emotions, 

eye blinking, and lip movements.   

Intelligence components include natural understanding and spatial understanding, 

given that verbal communication is the main human interactive approach, and 

spatial understanding is key feature of AR. As regards to natural language 

processing, MirageXR applies dialogue management, speech to text, text to 

speech, and translation services.  

This chapter has described the development of a distance trigger which enables 

the holographic AI to follow the user’s footsteps via spatial understanding, helping 

the holographic AI find the user, offering a proof of concept how spatial 

personalisation can be performed. This could be further developed to reduce 

issues of social distance in connection with users’ different personalities and/or 

cultural backgrounds. Although the MirageXR holographic AI’s ability to interact 

with users is basic, it focuses on user-centred tasks.  

The development of the holographic AI need not be limited to a predefined pattern. 

For example, if the simulation agent relies on a pre-trained scenario with various 

possibilities in terms of results, users, however, cannot conduct self-made 

conditions, so tutors cannot build a scenario that is based on students’ learning 

situations.  

Further, the types of holographic AIs in MirageXR are mixed: each one can be an 

intelligent tutor and chatbot simultaneously. Users can self-create different 

scenarios based on their requirements. For example, the holographic AI could 

teach primary Year 4 mathematics, guide students to positive behaviour, teach 

trainers to check and maintain precision equipment, or provide electrocardiogram 

training. 

Conviviality is social interaction, linking with dialogue understanding, but serving a 

different purpose. Dialogue can be utilised to implement warm-ups and 

icebreakers, to make users feel warm their interaction with and social awareness 

of the holographic AI.  

Senses express the system’s input and output modalities, concepts which involve 

both physical and virtual worlds, and the user. The input modality of the 

holographic AI can be defined as its understanding and awareness, and is 

contingent on users’ detection functions, such as capturing utterance, user 

gestures, gaze trigger, space trigger, etc.  The output modality is its 

responsiveness/ reaction, the way the holographic AI responds to user input in 

terms of traits such as animations, eye contact, facial expressions, etc.  
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Chapter 4 Extracting Teaching Gestures for 

Animation: An Experiment 

4.1 Introduction 

In previous chapters, the concept, model, features, and creation of holographic AI 

have been discussed. However, the previous studies that are discussed in 

Chapter 2 do not provide that their holographic AIs can perform diverse gestures 

as a non-verbal interaction, even though they have animations, especially in the 

pedagogical domain. As an example, the holographic AI can merely perform basic 

animations such as standing, breathing, and pointing, to measure user perception, 

or prove animation can influence social presence. Therefore, this chapter 

investigates the influence of gestures on social awareness, academic 

achievement, and user experience, and explores the different types of gestures 

that could be useful for the holographic AI, within a pedagogical domain. This 

chapter, however, does not develop the holographic AI's model since it is beyond 

the scope of the research. 

A gesture is a primary method of expression that is spontaneously generated, and 

that may even replace speech in communication due to its relationship with 

language generation and perception (Wagner, Malisz and Kopp, 2014). Non-

verbal language also reflects speakers' mental processes, linguistic organization, 

and level of cognition (Lyons and Semantics, 1977; Goldin-Meadow and Brentari, 

2017). Therefore, gestures can be considered ‘visible voices’. In contrast to other 

movements, gestures serve informative and interactive functions (Lyons and 

Semantics, 1977). As an example, the size of an object can be schematized 

(represented by) figures or hands, and the orientation of an object can be 

described using pointing gestures. Co-speech gestures, which include spoken 

utterances accompanied by gestures, are a common form of communication. So et 

al. (2014) demonstrated that meaningful co-speech gestures help children and 

adults remember more words. Further, gestures also serve unvalued functions, 

such as habitual gestures, which may have potential functions or linguistic cues 

that can reflect a person’s habits of thinking and movement (i.e. habitual thinking), 

cognitive ability, personality, and emotions.  

In games and intelligent personal assistants, gestures are frequently used to 

enhance the user’s sense of immersion. One such program is NEONS, a virtual 

assistant that mimics the speech of humans. In a promotional video, NEONS 

employs motion capture to generate a series of co-speech gestures. However, 

NEONS lacks the capacity of producing abundant gestures when speaking, 

despite learning from real human emotions. Gestural animations are also critical 

for virtual characters, especially for intelligent tutor systems. Such animations 

should incorporate human body affordances (Cassell, Vilhjálmsson and Bickmore, 

2002). Therefore, an animated virtual teacher requires not only speaking abilities 

but also body movements to enhance natural face-to-face interaction, rather than 

displaying only head movements and facial expressions, especially when 

highlighting key learning points. For example, when a teacher asks students to 

look at a number accompanied by a pointing gesture, which can attract student’s 

attention. 
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The co-speech entails multiple dimensions, since meaning and timing are co-

produced (Abner, Cooperrider and Goldin‐Meadow, 2015). Therefore, if speech 

rhythms and gestures simultaneously appear in a moment, which helps grasp key 

messages or serve to filter unmeaningful messages in both physical and virtual 

environments. For instance, when people portray the shape of an object, their 

spoken utterance and gestures may occur in parallel, or be backward in thinking, 

depending on the way of human user is searching for selecting key information. 

Although the virtual human attempts to simulate human performance speech, and 

the delays or pauses undermine its performance. While, Piwek (2014) claimed that 

a humanoid character with animations can improve familiarity regardless of 

whether it is natural, rather than producing uncanny valley effects. However, if the 

semantics of gestural animations cannot match the speech content, and the virtual 

human can only open their arms while speaking, this will create confusion and an 

uncanny feeling, since a real person generates different gestures in speech. 

Therefore, this chapter reviews past studies concerning gestural investigation. It 

also reports the findings of experiment, the purpose of which was to collect data in 

relation to gestures, classify key holographic AI gestures, and explore how 

gestural animations can be incorporated into a pedagogical holographic AI. 

This chapter is organized as follows: Section 4.2 reviews previous studies; Section 

4.3 describes a methodology for data collection in scope of key gestures; Section 

4.4 details the experiment set up and data collection, and Section 4.5 presents the 

data analysis and findings. Section 4.6 discusses the experiment in detail, and 

Section 4.7 provides what gestural animations can be produced and used for a 

holographic AI, and limitations of this study represents in Section 4.8. Then 

Section 4.9 summarizes the findings of this chapter. 

4.2 Previous Studies 

A gesture can emphasize meaning, guide movement in real-time and through 

space, or even be used for more abstract tasks (Goldin‐Meadow, 2011). Gestures 

also serve a critical function in education. It is known that gestures can be utilised 

in teaching to positively influence both learning outcomes and learner satisfaction 

(Lester et al., 1999). The virtual teacher in an intelligent tutoring system can help 

learners obtain and review knowledge. Although a virtual human can mimic real 

teachers regarding speech and behaviour, virtual teachers today often use rather 

repetitive animation loops with a limited repertoire, such as standing for a long 

time, pointing in a specific direction, or crossing arms, such as FaceMe system (Li 

et al., 2021). Such mechanistic behaviour cannot adequately mimic the 

performance of a good teacher or trainer, and insight is needed into a wider 

repertoire of gestures and the context and conditions under which they can be 

deployed to support understanding and guiding of student attention, rather than 

distracting them (Kajopoulos et al., 2021). This finding suggests that an explicit 

investigation into how the real teacher’s gestures can be transferred to a virtual 

humans’ behaviour, which does not merely rely on simulation, should be 

undertaken. 

However, there have been studies which specify exactly what these key 

instructional gestures are, and which gestural animations can be deployed by a 

holographic AI to improve the user’s sense of trust and experience. Therefore, in 
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order to understand the taxonomy of gestures and how to encode them, Section 

4.2.1 firstly reviews types of human gestures and their distinction, and then 

consolidates them into an investigative framework. Section 4.2.2 considers which 

types of gestures are frequently used in teaching, and whether they can affect 

learning outcomes. Section 4.2.3 considers how a virtual human could apply 

gestures to facilitate interaction. Section 4.3.4 reviews how to analyse data of 

gestures by coding. Based on the review of previous studies, the research 

questions and knowledge gap are outlined in Section 4.2.5, a brief plan to fill the 

gap is provided in Section 4.2.6. 

4.2.1 Gesture forms 
In the development of non-verbal communication in virtual humans and 

holographic AIs, many technologies capable of generating a series of high-fidelity 

animations have been demonstrated in the research field. However, although 

some researches have claimed that the gestures exhibited by their holographic AIs 

are meaning in interaction (Rebol, Güti and Pietroszek, 2021), these do not entail 

reusable and reliable gestures characteristic of human movement in speech. In 

considering gesture generation and the gestural relationship in terms of spatial 

information, this section details the concept, taxonomy, and framework of 

gestures.  

A gesture can be defined as 'visible action' in an utterance (Kendon, 2004), 

whereas an action occurs, for example, when a person moves an object. By 

altering the amplitude of the arm and hand, a gesture describes an object's 

properties (Novack et al., 2014). Therefore, it is defined as a visible/schematized 

language that implies an intent via particular movements of the hands and fingers. 

In terms of gesture taxonomy, Abner, Cooperrider and Goldin‐Meadow (2015) 

summarize two approaches. The first is based on an articulator for generating 

hand movements, such as those used in sign language. During conversation, it 

integrates other body parts together with the production of speech sounds. 

Gestures, for instance, are often used to indicate agreement or disagreement in 

conjunction with head movements. A second way is to use a gestural function in 

conversation which is interactive and representational. 

In the interactive type, gestures are used to manage speech or dialogue between 

listeners and speakers (Kendo, 1995). Attitudes, emotions, or ideas are conveyed 

through them, but the interaction gesture is not associated with communication 

topics (Bavelas et al., 1992). Listeners give feedback or corresponding gestures, 

such as handshakes, high-fives, and invitations, to the speaker. 

A representational gesture, on the other hand, conveys information about an 

object, activity, or environment. For example, people use their hands and fingers 

to indicate an object’s shape or size. Table 4.1 lists the types of representational, 

namely deictic gestures, iconic gestures, metaphorical gestures, and emblems 

(Bernard, Millman and Mittal, 2015; Abner, Cooperrider and Goldin‐Meadow, 

2015). 

 

 



101 
 

Code Description Example 

Interactive Managing speech, maintaining the 

social system 

Greeting gesture, high-five 

Deictic Pointing at a location, position, 

time, and object 

Index finger points at a 

direction. 

Iconic Depicting a physical object’s 

property 

A vase’s shape: open hands 

and perform curl. 

Metaphoric Describing metaphor concepts ‘Pointing upwards gesture’ 

means increase. 

Emblematic Widely common, ‘cultural’ 

gestures that may lose their 

original meaning 

‘Ok’ gesture and silence 

hand gestures 

Beat Pragmatic gestures that 

emphasise the flow of speech 

Hands/ index finger goes up 

and down in speech 

Cohesive As repeated gesture, it can be 

used to cohere with the 

interrupted narrative by creating 

the same gesture in the original 

position 

The same gesture is 

created again in the same 

position for resuming the 

utterance, e.g. using two 

finger quotation marks to 

mark the beginning of a 

quote and the end. 

Table 4.1. General gesture types 

Deictic gestures involve pointing at objects, directions, people, or abstract 

concepts such as time (Krauss, Chen and Gottesman, 2000). This type of gesture 

uses spatial expressions that can draw the user's attention by replacing spoken 

determines, i.e. 'this', 'that', 'there', or 'here'. A typical deictic gesture is a pointing 

gesture. Forefinger pointing is the most common and habitual gesture used when 

pointing at a referent (Navas Medrano, Pfeiffer and Kray, 2020). This type of 

gesture has been divided into three branches by Hassemer and McCleary (2017): 

pointing at objects, pointing at locations, and pointing at directions. The deictic 

gesture relies on whether the interlocutor shares space with the demonstrator. 

With the pointing gesture, the speaker can map out places in his/her mind and 

assigns these different spaces to the place to which he/she intends to refer. The 

place and object are taken as referents by the speaker when conversing with 

others, and these referents are processed by the way of spatial information. The 

pointing gesture has an abstract meaning in this context, despite the fact that the 

place pointed out is concrete. As it depends on context interpretation, and the 

referent may not be physical (Gunter, Weinbrenner and Holle, 2015). 
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The iconic gesture can depict a concrete matter, representing its properties. As an 

example, people describe running postures by swinging their elbows and arms. In 

the context of conversation, it is useful for indicating relevant features by gestures. 

Kinesics features of the iconic gesture are associated with semantic features 

(Kopp, Tepper and Cassell, 2004).  For instance, a person might say “water 

velocity is fast” non-verbally by simultaneously waving their arms and hands. The 

iconic gesture expresses a concept of the referent, while its Kinesics marker 

corresponds to its physical characteristics (ibid).  

The metaphorical gesture is used to describe concepts with a figurative, symbolic 

expression (Bernard, Millman and Mittal, 2015). Metaphors are words that are 

used not with their literal meaning, such as "night owl" or "spilling the beans". For 

example, the pushing forward movement of the hand gestures “opening the heart”. 

This pushing gesture is a metaphorical way of expressing one's feelings. 

Furthermore, such a gesture can also describe a specific orientation of time. The 

left hand could indicate the past, while the right hand indicates the future 

(Lhommet and Marsella, 2016). Therefore, metaphorical gestures also can be 

used to concretize abstract concepts (Kircher et al., 2009; Lhommet and Marsella, 

2016). However, the concept of the metaphorical gesture is questionable since the 

taxonomy of gestures should be based on form and semantic meaning with 

speech and motor representation. Krauss, Chen and Gottesman (2000) 

considered the metaphorical gesture as an iconic type. A metaphor utterance is 

difficult to understand if the speaker only performs hand movements. Further, the 

classification of the gesture cannot rely solely on a signal representation. The 

metaphorical gesture should visualize potential features of metaphor expression, 

but it cannot be defined as iconic since an iconic gesture can directly describe an 

object’s physical features. 

The emblematic gesture represents a specific and widely understood concept, 

such as the upward extension of the thumb meaning ‘good’, and the 'hand-to-ear' 

meaning that the interlocutor is talking loudly. 

McNeil (1995) classified two more types of gestures: beats and cohesive. The 

former is a pragmatic gesture that is used to maintain a conversation. As defined 

by Prieto et al. (2018), this hand performance is a ‘non-referential hand gesture’.  

The latter markers a referent's location and tracks the referent in a discourse 

(McNeil, 2005). When the same matter is mentioned again in the later 

conversation, it can present in the same location (Sekine and Kita, 2013). For 

example, the listener interrupts an utterance, and the speaker retains the original 

gesture. When he or she resumes the suspended story, the same gesture in the 

same position is created. In this way, the speaker is able to bring the narrative 

together. 

In a closer examination of the gesture generation process, Kendo et al. (1980) 

proposed three steps: preparation, stroke, and retraction. The first step is to 

prepare the hand movement. The gesture then performs in its active phase. In the 

retraction, the gesture reverts to a previous direction or prepares the next gesture. 

The hand movement can hold for a while in the gestural phase, which is the pre-

stroke posture (Kita, van Gijn and van der Hulst, 1998). 
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To investigate how gesture generation affects the cognitive process, Kita, Alibali 

and Chu (2017) proposed a theoretical framework of the representational gesture, 

with four elements: gesture activation, manipulation, packaging, and exploration of 

spatio-motoric information (see Table 4.2).  

In terms of activation, gestures can trigger new motor commands or preserve 

existing spatio-motoric representations. It has been found that people gesture 

more when they describe paintings from memory than when they describe them 

from sight (Wesp et al., 2001). People’s gesturing relies on the pre-exiting 

information which they have observed. In this way, the gesture can prevent pre-

existing spatio-motoric representations from fading from memory. However, the 

mind constantly updates and adapts to changes in the surroundings and body, 

making it difficult to recall pre-existing spatial information and maintain its 

activation. This means that gestures can help activate, keep active, and even 

modify new spatio-motorically grounded representations. Speech content, for 

instance, can be visualized and changed using gestures, allowing for more spatio-

motor descriptions. In addition, such a gesture also can prompt abstract and 

metaphoric concepts by activating spatio-motoric representation (Kita, Alibali and 

Chu, 2017). 

During a conversation, information is manipulated in order to observe the referent 

from a variety of perspectives (Kita, Alibali and Chu, 2017). For example, people 

simulate rotation and place objects in the right holes, using co-thought gestures. 

Following this, they manipulate the object in spatio-motor representation by 

gestures that relate to the task. It is critical to note that the gesture does not 

directly map or offload the referent's property; instead, sensory-motor information 

is continuously transferred to the brain, which then effectively generates 

movement (ibid). People may produce gestures that differ from speech content 

and extract information from the perceptual dimensions of the referent (Alibali and 

Young, 2010).  

Furthermore, complex meaning, when represented in utterances, can at times be 

overwhelming. Chunking gestures provide remedy here. Kita, Alibali and Chu 

(2017) explained that the packaging system of our brain can separate chunk 

information into units using spatio-motoric hints, which in turn allow people to 

gesturally recode information along chunks. For instance, when describing motion 

event, a person gestures 'rolling' and then 'down' to convey "rolling down the hill" 

(Mol and Kita, 2012).    

In considering which information is useful or can be optimized for the task at hand, 

people evaluate relevant information and affordances. Failed and abandoned 

gestures are part of the exploration: such gestures cannot match utterances 

changes in a person’s thinking (Kita, Alibali and Chu, 2017). For example, if the 

listener misunderstands, the speaker may generate a new form of gesture to re-

organize spatio-motoric information. 

Speech and gestures have different representational modalities but complement 

each other (Abner, Cooperrider and Goldin-Meadow, 2015).  For example, 

gestures can encode visuo-spatial information that speech cannot. As part of an 

entity, speech is a discrete digital unit, whereas gesturing is a continuous form in 

the analogue world that can provide additional language information (Fuks, 2014). 
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The gesture can be used to eliminate speech misunderstandings or to convey the 

same concepts as a speech.  

In previous studies, gestures are correlated with time and duration, spatial 

movement and information, and speech. The gesture is a phase of movement 

from preparation to retraction. The co-speech gesture is temporally aligned with 

time, serving as “a prosodic structure of language” (Abner, Cooperrider and 

Goldin-Meadow, 2015). The gesture's taxonomy is defined by its function. Different 

gestures can convey the speaker's key points or directly some actual meaning. A 

gesture can be used to explain ways of thinking, and how people process 

information into a spatial representation.  

It presents a gestural taxonomy as summary of the above in Table 4.1, and the 

framework of cognitive process that affect gesture generation is presented in 

Table 4.2. 

Code Description and features Examples 

Activation Gestures activate or maintain a 

spatio-motoric representation; 

communicative success 

depends on whether listener can 

select the intended pre-existing 

information from memory. 

People may extract pre-

existing information from the 

past to maintain activation or 

activate new spatio-motoric 

information that is not yet 

active. 

Manipulation The spatio-motoric information 

can be rearranged by the 

gesture to facilitate penetrative 

thinking for simulating the 

referent. 

People need to gesturally 

rotate a Rubik's Cube 

Packaging Gestures can help separate 

information into chunks. 

When people describe 

similar referents with 

different shapes, their 

gestures need to package 

this spatio-motoric 

information (e.g. counting 

fingers for different aspects: 

one, two, etc.) 

Exploration Gestures explore whether 

information was received 

information. It can be a trial-and-

error process. 

When a listener cannot 

understand t speaker’s 

speech or gestures, the 

speaker will give up the 

present performance, and 

try gestures again, and then 

seek to provide additional 

useful information.  

Table 4.2. Types of gestures used for influencing thinking 
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4.2.2 Influence of gestures in pedagogy  
This review presents what types of gestures used in a pedagogical setting and 

their influence in the students’ learning outcomes.  

Novack and Goldin-Meadow (2017) developed a gestural framework that explains 

how gestures represent functions, even though the meanings of the gestures are 

abstracted. They argued that gestures and actions serve their own aims, leading 

to different learning achievement. The authors conducted an experiment, in which 

they asked three groups of children to calculate mathematical equivalence 

questions, such as 3+7+2 = ___+ 7, using hand gestures or actions (Novack et al., 

2014). The experimenter guides children in using gestures or actions. The first 

group picked up tiles with numbers, and the second pretended to move the tiles. 

The last group of children pointed at the two numbers using fingers forming a V-

shape. It is claimed that only children who use the deictic gesture can deal with 

similar problems, because this gesture promotes penetrative thinking and directs 

attention (Atit, Gagnier and Shipley, 2015), and that the important information in 

relation to numbers can be packaged by the gesture. Here, gestures can enhance 

the learner’s cognitive abilities and reduce distractions for students. 

Matsumoto and Dobs (2017) investigated the influence of gestures in regard to 

learning a second language. They observed students simulating teachers’ 

gestures, and teachers using gestures to explain temporal concepts. According to 

the authors, in grammar lessons, teachers use the metaphoric and abstract deictic 

gestures to compare past and future tenses, these gestures match the English 

metaphorization of time, and the abstract deictic gestures can be used to explain 

grammatical features. As an example, in the authors’ experiment a teacher 

generates a metaphorical gesture to represent a time range by making a circular 

and continuous action, and then the deictic gesture points down to explain the 

present time by pointing at different positions of the relevant space. The gesture 

also represents transcription symbols, and it can compare past and future tenses. 

In this investigation that conducted by Matsumoto and Dobs (2017), students 

focused on and imitates the teacher’s gestures to assimilate knowledge and 

enhance understanding. Therefore, the teachers’ gestures are an essential tool 

that is able to adjust students’ way of thinking and their expression. The gesture 

also serves to establish a visual image in communication, and repetitive 

movement can serve to highlight focus.  

However, teachers’ gestures alone cannot stimulate students into learning more 

knowledge. For example, Yeo et al. (2017) implemented four lessons in which 

teachers perform/did not perform gestures to teach equations and graphs. 

Afterwards, the student’s learning outcomes were measured on the basis of 

whether they can successfully answer questions concerning slope and intercept. It 

was observed that the teacher’s gestures alone did not enable students to achieve 

higher scores, in contrast to the verbal lessons. There exists the risk of hand 

gesture functionality being diminished where there is excessive overlap between 

gestures and speech (Hostetter, 2011).  

Children’s learning does benefit immediately from hand gestures (Cook, Mitchell 

and Goldin-Meadow, 2008). In the experimented by Yeo et al., the children were 

later asked to calculate the equivalence mathematical questions again, whilst the 

teachers represented handling ways by sweeping gestures from the left to the right 
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of equations. The students mimicked the teacher’s behaviour, i.e. speech and 

gesture. Then the students complete a follow-up test four weeks after. This 

experiment is designed to measure the extent to which the students retained 

learned abilities when receiving gestures, speech, or both with co-speech 

gestures. The authors found the group receiving gestures and co-speech gestures 

retained the most knowledge. 

In general, however, the teacher's gestures can guide students, and it is more of 

an indicator for securing the students' attention than a teaching method. To 

improve cognitive ability and interactional skills in speaking, students can simulate 

the gestures of their teachers to improve grammar knowledge. Although a relevant 

gesture is not always available, such gesturing can improve learning outcomes 

over time. Nevertheless, if gestures lack a prosodic structure, such as pausing, 

and do not align with time meaningfully, they are ineffective (Abner, Cooperrider 

and Goldin-Meadow, 2015). 

Table 4.3 summarizes that the metaphoric and deictic gestures that are common 

in teaching hand movements, and that point out key content as well as explain 

abstract concepts using metaphors. 

Type Description Example 

Deictic  V-pointing gestures 

Sweeping, i.e. pointing 
one side to the other 
side 

To focus on a specific 
referent 

Abstract deictic  Representing time 
period  

Refer to time 

Metaphoric Representing time 
frame 

Time zones are 
represented by 
gestures drawn in 
circles. 

Table 4.3 Gestures in pedagogy 

4.2.3 Gestures in virtual humans 
The purpose of this section is to review prior research on the factors of gestures 

that influence human-computer and virtual agent interactions.  

Ferstl et al. (2021) analysed the relationship between the realism of a virtual 

agent’s persona (i.e. voice, behaviour, and appearance) and perceived co-speech 

gestures. They used motion capture to obtain animations, and adjusted gesture 

animations for the purpose of comparison. Examples in their study include a virtual 

human and robot performing natural movements with gestures and legs motions, 

synthetic movements with an idle static standing pose and natural gestures, and a 

scenario in which the robot’s gesture stroke has been reduced. The authors 

observed that perceived match between motion and voice has an impact on the 

character’s realism, especially gestures, while appearance and gestures have no 
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mutual effect. Therefore, non-verbal interaction and voice drive realism since 

natural animation aligns gesture with the voice, whereas in the reduced condition 

the gesture disappears when stressed syllables appear. 

Davis et al. (2021) investigated the influence of gesture frequency on the student’s 

satisfaction and learning outcomes by using a virtual human which teaches on the 

causes of lightning. The teacher’s gesturing consists of iconic, metaphoric, deictic, 

and beat representations based on a co-speech prosodic structure that is a 

relationship between gestural types and phases. The experiment is designed to 

measure the frequency of gestures and the video speed of a virtual human. The 

enhanced condition involves the agent performing 20 gestures for every 100 

words, as opposed to 14 gestures for every 100 words in the control condition. 

The authors found that gestures with the enhanced or average frequency of use 

are associated with higher recall, satisfaction, and generalizability. The use of 

gestural animation can enhance users' visual stimuli and spatial awareness, which 

can improve memory and learning performance. 

Nirme et al. (2020) recently designed a presentation performance including facial 

capture and audio to accurately control a single target stroke that synchronized 

with the appropriate stressed syllable of words. In their setup, through a process 

from gesture generation to gesture duration, the stressed syllable should appear. 

The experiment uses a marker-based optical motion capture system for capturing 

speakers’ behaviour and generating animations, before selecting standard 

segments. In accordance with the three steps of gestures (i.e. preparation, stroke, 

and retraction), the animation is coded, and the gestures are analysed in the 

stroke stage. The study compares the original synchrony between speech and 

animations, with that in which the gestural stroke is advanced by 500 milliseconds, 

and that in which the gesture is delayed by 500 milliseconds. The authors reported 

that the pointing gesture appearing before or after the stressed words did not 

produce an unnatural situation, although speech–gesture asynchrony can lead to 

unnatural performance. If the speech is paused, the ongoing gestures should also 

stop or freeze (Graziano and Gullberg, 2018). Moreover, Nirme et al. (2020) argue 

that gestures that overlap with pauses seem unrealistic, while gestures that 

overlap with spoken content have less of a negative effect. However, neither of 

these studies provides detailed descriptions of the selected gestures. 

A virtual human endowed with gestural animation can also improve the learner's 

memory by pointing to a specific element (Craig et al., 2015), as evidenced by the 

results reported by Novack and Goldin-Meadow (2017) and Cook et al. (2016). 

These studies compare and contrast three conditions: general gestures, specific 

hand movements, and non-performance. Craig et al. (2015) conducted an 

experiment, where a virtual human explains the formation of lightning, and then 

the participants complete retention tests. It was observed that because learners 

select and store relevant information by gesturing in multiple ways, gestures 

improve outcomes when visual content is spatially close to hand performance. 

It has been demonstrated in previous studies that the hand movements serve as 

an additional avenue for the transmission of information. Hand gestures can be 

used to stress syllables, frequency, and consistency with speech. Although some 

scholars have advocated using the pointing gesture to improve retention and 

outcomes, it is known that teaching gestures should not be based solely on the 
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movements of one hand during interaction with students. In addition, many 

simulations proposed and tested in previous studies tend to feature gestures that 

rely either on video displays or predictable questions that students can guess the 

answers to, such as calculations. Such a design cannot empirically realise key 

gestures that can facilitate holographic AI’s development. 

4.2.4 The way of coding gestures 
In order to analyse data of the gesture, this section presents three pieces of 

related work: 

Cook, Yip and Goldin-Meadow (2010) proposed a means of coding gestures when 

investigating whether co-speech gestures can facilitate memory. They provided a 

series of short videos to participants, including movements of animals, people, and 

objects. Then participants were instructed to recall and describe the contents of 

the videos. The information concerning gesture and utterance was transcribed and 

coded; in detail, the data included pauses, and non-functional gestures such as 

scratching and beat gestures. In discussing the results, the authors argued that if a 

participant can correctly describe motion and semantic information, which 

particular fragment is recalled; whereas, if the description does not correctly 

present the event, the recall is unsuccessful. In their study, the second coder 

independently coded the transcription and gesture to measure reliability.  

Similarly, Atit et al. (2013) coded spatial gestures in order to explore iconic and 

deictic types in a speech concerning details on a geological map. Each gesture 

and accompanying dialogue were coded to evaluated whether the described 

activity referred to an object’s property, such as size and direction. Atit et al. 

categorised the gestures concerning spatial relationships, e.g. pointing at a 

position, an index finger in space indicating 2D information by a line, a hand palm 

inferring a plane, a hand gesturing a 3D shape, an event being described using 

hand gestures, etc. The authors divided gestures into iconic, deictic, mixed type 

(with both iconic and deictic gestures), and other gestures, in their analysis of the 

proportion of spatial gestures. The authors claimed that mixed type gestures tend 

to indicate complex spatial information. 

Stefanini et al., (2009) evaluated changes of speech and gesture in a simple 

naming task, in which children named graphics displaying objects, movements, 

and features. The communicative parts were coded, and the authors observed the 

children’s ways of utterance, accuracy of answers, types of gestures, in an effort to 

determine the relationship between correct description and gestures. The authors’ 

gestural coding is based on a classification that consists of deictic, 

representational, and other kinds of gestures.  

These three studies provide approaches to characterize the data of gestures as a 

basic process, but the proposed categorisation of gestures as well as the research 

methodology is not directly applicable to the study of instructional, teaching 

gestures. Therefore, this study will develop its own, novel methodology to 

investigate the taxonomy of gestures in teaching that is illustrated in Section 4.3. 

4.2.5 Research gap and questions 
The teacher’s behaviours can have a positive impact on the student’s learning 

performance and achievement (Wang, 2020) since their gestures are sometimes 
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used as a primary tool for instruction or. more often, appear alongside of speech 

(Clough and Duff, 2020). In terms of an intelligent tutoring system, the intelligent 

virtual tutor simulates the human voice as well as behaviours, such as standing, 

hand gestures, sitting, or talking, thereby aiming to engage trainees in learning. 

Immersive and augmented intelligent tutoring systems. However, these systems 

often focus on the teaching content, while neglecting more subliminal 

gesticulation.  

Virtual teachers mostly apply one or two types of gestures, prominently deixis, i.e. 

pointing to objects. For example, FaceMe provides a virtual partner, who guides 

children to identify and perform different emotions (Li et al., 2021); however, the 

virtual agent only performs waving prior to interaction, and limited hand gestures 

are utilized for interaction. Barry, the virtual employee created by Talespin, helps 

users practice the action of terminating the employee’s contract with immediate 

effect (e.g. ‘firing’ Barry, or ‘laying off’ during downsizing) (Katz, 2019). Barry’s 

deictic and beat gestures (e.g. knocking the table and folding arms) reflect his 

emotions, although hand gestures are absent when he is sitting on a chair.   

Few studies explain in detail the animations they employ for virtual teachers 

(Zielke et al., 2018). Early research studies promoted the ideal that the realism of 

an agent can be improved using deictics to direct spatial orientation (Lester et al., 

1999). There remains the need, however, for a comprehensive investigation 

designed to help the researcher identify a wider, more generic set of gestures and 

body language for virtual teachers during virtual tutoring. Although virtual humans 

are in principle capable of mimicking human mannerisms, few studies have 

investigated the degree to which different gestures help express ideas, provide 

guidance, as well as support motivation.  

Therefore, in view of the paucity of studies exploring the role of animated gestures, 

this chapter reports the findings of a novel experiment designed to identify and 

explore instructional gestures, with the aim of extracting an improved set of 

teaching gestures, which in turn can be used to animate virtual humans and 

facilitate the instruction of learners using AR. 

4.2.6 A plan to fill this gap 
The overarching purpose of this experiment is to ensure that only the virtual 

teacher can observe questions and answers without being influenced by the 

student, in order to determine exactly how the teacher can guide the student using 

gestures. The objectives are to identify key gestures, as well as determine whether 

the trainee can understand and follow the trainer’s explanations of, and 

instructions for completing tasks. In order to ensure sufficient collection of data 

concerning gestural animation, each task has been conducted four times. Barrett, 

Foundas and Heilman (2005) claimed that gestures and speech are independent, 

which the former is an auxiliary function that becomes prominent whenever the 

content is tough to describe in words alone. Therefore, this study will compare 

concerning of co-speech gestures and non-speech gestures to observe whether 

the trainee can also understand gestures if the trainer cannot speak. More details 

of the experiment and analysis will be presented in the following sections. 

This experiment employs the Rokoko Motion capture suit and Rokoko smart 

gloves to generate corresponding gestural animations and fingers’ movement. 
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Fragments that the trainee misunderstands and that lead to failed guidance have 

not been discarded, since it is important to explore how the trainer re-manipulates 

spatial information. The corresponding animations are selected and coded based 

on the steps of the gesture generation (preparation, stroke, and retraction) and the 

taxonomy of representational gestures (i.e. deictic gestures, iconic gestures, 

metaphorical gestures, and emblems) to develop the holographic AI’s instructional 

gestures. The experiment also analyses the trainer’s ways of thinking and how 

he/she uses body languages to describe different tasks, according to the gesture 

taxonomy presented above (gesture activation, manipulation, packaging, and 

exploration of spatio-motoric information), which will support the generation of 

corresponding animations for the holographic AI. 

In this way, the most frequently used gestures were selected and analysed, and 

then the teacher's motivation can be inferred, and resulting cognitive behaviour of 

the students can be validated by observing their progress in the tasks. Finally, this 

results in producing a comprehensive set of gestures for the holographic AI’s. 

4.3 Methodology 

 

Figure 4.1. Navigation 

This section explains the methodology devised for this study. Guided by the 

project’s goal of developing trainers with more natural instructional gestures, this 

experiment tasked the participants with three tasks: one focused on navigation, 

one on assembly, and a precision task. To be more specific, the gesture has a 

navigation function that can translate messages from “exhibiting movement” to 

“communicating it to other persons”, so that the listener can understand contents 

that the speaker does not verbally describe. The assembly stage is a collaborative 

and cognitive task, in which the trainer guides the trainee to build specific objects. 

The gesture generation is reliant on the way in which the trainer organizes matter. 

The precision task focuses on how the trainer can accurately use co-speech 

gestures to instruct the trainee. 

It firstly applies motion capture technology to record and generate animation. The 

Rokoko motion capture suit has 19 sensors that record 

movement/orientation/position data of individual joints/limbs. In order to determine 

the relationship between speech and instructional gestures, each task includes a 

‘warm-up’ trial, during which participants were not permitted to verbally 

communicate with the trainee, but during which the trainee could ask questions.  
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In the navigation task (see Figure 4.1), the trainer wears a HoloLens and the 

Rokoko Motion Capture Suit. Using the HoloLens 2, the participant acting as 

trainer is able to see a hologram of a human (in a specific location and pose in the 

room). The task for the trainer is to navigate the trainee using gestures and words 

so that the latter stand right where the hologram is, mimicking the hologram’s body 

and limb positions as closely as possible (e.g. hologram stands facing towards the 

door with left arm extended to the ceiling). When the participant acting as the 

trainer is satisfied, the task is finished, and a picture showing the hologram and 

participant acting as trainee using the Microsoft HoloLens 2 MR Remote Capture 

is then taken. (The photograph supplies additional evidence of the task being 

completed successfully.)   

In the second task, the trainee has to assemble a cardboard fort (see Figure 4.2). 

The trainer again dons the Rokoko Suit for data collection, and the HoloLens 2 

shows a hologram of the cardboard fort. The task for the trainer is to instruct the 

trainee to assemble the cardboard fort from its pieces (cardboard walls and Velcro 

straps). The fort is composed of a specific shape and dimensions, which are 

inspected upon completion of the task. When the participant acting as trainer is 

satisfied, a picture is taken using the HoloLens 2 remote capture device, enabling 

the research to assess whether the task was completed successfully (and with 

what accuracy).  

 

Figure 4.2. Assemble task 

 

Figure 4.3 Precision task 
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In the precision task (see Figure 4.3), the participant acting as trainer wears the 

suit and HoloLens, and instructs the trainee on assembling the correct patterns in 

‘Puzzle-T’ (also known as ‘Tangram’). Again, the outcome is checked with the help 

of a MR capture photo showing the result. 

Each participant needs to finish each of the three tasks four times. During the 

course of task repetition, the object (the human hologram, cardboard fort shape, 

and puzzle-T pattern) is changed in order to determine which gestures are useful 

and worth repeating. During the first instance of each task, the trainer cannot 

verbally communicate with the trainee (i.e. warm-up trial). Once all sessions are 

completed, the recorded footage is used to analyse all raw data of animations. The 

aim of this analysis is to identify key movements that occur frequently in the 

trainer’s gestures. 

4.4 Experiment 

This experiment adopted a within-design, and the participants experienced all 

conditions: speechless trials in each task (i.e. warm-up), and co-speech trials.  

All holograms were created using Maya. The models in the navigation task were 

downloaded from Mixamo (Mixamo, 2023). In order to ensure all models were 

static and had no animations, skeleton and key frames were deleted. The postures 

include standing, kneeing, and sitting (see Figure 4.4). Besides, the trainer could 

not verbally speak in each warm-up trial. The difficulty levels of the other subtasks 

are dictated by the position and direction of the limbs and trunk. For example, 

Task1_medium in Figure 4.4 requires the left side leg to hold the centre-of- gravity 

position, with the hip protruding slightly to the left, but Task1_easy only requires 

protruding slightly to the left-side hand pointing on the left side.  

  

Task1_warm-up Task1_easy 

  

Task1_medium Task1_hard 

Figure 4.4. The navigation task 
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Task2_warmup Task2_easy 

  

Task2_medium Task2_hard 

Figure 4.5. The assembly task 

Figure 4.5 illustrates the assembly task. Based on real cardboard forts, the virtual 

house includes 12 panels and 4 boards with windows. As shown in Figure 4.5, the 

medium and hard levels require the use of Velcro and connectors (see Figure 4.6) 

for building the first floor. During the speechless trial the trainee is required to 

assemble a basic cube, whereas the assembling hard level requires all cardboard 

panels and connectors. 

 

Figure 4.6. The connector for building the first floor 

The final task uses three shapes, consisting of two small triangles (25cm * 

12.5cm), two large triangles (50cm * 25cm), one medium-sized triangle (35cm* 

17.5cm), a rhomboid (37.5cm * 17.5 cm), and a square (17.5cm * 17.5cm). The 

warm-up trial requires the trainee to set up a ship, a tobacco pipe shape 

(displayed for Task3_easy in Figure 4.7). The medium level task is assembling a 

cat (or fox) shape, and the hard level task is assembling a person-like shape. Only 

the trainer can see the hologram, while the trainee does not know what shapes 
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he/she needs to build. All holograms were uploaded to HoloLens, and then 

displayed by 3D viewer.  

Only the trainer can see the hologram, while the trainee does not know what 

shapes he/she needs to build. 

 
 

  

Task3_warmup Task3_easy Task3_medium Task3_hard 

Figure 4.7. The precision task 

4.4.1 Material 
This experiment uses motion capture technology, i.e. the Rokoko motion capture 

suit, to generate high-frequency joint and limb movement/orientation/position data 

(~100Hz for 19 sensors). Following completion of the experiment, the motion 

capture was evaluated in terms of context-specific matching of video footage (third 

person view) with the audio. Basic demographic data of the participants were 

collected (age bracket, gender), and measurements of limb lengths were used to 

configure the motion capture. 

 

Figure 4.8. Space area for motion capture 
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4.4.1.1 Environment setup 

The experiment was conducted in four different areas, including a drama studio 

and three different meeting rooms. The rooms range in size from 50 to 120 square 

meters, and they are arranged like square stages with cameras set up on each 

side. The three cameras recorded the participant's behaviours from different 

angles (see Figure 4.8).  

This experiment used a HoloLens, medium and large-sized Rokoko suits, Rokoko 

smart gloves, two power banks for connecting the Rokoko devices, a laptop, two 

phones, and an iPad. Since the Rokoko devices cannot use public Wi-Fi, an 

additional Wi-Fi router was applied to connect to the Ethernet. 

4.4.2 Procedure and participants 
The experiment was conducted with 22 participants (4 females, 18 males) aged 

between 18-64. The trainer group had 3 females and 8 males.     

When the participants arrived, the experimenter briefly described the aim of the 

study and protocol to the participants, and asked them to choose a role of either 

trainer or trainee. Then, both participants were asked to read the information 

sheet, sign the consent form, and fill out a demographic questionnaire regarding 

gender and age.  

The Rokoko suit’s sensors label the key joints, thus in order to match the position 

of each key joint with each sensor the suit size must be fit the trainer. For this 

reason, the trainer's height, arm length, feet length, shoulder width, knee height, 

pelvis height and width, and manus length were recorded. These personal data 

were not collected and analysed, but were deleted. It only served the configuration 

of the motion capture and animation. Next, the experimenter set up the virtual 

holograms in position, and the trainer was asked to put on the HoloLens.  

When the participant was ready, the trainer’s movement was recorded. After each 

task was finished, the trainer removed the HoloLens, and the experimenter 

prepared the next hologram. 

4.4.2.1 Interaction scenario 

The experiment consists of 12 trials (4 trials*3 tasks) in total, and the steps of 

interactive scenarios are as follow below: 

• Step 1: The experimenter explains what the trainer has to do in the non-

verbal (warm-up) and verbal (navigation) trails. 

• Step 2: The warm-up trial of the navigation task: the trainer cannot verbally 

guide the trainee to stand near the hologram for the first time, but the 

trainee can ask questions.  

• Step 3: The navigation task (second-fourth times): the trainer can verbally 

guide the trainee. 

• Step 4: The experimenter instructs the trainee on assembling the real 

cardboard forts using non-verbal (warm-up) or verbal cues. 

• Step 5: Assembly task warm-up: the trainer cannot talk with the trainee. 
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• Step 6: The assembly task (second-fourth times): the trainer can verbally 

guide the trainee. 

• Step 7: The experimenter instructs the trainee on assembling the real 

cardboard forts using non-verbal (warm-up) or verbal cues. 

• Step 8: Assembly task warm-up: the trainer cannot talk with the trainee. 

• Step 9: The assembly task (second-fourth times): the trainer can verbally 

guide the trainee. 

• Step 10: The experimenter instructs the trainee on assembling the real 

puzzles and their shapes prior to the task. 

• Step 11: Precision task warm-up: the trainer cannot talk with the trainee. 

• Step 12: The precision task (second-fourth times): the trainer can verbally 

guide the trainee. 

One requirement of the navigation task on the part of the trainer was that he/she 

neither sat on the floor nor fully mimicked the hologram posture. If the trainer 

directly simulates the posture, none of the key gestures can be achieved. The 

second task requires that the panels with windows should be facing the right 

direction (always at the bottom). The trainer needs to select the correct size of 

triangles in the precision task. The experiment has no time limitations; rather, the 

session ends when the trainer agrees that the task has been done. 

4.4.3 Measures and hypotheses 
The pre-test was conducted prior to the experiment in order to assess the 

operability of the three tasks as well as the condition of the room in the drama 

studio, as magnetism affects the quality of Rokoko animations. This test took 146 

minutes (from preparation to completion), and the three tasks took around one 

hour and 6 minutes. The trainer waited for the trainee to finish executing the 

previous cardboard assembly commands before providing instructions for the next 

step; however, this occupied too much time, especially with task2_hard (half an 

hour). Whenever the trainee made a mistake, the trainer would employ a ‘other 

way’ gesture to direct the trainee. If the trainer considered the cardboard fort to be 

stable, there was no need for the trainee to tape all Velcro. 

In total, the experiment entailed the collection of (11 groups * 4 cameras * 3 tasks) 

videos recorded by HoloLens, two mobiles, and a iPad. The HoloLens’s video 

recording was used to deliver the trainer’s voice and, subsequently, generate the 

transcripts. For the different trials and tasks, the trainer's gesture that can be 

observed in clear resolution in videos were selected for analysis: a total of132 

videos (11 groups * 12 trials) was obtained.   

The qualitative software package, NVivo, was used to organise, store, and analyse 

data which were coded in terms of key segments and words. Transcripts of the 

trainer’s dialogue were also imported in order to observe the dialogue content and 

determine whether the speech and gestures are relevant. 
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4.4.3.1 Standards for segments and words selection 

 

Figure 4.9. The step of gesture generation 

According to the steps of gesture generation proposed by Kendo et al. (1980) and 

Kita, van Gijn and van der Hulst (1998), the steps of a stroke or pre-stroke hold 

consist of segments of key instructional gestures. For example, during the 

preparation step the trainer stands before the group and issues a preparing 

gesture for the navigation task, and then the trainer starts to generate gestures, 

keeping the hands raised, before deflecting them upon indicating the pre-stroke 

hold, and finally putting down the arms at retraction (see Figure 4.9). The fragment 

of the preparation and retraction steps were discarded. Although there were no 

meaningful gestures during the pre-stroke hold and retraction, it is necessary to 

review how the trainer jumps to the next step through these gestures, in order to 

avoid missing gestures. For example, when the trainer instructs the trainee on 

building the cardboard fort, he/she points at a particular position, and waits for the 

trainee to complete, before issuing the next step (see Figure 4.10). The gesture in 

the pre-stroke hold is not instructional; rather, it implies that the trainer is preparing 

to activate new spatio-motoric information via gesture generation. 

3:49 - 3:51 3:52 - 4:08 4:09 - 5:30 5:31 - 5:42 

Stroke Pre-stroke hold Retraction Stroke 

    

Figure 4.10. From stroke step to stroke step 

Subsequently, the selected fragments were refined in terms of gesture taxonomy, 

i.e. interactive and representational. Figure 4.11 shows a distribution of gestural 

types in the first task by nodes. There is no gesture between the interactive and 

representational fragment. Further, the corresponding dialogue content of the 
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trainer has also been coded in order to check whether the meaning of gesture can 

be matched with it. 

 

Figure 4.11. The interactive and representational gestures 

4.4.3.2 Coding gestures 

Gestures include hand and arm movements, although the term also refers to any 

body part motion (Lin, 2017). However, this study mainly focuses on hand 

movements, especially representational gestures, as the representational gesture 

has affordance, and the movement of lower limbs includes almost walking and 

standing and mimicking the posture of the first task in the experiment.  

According to the process that proposed by Atit et al. (2013), the interpretation of 

gestural meanings should be based on the context and accompanying speech. 

Gestures should be coded on the basis of the type of the representational gesture, 

i.e. deictic, iconic, metaphorical, beat, emblematic, and cohesive (Bernard, 

Millman and Mittal, 2015; Abner, Cooperrider and Goldin-Meadow, 2015). 

Specially, the deictic gesture includes pointing at objects, pointing at locations, and 

pointing at directions (Hassemer and McCleary, 2017). Therefore, in this 

experiment the segments regarding deictic gestures have been subdivided. 

After that, the gestures were coded, based on whether the trainee can correctly 

follow the instruction; is view of this, it is important to explore what factors can lead 

to failed instructional gestures, and how the trainer can change strategies. 

Therefore, both situations have been classified and coded.  

Figure 4.12 illustrates a distribution of gestures in the assembly task of one of the 

groups. The empty places indicate periods during which there no instructional 

gestures, or when the trainer was waiting for the trainee to complete the sub-task 

as per the relevant instruction. During the experiment, instances when the trainee 

misunderstood or ignored the trainer’s instruction were recorded, and both 

situations were then analysed and compared. Fortunately, such occurrences were 

few in number. 

 

Figure 4.12. The distribution of gestures 
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During gesture coding, it was decided that each type of the representational 

gesture could be subdivided into different branches. 

In terms of deictic gestures, the trainer used the index finger to point at a specific 

object and position, and the palm pointed to the object’s direction. For example, in 

the Figure 4.13 (1) the trainer’s palm instructs the trainee to put a panel on the left, 

and in Figure 4.13 (2) the trainer points at the panel to help the trainee select the 

right flat board. Therefore, the palm can be used to represent an orientation, as 

explained by Iverson and Goldin-Meadow (2005). Further, palm pointing can 

indicate position and direction simultaneously. In Figure 4.14, the trainer instructs 

the trainee to place a panel at a specific point, his palm moving down to imply that 

it should go straight.   

  

Figure 4.13 (1). The palm pointed to 
the left side 

Figure 4.13 (2). The index finger pointed to 
the panel 

 

 

Figure 4.14. The palm indicating the referent’s position and direction 

The iconic gesture describes a referent’s feature or property, thus indicating the 
shape, length, or size of an object. For instance, the trainer uses two hands to 
describe the roof’s shape (see Figure 4.15(1)) in the assembly task. The thumb 
and index fingers can explain whether a referent is small. The trainer could create 
a far distance between left and right sides of hands to indicate ’big triangle’ or 
stress ‘big’ (see Figure 4.15 (2,3)). If the trainer highlights ‘long side’, his/her palm 
would draw from top to downside. 
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Figure 4.15 (1). The roof shape 

 

 

Figure 4.15 (2). Iconic_small size Figure 4.15(3). Iconic_big size 

 

Figure 4.16. The spatial relationship of two referents 

Besides, the iconic gesture also can present spatial relationship between two 

referents (Kandana Arachchige et al., 2021). Therefore, this type includes 

gestures indicating spatial position and referents’ angles. For example, the 

trainer’s two hands can mimic a spatial relationship between two referents. 

Additionally, the trainer uses two hands when asking the trainee to place his/her 

feet far apart. Since the cardboard house can be divided into several boxes in the 

hard level of the assembly task, the trainer emulates how the parts of the house 

are placed. Figure 4.16 displays the trainer indicating how base cubes should be 

positioned and connected by putting down the grasping hands gesture. It can be 

seen in Figure 4.17 that the trainer’s palms mimic a right angle. The iconic gesture 

is based on the hologram representation to simulate a relationship of a set of 

objects, and it neither points to a direction or position, nor indicates an object’s 

shape or size. 
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Figure 4.17. Mimicking a right angle 

The emblematic gesture does not necessarily rely on speech as it can operate 
independently in expressing meanings (Matsumoto and Hwang, 2013), and it can 
be interpreted as a commonplace gesture. The emblematic gesture in this 
experiment includes thumbs up, waving index finger, crossed arms, palm forward, 
counting finger, and palm movement. In order to express the number of referents 
needed to be placed at a certain point, the trainer uses the fingers. To be more 
specific, the trainer will use the thumbs up gesture when in agreement with the 
trainee's behaviour (see Figure 4.18(1)), whereas the crossed arms or waving 
index fingers gestures indicate that the trainee is failing to follow the instructions 
correctly (see Figure 4.18(3)). The palm facing forward gesture is used to ask the 
trainee to stop, or to pause for a few seconds and allow the trainer to double-
check the hologram (see Figure 4.18(4)). Extending four fingers can indicate the 
number of panels needed (see Figure 4.18(5)), and horizontally moving the arm 
means the trainee needs to restart or move out objects (see Figure 4.18(6)); these 
gestures occurred during the assembly and precision tasks.  

 
  

Figure 4.18 (1). Thumb 
up  

Figure 4.18 (2). Waving 
index finger 

Figure 4.18 (3). Crossed 
arms 

   

Figure 4.18(4). Palm 
facing forward 

Figure 4.18(5). counting 
finger 

Figure 4.18(6). Restart/move 
out  
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Figure 4.19. The mimicking gesture in the navigation task 

In addition to emblematic, iconic and deictic gestures, the trainer’s hand 

movement can simulate the hologram’s posture in the first task, i.e. perform 

mimicking gestures. For example, most of the gestures simulate the hologram’s 

posture in the navigation task, even though the trainer cannot do fully the same as 

the hologram (see Figure 4.19).  

Another type which occurred frequently in the experiment is the transformational 

gestures. This type is used to guide the trainee to manipulate referents, such as 

flipping and rotation. For example, in the precision task, the trainer’s palm flips to 

instruct the trainee that the parallelogram needs to be turned over. The rotating 

wrist gesture indicates that the square needs to be rotated (see Figure 4.20). It 

also can express the other side of the referent by this gesture. 

 

Figure 4.20. The transformational gesture 

As examples of the metaphorical type, the trainer moves his palm from left to right 

side to imply that the cat hologram in the precision task resembles a mirror image. 

The hand put down gesture means that the trainee’s knee required bending (see 

Figure 4.21), if the trainer suspends instruction, he or she points the index finger 

upward when asking for a few seconds to observe the hologram. 

 

Figure 4.21. The example of the metaphorical type 
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The six sub-categories, or branches, of representational gestures are illustrated in 

Figure 4.22: 

 

Figure 4.22. The branches of the representational gesture 

As mentioned before, deictic gestures entail pointing at a position, direction, and a 

referent. The gesture of pointing at a position requires that the trainer is clearly 

asking the trainee to put an object on a location, such as closing a square, or 

placing an object on a specific location. A gesture of pointing in a direction reflects 

a direction, and not just a specific position such as turning left, but also aligning an 

object in a certain direction. Pointing at a referent might include referring to an 

object or a part of the body of the trainer or trainee. For example, the trainer might 

be pointing at his/her leg.  

Iconic gesture in this experiment often describes the referent’s shape, size, and 

length. When the trainer is describing the referent’s length, he/she may use a 

comparable approach. For example, if the length is long, the trainer’s arm 

movement range is large, or the distance of the two arms is longer. In addition, this 

gesture simulating spatial position reflects that different referent’s relationship in 

space. Both hands of the trainer represent relative locations, rather than pointing 

at an orientation or a position. Similarly, this type of gesture also can describe 

angle, but in this experiment, the trainer employs both hands or fingers, and 

instructs the trainee to integrate two referents by mimicking an angle. 

By registering the emblematic gesture, the trainee can directly comprehend the 

trainer's meaning, despite their cultural differences. A thumbs-up gesture can 

encourage trainees, but an arm crossed open, or finger waving implies “no” or 

“leave out”. When the trainer put (a) hand(s) forward, the trainee is instructed to 

discontinue a certain behaviour and wait for the next instruction if the trainer 

conveys that the instruction has not been followed correctly and he/she needs to 

restart again, the arms and hands are positioned on the same horizon and 

randomly moved around, which implies that the process is incorrect. For 
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assembling cardboard forts, a counting finger is used to select the number of 

panels. 

The mimicking gesture replicates the hologram’s posture, but it is not static 

gesture. As an example, if a trainer holds his/her hands up, his/her arms move 

slightly up and down to show the position of the arms. 

The transformational gesture can be used to manipulate the referent itself, but it 

does not establish a relationship between space and other objects, whereas iconic 

or deictic gesture can help construct a spatial position by referring to the other 

object’s location.  A gesture may also reflect a direction, for example, the trainer 

pointing on the left side when the referent should move to the left.   

The metaphorical gesture is used to describe a physical object. For example, the 

trainer pointing at his/her elbow is employing a gesture which represents a corner 

of a shape.  

4.4.3.3 Hypotheses 

This study aims to explore which key instructional gestures can be utilized by an 

educational holographic AI (RQ3) to enhance the AI's non-verbal communication 

capabilities. 

The experiment includes both non-verbal and speech-accompanied gesture trials 

to compare which can encourage the instructor to produce more gestures and to 

assess whether similar tasks are articulated differently, for example, warm-up and 

easy trials in task 2. 

Previous studies have demonstrated that the pointing gesture can enhance a 

learner's understanding in education (Atit, Gagnier and Shipley, 2015; Matsumoto 

and Dobs, 2017). Therefore, the experiment may frequently observe deictic 

gestures. 

Moreover, the first task investigates how a stance is transitioned, while the second 

and third tasks explore how the instructor sequences information and whether they 

employ consistent gestures to direct the learner. It is plausible that different tasks 

may influence the instructors' cognitive processes. 

Therefore, based on the related work and the study method, the following 

hypotheses are proposed: 

• H1:  Participants generate more gestures during the speechless segments 

of the three tasks (warm-ups). 

• H2:  For the participants, deictic gestures constitute the key functional 

approach. 

• H3: The three tasks differently affect participants’ way of thinking. 

These three hypotheses aim to identify which key instructional gestures are 

essential, as well as how to utilize these gestures to convey the holographic AI's 

motivation and instructional intent. 

4.3.3.4 Reliability 

Each of the gestures and accompanying speech was coded by the first-author, 

and, in order to measure interrater reliability, the concordance with two 

independent coders on 11.3% (15 trails) of videos that were randomly selected 
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was measured. It should be noted that the second coder did not select 

corresponding verbal content, since timespans of speech content depend on 

occurrence and duration of gestures, and the warm-up trials had no transcripts.  

 

Figure 4.23. The Kappa value 

Cohen's Kappa was then used to calculate agreement on gestural existence 

(Cohen, 1960). Fleiss (1981) pointed out that the if the Kappa value exceeds 0.7, 

the coding is reliable. NVivo can directly measure Cohen's Kappa and produce a 

reliability value. It relies on the selected nodes as well as duration of segment.  

A second rater coded all types of representational gestures, including deictic, 

iconic, metaphorical, transformational, mimicking, and emblematic gestures. Due 

to NVivo12's calculation of segment length, the timespans selected by the two 

coders differed. Therefore, both raters compared selected nodes in each fragment, 

and made sure the nodes were the same, but did not refer to the node’s duration.  

The percentage of the agreement in identifying the representational gesture in 

each trial ranged between 0.72 and 0.98 (see Figure 4.23), and the mean value 

was 0.8. The Kappa values for different types of representational gesture all 

exceeded 0.7 (see Figure 4.24), with the exception of the emblematic gesture 

since this type of gesture appeared too swiftly, especially the thumbs up gesture, it 

was harder for the raters to find agreement here. 

 

Figure 4.24. Kappa values of gestural types 
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4.4.3.4 Frequency of the gesture 

NVivo can calculate the number of types of gestural occurrence by referring to the 

node, and it also includes the times recoded by all raters. Therefore, the second 

rater’s history was deleted to avoid repetitive nodes.  

In view of the satisfactory reliability measurement results, it is now possible to 

measure the frequency of each type of gesture according to the representational 

gesture branches to determine which gestures play a key role in the experimental 

tasks. Highly frequent or rare gestures are less likely to be meaningful or critical 

since they may be artefacts in coding, mis gesticulation, or involve emotional or 

non-functional gestures, such as akimbo and scratching. 

 

Figure 4.25. An example of selecting key gestures 

The process of key gesture selection requires filtering non-instructional gestures 

that the trainee has misunderstood or not observed. A previous gesture is 

calculated once before the next meaning of gesture appeared, or the gesture is 

turned to pre-stroke hold and retraction. For example, in the second and third 

pictures of Figure 4.25 the trainer describes a shape of a cube that can be built by 

panels, and his two hands change orientation. This is one node of the occurrence 

of the iconic gesture. Then the fourth and fifth imagers of Figure 4.25 show that 

the trainer uses the deictic gesture to represent the orientation of the panel with a 

window. This is the second node of the gesture. 

Then, it compared each type and its branch of gesture by the number of 

references. Figure 4.26 shows the distribution of all gestural types in 132 videos: it 

can be seen that pointing gestures occupy most of the area (53.8%). 

 

Figure 4.26. The distribution of all gestural types in 132 videos 
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4.5 Results 

Following the review of the nodes of each type and branch of the representational 

gesture group, this section analyses the experimental data and identifies the key 

gesture. Since the trainer directly instructs the trainee in the experiment, only three 

trainers use the interactive gesture to express the task started or to imply emotion, 

such as inviting gestures and opening arms.  

In total, 132 videos contained 2,348 nodes of the representational gesture group, 

which means different gestures appeared over 2000 times. The videos included 39 

nodes that the trainee did not correctly follow, and 3 nodes where the trainee did 

not observe during instruction (see Table 4.4). In the experiment the trainer uses 

waving hands or index fingers to express ‘not correct’. This situation often 

appeared in the speechless trials of the assembly and precision task. The trainee 

was required to build 3D paper houses, for which the failure rate was higher. In 

performing this task, the trainee must rotate one of the cardboards to the correct 

orientation after selecting it. The failed gestures were not discarded in data 

analysis, since it is important to observe how the trainer changed instructional 

approaches. 

Situations The trainee did not watch the gesture 
that led to make mistakes. 

The trainee observed the 
trainer’s gestures but 

misunderstood. 

Nodes 3 36 

Table 4.4. The number of nodes of failed gestures 

 

Figure 4.27. The number of each branch of the representational gesture 

4.5.1 Data analysis 
Figure 4.27 shows the numbers of gestures of each gestural branch in the 

representational type. This sub-section will investigate each type. The number of 

deictic gestures is the highest (n=1290), especially pointing at position and object. 
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Although there were more emblematic gestures than those of the transformational 

type, participants used gestures that showed rotation was more than just a branch 

of the emblematic gesture. The iconic gesture was also the type most often used 

to describe shapes of referents. Additionally, the least common gestures were 

metaphorical gestures (n=8). 

4.5.1.1 The navigation task 

Task1 Warm-up Easy Medium Hard 

Average duration (seconds) 68.09s 96.55s 107.73s 144.64s 

Average number of gesture 
occurrence 

9.36 7.45 5.91 9.27 

Table 4.5. Average duration and number of gestures during each stage of the first task 

In the first task, the trainer instructed the trainee to simulate the hologram's poses. 

This trial had a mistake in that the trainer used a wrong hologram that should have 

been on the second trail. Nevertheless, the goal of this task is to explore how 

trainers describe 3D holograms using body language, and so all the trainers 

mimicked part of the hologram's posture. Therefore, slight differences tended to 

occur. Table 4.5 shows the average duration of each of the four stages, and the 

average number of gestures generation in each one. Although it appears that the 

trainer generated more in the speechless condition, some trainers only took less 

than a minute, although one trainer took almost 2 minutes. Furthermore, the 

trainer used other types of gestures, such as the thumb ups, drawing circles with 

an index finger, or pointing at a direction and referent (see Figure 4.28). This 

navigation task also involved deictic gestures emphasising which body part should 

be oriented or posed. For example, the trainer’s palm pats a leg when asking the 

trainee to bend the left knee, or the trainer asks the trainee to follow the instruction 

and do the same pose as the trainer. 

 Warm-up Easy Medium Hard 

Sum  39 37 40 39 

Mean 3.55 3.36 3.64 3.55 

Table 4.6. Mimicking gestures 

In addition, all mimicking gestures were generated during the navigation task 

(Figure 4.28). Table 4.6 shows the average and sum of each gesture generated 

during the first task. Since mimicking posture gestures are continuous gestures 

that trainers hold hands or arms for a long period of time, difficulty does not affect 

the number of mimicking gestures. 

The navigation task was the first task in this experiment, in which trainers either 

mimicked the hologram's pose or verbally guided trainees. The standing direction 

between trainer and trainee was opposing, in that the left side of the trainer was 

the right side of the trainee. Those who generated more gestures firstly asked the 

trainee to stand the same direction of the trainer, and also used the thumbs up 

gesture to encourage the trainee during non-speech and hard conditions.  
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Figure 4.28. The distribution of types of gesture in the navigation task 

4.5.1.2 The assembly task 

The assembly task was the second of this experiment, whereby the trainer 

instructed the process of building cardboard forts based on virtual holograms. 

Table 4.7 shows the average duration and average number of gestural nodes for 

each of the four conditions. There were 869 nodes in this task, covering all types 

of representational gestures, except for mimicking gestures. It is evident that the 

degree of difficulty (level) affected the gestural generation. It can be seen in Figure 

4.29 that the trainer generated more gestures in the non-speech trials, and then 

dropped some in later stages when the trainee was performing tasks similar to 

those earlier on in the experiment. 

There is a flat roof on the warm-up level, and a triangle roof on the easy level. 

Hence, the trainer instructs the trainee to build the same base as before, with only 

the top being different. In the experiment, the trainer waits for the trainee to 

assemble the cardboard step by step, so the trainee’s progress determines the 

average duration. During the medium level, the trainer focuses on the orientation 

of the panel's window and uses standers to help the trainee build the second floor. 

While all the windows are positioned on the bottom in the last condition, the trainer 

must possess a well-organized ability to divide the whole house into blocks. 

 Warm-up Easy Medium Hard 

Average duration (seconds) 251 296.82 385.82 885.27 

Average number of gesture 
occurrence 

29.27 11.55 12.18 26 

Table 4.7. The average duration in the second task 
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Figure 4.29. The variation tendency of four conditions in the second task 

The deictic gestures were used most (n=456) in the second task (52.64%), and 

gestures pointing at a position and referent had 247 and 148 nodes, since in this 

task the trainer needs to direct the trainee’s attention to the exact points for 

positioning the cardboard (see Figure 4.30). Interestingly, all trainers used iconic 

gestures to describe triangle roofs, and some also placed their palms to describe 

flat roofs. Furthermore, they also used emblematic gestures to encourage the 

trainee (n =110), and used counting-fingers to indicate the number of cardboard 

blocks needed (n=38).  

 

Figure 4.30. The distribution of the gesture in the assembly task 

Under co-speech gesture conditions, some trainers briefly described the 

cardboard's information in advance. For example, a trainers explained cardboard 

fort shapes and their spatial position before instruction, and trainees did not 

assemble panels. Thus, two situations are worthy of examination: pre-instruction, 

and non-pre-instruction. There are 16 videos that show that some trainers 

provided pre-instruction, and 17 of them did not. It was found that the mean values 

of general nodes were 18.5 in the non-instruction situation and 14.5 nodes in pre-

instruction situation, suggesting there may be a significant difference between 
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those two situations in terms of the number of gestures. The pre-instruction 

situation is characterized by a lower gesture generation, as evidenced by a 

negative correlation coefficient (r=-0.20). Further, the time expenditure appears to 

have been negatively affected by the pre-instruction situation (r=-0.03), even 

though this correlation is not significant (p>0.1). Therefore, if a trainer provides 

each block’s position in advance, a trainee may spend less time completing this 

task. Moreover, while the average time on the pre-instruction situation was only 

17.7 shorter. During the task, each trainer used deictic gestures or iconic gestures, 

i.e. gestures illustrating spatial position, signalling to the trainee which shapes 

should be built. The trainer’s two-hand movement and fingers can represent the 

different blockers of the cardboard fort, shapes, and position. In the non-

description situation, the trainer had to explain to the trainee how many panels 

were needed directly, using finger-counting and pointing gestures. The trainer's 

meanings, however, may not be understood by all trainees. One trainer, for 

instance, in the hard condition, explained that the ground floor has an N shape, 

using the grasping hands gesture (see Figure 4.16 in Section 4.3). Therefore, 

during assembly, the trainer repeatedly explained the shape’s appearance. 

Most trainers used palm-to-palm gestures to describe the orientation of the panel 

with the window and then performed the rotation movement to ask the trainee to 

put down the window at the bottom (see Figure 4.31). Although this gesture 

consists of iconic and transformational types, the trainer underlined the behaviour 

of rotation that the student should follow the instruction. There was a greater 

diversity of gestures depicting more completed referents in this task, compared to 

the navigation task.  

 

Figure 4.31. The palm-to-palm gestures 

4.5.1.3 The precision task 

 Warm-up Easy Medium Hard 

Average duration (seconds) 245.18 147.55 204.27 282.91 

Average number of gesture 
occurrence 

41.73 14.73 21.45 24.45 

Table 4.8. The average duration in the third task 
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Figure 4.32. The distribution of the gesture in the precision task 

In the last task, the trainee had to set up a specific puzzle-T structure. The 

average duration and average number of gestures for each stage of the precision 

task are shown in Table 4.8. The non-speech trial generated the highest number 

of gestures. Although the warm-up trial only needs four boards, the trainer needed 

to distinguish between three sizes of triangles, and correctly instruct the trainee to 

set up a ship shape. Over half of the trainers did not correctly emphasise size 

differences (n=6), resulting in the placement of a large triangle rather than a 

medium triangle. Further, a few trainers did not realise that two large triangles 

could form a big square under the easy condition. 

In the precision task, the deictic gesture type had 691 nodes, including 291 nodes 

relating to pointing at referents and 255 gestures for pointing at a certain position 

(see Figure 4.32). The trainer's palm moves forward or downward to represent 

pointing in a particular direction, for when a board needs to be translated vertically 

or horizontally. The transformational gesture was also used frequently, especially 

rotation (n=145), but the hands were shaped differently. For this task the trainer 

need not perform the opening-arms and palm-to-palm gestures that were used in 

the assembly task, but can place the hands and palms down, and then use slightly 

rotated wrists. The trainer's fingers can also depict shapes via an iconic gesture, 

replacing the rotational gesture of the hands, so that the trainee can understand 

how to place the blocks correctly (see Figure 4.33).  

 

Figure 4.33. The iconic gesture 
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Similarly, there are 9 videos that shows some trainers participating in this 

experiment explained the puzzle-T’s shape prior to setting up (i.e. pre-instruction), 

and it was mainly during the medium and hard levels that the shape could be 

clearly identified. Those who provided pre-instruction generated fewer gestures 

(mean=21), while the direct instruction produced 3-4 more gestures, and spent 

more time. There was also a negative correlation between pre-instruction and 

gesture number (r=-0.28), as well as a negative correlation between the pre-

instruction and gesture duration (r=-0.42, p=0.049). 

 

Figure 4.34. The variation tendency of four conditions in the third task 

According to Figure 4.34, there occurred more gestures at the non-verbal level 

than at the hard level, since the squares in these two conditions shared the same 

orientation. Furthermore, the most metaphorical gestures were generated in this 

task (n=5). For example, the hand may be moved to the left side to indicate a 

previously used board; pointing at the elbow joint can indicate a triangle’s right 

angle; and the hand being moved slightly from left to right (in the medium level) 

indicates that the two small triangles are mirrored.  

The precision task requires imagination and therefore poses a greater challenge 

for the trainer compared to the assembly task since the puzzle-T shapes are 

abstract, and the trainer needs to consider how to rotate each shape to the correct 

angle. In this circumstance, if the trainer stands opposite the trainee, then the 

trainee is unable to follow the trainer’s instructions. This difficulty is compounded if 

the trainer lacks experience in playing puzzle-T.  

In the experiment, the trainers unconsciously simulated the hologram while 

performing the navigation task (n=147), even though the task did not allow 

performing the same pose. Nevertheless, this gesture cannot be considered a 

primary one, since this task has particularities that cannot be found in other tasks. 

Furthermore, the deictic gesture type was the most commonly used in assembly 

and precision tasks, especially when the trainers were pointing at a position or 

referent. The thumbs up gesture appeared frequently, even though this is not 

instructional.  
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The non-speech condition can facilitate more gestures which in turn function 

almost as a second language. More gestures were generated whenever the 

trainers needed to instruct with complex tasks, whereas familiar or similar trials 

require less gestural generation.  

4.6 Discussion 

The aim of this experiment is to investigate instructional gestures in order to 

generate corresponding animations for a holographic AI. Therefore, this section 

will discuss which types of gestures are appropriate for each type of situation, 

consider how gestures match utterance, and explore hypotheses. 

4.6.1 Gestures 
The deictic gesture consists of pointing at a position, a direction and a referent. In 

order to emphasise an important point and attract the trainee’s attention, the index 

finger or hand palm can be used. As an example, the trainer points by way of 

explaining where the trainee must position the panels in the assembly task. 

Directing the index finger at the palm was the most frequent gesture used by the 

trainer when pointing at a specific direction, or when instructing the trainee to sit 

on the floor or place the referent on the ground, as these do not highlight a specific 

place. Trainers' palms can also be interpreted as flat objects. During the medium 

level of the assembly task, the trainer pretended to place his/her hand on top of 

the cardboard fort instead of pointing with his/her index finger. Therefore, the 

unfolded hand can be interpreted as the flat cardboard fort without a window, with 

the orientation of arm movement representing the position. Additionally, the 

behaviour of pointing is not static, especially when the trainer points in a direction 

to instruct the trainee to move an object forward, moving the hand up and down 

repeatedly until the trainee successfully corrects it. Importantly, the gesture with 

regard to pointing at an object may not refer to the object itself. In the precision 

task, the trainer should point at the panel and guide the trainee to put the other 

shape near the panel, thus this gesture implies a relative position as well. There 

was no abstract object being represented by the deictic gestures in this 

experiment (e.g. time).  

An abundance of deictic gestures is noted in the second and third tasks, in 

contrast to the first task, which concentrates on body positions. The term 

"indicating a direction" might be ambiguous for instructing the placement of an 

object, while a specific location or referent provides clear guidance for the learner. 

In the first task, gesturing towards a direction is often used rather than specifying 

an exact location, especially when the instructor needs to communicate the 

orientation of a limb, such as left or right. This observation confirms the second 

hypothesis concerning the prevalence of deictic gesture production. 

The emblematic gesture was the second most frequently used gesture (n=364), 

particularly thumbs up (n=238). However, over 75% of videos show generated 

thumb ups in speechless conditions, even though the thumb ups gesture is not 

instructional. It appears that inclusion of the thumbs up gesture produces a 

decrease in instructional time (17.8 seconds average). The thumbs up is an 

emblematic gesture (Andric, 2012), but also an interactive gesture (Curioni, 2020). 

It is a cultural mutual gestural vocabulary to convey thoughts and emotions.   
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In this experiment, the crossed arms gesture can represent the cardboard without 

a hole (see Figure 4.18), and the counting finger gesture supports the trainee by 

implying how many cardboard blocks are needed for each floor, after the trainer 

has pointed at the right type of cardboard.  

The trainer employs the two hands' palms facing forward gesture when asking the 

trainee to hold for a second and look at the hologram, or whenever the trainee 

rotates or translates correctly to stop continuous rotation. By moving one hand 

from left to right, the trainer can imply that the referent needs to be removed. If two 

palms casually draw circles on the same plane, this means the referent needs to 

be reset (see Figure 4.18(3)). Similarly, the gesture of waving the index finger or 

hand (applied uniformly throughout the experiment) denotes an incorrect action by 

the trainee. 

In the experiment, transformational gestures outnumbered iconic gestures. Two 

palms facing each other, and an unfolded hand make up the gesture of rotation. 

These two forms may depend on the size of the referent. Two palms or index 

fingers kept apart and facing each other imply the size of the cardboard, while the 

unfolded hand conveys the size of a puzzle-T board. Another transformational 

gesture which appeared regularly is the flipping gesture, whereby the trainer 

instructs the trainee to place the base cube with windows at the bottom by 

employing the gesture of two palms facing each other, as if to say “you would 

reverse the window at the bottom” (see Figure 4.35). Therefore, the 

transformational gesture can potentially convey information about the shape of the 

object. 

 

Figure 4.35. The transformational gesture can imply the iconic meaning 

 

Figure 4.36. The rotating gesture in the precision task 
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However, the gesture of rotating the referent can also be performed with the palms 

facing each other, or using parallel index fingers, since the rotation angle and the 

way in which the trainer stands can affect the gestural pose. This form may 

emphasize the shape that needs to be rotated extensively. In the precision task, 

one trainer did not generate unfolding hand movements to guide the trainee in 

rotating the panel: he stood in a position, and pointed two index figures pointed 

forward, and his arms moved towards a specific direction. The rotating angle 

increased along with bigger arm movement amplitude, as he guided the trainee to 

rotate 90 degrees (see Figure 4.36). 

The flipping gesture appeared uniformity throughout this experiment. For example, 

the trainer puts down palms to describe the referent, and then rotates the wrist to 

put the palm upward. This is similar to the transformational gesture in that it 

depicts the referent’s adjacent side, such as the other leg or the other edge of a 

triangle. As an example, the trainer's index finger or palm jumps forwards 

whenever the trainee grasps the wrong side. Although this could replace the 

rotating gesture, the movement of gestural direction is vertical. 

The difference between this gesture and the deictic type is that the former 

considers the position of the adjacent object, so it cannot represent a direction or 

position. 

 

Figure 4.37. Example of the index finger drawing a line 

As mentioned, the iconic gesture is used to describe the object’s shape, length, 

size, angle, and spatial position. In the experiment, the trainer employs this when 

mimicking the 3D basic cube, flat cardboard with window, roof, or 2D triangle. The 

iconic gesture can also depict a panel with the window in one specific level in the 

assembly task, which does not appear in other levels. In the non-speech level, the 

trainer first outlines that the panel has no window by drawing a rectangle with 

his/her index finger, before drawing a diagonal line with the same finger to instruct 

the trainee to choose the right cardboard (see Figure 4.37). In order to point out 

that the long side of the triangle should be closed against another shape, the 

trainer stretches both arms or draws a line. Therefore, the iconic gesture also can 

stress a key feature of the referent alone.  

The iconic gesture can also illustrate a spatial position, and this representation can 

describe an overall arrangement as well as reflect the object's position and 

features, although it does not refer to a particular place or shape. For example, in 

the hard level of the assembly task the trainee has to build a castle. The trainer 

effectively splits this complex cardboard fort into blocks that are located in different 

positions, and his/her gestures represent the appearance of the high tower, how 

many floors it has, the position of each block, the shape of the next block, and the 

relative position of each block based on the tower.  
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Although the mimicking gesture appeared 155 times in the first task. Those may 

entail some complex poses, such as curving fingers and bent knees. In the 

speechless situation, the trainer can employ the deictic gesture to attract the 

trainee’s attention and indicate the shape of the body part using mimicking 

gestures.  

The metaphorical gesture was not frequently generated in this experiment, but it 

can imply previous behaviours and present performance via movements of the left 

and right hands. In the warm-up trial, the trainer points at his/her elbow to imply a 

corner of the triangle. The trainer’s two hands’ index fingers inscribe the letter ‘X’ 

to emphasize that two panels need to be integrated. The metaphorical gesture 

applies a particular characteristic of the hologram’s position, shape, and spatial 

relationship.  

The beat gesture in the experiment can help the trainer to organize expression 

and logical thoughts, and the duration of this gesture tends not to be long (around 

a few seconds). In the hard level of the navigation task, the trainer uses the beat 

gesture along with the speed of utterance to indicate that the trainee's left leg 

should put down on the side on the floor. When stressing the instructions “flat”, “on 

the side” and “on the floor”, his/her left-hand moves move downward.   

Interaction with the trainer involves gestures that invite interaction, and an 

opening-arms gesture expresses the trainer's emotion. 

The gesture's taxonomy is determined by its functions and semantic context. This 

experiment requires transformational gestures, not merely gestures of basic types. 

A transformational gesture is more complex than, e.g. pointing an index finger in a 

certain direction. In gestural representation, direction often refers to placing a 

referent on the left or right side, or moving it forward or backward, without 

providing a clear value. The transformational gesture, on the other hand, can 

represent by how many degrees something needs to be rotated. 

4.6.2 Cognitive ability affects gesture generation 
The trainer’s gestures imply ways of thinking, cognitive and logic ability. This is 

especially the case with the assembly and precision tasks. In the warm-up tasks, 

even though the trainer cannot speak, gestures can successfully provide 

instruction by way of key information selection and organization in order to develop 

processes. However, in the warm-up level of the assembly task, the trainer does 

not indicate the basic shape in advance, but instead points directly at the panel. 

This alone demonstrates that cognitive ability need not rely on speech, but on 

gestures. This finding also supports the third hypothesis by demonstrating how 

varying levels of task difficulty can affect gesture generation and cognitive 

strategies. 

Speechless trials require the least complexity; thus, they are considered 

elementary if verbal instructions are given by the instructor. Even though the 

warm-up trial shows a greater number of movements, it is completed more quickly. 

The more challenging trial prompts fewer gestures but takes more time to 

complete. The instructor and learner may become increasingly familiar with each 

other and their tasks over time, yet complex trials demand periods of 

contemplation and articulation. It does not imply that more time is required to 

produce a greater number of gestures at higher difficulty levels. Moreover, while 
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the speechless and simple trials feature comparable configurations of cardboard 

structures, the instructor who produces fewer gestures may take longer to 

conclude the simple task, suggesting that the instructor needs to structure their 

verbal guidance more carefully. Therefore, the increased number of gestures 

noted in warm-up trials could support the first hypothesis. 

If the trainer is permitted to offer verbal guidance, warm-up trails are simplified in 

every task. While the warm-up trial has the greatest quantity of motions, it requires 

a shorter duration. The challenging track produces a reduced number of motions, 

although requiring a greater amount of time. The process of familiarizing trainers 

and trainees with each other and their respective jobs typically occurs gradually. 

However, when faced with challenging difficulties, individuals often require more 

time for contemplation and articulation. This does not suggest that there is a 

correlation between the difficulty level and the time required to generate a greater 

number of gestures. Furthermore, it is worth noting that there are similarities 

between the warm-up and easy conditions in the assembly assignment. However, 

it is interesting to observe that the trainer who generates fewer motions required a 

longer time to finish the easy condition. This suggests that there may be a need for 

the trainer to improve their language organization in providing assistance. 

Therefore, the initial hypothesis can provide an explanation for the higher 

occurrence of gestures observed during warm-up trails. 

Whenever a hologram similar in shape to a previous one appeared, the trainers 

would extract previous spatial information to generate similar gestures. However, 

the trainer did not repeatedly provide more gestures to instruct the trainee where 

the panel was; he/she applied the pointing gesture to remind the trainee to tape 

boards. 

As discussed in the previous section, when the hologram was more complicated 

the trainer needs to spend more time in observing and figuratively cutting it into 

different blocks. For example, in the hard level of building the cardboard fort, most 

trainers instructed the trainees to assemble the foundation shape first before 

building the second floor, which horizontally split the house. Alternatively, the 

trainers firstly instruct the trainer to start from a base cube, as done previously, 

then assemble the second floor, and lastly build the right-side block. In the pre-

instruction situation, the trainer’s gesture continuously depicts the shape of the 

virtual castle and the location of the panel with the window. The trainee follows this 

instruction to assemble the highest part of the cardboard fort. Therefore, the 

information can be packaged into different units that not only represent the way of 

thinking but also gestural generation. On the other hand, there was an instance 

where one trainer described the foundation shape as being like the letter ‘N’, but 

the trainee did not fully understand this metaphor. If a concrete shape is described 

by way of an abstract object, the trainer’s explanation may consume more time 

and entail more gestures. Additionally, the third hypothesis can be corroborated by 

observing how different tasks affect the way information is structured and 

manipulated through gestures. 

Although the assembly task also involves hand movements regarding rotating and 

translating the object, the purpose of this particular task is to observe how the 

trainer’s package spatial information. Information manipulation appeared 

frequently in this last task. The trainer needs to manipulate spatio-motoric 
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information by gestures including rotating, flipping, pointing at a specific direction, 

and instructing each orientation and position of the shapes, one after another. If 

the trainer cannot recognise that two large triangles can make up a square, the 

trainee might decide to set up the end parts of the shapes. 

Additionally, when the trainee does not correctly understand the instruction, the 

trainer might wave the hand or index finger. In the precision task, the trainer 

stands on the opposite side of the trainee, and might accidentally lead the rotation 

in the opposite direction. Therefore, the trainer’s hand orientation moves to the 

other side to correct mistakes, or the trainer performs the same gestures with 

bigger amplitude of motion again. If the trainer finds that the shape cannot match 

the hologram, he/she resorts to using gestures which signal a restart. The data 

obtained in this experiment can be used to determine whether the trainer’s 

thoughts can be dictated by the trainee. It explores the affordance of spatial 

information as well as practicability. 

In addition, the gestural generation can be negatively affected by whether the 

trainer has described features of the referent prior to instruction, whether providing 

advance notice reduces the number of gestures and time expenditure necessary 

further down the line, as well as facilitate the trainee’s imagination and his/her 

comprehension of the shape in question.  

4.6.3 Co-speech gesture 
This experiment also found that the gestural generation is quicker than verbal 

expression. This gap would be more distinct if the trainer has to retrieve words. 

The trainer may be able to organise spatial information more quickly by employing 

gestures. By way of example, the trainer might forget the name “Velcro”, but can 

simulate its taped shape by drawing circles with his/her index finger. In this 

situation, the trainee can predict the trainer’s meaning. The co-speech gesture 

supports lexical retrieval (Hadar, Dar and Teitelman, 2001), but the relative 

gesture also can directly replace the utterance in interaction. Further, the trainer 

can use different forms of gestures to describe similar functions of referents. The 

trainer who extracts the principal feature of Velcro using gestures might also show 

delays in lexical retrieval when describing the word "connector". The function of 

the connector and Velcro is similar in that both materials connect two panels, and 

so the trainer can generate the other form of gesture by vertically stretching two 

hands to illustrate what the connector is. 

The trainer captures the key feature of the object, and stresses its key word along 

with corresponding gestures. In order to highlight a side of the basic cube that has 

no roof, the trainer need not simulate the cube shape, but employ a slow rhythm of 

utterance to emphasize “without roof”, and simultaneously illustrating it using 

crossing-arm gestures. The same gesture can be produced again to underline the 

utterance “without”, if the panel has no hole. The co-speech gesture is multi-modal 

communicative approach that conveys information by both schematization and 

speech. However, if the feature has been mentioned before, the trainer might 

choose to generate different forms of gestures. For example, all trainers’ hands 

mimicked the triangle roof in the easy level of the assembly task, but in the hard 

condition, the trainers’ palms pointed to the right cardboard blocks that needed to 

be assembled in the triangle shape and moved up to the top.  
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Figure 4.38. Word frequency in the experiment 

In terms of word frequency, the word “one” was most frequently used, but it only 

appeared 5 times with the gesture (see Figure 4.38). By contrast, the word “side” 

was used often and accompanied by deictic or beat gestures to stress the 

referent’s position or direction. This can match the frequency of the gesture as 

well. Further, “side” is an expression of position or direction. If the trainer did not 

perform the gesture, the function of this word would lead to a misunderstanding, 

since the trainee does not know which side the trainer is referring to. The gesture 

in speech is an aided linguistic function for supplying key information via spatial 

representation. The word “like” occurred 110 times in this experiment. If the trainee 

did not follow the instruction, the trainer would use a “like this” gesture.   

Frequently used gestures include deictic and emblematic gestures, mainly pointing 

at positions and objects. However, the thumbs up gesture was frequently used in 

each task. Almost all trainers used it for indicating correct performance; 

nevertheless, it lacks an instructional function, and is merely a supportive gesture. 

The transformational gesture was the second most frequently occurring gesture 

type in the experiment. Therefore, the second hypothesis regarding key gestures 

is tenable.  

The three tasks focus on how the trainer uses spatial information via manipulation, 

package, and exploration. In the navigation task, the trainer simulates the 

hologram by mimicking and deictic gestures when directing the trainee to 

assemble the right body parts. The assembly task results demonstrate how the 

trainers package the information, while the precision task required the trainers to 

manipulate and explore spatial motoric information. The cardboard fort is a 3D 

concrete object, while the puzzle-T shapes are more abstract. Following 

completion of the tasks, the trainers and trainees opined that the precision task 

was more complex, since it required imagination, mathematical knowledge, and 

observational skills to explore how to rotate, translate, and make up these panels. 

The first and third hypotheses are therefore supported. 

The non-speech conditions can facilitate gestural generation and replace 

utterance, but also demonstrate that the gesture is a linguistic aid in speech. When 

a similar shape appears later in the experiment, the trainer may ignore its features 

and not produce associated gestures. Further, the subsequent gestural generation 

can be altered by the trainer providing the trainee advance notice. If the trainer 
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describes the shape prior to issuing instructions, the necessary number of 

gestures and time expenditure are reduced. The difficulty level of tasks can also 

influence gestural generation. For example, if the trainer adopts the same gestures 

for describing concrete and abstract objects, this may lead to negative outcomes 

and lead to more gestures being required further into the task.  

4.7 The Gestural Animation 

The scope of this study does not include the development of the holographic AI's 

model, as that is beyond the research's purview. Instead, the study focuses on 

examining instructional gestures that could be integrated into the functioning of an 

educational holographic AI. 

Although the previous sections have analysed behaviours and utterance on the 

part of the trainer, not all co-speech gestures can be imported into a holographic 

AI. The three tasks in the experiment do not often appear in daily life (i.e. 

mimicking a person’s pose or building a specific pattern). However, they are 

designed to highlight the emergence of different types of gestures based on 

cognitive ability and various ways of thinking. Therefore, it is important to extract a 

series of gestures that can match the holographic AI’s persona.  

The taxonomy of gestures consists of deictic, iconic, transformational, metaphoric, 

emblematic, beat, and cohesive types. Although cohesive gestures did not appear 

in the experiment, there occurred an example showing that the gesture can be 

appropriate during an interruption (the Rokoko suit disconnected, and the 

experimenter had to ask the trainer to do the collaboration pose, so the trainer 

used the same side hand to perform the same gesture to continue to instruct).  

In order to ensure smooth motion, the animation selection is also based on the 

stage of gestural generation, i.e. preparation, stroke, pre-stroke, and retraction. 

The data analysis provides evidence showing that the deictic gesture, especially 

pointing at a position or object, is foundational, and that the form of this gesture 

consists of index finger and palm pointing. Therefore, the deictic gesture has been 

extracted from high-quality animation captured using the Rokoko suit and smart 

gloves. 

 

 

Figure 4.39 (1). The deictic 
gesture:  two palms 

Figure 4.39 (2). The deictic gesture: the 
index finger 

The trainer’s animations were extracted using the method of cleaning animation 

data, which was described back in Chapter 3. Figure 4.39 shows different forms of 
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the deictic gesture. This gesture is used to point at an object, and was 

instrumental during the assembly task. If the object is on the ground, another 

pointing gesture is extracted from the precision task (see Figure 4.39 (3)).  

 

Figure 4.39(3). The deictic gesture: index finger points down 

Meanwhile, the animation regarding the gesture of pointing is similar. For example, 

Figure 4.40 shows that the trainer requires the trainee to place a Velcro on a 

cardboard block. 

 

Figure 4.40. The gesture of pointing at the position 

The animation of pointing in a certain direction is achieved. Some trainers 

preferred to use the palm to point in a direction, enabling them to employ distinct 

hand movements for pointing at a position and object (see Figure 4.41). 

 

Figure 4.41. The gesture of pointing at the direction 



143 
 

The transformational gesture type includes rotation and flip gestures, which can 

represent the object’s other edge or corner in the experiment (see Figure 4.42 

(1,2,3,4)). 

 

Figure 4.42 (1). The transformational gesture: rotation using palms 

 

Figure 4.42 (2). The transformational gesture: rotation using index fingers 

 

Figure 4.42 (3). The transformational gesture: flip 

 

Figure 4.42 (4). The transformational gesture: other side 

The iconic gesture should be based on the key object’s feature. For example, 

although the triangle roof was often gestured in the experiment, it has particularity. 
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Thus, the gesture regarding the object’s size and length can be widely utilised for 

the holographic AI’s gesture (see Figure 4.43 (1,2)). 

 

Figure 4.43 (1). The gesture described length 

 

Figure 4.43 (2). The gesture described size 

The thumbs up, index finger waving and palming forward gestures can convey 

agreement and disagreement, and they were also frequently used in the whole 

task, even though they are not instructional. The palming forward gesture in Figure 

4.44 means holding on, whereas a waving index means incorrect performance. 

These gestures have supportive and reminder functions in communication. 

 

Figure 4.44. The emblematic gesture (from left to right): thumb up, palming forward, and 
waving index finger 

 

Figure 4.45. The gesture in the holographic AI, including the deictic, transformational, 
iconic, and thumb up gestures 
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Figure 4.45 presents two deictic gestures, two transformational gestures regarding 

rotation by the palm and hands, an iconic gesture about the length, and thumbs 

up. The gesture is a successional movement, and the stage of stroke includes 

multiple gestural types and meanings. If the trainee successfully follows the 

instruction, the trainer’s hand would change from a transformational gesture to 

thumbs up or the next gestural guidance, but not directly jump to the retraction or 

preparation. If the animation returns to the retraction step, it would be desultory 

since each animation only lasts a few seconds. The pre-stroke step allows keeping 

the gesture until the next command or utterance appears. These gestural 

segmentations need to create multiple possibilities based on the dialogue or the 

user’s action.  

The literature review in Section 4.1.3 suggests that holographic AI's realism can be 

enhanced by aligning animation, voice, and speech rhythm. A holographic AI 

should, therefore, evoke a deictic gesture when verbally expressing the side of a 

referent, and a transformational gesture when emphasizing the rotation of a 

referent. It is found in this experiment, however, that gestures can generate earlier 

than speech when a trainer describes an object with a similar function, which does 

not affect a listener's understanding. In order to increase behavioural realism, 

holographic AI can perform gestures earlier than utterances in such situation. 

4.8 Limitations  

This study examines the relationship between cognitive processes and the 

generation of gestures, with a particular emphasis on instructional gestures. 

Nonetheless, the experimental design and analysis are not without their 

limitations. 

Due to the absence of teachers and students in the experiment, it is not clear 

whether innovative variations of gestures would emerge. Moreover, the 

experimental design incorporates three tasks that are seldom experienced in 

educational settings. These tasks were selected with the aim of optimizing the 

capture of a wide range of gestures for later frequency analysis. This could 

potentially trigger the manifestation of non-universal gestures, such as 

transformational and mimicking gestures. If additional tasks are incorporated, the 

experiment is likely to elicit other types of gestures. 

Moreover, this study does not examine the potential impact of participants' 

educational backgrounds or teaching experiences. Since the cognitive abilities and 

effectiveness of learning are influenced by educational levels (Guerra-Carrillo et 

al., 2017). Consequently, participants assuming the position of instructors may 

exhibit distinct gestures compared to experienced teachers, and their limited 

teaching experience may necessitate increased gesture instruction. Furthermore, 

this experimental design does not rigorously control over the duration of time 

allocated for each task, nor does it account for the participants' prior experience 

with puzzle-T setups and cardboard fort construction assembly. These factors 

could lead to the repetition of gestures since experience may influence the 

guidance and gesture generation. 

Cultural factors may have an influence on gesture generation. For instance, a 

Chinese participant thinks that excessive body language is impolite or friendly, 

whereas Italians prefer using their hands to express their thought. 
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This study does not provide clear evidence of how the instructor addresses and 

rectifies errors made by either the trainee or the instructor themselves. It solely 

captures partial instances of gestures associated with restarting or stopping 

actions. Consequently, it should be imperative for the system to produce visual 

representations, in the form of animations, that demonstrate the holographic AI’s 

execution of distinct gestures within this context. 

Therefore, this study should manipulate variables like cultural contexts, personal 

experiences, and educational backgrounds, it could enhance the classification of 

gesture types and reveal foundational aspects of gestural generation.  

4.9 Summary 

Although the PICS model outlines the role of body movement within the persona 

dimension, it lacks detailed insights into the instructional gestures that could be 

integrated into holographic AI systems. Hence, this chapter augments the PICS 

model by investigating the instructional gestures suitable for holographic AI, as 

illustrated in Figure 4.46. 

 

Figure 4.46. Instructional gestures in the PICS model 

An experiment was implemented to collect and investigate data of gestural 

animations. It included three tasks: navigation, assembly, and precision. The 

experiment involved 22 participants divided into 11 groups. In each group or pair, 

one participant was a trainer who captured movements, and the other was a 

trainee. For the navigation task, each trainer instructed the trainee to mimic the 

hologram’s pose. The assembly and precision tasks entailed building cardboard 

forts and puzzle-T patterns based on the trainer’s instruction. Each task has two 

conditions, i.e. speechless and verbal, and the speech condition comprised three 

levels of difficulty. 

This experiment recorded videos of the trainers’ and trainees’ performances, as 

well as the trainers’ movements, via motion capture. Then, 132 videos were 

imported into NVivo12 to be coded by different gesture types, based on the 

taxonomy of the representational gesture, which includes iconic, deictic, 

metaphoric, emblematic, beat, and cohesive types. This experiment also focuses 
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on transformational gestures, which are used to manipulate spatial information. 

Gestures relating to rotating, flipping, and expressing the other side of the referent 

are included. The transformational gesture neither refers to the object’s position 

nor is a vague orientation. The purpose of the navigation task was to mimic the 

hologram’s pose, thus requiring the trainer the unconsciously simulate, i.e. perform 

a mimicking gesture.  

Each type of gesture occupies a different branch in the taxonomy. The deictic 

gesture consists of pointing at an object, position, and direction. The index finger is 

integral to the gestural form of pointing at a specific referent, and the palm also 

can point towards a position. The pointing gesture is not a static animation, such 

as pointing out and going back to standing. When a person uses this gesture, 

his/her forefingers may repeatedly point forward or draw circles to emphasize its 

importance or position. The object’s size, length, and shape can be visualized by 

the iconic gesture. When the trainer gestures the object’s size, the thumb and 

index finger form a ringlet circle to describe this size of area, while the length is a 

2D line, which is different from the definition of size. This type of gesture also can 

represent the spatial position relationship of multiple objects, as well as describe 

an angle. In contrast to pointing at a direction, illustrating an angle does not 

require using the index finger to put the referent on an orientation, so the trainer 

must understand the two objects' positions in order to form an angle. 

The emblematic gesture is characterised by cultural uniformity in that people of 

different cultures can identify the gesture’s meaning, such as thumbs up. In order 

to convey right or wrong results, the trainer uses this hand movement to 

differentiate and pinpoint a key feature of the referent, such as the panel without a 

window. The metaphorical gesture requires imagination and verbal content to 

judge, thus this gesture did not appear in the non-speech trials, and the trainer 

used this to compare previous tasks. The trainer can use the beat gesture to 

organize utterances. Cohesive gestures are used to connect previous interpreted 

expressions; however, this this experiment did not display cohesive gestures. 

On the other hand, a single gesture may convey multiple meanings. The trainer’s 

hands describe the shape’s size and then rotate the wrist to navigate the trainee to 

follow. In the assembly task, the trainer’s hand mimics the cardboard’s shape by 

opening arms and having the two palms facing each other, while the on-hand palm 

gesture represents the puzzle-T panel. In the medium level of the assembly task, 

iconic and deictic gestures mutually appear when the referent’s feature can be 

represented by the palm and moved to a direction or position.  

The results proved that the deictic gesture is the most frequently utilised type for 

instruction. The speechless and complex situations can facilitate the gestural 

generation, but if the trainer provides advance notice, such as describing the 

shape of the puzzle-T pattern prior to instruction, the required number of gestures 

will be lower. It is probable that the trainee can predict what the next shape is, and 

also its difficulty. The three tasks were also designed to examine the trainers’ 

different ways of thinking via gestures. The assembly task focuses on how to 

package spatial information, while the puzzle-T is more abstract, requiring the 

trainer to manipulate and explore the information. However, if a concrete and 

visualized object is described in an abstract manner, the trainer needs to employ 

more gestures to explain its features.  
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In terms of co-speech gestures, when the trainers were permitted to speak the 

gestures turned into a linguistic aid. Each trainer verbally instructed each trainee, 

instead of relying solely on gestures, and if the same or similar elements appear 

later, each trainer did not need to focus on the corresponding gestures again or 

apply new spatial representation. Moreover, the word “side” was the most frequent 

one appearing alongside the deictic gesture. This word can depict a position and 

direction. Besides, the speed of gestural generation is quicker than that of verbal 

organization. People can recall the previous schematization and the referent’s 

information, and then its feature can be extracted by way of a gesture; whereas 

language organization is more complicated since it involves grammar rules, lexical 

retrieval, and logical thinking.  

Following the data analysis, the corresponding animation was then selected based 

on the taxonomy of gesture and frequency. Considering that the animation should 

match diverse surroundings, the iconic gestures in regard to specific patterns or 

shapes, such as a triangle or square, are not reproduced. Besides, the branches 

of the deictic gesture type share no explicit differences, representing by 

animations. However, it has been observed that when a trainer points at a position 

or object, the shape of the index finger is clearer; whereas if pointing at an 

indefinite orientation, the index finger is loose, or the palm of the hand may be 

used for translation. When the holographic AI points at a position or object, the 

index gesture can be utilized, while the palm can refer to an orientation. It was also 

observed that during the speechless condition of the assembly task, if the trainer 

uses a single hand to manipulate spatial motoric information, the trainee may not 

be sure whether the cardboard needs to be flipped or rotated. Therefore, the hand 

animation should signify a clear difference in the gestural representation. In order 

to ensure gestural diversity, two hands spaced far apart from each other can 

represent a large-sized object, while one palm can reflect a smaller one. The 

iconic gestural animation should be based on the pre-defined object. If the 

scenario has a specific key virtual or physical object that is central to the topic of 

the training session, the corresponding shape of the gesture should be 

represented. The emblematic gesture, especially the thumbs up and waving 

hands, can express the holographic AI’s approval or disapproval, accompanied by 

head nodding. Inclusion of transformational gestures depends on whether the 

dialogue includes the object’s manipulation, and inclusion of mimicking gestures 

relies on whether the holographic AI needs to package spatial information or 

separate different blocks to describe a plan or shape in the complex situation. 

Metaphorical gestures can illustrate and compare previous events or behaviours in 

interaction via the movements of the left and right hands. In order to “plug the gap” 

within the speech output delay, gestural generation can be performed prior to 

utterance. 

While transformational and mimicking gestures are able to convey how people or 

holographic AIs manipulate and package spatial information, the experiment's 

main focus has been on instructional gestures.  Furthermore, past studies 

emphasize the importance of deictic gestures and their use in training and 

education, as well as their integration with other forms of gestures.  Based on 

observation, the stage of gestural generation may help connect different types of 

gesture. When the trainee cannot immediately react, the trainer's gesture should 

occur in the pre-stroke or retraction stages, and he/she should either explain it 
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again or provide other instructional methods.  The trainer will generate the next 

gesture if the trainee has (not) not followed the instruction correctly. There may 

occur a pause between strokes. Nevertheless, if the trainee needs to spend a long 

time on the task, he/she will go through the stages of stroke, retraction, and stroke 

again. The user's reaction to the holographic AI is therefore crucial. 

The holographic AI’s cognitive ability and intelligence level can be represented by 

the gesture. Although natural language processing is the main interactive 

approach, the gestural generation can be an aiding system that enhances the 

holographic AI’s persona. A series of gestural animations could satisfy the 

requirements of an educational holographic AI teaching mathematics, since this 

will likely include counting fingers, and 2D and 3D shape representation. 

Therefore, the next chapter will investigate whether children are likely to place 

their trust in such a holographic AI and its instructions. 

Table 4.9 provides the utilization of different gestural animations for the 

holographic AI below: 

Gestural 
taxonomy 

Gesture animation Describe use 

Deictic gestures Pointing at the position 
using the index finger. 

Refer to a concrete location. 

Pointing at the object 
using the index finger. 

Refer to a concrete virtual and 
physical object. 

Pointing to a direction 
using loose index finger 
or palm. 

Translate an object or mention 
a vague orientation, 
accompanied by the utterance 
of “side”. 

Transformational 
gestures 

The wrist rotates and 
flips. 

The hand jumps forward. 

To manipulate spatial 
information. 

Mimicking 
gestures 

Simulating a posture To mimic the other one’s pose. 

Iconic gestures The index finger draws a 
shape based on the 
object. 

To represent the object’s 
shape. 

The distance between 
thumb and index finger. 

To describe size. 

Stretching two arms from 
clasped hand palm. 

To represent 2D shape’s 
length. 
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Both upper arm and lower 
arm aligned vertically, or 
align the two hands 
vertically. 

To represent an angle using 
two hands. 

Putting grasping hands or 
palm down, and moving 
to different position. 

To package and explore 
different blocks’ spatial 
positions and relationship. 

Emblematic 
gestures 

Thumbs up, waving the 
index finger or hands, 
palm facing forward, 
counting fingers, 
crossing-arm movement. 

These gestures have a 
prompting effect. 

Metaphorical 
gestures 

The hands move from left 
to right sides. 

To represent past and present/ 
future time. 

Beat Gesture with rhythmic 
movement. 

Such a gesture can help 
organize verbal language. 

Table 4.9. The gestural taxonomy can be used in the holographic AI 
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Chapter 5 Trust towards Holographic AIs: An 

Experiment 

5.1 Introduction 

This chapter has a particular focus on trust: what trust is, what encourages a user 

to place their trust in a holographic AI, and whether and to what extent 

anthropomorphic 3D character models fitted with AI technology can elicit free-

flowing, intelligent, spoken dialogue and engender within the user a sense of trust. 

More generally speaking, the aim of this chapter is to understand the relationship 

between human and computer in order to improve technology acceptance and the 

user experience. 

Trust is an essential pivot of interpersonal relationships and thus forms the fabric 

of society. AI agents bear the semblance of real humans and may be regarded as 

social entities and actors (Borst and Gelder, 2015); in this context, trust to a large 

extent, defines a relationship between users and technological artefacts. Although 

HCI shares some of the similar principles found in interpersonal interaction 

(Reeves and Nass, 1996), such as emotional expressions and recognition, the 

requirement of trust in artificial agents is higher than that in human-human 

interaction. 

For example, photorealistic, anthropomorphic 3D character models are widely 

used in immersive technology-based applications such as video games, training 

simulations, or augmented reality. These 3D characters can, for example, guide 

the user in solving a problem, or they can be used as a sort of user interface 

designed to deliver services. Especially in regards to critical services such as 

healthcare or education, technologists desire, of course, to develop tools which 

engender a high degree of trust. 

The previous chapters have described holographic AIs with instructional, gestural 

animations. This chapter concerns a holographic AI that plays a role of a 

mathematics teacher that helps children identify different 3D and 2D shapes, such 

as a cube, cuboid, square, and rectangle.  

As discussed earlier in Chapter 2, although holographic AI can positively influence 

children’s learning outcomes (Li et al. 2021, Oh and Byun, 2021), 

methodologically, user experience evaluations for holographic AIs lack a measure 

for trust. This is a gap in the literature and leaves open to test whether trust plays 

an important role for human computer interaction with intelligent tutoring systems, 

leaving it unclear whether trust is needed for providing a positive user experience.  

To date, there does not exist a standardised scale for testing a human’s trust 

towards a holographic AI. Although Kim et al. (2018) have measured the sense of 

trust towards holographic AIs, their questions relating to measurement were 

extracted from the McKnight Trust Questionnaire (Mcknight et al., 2011). This 

questionnaire focuses on trust in information technology (IT), and offers a 

framework of trust in IT that differs from interpersonal trust. However, the authors 

measured students’ experience towards functions of Excel’s features, rather than 

directing at embodied virtual agents.  



152 
 

Hence, a novel methodology for measuring trust will be developed in this chapter 

and an according experiment will be presented that investigates the sense of trust 

towards this particular holographic AI, the geometry tutor, to exemplify what role 

trust plays in the users’ experiences. 

Section 5.2 reviews personal trust and relative potential factors of trust that 

influence HCI. Section 5.3 develops a specific questionnaire for measuring trust 

towards the holographic AI. Section 5.4 details the questionnaire adaptive to 

children and presents a pre-test. Section 5.5 offers the experiment design. Section 

5.6 describes the experiment for analysing children’s trust towards a pedagogical 

holographic AI. Section 5.7 provides the experimental results, and Section 5.8 

discusses which factors appear to influence user experience. A summary of the 

findings of this chapter is provided in Section 5.9. 

5.2 The Concept of Trust 

This section sets out the definition of trust in the context of human-human 

communication and explores the differences between human-human trust and 

human-AI trust. Although the concept of interpersonal trust has been discussed, it 

is crucial to understand what the sense of trust generates between the human 

user and AI, identify factors of trust, and consider whether these factors based on 

human interpersonal relationships and can be utilized for holographic AIs. Another 

issue to consider is whether the requirements of trust may change along with 

social and science development. 

5.2.1 Interpersonal trust 
There are diverse definitions of interpersonal trust in different aspects. It can be an 

attitude (Jones, 1996; Helm, 2014), expectation (James, 2002), a psychological 

state (Rousseau et al.,1998), a belief (Reiersen, 2017). For example, trust as an 

attitude can be defined as a person’s goodwill and capability in satisfying another’s 

communicative requirements. In this context, the person is expected to have 

corresponding behaviours that can be relied on (Rotter, 1967), and which can help 

the other person achieve goals (Lee and Katrina, 2004). Dietz (2011) also defined 

trust as an expectation, such that the trusting individual is willing to take a risk and 

face its associated uncertainty. These definitions indicate that the interpersonal 

trust is characterised by a sense of expectation and hope on the part of the trustor 

based on the trustee’s intention. Therefore, trust can be defined as an intention or 

willingness of someone to put oneself in a vulnerable situation (Mayer et al. 1995; 

McEvily and Tortoriello, 2011).  

Further, trust can also be defined as an assumption based on competence, 

intention, and perception, i.e. the trustor believes the trustee will not thrust him/her 

into a risky situation (Pearce, 1974). Trust in this definition implies that the trustor 

predicts the trustee’s behaviour. Elster (2007) proposed that trust is a unique 

action that is based on what the trustee does, which even when people do not 

trust a person, they might still perform such an action. 

On the other hand, Hardin (2006) claimed that trust is not an action, but is instead 

a measurable indicator, a scale of belief in regard to expectation from the trustee, 

that it reflects what the trustor thinks of the trustee (Reiersen, 2017). Belief in the 

concept of trust refers to a certain degree of a person’s trustworthiness, which can 
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decide whether the next action will occur (Hardin, 2006; Chang et al., 2010). 

However, belief is one of source of trust, and trust itself is an integral behaviour 

within a personal relationship. For example, if a person does not trust another 

person owing to different stances, motivations, or attitudes, he/she will not act; 

accordingly, ipso facto, if the trustor’s belief is that the trustee is trustworthy, then 

he/she will act. Therefore, the meaning of trust extends beyond that of a belief, 

and these multiple factors, such as belief and intentions, can translate into an 

action (Reiersen, 2017). Trust neither is a behaviour nor a belief, since there are 

other factors that affect action. Colquitt, Scott and LePine (2007) proposed that 

trust is a behavioural outcome, and that this action is derived from putting a person 

in a situation, in which perception of vulnerability precedes trust generation. 

Perceived vulnerability stems from an uncertainty of the trustee’s motive and 

intentions (Kramer, 1999).  

The definition of trust characterized by Mayer et al. (1995) became a broadly 

accepted and employed one (Rousseau et al., 1998; Lee and Katrina, 2004). Trust 

is willingness of the trustor to accept vulnerability based on a positive expectation 

that the trustee can perform the appropriate behaviour (Mayer et al., 1995). 

Moreover, Mayer proposed three essential elements of trust: competence, 

integrity, and benevolence (ibid) (see Figure 5.1). 

 

Figure 5.1. Trust model (Mayer et al., 1995) 

Ability in interpersonal trust is the prior element, which requires that the trustee 

has a specific skill or competence to achieve a trustor’s goals. The influence and 

perception of ability is intuitive (Mayer et al., 1995). Benevolence is the degree to 

which a trusted person intents to do good for the other. This is one of the most 

important aspects of trustworthiness, especially in the educational domain 

(Tschannen-Moranand and Hoy, 2000; Di Battista, Pivetti and Berti, 2020), since it 

should ensure that the trustee will not harm the trustor. A teacher’s ability and 

benevolence are key for the students to perceive the sense of trust (Tschannen-

Moranand Hoy, 2000). In terms of integrity, the trustee should follow a principle or 

social norms that are acceptable to the trustor (Mayer et al., 1995), such as 

honesty. According to Dobel (1999), integrity can be defined as a consistency in 

behaviour and promise. Therefore, the trustee’s action should be aligned with 

his/her utterances and thoughts.  
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Although they consist of distinct dimensions, perceived trust requires a person 

should put a trustor’s interest in priority and follows social norms to fulfil the other’s 

goal based on a specific competence in a domain, and for the trustor, he/she will 

be vulnerable to take risk (Mayer et al., 1995).  

The holographic AI mimics human characteristics–such as persona, sensory 

perception, and cognitive capacity–within a MR environment, equipping the AI 

with analogous attributes. Consequently, certain aspects of Mayer et al.'s trust 

model align with facets of the PICS model, particularly competence, which is 

associated with the holographic AI's demonstrated abilities. Integrity in this context 

refers to the holographic AI's consistent performance and the achievement of 

satisfactory results, gauged by the AI's adherence to its programmed 

commitments. However, the holographic AI inherently lacks empathy, even though 

it can simulate emotional expressions and offer personalized interactions. The 

holographic AI's intelligence is restricted to its programmed functions, limiting its 

capacity to rival human intellect in navigating complex, varied scenarios. 

Moreover, the functionality of the holographic AI is contingent upon user input, and 

it does not independently verify the correctness of user-provided data. The user's 

engagement is typically a one-way emotional response. Understanding the nature 

and dimensions of trust in relation to holographic AI is therefore paramount. 

5.2.2 Trust towards virtual agents 
Interpersonal interaction is not only based on verbal/non-verbal expressions and 

backgrounds connected with one’s perception of another’s potential cues, but also 

relies on subjective feelings and objective evaluation. In terms of HCI, holographic 

AIs have similar interactive approaches in terms of natural language processing, 

animations, and sense. Effective holographic AIs are treated as real humans, 

social entities and actors (Cassell et al., 2001; de Borst and de Gelder, 2015). 

Trust is also a critical determinant in the measurement of usability of technology 

(van Pinxteren et al., 2019). Although HCI shares some of the similar principles 

found in interpersonal interaction (Reeves and Nass, 1996), such as emotional 

expressions and recognition, the requirement of trust in artificial agents are higher 

than those in human-human interaction, because humans are sensitive to these 

anthropomorphic artefacts that are not identical to those of humans. Therefore, the 

sense of trust in a holographic AI may differ from interpersonal trust. 

Kulms and Kopp (2018) define a user’s trust in HCI as an attitude based on 

whether the agent is able to complete tasks based on the user’s intention. 

Similarly, Lee and See (2004) also defined trust as an attitude to achieve a user’s 

goal. The perception of the agent being trustworthy and able is based on 

cognition, and such cognitive trust is dictated by the agent’s competence and 

functionality (Mcknigh et al., 2011). Further, it has been proved that emotional trust 

is also an important factor of trust (Lee and See, 2004). Emotional trust is different 

from cognitive trust. Users can experience cognitive trust when observing the 

virtual agent’s performance, but not emotional trust (Seitz et al., 2021). On the 

emotional dimension, affective trust on the part of the user is determined by the 

concern and care shown by the agent (Borum 2010), which can be referred to as 

benevolence, i.e. a willingness to assist users independent of self-interest.  
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Therefore, the sense of trust towards a holographic AI also has similar factors: 

competence, and benevolence. Holographic AIs are said to be competent when 

they possess the abilities and knowledge necessary for executing and completing 

tasks. Benevolence indicates that HCI agents which execute tasks based on the 

user’s interest are said to display this trait (Phillip et al., 2020). Besides, integrity 

can also refer to the interpersonal trust model. Holographic AIs which assume full 

responsibility and fulfil promises can be said to exhibit integrity (ibid). 

The definition of trust exhibited by children is similar to that of trust exhibited by 

adults. The former is defined the child’s confidence in a person’s speech and 

behaviours, and it also the expectation that the trustee can fulfil promises (Imber, 

1973). Attachment, personification, social realism, and humanoid requirements are 

the elements of children’s preferences for virtual characters (Richards and Calvert, 

2016). This represents the virtual character should have a human-like persona, 

social norms, emotions, behaviours, and competence. Although children's social 

presence is lower than that of adults during interaction with a robot, they treat it as 

'human' instead of a toy (Guneysu and Arnrich, 2017). Further, children have high 

expectations regarding friendship in trust, and these expectations may be similar 

in their sense of trust in robots (Calvo-Barajas and Castellano, 2022). In terms of 

children’s trust towards technology, trust occurrence is based on internal state, 

which in turn includes experiential and cognitive categories (van Straten, Peter 

and Kühne, 2020). The experiential state focuses on how children affectively 

interact with a robot, and includes the elements of engagement, enjoyment, and 

emotional arousal. The cognitive state is based on how children perceive the 

robot, i.e. person, and relies on co-presence, and support from the robot. The 

robot’s responsiveness interaction is a factor that influences the sense of trust, 

and which contributes to the AI’s realism and humanness (van Straten et al., 

2020). Additionally, there are two dimensions of children’s trust: social dimension, 

and competency (Calvo-Barajas and Castellano, 2022). Social dimension refers to 

moral features, such as honesty, and competency is the robot’s performance, 

which affects cognitive trust. The authors designed a questionnaire based on 

these two dimensions to measure the sense of trust towards a virtual agent (ibid). 

It was found that the children aged 9–12 were able to evaluate both trust 

dimensions, and that they hold similar views in terms of trust towards and 

perception of the virtual agent over time. 

The appearance and performance of technological artefacts can affect one’s 

perception of AI features, and AI technology has an impact on trust generation 

(Gkinko and Elbanna, 2023). The holographic - human trust relies on interpersonal 

trust, and it requires a goal-oriented service for users. Children's sense of trust 

towards physical robots is similar to that of adults. Physical artefacts also require 

competence, social norms (i.e. integrity), support and concern (i.e. benevolence). 

However, few studies have considered how virtual humans or holographic AIs 

influence children’s sense of trust, and mapped out associated factors. Further, 

scales for measuring children's trust tend to be derived from research on HCI 

rather than that focusing on virtual humans. Therefore, the following sections will 

develop a trust questionnaire for holographic AIs, and explore children’s 

perception. 
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5.2.3 Research questions 
This study aims to examine the factors that contribute to the development of trust 

in an educational holographic AI (i.e. RQ4). Trust can be defined as a set of 

different properties in different fields and contexts, and there is no uniform and 

accurate definition of trust towards holographic AIs. Therefore, it is crucial to 

comprehend the elements of trust in the holographic AI. Furthermore, existing 

research lacks a standardized instrument for assessing users' trust in such agents. 

Therefore, it is imperative to develop a metric that can quantify users' trust in 

holographic AI systems. Few studies have explored how holographic AIs influence 

the degree of trust and user experience. Although some studies have brought forth 

evidence of some factors significantly affecting the sense of trust, there is no 

agreement as to which factors are critical or have potential to increase the user’s 

trust. These may be divided into three main aspects – holographic AIs and trust – 

upon which the following research and sub questions are posited: 

• Definition - What is trust towards the holographic AI? 

• Scale - How to develop a novel scale for measuring the sense of trust 

towards the holographic AI? 

• Factors - What factors influence the degree of trust? (RQ4) 

5.3 Developing a Questionnaire to Measure Trust 

This section details the development of the questionnaire, the aim of which is to 

assess the user's trust in holographic AI. Since the questionnaires used in 

previous studies concerned trust specific to technology or human interaction, 

rather than holographic AIs, the development of this questionnaire addresses a 

knowledge gap in the field. 

Trust in virtual agents can be defined as an attitude driven by the assumption that 

the agent is capable of and willing to fulfil the user’s expectations (Kulms and 

Kopp, 2018). Although Lee and See (2004) defined a user’s trust towards an 

automaton as the attitude based on the belief that the computer agent can help the 

user achieve goals, this definition might not be directly applicable to humanoid 

holographic AIs. For this reason, it is important to arrive at a proper definition of a 

user’s trust towards a holographic AI before attempting to develop a tool for 

measuring the level of trust in this context. 

It is also necessary to identify relevant constructs for predicting the level of trust. 

One simple approach is to adopt to traditional Likert scaling method. In this 

project, an 11-item Likert scale has been developed and validated. It is also worth 

considering whether these items are interrelated to, and may supplement, one 

another, in the design of a more innovative tool for quantifying the degree of trust 

in a holographic AI. 

5.3.1 Related work 
One recent study of trust in virtual reality-based agents was conducted by Gupta 

et al. (2019), who focused on cognitive load level, and in which they developed a 

subjective mental effort questionnaire designed for obtaining physiological sensor 

data including heart rate variability and galvanic skin response. 
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Data concerning human feelings can be obtained via surveys, interviews and 

competitive research tools; however, feelings constitute a subjective quality which 

cannot easily be quantified. The Likert scale is frequently used in psychological 

and social studies for interpreting numerically the severity and dynamic nature of 

people’s feelings and opinions. One such tool is the trust scale, which assigns 

subjective statements to semantics, and converts people’s attitudes and feelings 

to a rated value using the common five-point scale ranging from ‘strongly disagree’ 

(1) to ‘strongly agree’ (5) (Borum, 2010; Piemetel, 2010). 

There are similar forms a Likert scale - the response scale, and statement-based 

scale – both of which are five-point scales. The statement-based scale has been 

outlined above, in that participants are asked to indicate the extent to which they 

agree or disagree with a particular statement. The scale separates the different 

tiers of (dis) agreement by assigning interval values, to obtain unbiased results. 

The response scale is similar, in that participants are asked to indicate their 

attitude towards a statement or entity: the scale ranges from 1 (‘strongly 

unfavourable’) to 5 (‘strongly favourable’). Both scales include a central tier (3), 

giving the participant the option of expressing an undecided or neutral feeling or 

decision and thus avoiding bias (Kocaballi, Laranjo and Coiera, 2019; Bryman, 

2012). 

Using a Likert scale, Hanna and Richards (2019) studied users’ impressions and 

comprehension of, and experiences with, a computer agent, in an effort to 

measure their experience of and interactions with computer agents, as well as 

gauge their feelings of trust in the virtual assistant. Their study involved 73 

undergraduate students, and the authors monitored the participants’ computer 

usage-based behaviours such as keystrokes and inputs. The three variables in 

their study were trust, performance and promise. 

A study of the ‘warmth’ expressed by computer agents and its influence on user’s 

trust was conducted by Kulms and Kopp (2018) using an altered Likert scale. 

Instead of focusing on the user’s sense of agreement, their scale focused on 

positive qualities such as goodness, honesty, trustworthiness and good intentions. 

To reduce bias, a Likert scale-based study should involve a number of participants 

and obtain data sufficient enough to counter extreme opinions. The wording of 

statements in a Likert scale-based study must be clear and context-based enough 

to enable the user to select the correct choice. Although users’ feelings cannot be 

quantified, it is possible to measure them crudely by observing their reactions, 

behaviours and decisions (Pimentel, 2010). 

In order to develop holographic AIs which are demonstrably trustworthy, reliable 

and capable of making seemingly smart, intuitive decisions, it is necessary for 

researchers to determine exactly how trust facilitates human-AI interaction. To 

date, research and development (R&D) progress has been impeded by the wide 

range of definitions of interpersonal trust, and paucity of valid models for 

quantifying such trust. In view of these obstacles, in this study a panel of judges 

has been tasked with identifying and refining trust-related items by evaluating their 

validity and precision, together with identifying polarising items that reveal more 

distinctive characteristics of trust. 
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5.3.2 Methodology: a new scale for ‘trust’ 
 

 

Figure 5.2. Correlation with sum scores (Huang and Wild, 2021) 

 

Figure 5.3.  T-values of top and bottom quarter judges (Huang and Wild, 2021) 

There does not appear to exist a validated tool for measuring a user’s trust in 

holographic AIs. Therefore, this study takes an ambitious step by proposing a 

novel scale for measuring trust in this context, based on the Likert scaling 

methodology (Trochim, 2021). This new scale employs items cited in previous 

studies, which have been discussed and extended via brainstorming sessions 

among the researchers (Huang and Wild, 2021) involved.  

Subsequently, 15 'judges' were appointed to rate items using a scale from 'strongly 

unfavourable to the concept' to 'strongly favourable to the concept'. The process of 

item selection entailed the elimination of statements which did not appear to 

correlate closely with the sum scores of all statements, as well as interchangeable 

items. In order to form an administrative scale composed of optimal statements 

(e.g. ranked at>0.7), lower-value items are removed (Roberts, Laughlin, and 

Wedell, 1999). The most suitable items, i.e. those delivering polarized answers, 

were identified using a t-test of top and bottom-quarter answers. 

A total of 104 statements relating to the user’s trust in holographic AIs was 

extracted from the literature, and scrutinized during the brainstorming sessions. 

The pool of judges then evaluated the polarizing and loading efficacies of the 

statements, and narrowed down the number of statements to a more 

administratively reasonable level. 

Items whose correlation scores (between item and sum scores) were <0.6 were 

eliminated, and the final number of statements was 22 (see Figure 5.2). Using 
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direction as a proxy for trust, constructs not directly loading onto the general 

direction of all statements were eliminated. 

The t-test was employed to determine the mean of ratings given by the top quarter 

of judges (who assigned the highest scores). In an effort to determine the degree 

of polarization, these ratings were compared against those of judges occupying 

the lowest quarter (who assigned the lowest scores). The higher the t-value, the 

wider the difference between the views of the two groups of judges, and the better 

the capacity of the item to discriminate and separate people’s views. This filtering 

process demands some intuition on the part of the researcher, as recommended 

by other scholars. It was decided to establish a t-value threshold of 5.5, above 

which 11 question items were isolated (Figure 5.3). 

Cluster analysis was used to determine whether significant items were missing. 

This involved hierarchical clustering covering the Euclidean distances among 

questions, using hclust in R Stats package developed by the R core team (2021). 

The cluster hierarchy in the dendrogram was shrunk by clustering the questions 

into k=20 groups, and the level of homogeneity of the resulting clusters was 

analysed by way of visual analysis. 

In an additional effort to detect missing items, the resulting groups were re-

analysed manually. It was found that some of the eliminated groups appeared 

potentially relevant, but on closer inspection were lacking in correlation with sum 

scores (<0.6). The questions in these groups tend to focus either on multiple 

aspects including trust, or on aspects not specifically concerning trust (see Table 

5.1). 

# Item 

Competence 

1 The hologram is competent. 

2 The hologram is very skilled. 

Integrity 

3 I think positively about the hologram 

4 The hologram answered my questions truthfully. 

Benevolence 

5 I think the hologram wants to do good. 

6 The hologram is benevolent. 
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Compassion 

7 The hologram feels real to me. 

8 The hologram looks out for me. 

9 The hologram was committed to helping me. 

10 The hologram is compassionate. 

Relationship 

11 The hologram and I created a good relationship. 

Table 5.1. Final trust scale for measuring holographic AIs (Huang and Wild, 2021) 

In summary, in order to arrive at a set of statements which elicit the most polarized 

responses in relation to the user’s trust in holographic AIs, it is advisable to apply 

statistical tools to segregate ‘raw’ statements into groups so that statements which 

concern aspects other than trust can be eliminated.  

Thereafter, following the method by Watts (2020), the questionnaire containing the 

remaining statements was pre-tested with the assistance of a small group of 

students (n=5). To ensure a uniform polarity, all the questions are phrased as 

positive statements, and each provides the participant with a 5-point scale of 

responses from ‘strongly disagree’ to ‘strongly agree’. The purpose of the 

questionnaire is to explore the user’s feelings and opinions associated with their 

interaction with a holographic assistant. 

5.3.3 Discussion 
The final selection consists of distinct items, all of which concern critical elements 

of trust, and which could yield more meaningful data for determining users’ 

perceptions on the trustworthiness of holographic AIs. In line with earlier models 

explored in the literature review, these items can be grouped along the following 

constructs: competence, integrity, benevolence, compassion, and relationship.  

Human action is founded on competence, which is also a fundamental determinant 

of performance (Wild, 2016), which in turn determines the user’s sense of trust. 

Competence as a quality draw on knowledge and skills, which to a certain extent 

are domain-specific (Hager and Gonczi, 2009). Another instrumental component of 

trust is competence. According to McLeod (2020), “trust requires that we rely on 

others to be competent”. For example, chatbots are expected to possess good 

communication skills. It is essential for an AI agent to possess the necessary 

competencies for determining the user’s expectations and helping the user realize 

their goals. Statements #1 and #2 can be used to evaluate the user’s optimism of 

the AI agent’s competence and properties thereof. 

In reference to Mayer et al. (1995), statements #3 and #4 in the above table 

concern integrity, one of the components of trust. According to the interpersonal 



161 
 

trust model, integrity is whether an executor is able to adhere to principles that a 

trustor can accept (Mayer et al., 1995).  In this context, the executor, also known 

as the holographic AI, while the trustor is the user. The set of principles pertains to 

the interaction protocols that users agree to when engaging with a holographic AI 

system. As a consequence, users perceive that the holographic AI adheres to 

predefined protocols to accomplish goals (#3). Additionally, the performance of the 

holographic AI can be synchronized with its responses, providing accurate 

answers to user inquiries (#4). 

In reference to Mayer et al. (1995) as well as Sousa, Lamas and Dias (2014), 

statements #5 and #6 refer to benevolence, i.e. the disposition of the agent to 

doing good (Urbano, 2013).  

Compassion in interpersonal trust fosters a mindset that encourages 

compassionate behaviour, resulting in optimism (Jones, 2019). Solomon and 

Flores (2003) define it as encompassing empathy and the understanding of others, 

indicating whether the holographic AI can express emotional awareness, such as 

care and concern, and recognize the user's needs (i.e., #7,8,9,10). 

“Trust is a positive belief about the perceived reliability of, dependability of, and 

confidence in a person, object, or process.” (Tseng and Fogg, 1999). This belief 

relies on the above dimensions of trust, since the user believe the holographic AI 

can recognize his/her emotions, needs, or correctly answer questions. While trust 

is alignment of performance of the holographic AI with the user belief. The level of 

trust which the user places in a holographic AI is based on the extent to which they 

belief that the agent is capable of showing positive behaviour and intentions, and 

helping the user achieve goals. In short, a user is likely to trust an agent that is 

capable of forging a positive relationship. 

Moreover, interpersonal trust is moderated by propensity to trust (Mayer et al., 

1995). In essence, the user's readiness to place themselves in a vulnerable and 

potentially risky situation hinges on the expectation that the agent will perform as 

anticipated. This risk encompasses both safety and privacy concerns. 

According to Sousa, Lamas and Dias (2014), trust originates from the 

predisposition to engage, an intention that precedes interaction. As stated in #11 

of Table 5.1 (and depicted in Figure 5.4), the relationship between the user and 

the agent is predicated on subsequent and continuous interaction behaviours. 

Thus, this relationship can be viewed as an outcome. In interpersonal interactions, 

trust and relationship are mutually reinforcing. However, the default protocol for 

the holographic AI is to trust the user, leading to a unidirectional perception from 

the user's viewpoint. Hence, trust in holographic AI differs from interpersonal trust. 

Trust can be initiated by users who are open to forming connections with agents 

(Mayer et al., 1995), but it is presumptuous to expect a positive relationship before 

interacting with the holographic AI. A sustained relationship suggests a robust trust 

developed over time (Vanneste, Puranam and Kretschmer, 2013). It is seen as the 

culmination of trust built through interaction. Moreover, trust in HCI is crucial for 

forging a successful relationship (Salanitri et al., 2015; McKnight et al., 2011). A 

relationship may falter if the user distrusts the holographic AI. Thus, trust can be 

characterized as a belief wherein the user is confident that the holographic AI will 
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assist them in achieving objectives with sincere intentions and actions, fostering a 

positive connection (i.e. an outcome). 

Additionally, trust development is an ongoing, dynamic process (de Visser et al., 

2016). As such, the calibre of trust can shape this relationship in future 

interactions, with current trust levels being influenced by past experiences (Mayer 

et al., 1995). 

 

Figure 5.4. The novel model of trust 

Conversely, factors such as acceptance and usability also impact engagement 

(Dahleez et al., 2021; Philip et al., 2020), yet these elements differ from trust. 

Acceptance evaluates or predicts the extent to which a user will adopt or utilize an 

AI system (Böhm and Stein, 2020). While trust is rooted in the belief that the 

holographic AI will demonstrate beneficial intentions and behaviours to achieve 

objectives, acceptance is a behavioural intention signifying user endorsement of the 

AI (Kelly et al., 2023). This indicates that adoption may not always be voluntary, as 

users must acknowledge the AI's limitations (ibid). Moreover, there is a scarcity of 

research exploring the interplay between acceptance and trust in holographic AI, as 

well as the sequence in which these factors emerge. Therefore, continued 

exploration of these dimensions is critical. 

Usability measures the holographic AI's ease of use by referring to how intuitively 

users can interact with the AI to fulfil their goals (Issa and Isaias, 2022; Benyon et 

al., 2006). Usability focuses on the holographic AI's ability to complete tasks 

effectively, efficiently, and to users' satisfaction, distinguishing it from trust (Issa, 

2007). Usability can be objectively measured, whereas trust is more complex, 

encompassing both objective and subjective assessments. Although trust and 

usability are interrelated (Salanitri et al., 2015), future research could delve into 

usability to further elucidate trust and the PICS model. 

Figure 5.4 presents a template for a testable structural equation model, with the 

observable variables of competence, integrity, benevolence and compassion 

predicting the latent variable of trust. For some items such as compassion, it may 

be possible to substitute a more direct measurement tool for a Likert scale. For 

example, sentiment analysis of dialogue transcripts could yield more accurate data 

on affective trust expressed by the user, and the corresponding actions of AI. 

Further insights might be gained by studying facial expressions and prosody of 

speech for proxies and specific indications of affective trust, using laboratory tools 
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such as EEGs and imaging technology, which in turn are capable of determining 

inner neurological states associated with specific answers to questions. 

5.3.4 Summary 
This section has proposed the construction of a new metric scale, an extended 

model of trust, which conceptualizes and to an extent quantifies the level of a 

user’s trust in holographic AIs. As detailed above, 104 statements were identified, 

and scrutinized by a panel of judges on the basis of duplication, relevance and 

polarization.  

This section examines the parallels and contrasts between the newly proposed 

trust model and the interpersonal trust model suggested by Mayer et al. (1995). 

The capability of the holographic AI is linked to its task performance efficiency. 

Integrity relates to the user's belief that the holographic AI complies with a set of 

established interaction protocols. Benevolence reflects the holographic AI's good 

intentions towards the user. Additionally, compassion is absent from the Mayer et 

al. interpersonal trust model. Users might doubt whether the holographic AI can 

accurately perceive their emotional needs and exhibit corresponding behaviours 

through interactive modalities and tailored services. If users are convinced that the 

holographic AI can offer the necessary services along with emotional support, trust 

may be fostered, enhancing interaction and relationship building. 

The remaining 11 statements serve as a comprehensive model for predicting trust 

in the HCI context. It should be mentioned that trust between a human user and 

holographic AI is different from human-human trust, as well as that between a 

human and a non-anthropomorphic technology such as websites and banking 

apps. In terms of enabling the user to achieve goals, the key dimensions of trust in 

holographic AIs are benevolence, competence, commitment, empathy and 

integrity, all of which are considered in the Likert scale-based questionnaire 

developed in this study. 

5.4 Adaptation of the Scale for Children 

Mellor and Moore (2013) devised an experiment involving children aged 6 -13, and 

measured differences between yes/no responses and 5 - point Likert format-based 

responses. From their observations they argued that children are capable of 

completing a 5-point Likert questionnaire with both physical and abstract tasks to 

indicate their degree of agreement and disagreement. In order to accurately 

measure the sense of trust, the questionnaire in this project employs a 5-point 

Likert format in the form of multiple-choice questions.  

A pre-test was conducted with 5 students to test the validity of the questionnaire 

items.  All questions are phrased as positive statements to ensure a uniform 

polarity, and are all multiple-choice questions, the answers to which range from 

“strongly agree”, through “agree”, “undecided”, “disagree”, to “strongly disagree”, 

thus providing evidence of user experience with holographic AIs.  

The administrability of the questionnaire was verified with this pre-test. Following 

the positive pre-test, it was considered ready for investigating the trustworthiness 

of the holographic assistant created for the experiment, providing insights on 

interaction and testing the sense of trust developed.  
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Nr Items 

1 Sarah is clever. 

2 Sarah knows what she is doing. 

3 I like Sarah. 

4 Sarah does not lie. (Reverse Polarity) 

5 I think Sarah wants to do good. 

6 Sarah is kind. 

7 Sarah feels real to me. 

8 Sarah looks out for me. 

9 Sarah wants to help me. 

10 Sarah is caring. 

11 Sarah is my friend. 

Table 5.2. Child-friendly version of the metric scale for measuring ‘trust’ 

To back up the quantitative scale with more qualitative insights, four open-ended 

questions were added to investigate children’s feedback regarding advantages 

and shortcomings of holographic AIs (see Table 5.3). The first, third, and fourth 

questions concern the direct user experience, while question 2 explores 

implications regarding sharing of personal information. 

1. Would you like to share your story or life with Sarah? And why? 

2. Do you think Sarah can keep your secrets 

3. What did Sarah do well? 

4. What did Sarah not do so well? 

Table 5.3. Open-ended questions 

In order to make sure that children can understand the level of agreement and 

disagreement, and the meaning of word ‘undecided’, the second pre-test was 

conducted with 7 children aged 9-13. It was found that the children could 

understand each degree of choice, and when they were not sure of their feelings 

they selected ‘undecided’. 
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5.5 Experiment Design 

As mentioned, this experiment has been designed to explore children’s sense of 

trust towards holographic AIs. This section describes the process of designing 

teaching content for young children, so that a holographic AI can teach them to 

identify 2D and 3D shapes, such as a cube and cuboid. 

5.5.1 Material 

 

Figure 5.5. The holographic AI in the trust experiment 

Traditional methods deployed in the curricula for young children sometimes 

struggle to effectively stimulate students’ interest and curiosity. With immersive 

technologies, novel opportunities arise, that, if validated, can positively impact on 

engagement - at scale. Moreover, there are novel interaction techniques possible, 

that may be beneficial, particularly for knowledge that involves spatial reasoning 

and imagination (Baumgartner, Ferdig and Gandolfi, 2022). This experiment 

informs the design and implementation of a 3D character model by evaluating 

iteratively its ability as a holographic guide that can deliver trustworthy user 

interface orchestration and engage learners with the curricular learning content. 

Communication is key for establishing a cooperative relationship between an AI 

hologram tutor and child. Such a holographic AI should be capable of responding 

to students, predicting their needs, teaching a selection of mathematical subjects, 

and recording, analysing and reacting to children’s study progress, in order to help 

these learners solve problems after class. However, Chapter 3 focuses on 

intelligent tutor systems and workout teaching, and this holographic AI is used for 

simulation to measure user experience, thus both holographic AIs have difference 

aims and functions.  

5.5.1.1 Pedagogical requirements  

This experiment invited two professors with expertise in teaching mathematics and 

delivering online tuition to outline criteria for satisfying young students’ 

requirements. They suggested that the application should not begin with 

calculations or formulae, but with identifying different 3D shapes and 2D shapes, 

and training children to classify and analyse shapes of objects in real life. They 

advised that children need to learn mensuration. For example, once they 

understood the differences between a cube and cuboid, the holographic AI should 

then ask them how many cubes can be fitted into a cuboid. Therefore, the 
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holographic AI should enable children to attain a basic knowledge of each 3D 

shape by counting the number of faces, vertices, and edges. During that period, 

the children should be tasked with identifying the shapes and features of 3D 

shapes and corresponding 2D shapes; this way, the holographic AI will help 

children to understand the relationship between 2D and 3D shapes (see Figure 

5.5). Steps of comparison and analysis require children to consider how a 3D 

shape can be established by the other 3D shapes. Finally, children need to 

measure the volumes of 3D shapes, a task which also does not involve learning 

equations. The teaching contents prescribed by the professors have four aims: 

• Identification---Studying basic knowledge of 3D shapes (e.g. cube and cuboid) 

by counting the numbers of faces, edges, and vertices.  

• Relationship ---- Identifying each face and shape of a 3D shape. 

• Comparison and Analysis ---- Comparing different 3D shapes. 

• Measurement--- Measuring length and volume, but without involving function. 

5.5.1.2 Holographic AI and dialogue management 

In this experiment, MirageXR (Wekit ECS, 2022), an AR application for a 

personalized training system, was used to present holographic AIs and interaction. 

A holographic AI with stylized appearance and humanlike behaviours was 

developed in MirageXR, in order to prevent the uncanny valley effect (see Figure 

2.1 and Figure 5.5). The holographic AI can perform facial expressions, lip-sync, 

and body gestures. The size of the holographic AI in this experiment is generally of 

a child’s height, since a child cannot observe fully an adult-sized holographic AI.  

The holographic AI also follows and stays with each child user via the ‘Follow 

Player’ function. Two shapes – the cube and cuboid – were created in Maya, and 

were imported into the application. 

This experiment neither uses pre-recorded speech nor the Woz paradigm to 

adequately respond to children, since it cannot satisfy the ecological validity 

characteristic of real-life interaction (van Straten et al., 2019).  

According to the above teaching outline, dialogue management was established 

for interaction. This dialogue management consists of 5 steps: (1) activation and 

preparation; (2) teaching the children the key features of the cube and cuboid; (3) 

identifying squares and rectangles; (4) assembling a cuboid by cubes; and (5) 

prediction and measurement, i.e. putting small cubes into a cuboid.  

This experiment used IBM Watson to create dialogue management and speech 

input and output services (more details provided in Chapter 3). Firstly, a 

holographic AI can be activated by the utterance, “I want to learn maths/3D.” The 

holographic AI then asks the children whether they have studied 3D shapes 

before. If not, the holographic AI would explain what 3D means. After the children 

indicate they are ready to study 3D shapes, the holographic AI commences 

teaching (see Figure 5.6). 
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Figure 5.6. Activation and preparation 

Third, given that the children are interested in learning 3D shapes, the holographic 

AI will provide step-by-step instructions by asking them how many faces, edges, 

and corners a cube has. The holographic AI will provide the right answer if the 

children do not. The holographic AI then instruct children on 2D shape, what a 

square is. It will ask the children to find features, and if children do not know then 

the holographic AI will encourage them and offer some tips. Upon completing the 

cube and square learning, the holographic AI will ask the children whether they 

would like to continue studying the shape of a cuboid (see Finger 5.7). All 

interaction steps are the same as those in the cube learning, except that the 

holographic AI (whose name is Sarah) will ask the children to state whether the 

edges and faces of the rectangle are the same as those of the square.  

 

Figure 5.7. Identification 

After identification learning, Sarah will ask the children to join cuboids or cubes 

together by controlling and moving virtual cubes and cuboids, a process which can 

facilitate interactivity. However, there is no script to support the holographic AI’s 

responses as to whether the results are correct. 
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Finally, the children need to calculate how many cubes can be put into a cuboid. 

The key answer is still a number. 

The holographic AI’s responses are based on key word capture, whereby the 3D 

and 2D shapes’ features are the key. For example, if a question asks the children 

to count the number of faces, “six” is key. It is a recognisable fact that other 

numbers are wrong, and the holographic AI will respond to those by asking the 

children to make another attempt to answer the question (see Figure 5.8).  The 

words “equal” and “same” are key words in the identification of a particular feature 

of the square. 

 

Figure 5.8 An example of key word management 

There are five possible responses to each question: correct and incorrect answers, 

unknown (the child is unsure how to answer the question), asking questions, and 

withdrawing from interaction. It is important to ensure the interaction’s smoothness 

and continuity. The correct answers can trigger the next steps of tasks, and one 

more chance will be provided if the answer is incorrect. The holographic AI should 

provide both correct answers and explanation. If the child either does not know the 

answer or feels unsure about his/her answer, the holographic AI provides some 

tips in an effort to encourage the participant. Children will also ask questions if 

they do not know a concept, such as right angles. The last possibility allows 

children to withdraw interaction at any time. 

5.5.2 Environmental setup 

 

Figure 5.9. Experiment setup 
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The experiment was conducted in the Brookes Science Bazaar 2023 at Oxford 

Brookes University. The experimental space was around 10 square meters to 

ensure sufficient interactive area. This space was fitted to common furniture such 

as desks and chairs (see Figure 5.9). The following equipment was used for this 

experiment: chairs and tables for children and guardians to fill out the 

questionnaire; four HoloLens glasses; and two iPads.  

It is noted that very young children are incapable of observing fully the virtual 

surrounding using Microsoft HoloLens as the interpupillary distance (IPD) of the 

HoloLens is around 63mm, whereas that of a child aged 8-11 years is 58mm-

60mm. Therefore, efforts were made to adjust the IPD of the HoloLens’s 

interpupillary calibration application, but if the children still could not see the whole 

virtual surrounding, the HoloLens was replaced with an iPad.   

5.5.3 Participants 
This experiment recruited 47 children in total from Science Bazaar 2023, Their 

ages range from 5 to 13 (mean=9.02, SD=2.2) (see Figure 5.10). There were 23 

boys and 24 girls. In a demographic survey, participants were also asked if they 

had used AR and virtual agents (including voice assistants) before. There are two 

questions with degrees of usage (1-I don't know to 4 yes, often). Out of the 47 

participants, only 15 had experience in using AR (Mean=2, SD=0.64), and 10 

previous experience of play with virtual agents (Mean=2.13, SD=0.74).  

Figure 5.11 shows the distribution of experience in using AR and virtual agents. 

Only 4 children have used AR and virtual agents before. All 47 participants were 

able to wear HoloLens as well as observe virtual objects, and they received panda 

keyrings as compensation. This experiment was approved by the Open 

University’s ethics committee. 

 

Figure 5.10. The numbers of participants by age 
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Figure 5.11. The numbers of children with different levels of experience of AR and virtual 
agents  

5.6 Methods 

This experiment has no uniform conditions: the experimenters set up and 

calibrated an interactive scene for each participant prior to interaction. In order to 

ensure that the children could quickly understand how to use AR and interact with 

the holographic AI, the interactive approach was mainly based on speech. 

5.6.1 Interaction scenario 
Following calibration, Sarah was projected into a position in the real word, and 

virtual cubes and cuboids were placed near the holographic AI so that the children 

could quickly observe them. Sarah’s height was similar to those of the children 

(less than 1.5 metres). The virtual cubes’ and cuboids’ sizes were also smaller so 

that the children could easily control them. The first and last steps involved cubes 

of different colours for the purpose of distinction. In the measurement step, the 

holographic AI asked the children to use virtual white cube.  

Figure 5.12 shows the interaction process. A child dons the HoloLens and 

observes the holographic AI performing greeting gestures and walking towards the 

participant.  

A child dons a HoloLens and can see a holographic AI performing greeting 

gestures and walking towards the participant. The holographic AI then stood on 

the floor and waited to be activated.  

As described before, the holographic AI then asks the child whether he/she is 

interested in learning about 3D shapes; if the child answers “yes”, the holographic 

AI would continue to ask the participant to define 3D. Otherwise, the child is asked 

what he/she else would like to learn, and the interaction is discontinued.  

During interaction, the steps of identification and relationship are intersected. For 

example, after the children are taught to recognise a cube, the holographic AI then 

instructs them on identifying 2D shapes, e.g. the square. Then the holographic AI 

teaches them about the cuboid and rectangle.  
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After that, the step of comparison and analysis is performed, whereby the children 

are asked to construct a cuboid or cube by dragging virtual objects. For the 

measurement step the children drag cube surges into a cuboid. 

 

 

Figure 5.12. The interaction process 

5.6.2 Procedure 
The experimenters provided the participants with an introduction on holographic 

AIs, the MirageXR application (Wekit ECS, 2022), and the aim of this study. 

Afterwards, the experimenters asked the children whether they would like to 

participate in this investigation and fill out a questionnaire. Since the participants 

were aged under 16, they had to obtain parental consent, and the researchers 

need to ensure that the children and parents understood the nature and purpose 

of this research project. Potentially, mature participants would merely read an 

information sheet and sign a consent form, which would be returned to the 

researchers. The parent information sheet provided an ‘opt out’ section for parents 

who, on reflection, did not approve of their children participating in the research.  

The experiment was conducted with the consent of all participants’ parents and 

guardians. The experimenter helped each child put on a HoloLens, and advised 

the child on how to use AR and interact with Sarah. During interaction, the 

holographic AI verbally instructed the child to independently identify 3D and 2D 

shapes in answer to the questions. After the experiment, each child was guided in 

filling out a questionnaire measuring his/her sense of trust towards Sarah. The 

experimenter endeavoured to help each child understand each question and, upon 

completion of the questionnaire, awarded him/her with a keyring thanking him/her 

for participating in the study.  



172 
 

5.6.3 Measurement 
The questionnaire has been designed to measure children’s trust towards 

holographic AIs via four dimensions, which have been presented back in Section 

5.2. This questionnaire used a 5-point Likert scale (1 = “strongly disagree”, to 5 = 

“strongly agree”), and four open-ended questions.  

In this experiment, the sense of trust can rely on competence, integrity, benevolence 

(Mayer et al., 1995; Huang and Wild, 2021), compassion, and whether children and 

the holographic AI can establish a positive relationship (Huang and Wild

Competence can reflect an objective opinion based on whether the holographic AI 

helps children achieve learning outcomes, and integrity reflects whether the 

holographic AI can provide correct teaching content and responses. Benevolence 

and compassion indicate an intention and motivation. The holographic AI is 

intended to prioritize users’ needs, respond to users’ emotions and provides 

support. Therefore, this questionnaire includes objective and subjective opinions in 

an effort to evaluate children’s trust, and does not rely on other similar trust scales 

which relate to technology, automation, or virtual agents/humans.  

The open-ended questions are designed to elicit detailed reasons concerning the 

children’s perceptions. Additionally, the experiment’s measurement also 

investigates the correlations among the children’s sense of trust, and their age, 

gender and experience.  

Afterward, 47 questionnaires are divided into two conditions for comparison 

between those who have not used AR/virtual agents and those who have. 

5.6.4 Hypotheses 
Chapter 2 has demonstrated how the intelligence of the holographic AI augments 

the user experience. Hence, competence could be a key factor influencing trust. 

Furthermore, Chapter 3 suggests that employing natural language processing 

could improve user interaction. Although the holographic AI does not possess 

intrinsic benevolence, it is programmed to demonstrate benevolent actions by 

meeting user requirements (Phillip et al., 2020). Past studies have indicated that 

benevolence from educators can help cultivate trust (Landrum, Mills and Johnston, 

2013). This aspect is significant in educational contexts, suggesting that 

benevolence may affect trust. 

Based on the aforementioned analysis, the following hypotheses are proposed: 

• H1: Competence is a main influence factor in the sense of trust. 

• H2: Benevolence can affect the sense of trust. 

5.7 Results 

This section analyses the correlations between the dependent variable (children’s 

trust in holographic AIs), and independent variables such as their age, gender, and 

experience in using AR and virtual agents.  

It should be noted that the experiment is based on five questionnaires, and that 

there were two repeated questions; therefore, the overlapping data are neglected. 

All selected data were analysed using the statistical software package, R studio, 

which omits invalid values, rather than replacing them with zeroes.  
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In order to measure whether children’s age is able to influence their sense of trust, 

the participants were divided into two broad groups: children aged 5–9 years 

(n=25) and those aged 10–13 (n=22). The values in the demographic questions 

were also based on how often participants used AR and virtual agents, from 

“Often” (=4) to “I don’t know” (=1).  

The values of answers to questions indicate the degree of agreement, from 

“Strongly agree” (=5) to “Strongly disagree” (=1); “Undecided” equals 3. 

In order to investigate the reliability of the questionnaire, the scores of the 

participants’ responses were scrutinised using the Cronbach’s alpha test, the 

result of which is (α = 0.78), which is greater than 0.6. 

Dimension Competence Integrity Benevolence Compassion Relationship 

Scores (#1 + #2) /2 (#3 + #4) 
/2 

(#3 + #4) /2 (#7+#8+#9+#10) 
/4 

#11 

Table 5.4 Equations of each dimension 

Each value of a dimension adds a weight based on the number of questions in 

each dimension for measuring the sum scores of trust and their correlation values. 

For example, the dimension of competence consists of 2 questions, thus the score 

of competence equals the values of the sum scores divided by 2. Since 

Compassion has 4 questions, its score equals the sum of scores of questions, 

divided by 4. The sum score of trust is equal to the total of all dimensions’ sum 

scores. Table 5.4 shows equations of each dimension. 

5.7.1 Quantitative analysis 
This section consists of two subsections, which focus on whether experience in 

used technologies can affect the sense of trust, and whether the relationships 

between trust and dimensions are significant. This section will investigate which of 

the 11 factors influences trust. 

5.7.1.1 Experience in using AR and virtual agents 

The participants delivered measured responses based on the 5-point Likert scale. 

Table 5.5 presents mean scores and standard deviations of each dimension, and 

whole trust (sum of results for all dimensions). 

 Competence 

(#1and #2) 

Integrity 

(#3 and #4)  

Benevolence 

(#5 and #6) 

Compassion 

(#7 to #10) 

Relationship 

(#11) 

Trust 

Mean 3.76 3.62 3.74 3.43 3.26 17.46 
(M=3.49) 

SD 0.76 0.72 0.87 0.70 1.04 2.96 

Table 5.5. Mean scores and standard deviations of each dimension and whole trust 
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Figure 5.13. Differences in scores between participants with or without AR experience 

 

Figure 5.14. Differences in scores between participants with or without experience of 
using virtual agents 

In order to ensure whether experience in usage of AR and virtual agents can affect 

the dimension of trust, the questionnaires questionnaire responses were split into 

(i) groups of participants having experience in using AR, and those with no 

experience in using AR; and (ii) groups of participants who have used virtual 

agents, and those with no experience of virtual agents. However, the average of 

variance cannot be calculated since the numbers of participants in the 

experience/non-experience groups (for AR and virtual agents) are not equal. 

Therefore, mean values were calculated in order to determine whether there are 

meaningful differences between these conditions. 

There were 15 participants with previous experience of using AR, and 32 with no 

such experience, thus the average scores of each dimension were calculated by 

each condition. It can be seen in Figure 5.13 that the participants who had 

previously used AR generally graded better in terms of objective aspects of the 

holographic AI, such as competence and honesty. However, subjective feelings 
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(benevolence and compassion) were lower among the children with previous 

experience of AR.  

Out of 47 children, 10 had experience in using virtual agents, and 37 had not. The 

mean value of each dimension was measured (see Figure 5.14). Children who had 

experience in usage of virtual agents generally gave higher gradings for 

competence and integrity. Again, for participants with previous experience of 

virtual agents, the mean value of perceived benevolence was lower. 

From these results it might be argued that prior experience of AR and virtual 

agents can affect levels of perceived dimensions. Such experience could lead to 

higher scores for competence and integrity, but a lower score for benevolence. 

5.7.2 Correlation tests of trust, dimensions, and factors 
The correlations among the dimensions, 11 factors and participants’ demographic 

characteristics were investigated. 

 

Figure 5.15. Correlations between each dimension, question, and children’s demographic 
characteristics 

The correlation between sense of trust and age was none (r=0.03), similar (though 

slightly negative) where participants were boys (r=-0.14). One possible reason is 

that the boys have more experience in using AR than the girls in the participant 

group.  

Previous experience of virtual agents and AR also present a weak, negative 

correlation with level of perceived trust, especially those who had experience in 

using virtual agents (r=-0.26, p=0.08).  It could be that young participants with 

interactive experience have a stronger tendency to recognise that virtual agents 

are not physical, and they also may compare this experience with real social 

communication. 

Each of the five dimensions was correlated with each demographic characteristic 

of the children (see Figure 5.15). It is found that the dimensions of competence, 
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integrity, compassion share negative correlations with the children’s age and 

gender. These dimensions may also be affected by children’s social experience. 

Only perceived benevolence shares a positive, but rather weak correlation with 

age (r=0.25); the correlations between age and the other dimensions were found 

to be insignificant. The dimension of benevolence is negatively correlated with 

experience with both AR and virtual agents. 

Perceived competence and experience in usage of virtual agents shares no 

correlation (r=-0.07).  

The dimensions of compassion and integrity positively correlate weakly to 

experience of AR and virtual agents; this positive trend is stronger with perceived 

integrity (r=0.34, p =0.01). From this it may be claimed that the participants 

believed the holographic AI would neither harm them nor lie to them. 

The following correlations between each question and the participants’ 

demographic characteristics were obtained:  

There appeared a significant weak negative correlation with age and #10 (Sarah is 

caring) (r=-0.3, p=0.04).  

Item #7 (“Sarah feels real to me”) also shares a weak negative correlation with the 

children’s age (r=-0.21, p=0.13). 

Item #6 (“Sarah is kind”) negatively correlates weakly with gender (r=-0.31, p= 

0.05) 

In terms of experience in AR usage, “Sarah does not lie” (#4) shares a weak 

positive correlation (r=0.27, p=0.04). 

The item “I like Sarah” (#3) also presents a weak positive correlation with 

experience in usage of virtual agents (r=0.33, p=0.01). 

 

Figure 5.16. Correlations among the questions 

Figure 5.16 presents a holistic correlation between each dimension, question, and 

children’s demographic information. 
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It could be suggested that subjective feelings decrease with age, perhaps because 

older children may have more experience of as well as better cognitive ability to 

interact with holographic AIs. The statement “Sarah doesn’t lie” is the objective 

perception that Sarah provides truthful responses.  

Figure 5.17 presents the correlation value and its level of significance for each pair 

of questions. Competence (#1, #2) is positively correlated with compassion (#9, 

#10). The question regarding the holographic AI’s skill (#2) is positively correlated 

with integrity (p=0.072), which implies that competence has a certain degree of 

driving force in stimulation of subjective feelings. 

The dimension of integrity (#3) has a significant positive correlation with 

compassion (#6) (p<=0.001) as well with benevolence (#10). Item #3 evaluates a 

consistency of Sarah’s performance, which can be affected by levels of caring and 

kindness.  

Perceived compassion (#7, #8, #9, #10) shares a significant positive correlation 

with relationship (#11) (p<=0.001), especially item #8 (“Sarah looks out for me”), 

an indication that if the holographic AI can take the point of view from the 

children’s requirements, then a positive relationship can be established. 

 

Figure 5.17. The correlations between each dimension and trust 

Additionally, Figure 5.17 shows the correlations between each dimension and 

trust. For example, competence was found to be significantly correlated with 

integrity (p=0.065), compassion (p=0.028), and relationship (p=0.058). 

Relationship was found to correlate with the dimensions of benevolence, 

compassion, and integrity. Relationship and benevolence share stronger positive 

correlations with trust (r=0.79 and 0.71), compared to the other dimensions. 

Despite the highest correlation value for the relationship in Figure 5.17, 

benevolence and compassion are ranked as the second and third most influential 

factors in trust. Therefore, competence is not the sole determinant of trust. The 

first hypothesis remains unconfirmed, while the second hypothesis receives partial 

support, as children seem to prioritize compassion. 



178 
 

5.7.3 Qualitative analysis 
Out of the 47 returned questionnaires, 5 were incomplete (participants neither 

provided feedback nor only answered the first question). These data were 

discarded. 

To the first question, “Would you like to share your story or life with Sarah?”, 14 

participants answered yes, in which 11 gave reasons. To the second question 

regarding whether Sarah can keep secrets, 21 answered “Yes” and 17 said “No”. 

There were 20 participants who believed that Sarah can keep secrets, of which 9 

participants had no experience in both AR and virtual agents, and 3 has previously 

used AR and virtual agents. 

The aims of the third and fourth questions were to investigate which aspects of 

Sarah appear to be successful, and which should be improved. There were 30 

children who found the teaching content helpful, and 4 children who found the 

natural language processing useful. Speaking and listening were the main issues 

in this experiment (n=27), since this Bazaar activity attracted numerous people to 

take part, the interactive space was noisy, thus the holographic AI could not 

accurately capture every participant’s voice. 

5.8 Discussion 

This section will consider how the factors mentioned above might influence the 

children’s sense of trust towards the holographic AI in the experiment, and the 

mutual effects of the dimensions. It is hoped that the findings in this chapter may 

inform future research pathways and development. 

Overall, the mean values for competence and benevolence were higher than those 

of the other dimensions, while the correlation between trust and benevolence was 

found to be significantly positive. 

5.8.1 Factors which influence trust 
Competence involves ability and skill. The competence of a holographic AI can be 

defined as its ability to complete tasks in a specific domain (like teaching 

mathematics), and its skill is characterised by appropriate corresponding 

strategies for addressing a user’s issue, such as natural language processing and 

decision-making. A holographic AI’s empathy and motivation are dictated by its 

competence and skill. A specific AI ability can directly trigger the children’s positive 

attitude towards artefacts and foster within them a sense of the AI’s intention being 

beneficial.  

Integrity consists of consistency and truthfulness. However, it was found that these 

two aspects did not share a statistically significant correlation. Item #3 (“I think 

positively about the hologram”) assesses consistency of performance in the 

holographic AI. If the holographic AI’s intention is not aligned with its behaviour 

and utterance, the resulting cognitive perception is unlikely to be positive. 

Therefore, it is important to explore whether the holographic AI’s behaviour can 

follow a real human’s interactive principles (social norms) as well. Item #4 (“The 

hologram answered my questions truthfully”) evaluates honesty.  

Perceived integrity is positively correlated with intention as well as emotional 

responsiveness, especially compassion. In the experiment, it was found that the 
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children held the view that the holographic AI’s correct answers could help them 

deal with mathematic problems, which perhaps explains their positive perception 

towards the holographic AI in terms of its capacity for empathy and caring. In 

addition, the holographic AI’s skill also can trigger perceived consistency of 

performance.  

Benevolence in this context refers to whether a holographic AI’s performance is 

sincere and altruistic. However, Figure 5.16 represents that the results for items #5 

(“I think Sarah wants to do good”) and #6 (“Sarah is kind”) share a negative, albeit 

insignificant, correlation. Since #5 is designed to investigate the holographic AI’s 

intention, #6 focuses on the result of this intention, i.e. whether the holographic AI 

expresses kindness.  

Perceived benevolence is found to be significantly related to the dimension of 

compassion, and therefore yield a beneficial relationship with the children, which 

has a similar effect in that children trust benevolence performance in learning. 

(Landrum, Mills and Johnston, 2013). The scope of the statement “Sarah/the 

hologram feels real to me” is not limited to displaying humanlike appearance and 

behaviour, but also encompasses benevolent traits such as recognising children’s 

requirements, correcting errors, and encouraging and supporting children to study 

3D shapes, in such a way as to facilitate ‘real’ feelings of perceived caring and 

support. Moreover, a positive disposition allows children to perceive Sarah, the 

holographic AI, as being motivated by altruism and kindness rather than by self-

interest or hidden agendas. The holographic AI honours children's preferences 

and consent by inquiring about their interest in learning 3D shapes. Thus, the 

holographic AI consistently exhibits user-centric behaviour, which nurtures a sense 

of trust. 

Compassion also can reflect the holographic AI’s intention and is characterised by 

positive emotional concern such as empathy. The difference between compassion 

and benevolence is that compassion involves recognizing and mitigating the user's 

distress or offering support by encouraging them to learn from errors instead of 

casting blame (Andersson et al., 2021). This may give children a sense of 

empathy and understanding. As mentioned before, questions in the dimension of 

compassion share a positive correlation with each other, and all four items also 

correlate to the dimension of relationship.  

The relationship is a product of trust, ensuing from interactions. In this context, it 

can be defined by the willingness of the participants to establish and maintain this 

virtual social interaction. If the holographic AI can identify children’s emotions, 

resonate with these, and also take into account the children’s perspective in its 

reactions, a positive interactive relationship would precipitate. For example, item 

#8 (“Sarah looks out for me”) and item #10 (“Sarah is caring”) share significant 

positive correlations with relationship (r=0.5 and 0.48, p<=0.001). Besides, a 

relationship is not just a result of trust, but also a factor of influence. They both 

have a mutually beneficial effect. For example, if the user is impressed with the 

holographic AI's abilities and functions, then the user believes that the agent will 

be able to fulfil its promises, so that they can form a relationship at the beginning. 

However, if the user discovers that the product is not able to achieve goals in 

subsequent interactions, this relationship may negatively impact the user's sense 

of trust. 



180 
 

On the other hand, the results also include negative correlations, even though they 

are not statistically significant. For example, competence might not correlate with 

truth. There were three participants who believed that the holographic AI can lie to 

them. One possible explanation is that the holographic AI did not always capture 

each participant’s voice correctly in the experiment, and may have responded 

immediately to voices from other children. 

The young children probably utilized different ways of thinking when dealing with 

these questions, and they might not have distinguished the differences between 

the questions, which in turn are scaffolded on the dimensions. For example, it was 

found that the results for #5 (regarding benevolence) did not correlate with any 

other factors, that the correlation values were low (r=0.1-0.24). Besides, children 

tend to focus more on emotional responsiveness than on competence. 

In terms of each dimension’s correlations, it is found that competence shares 

higher and more significant correlations with integrity, compassion, and 

relationship, since these elements derive from AI technology. Although 

benevolence also shares a positive correlation with competence, its value is 

statistically insignificant (p=0.231). From the perspective of the children, perceived 

benevolence not only can be triggered by the holographic AI’s intelligence. As 

mentioned before, benevolence reflects the holographic AI’s intention, which is the 

aim of this application to teach geometry, and it is also more of an attitude 

(affective performance) than ability on the part of the holographic AI. The 

correlation value of integrity and benevolence is low and therefore insignificant 

(r=0.19).  

Importantly, relationship is an outcome of trust in that trust engenders more 

interactive behaviours, therefore it is understandable that the correlation between 

the two variables is high and significant. Benevolence shares the second-highest 

value of correlation with trust (r=0.71); this reflects a similar finding by Tschannen-

Moran and Hoy (2000). Since relationship is an outcome of trust, it cannot be 

considered an influencing factor. This pattern alone suggests that the children in 

the experiment would prefer to interact with a benevolent holographic AI compared 

to smart one, that benevolence has a critical influence on the user’s sense of trust. 

However, according to the PICS model, this emotional expression is based on a 

certain degree of senses and intelligence. The value of perceived compassion 

shares the third-highest correlation with the sense of trust (r=0.61), indicating that 

this trait also plays a critical role in the establishment of trust in a relationship. 

Tschannen-Mora and Hoy (2000) proposed that a person should rely on another’s 

good intention for the most interest, but not to the extent of exploiting the person’s 

vulnerability to implement self-achievement. Benevolence in this context could be 

defined as the capacity of a holographic AI to follow interactive rules while 

communicating with a user. The experimental results suggest that the children 

subconsciously knew that the holographic AI harboured good intentions prior to 

the interaction with them. During the interactive period, even though participants 

made mistakes, the holographic AI did not criticise or blame them, but instead 

encouraged them by providing cues and explanation. Therefore, out of the 47 

children, 42 either agreed or strongly agreed that the holographic AI is kind, and 

only one disagreed. Moreover, even though there were 5 missing data for #5, 35 
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of the children answering the question said they agreed or strongly agreed with the 

statement. 

Figure 5.17 shows correlations between these five dimensions and trust, indicating 

that the strength of a specific dimension can enhance trust perception. 

Competence engenders trust in human-AI interactions, allowing a holographic AI 

to execute tasks and control its expressive responses and intentions. However, for 

children, subjective expression—particularly in the form of benevolence and 

compassion—is more critical. Thus, the data does not confirm that children 

prioritize competence more highly. Conversely, compassion is identified as a 

significant influential factor. As a result, neither hypothesis can be conclusively 

verified. 

5.8.2 Other factors influencing trust 
Referring to the demographic survey, it was found that the degree of perceived 

competence appears to decrease along with the children’s age. As noted earlier, 

older children generally have greater social experience and a certain degree of 

knowledge and cognitive judgement, and are more capable of distinguishing 

between a real and virtual social interaction. This negative influence is pronounced 

in the responses to the question as to whether Sarah is caring (“The hologram is 

compassionate”). According to the results, the dimension of integrity, the 

holographic AI’s intention, and perceived real interaction also can be affected by 

age. 

Children’s gender also appears to impact on factors of trust. For example, 

perceived benevolence was lower among the boys who interacted with the 

holographic AI. Gender could also impact on the dimensions of compassion and 

relationship, and perceived consistency of holographic AI performance.  

Referring to experience in using AR and virtual agents, the children who have 

used AR before sense a stronger feeling of honesty in the holographic AI’s 

responsiveness. It is likely that these children will be comparing current with 

previous experiences in their evaluation of holographic AI competence, 

performance consistency and compassion, since an increased trend of perceived 

benevolence appeared if children had no experience in using AR. Similarly, 

perceived compassion is generally lower among the children with previous 

experience in using virtual agents, albeit not to a statistically significant degree. It 

is also found that perceived benevolence is lower among the children with 

previous experience of interacting with virtual agents. However, perceived 

consistency of performance in the dimension of integrity appears to increase with 

experience in usage of virtual agents. Thus, the children with this experience 

appear to hold more positive views on the interaction with the holographic AI, 

which explains the significantly positive correlation between the dimension of 

integrity, and experience in using virtual agents.  

Generally, children’s age, gender and experience appear to have slight impacts on 

the dimensions of trust. The children appeared to judge the holographic AI 

rationally and objectively based on previous experience (e.g. perceived 

benevolence among those with previous experience of using virtual agents is 

lower). It may be that a child’s sense of trust in holographic AIs might decline with 

increasing experience. 
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5.8.3 Children’s suggestions 
The open-ended questions presented whether the children would like to interact 

with Sarah in much the same way as with their friends by sharing stories and 

secrets in daily life. Some of the children said they might, given that they 

considered Sarah as reliable, kind, helpful, caring, and trustworthy. One child 

opined that Sarah seemed to care for her in a motherly way. Five children said 

they would not bother sharing stories and secrets with the holographic AI, pointing 

out that Sarah is not a real human. One child said he would not do so as he had 

never encountered Sarah before. More perceptively, some of the children opined 

that it would be unwise to share personal secrets with the holographic AI as an AI 

program can potentially be hacked, and it relies on a database. One child claimed 

that too many verbal utterances might undermine the ability of the holographic AI 

to keep secrets.  

The teaching content (mathematics) facilitated the children’s user experience. 

Overall, the children thought that Sarah provides good explanations, and is 

capable of recognising and correcting mistakes, as well as setting an appropriate 

level of difficulty in line with the children’s requirements. For these reasons, one 

child commented that Sarah can “look out” for him. Further, the experiment also 

demonstrates that speaking is an important way of interaction. Some children 

commented that verbal interaction is one of the best facets of Sarah’s 

performance. However, as mentioned, the interactive space was noisy, and under 

these conditions the holographic AI cannot clearly and accurately capture each 

child’s voice. The children noticed that Sarah sometimes tracked other people’s 

keywords, and most of them commented that Sarah misunderstood some 

utterances, or sometimes said she did not understand what a particular user had 

just said. Interestingly, a boy provided a suggestion that he hopes that Sarah could 

hold his hand and touch him during interaction. 

According to the PICS model, competence can correspond to intelligence, which 

can influence the degree of perceived integrity, compassion and the holographic 

AI’s intention in the aspect of benevolence. Despite this, the value of correlation 

between competence and trust in the experiment was below 0.5. For children, 

emotional support may be more important, especially for those who are 5–9 years 

old. Older children are more likely to recognise that a holographic AI is an artefact, 

that it cannot generate a real feeling between AI and user. Further, children may 

prefer to interact with a character with whom they are familiar, which has abundant 

story plots and personality to support interaction. This requirement is particularly 

crucial with long-term utilisation. In terms of gestures, it may be necessary to 

deliver emotional responsiveness consistent with the holographic AI’s intentions, 

such as touching a child’s head, high-five gestures, fist bump, and virtual hug. 

5.8.4 Trust model of the holographic AI 
Mayer et al. (1995) developed a model that emphasizes the importance of 

interpersonal trust in creating reciprocity and mutual benefit. This model 

recognizes the ongoing and dynamic nature of relationships between individuals. 

The elements of the human trust model can benefit to understand the sense of 

trust towards AI (Dzindolet et al., 2003; Hoffman et al., 2013). Both definitions of 

trust highlight the belief that user (trustor) expects the AI (executor) to meet their 

requirements. Therefore, competence, benevolence, and integrity have similar 
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meanings in the context of trust towards holographic AI. However, the attributes 

and features of AI agents do not allow for the direct application of interpersonal 

trust. Trust towards holographic AI is unidirectional, with the default being to trust 

the users. This makes it difficult to establish a reciprocal relationship with AI 

systems (Ishowo-Oloko et al., 2019; Karpus et al., 2021). As a result, interpersonal 

trust cannot be fully employed in the AI system. For example, although the 

holographic AI can address specific tasks through possessing the competence 

that consists of integrative abilities (competence) and specific skills outlined in the 

AI trust model, it cannot reap rewards from users. 

Furthermore, the human-centred trust model prioritizes user perception in the 

digital world, taking into account factors such as information transparency, ethics, 

cultural influences, explainability, security, and accountability (Gebru et al., 2022; 

Sousa et al., 2023; Scharowski et al., 2023). This model has a broader scope, 

making it challenging to explain trust towards specific types of AI agents. Sousa et 

al. (2023) argue that anthropomorphic AI can facilitate emotional trust. However, 

this perspective overlooks how holographic AI can potentially provide subjective 

support through its intelligence or competence, especially in the context of 

pedagogy. Moreover, previous studies and the human-centred trust model also 

demonstrate the provision of customized services to reflect the AI system’s ability 

to fulfil user expectation, they fail to elucidate the specific element or behaviour 

that can truly foster a meaningful connection between the holographic AI and 

users. 

The proposed trust model towards holographic AI explores the importance of 

compassion, which is not present in Mayer et al. (1995)’s model, as well as 

benevolence. Users not only expect holographic AI to achieve goals, but also to 

provide warmth and understanding, even when he/she provides incorrect 

information. Since holographic AI lacks emotions, it is necessary to employ 

different dimensions of the PICS model to create an illusion of emotional 

expressions. Additionally, both interpersonal trust and human-centred trust 

consider the vulnerability and risks that users may face, which are not addressed 

in trust towards holographic AI. According to the definition and dimensions of trust, 

if holographic AI aims to establish a satisfying relationship with good intentions 

and motivations, it can avoid the possibility of negative situations. 

5.8.5 Recommendations 
Based on the children’s feedback and suggestions, six recommendations for 

improving children’s sense of trust towards holographic AIs are proposed: 

• The holographic AI should have its own character’s background prior to 

interaction in order to improve intention and motivation. However, this does 

not mean the holographic AI should always talk; rather, the interaction 

should take the form of story sharing to enhance engagement.  

• The interactive context should pay attention to emotional responsiveness, 

especially benevolence.  

• A positive relationship depends to a significant extent on compassion. 

Therefore, in order for it to exhibit empathy and consistency of behaviour 
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and utterance, the holographic AI should take the perspective of children 

into account. 

• Explanations for dealing with learning problems is important in intelligent 

tutor systems, therefore, the holographic AI not only should provide basic 

information, but also reasoning and solutions. 

• Speaking and animations are the main interactive approaches. The 

personal service provided from the holographic AI should accurately 

capture a user’s voice.  

• Animations should be consistent with the holographic AI’s intention to 

express emotional support. 

5.9 Validity 

The primary aim of the initial study is to develop a novel metric tool and 

subsequently evaluate the user experience. This involves utilizing the Likert scale 

methodology, where experts in the field of HCI assessed the relevance and 

distinctiveness of items related to trust. As a result, the tool has content validity. 

According to Yaghmaie (2003), content validity refers to the degree to which a 

measurement instrument accurately represents the concept it is intended to 

measure. Expert judgment and cluster analysis are crucial for determining the 

validity and comprehensiveness of statements about trust in effectively capturing 

the construct's scope under examination. 

The second study utilized the scale to assess children's perceptions of trust 

towards holographic AI. In this experiment, the settings, scenarios, and variables 

of the holographic AI could accurately represent real-world interactions (Hartson 

and Pyla, 2019), thereby possessing ecological validity. Consequently, the findings 

from the experiment could have practical implications. Additionally, conclusion 

validity relates to the extent to which the conclusions drawn from an experiment 

are justified (García-Pérez, 2012). Therefore, this study demonstrates conclusion 

validity as it is based on the analysis of correlations between each dimension and 

trust. 

5.10 Limitations 

This study has limitations concerning the trust scale and experimental design. A 

pre-test was conducted to confirm the validity of the trust scale, and terms from 11 

statements were adapted for children to ensure their comprehension. However, 

the study does not examine the degree to which these altered statements 

accurately convey the meanings of their original versions. For instance, item #3 ("I 

think positively about the holographic AI") indicates a positive attitude, which does 

not necessarily mean the user likes the agent. The statement "I like Sarah" for 

children might not align with the holographic AI's rules of interaction, performance, 

and achievement, as the dimension of relationship seems to have a minor 

correlation with it. Furthermore, while children who like "Sarah" may develop some 

form of relationship, this does not necessarily evolve into friendship. Children 

might struggle to comprehend the nature of their interaction with the holographic 

AI, as open-ended questions have shown that children perceive the AI as a mother 

or assistant. 
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Additionally, the engagement with the trust model is based on concepts from 

Sousa, Lamas and Dias (2014) and Mayer et al. (1995), but both studies do not 

explore what other factors might influence engagement. The trust model suggests 

that perception of trust can be affected by prior experiences and outcomes but is 

limited to this context. 

Given that the purpose of this study is to assess the comprehensive user 

experience with holographic AI, rather than concentrating on capabilities, 

appearances, or perceptions, the categorization of holographic AI groups based 

on varying levels of trust was not used for comparative analysis.  

The validity of the conclusion is affected by the 10 missing values. The data 

analysis does not classify different child groups, which makes it difficult to derive 

robust correlation values to support the conclusions, even though it provides 

correlation values between sense of trust and ages, gender, and experience using 

virtual agents and VR and AR. For example, older children who have acquired 

knowledge of geometry may exhibit reduced interest towards instructional 

material, Furthermore, cultural differences and educational backgrounds may also 

influence the sense of trust.   

Therefore, to enhance the validity of future user experience research, control factors 

should be taken into account. Additionally, a new scale tailored for children should 

be developed to ensure that statements accurately reflect their intended meaning. 

5.11 Summary 

As presented in Chapter 2 and 3, there are few studies focusing on a holistic 

perception of holographic AI in conviviality dimensions such as trust (see Figure 

5.19). It is essential to establish and maintain trust in interpersonal relationships as 

well as in HCI. Therefore, the purpose of this study is to investigate the factors that 

influence the perception of trust towards the holographic AI, which extends the 

conviviality dimension of the PICS model (Figure 5.19). 

 

Figure 5.19. Holistic user perception in the PICS model 
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In order to investigate and measure the sense of trust towards holographic AIs, 

this chapter firstly detailed a new scale with 11 items from 104 statements that 

related to trust. This is based on 104 related items that related to trust, which in 

turn were reviewed by 11 judges for the purposes of selection, refinement, and 

analysis of precision. Therefore, the final selected items have distinctive features 

in regard to users’ sense of trust, and can indicate how people regard holographic 

AIs in terms of competence, integrity, benevolence, and compassion, and 

therefore could be used to investigate whether the human user can experience 

interaction and enter into a trust-based relationship with a holographic AIs. 

Besides, the definition of trust in this context refers to the perception as to whether 

the holographic AI offers support to and helps the human user achieve goals via 

positive and altruistic intention.  

Using this metric scale, a questionnaire designed to fit with children’s level of 

understanding was produced in order to measure children’s sense of trust towards 

holographic AIs. Although previous studies have investigated trust towards 

holographic AIs, they have not directly and mainly focused on perceptive trust, but 

instead have tended to focus on the influences of social presence and safety on 

trust (Kim et al., 2018). Therefore, an experiment was conducted in order to 

investigate what the primary factors of trust for children are in this context, and 

how the children’s user experience and intelligent tutor system might be improved. 

This study then compared and analysed correlations among the dimensions of 

trust and the question item. It was found that the children can identify differences 

between real and virtual interaction. The children focused more on emotional 

responsiveness of holographic AI, especially benevolence and compassion. 

Benevolence and compassion are connected with a holographic AI’s intention, and 

might significantly influence whether children can establish a positive relationship 

with holographic AIs. However, among children, past experience in using virtual 

agents might impact negatively their sense of trust. Based on the children’s 

suggestions and feedback, this chapter has concluded with six recommendations 

for improving children’s feeling of trust in holographic AIs. 

 

 

 

 

 

 

 

 

 

 

 

 



187 
 

Chapter 6 Conclusion and future plan 

6.1 Introduction 

The thesis has explored the domain of holographic AI, it has presented the entire 

process of developing holographic AIs, including 3D creation, body and facial 

animations, dialogue management, user recognition, instructional gestures, and 

trust measurement.  

This chapter draws conclusions on the findings in this thesis in relation to 

holographic AI development, and considers its empirical contributions, discussing 

also its limitations and future research directions now possible. 

6.2 Answering Research Questions 

This section summaries the research findings in answer to the research questions 

and aim of this thesis. 

Question 1 (RQ1). What elements and design dimensions constitute the 

holographic AI? 

This study employs the PRISMA to conduct a thorough investigation into the 

understanding of the holographic AI and its underlying model. It collects a total of 

49 studies to analyse and summarize the characteristics of the holographic AI 

based on their research goals and functionalities. 

Out of these 49 studies, 30 employ or analyse life-sized and human-like 

holographic AIs; seven of these studies show how different appearances can 

impact user experience (refer to Table 6.1). The forementioned appearances 

encompass life-sized, mini-sized, humanlike, or cartoon styles. Most holographic 

AIs can perform animations, including emotional expressions and body 

movements, such as walking, jumping, or idling (see Table 6.2). Accordingly, 

appearance encompasses size and realism, and facial and body animations 

compose behaviours. Appearance and behaviours define a holographic AI’s 

external attributes, personality, and job, i.e., its persona, explaining in Section 

2.3.3.   

Persona Studies 

Appearance 

Life-sized and human-like Obaid et al. (2012); Campbell et al. (2014); Kim 
(2018a); Peters et al. (2018); Kim et al. (2018, 
2016); Kim, Bruder and Welch (2017); Kim 
(2018b); Li et al. (2018); Lee et al. (2018); Hartholt 
et al. (2019); Zielke et al. (2018); Wang, Smith and 
Ruiz (2019); Randhavane et al. (2019); Miller et al. 
(2019); Kim et al. (2019); Lee et al. (2021); 
Schmidt, Nunez and Steinicke (2019); Schmidt, 
Ariza and Steinicke (2020); Reinhardt, Hillen and 
Wolf (2020); Kim et al. (2021b); Pimentel and 
Vinkers (2021); Huang, Wild and Whitelock (2021); 
Mostajeran et al. (2022); Norouzi et al. (2022); 
Mostajeran, Reisewitz and Steinicke (2022); Yoo 
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and Tanaka (2022); Wolf et al. (2020); Wolf et al. 
(2022); Huang et al.(2022) 

The effect of different 
appearances 

Kim et al. (2018); Li et al. (2018); Wang, Smith and 
Ruiz (2019); K. Kim et al. (2020); Reinhardt, Hillen 
and Wolf (2020); Mostajeran, Reisewitz and 
Steinicke (2022); Norouzi et al. (2022) 

Behaviour 

Emotional expressions 
(including speaking)  

Kim (2018a); Schmidt, Nunez and Nunez (2019); 
Kim et al. (2019); Schmidt, Ariza and Steinicke 
(2020); Pimentel and Vinkers (2021); Kim et al. 
(2016, 2018); Kim, Bruder and Welch (2017); Kim 
(2018b); Zielke et al. (2018); Li et al. (2018); Ali et 
al. (2019); K. Kim et al. (2020); Li et al. (2021); 
Huang, Wild and Whitelock (2021); Huang et al. 
(2022) 

Body animations Obaid et al. (2012); Campbell et al. (2014); Kim et 
al. (2016); Piumsomboon et al. (2018); Kim, Bruder 
and Welch (2017); Kim et al. (2018, 2019); Wang, 
Smith and Ruiz (2019); Kim (2018a); Kim (2018b); 
Li et al. (2018); Lee et al. (2021); Lang, Liang and 
Yu (2019); Kim et al. (2021b); Schmidt, Nunez and 
Nunez (2019); Ali et al. (2019); Reinhardt, Hillen 
and Wolf (2020); Schmidt, Ariza and Steinicke 
(2020); Kim et al. (2020a, 2021a); Oh and Byun 
(2012); Li et al. (2021); Huang, Wild and Whitelock 
(2021); Mostajeran, Reisewitz and Steinicke 
(2022); Zhou et al. (2009); Miller et al. (2019); Wolf 
et al. (2020, 2022); Norouzi et al. (2019); 
Chahyana and Yesmaya (2020); Huang, Wild and 
Whitelock (2021); Norouzi et al. (2022); Peters et 
al. (2018); Reinhardt, Hillen, and Wolf (2020); 
Pimentel and Vinkers (2021); 

Table 6.1 Persona 

A total of 16 studies are dedicated to enhancing intelligence, which refers to the 

functions of the holographic AI. The objective of these studies is to develop 

computer vision, natural language processing, spatial understanding, learning 

systems, AR plugin, and synthetization with the user’s movements (see Table 6.2). 

Intelligence Studies 

Spatial understanding Lang, Liang and Yu (2019) 

Physical-object 

recognition/interaction 

Kim et al. (2021a); Zhou et al. (2009);  

Natural language 

processing 

Miyake and Ito (2012); Park and Jeong (2019); Nasution 

et al. (2020) 

Learning systems Oh and Byun (2012); Zielke et al. (2018); Hartholt et al. 

(2019); Li et al. (2021); Huang, Wild and Whitelock 

(2021) 



189 
 

Computer vision Verma et al. (2021) 

AR plugin 

development 

Campbell et al. (2014) 

Synchronization with 

the user’s behaviours 

Piumsomboon et al. (2018); Wolf et al. (2022, 2020); 

Yoo and Tanaka (2022) 

Table 6.2. Intelligence 

In order to measure quality of interaction, 20 studies examine co-presence, social 

distance, and social facilitation and inhibition. Therefore, conviviality is used to 

measure user perception of holographic AIs, such as their ability to establish a 

sense of co-presence or the ability to adhere to social norms and social distance, 

investigating the relationship between holographic AIs and users.  

Conviviality Studies 

 Kim et al. (2021b); Kim (2018a); Kim, 
Bruder and Welch (2017); Pimentel 
and Vinkers (2021); Kim et al. (2019); 
Lee et al. (2021); Schmidt, Ariza, and 
Steinicke (2020); Reinhardt, Hillen, 
and Wolf (2020); Kim et al. (2016); Kim 
(2018b); Miller et al. (2019); Schmidt, 
Nunez and Steinicke (2019); Norouzi 
et al. (2019); Mostajeran, Reisewitz 
and Steinicke (2022); Aramaki and 
Murakami (2013); Li et al. (2018); Lee 
et al. (2018); Peters et al. (2018); 
Huang et al. (2022); 

Table 6.3. Conviviality 

Moreover, the holographic AI's intelligence is exploited to execute tasks or resolve 

problems. Section 2.3.6 defines senses that are about interaction modalities, how 

a holographic AI utilizes multiple interaction approaches, and how react to users 

and which ways of receiving and reacting to contextual information from the mixed 

surrounding they provide, such as natural language processing, physical-object 

awareness, eye gaze tracking, position detection, or posture interaction (see Table 

6.4).  

Senses Studies 

Non-verbal 

communication 

interaction 

Zhou et al. (2009); Holz et al. (2011); Campbell et al. 
(2014); Piumsomboon et al. (2018); Li et al. (2018); 
Miller et al. (2019); Pimentel and Vinkers (2021) 

Verbal interaction Miyake and Ito (2012); Oh and Byun (2012); Zielke et 

al. (2018); Hartholt et al., (2019); Wang, Smith and 

Ruiz (2019); Lang, Liang and Yu (2019); Schmidt, 

Nunez and Steinicke (2019); Ali et al. (2019); 

Reinhardt, Hillen, and Wolf (2020); Schmidt, Ariza 
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and Steinicke (2020); Huang, Wild and Whitelock 

(2021); Kim et al., (2021a) 

Physical-object 

awareness 

Holz et al. (2011); Lang, Liang and Yu (2019); 

Schmidt, Nunez and Nunez (2019); Schmidt, Ariza 

and Steinicke (2020); Huang, Wild and Whitelock 

(2021); Kim et al. (2021b,a) 

Eye gaze tracking Ali et al. (2019); Hartholt et al. (2019) 

Position detection Park and Jeong (2019) 

Posture interaction Li et al. (2018) 

Table 6.4. Senses 

Compared to traditional VR and screen-displayed agents, holographic AI 

augments perception of and interaction with the real and virtual worlds, and 

enhances multimodal adaptivity to process mixed information from users and 

context. For example, a holographic AI is able to combine information concerning 

the user’s reaction and interactive spaces to make a decision and generate 

corresponding performance.  

In general, on the basis of the findings of the systematic literature review, the initial 

model gathers and re-organizes features based on aims of literature and functions 

of the holographic AI. Therefore, this thesis has proposed a novel model titled 

PICS (see Figure 6.1), as it includes persona (P), intelligence (I), conviviality (C), 

and sense (S). 

 

Figure 6.1. The initial PICS model 

However, this study does not explore the identities of holographic AIs, including 

gender, occupations, hairstyles, and clothing. It also does not analyse learning 

materials, storylines, and interaction content and equipment. The initial model 

incorporates characteristics from previous studies on the holographic AI. However, 

components are unclear or repeated. Thus, in the next chapter, the model will be 

validated and refined through the creation of holographic AIs.   

Question 1-1. Taxonomy of holographic AIs 

The proposed taxonomy in Section 2.5.2 categorizes holographic AIs as user 

avatars, games characters, simulation agents, chatbots, and intelligent tutors in 

accordance with the functions of the holographic AI and the model. 
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The difference between these five types of holographic AIs has been identified 

(see Table 6.5). For example, a holographic AI simulation agent can mimic 

different roles setting it apart from the configuration of PICS features needed for a 

holographic AI in the intelligent tutor system, such as being a patient or an 

interviewee. A holographic AI in a simulation serves a navigation function by 

instructing learners to achieve learning through practical experience, such as 

decision-making, in a specific scenario, rather than directly providing teaching 

content. Whereas a holographic AI as an intelligent tutor is a virtual teacher or 

coach that merely dispenses knowledge, without storylines or narratives. However, 

the design of intelligent tutors focuses on whether learners can grasp knowledge 

(Zawacki-Richter et al., 2019; Churi et al., 2022). Game characters focus on vision 

stimuli and event triggers that depend on players' reactions, such as exaggerated 

animations. Player’s decisions activate a holographic AI’s animations or a storyline 

accordingly. In serious games, the holographic AI is employed for educational 

purposes (Ahmed and Sutton, 2017), but the game character is used for 

entertainment. The distinction between the serious game and simulation system 

lies in the fact that in educational games, the holographic AI adheres to 

independent educational rules (Whittaker et al., 2021; Laamarti et al., 2014), as 

opposed to imitating real-world social principles. Chatbot agents focus on natural 

language processing and translation, while a user avatar can synchronise the 

user’s behaviour via position tracking.  

Types of holographic AIs Studies 

User avatar Piumsomboon et al. (2018); Yoo and Tanaka 
(2022); Wolf et al. (2020, 2022) 

Simulation agents Kim et al. (2021b); Reinhardt, Hillen and Wolf 
(2020); Pimentel and Vinkers (2021); Miller et al. 
(2019); Kim et al. (2018a); Kim et al. (2019); Kim et 
al. (2018); Kim, Bruder and Welch (2017); Kim et 
al. (2016); Kim (2018b); Li et al. (2018); Li et al. 
(2018); K. Kim et al. (2020); Norouzi et al. (2019); 
Lee et al. (2018); Kim et al. (2021a); Lang, Liang 
and Yu (2019); Zhou et al. (2009); Chetty and 
White (2019); Norouzi et al. (2022); Mostajeran, 
Reisewitz and Steinicke (2022); Huang et al. 
(2022); Aramaki and Murakami (2013); 
Randhavane et al. (2019); Peters et al. (2018); 
Obaid et al. (2012); Wang, Smith and Ruiz (2019); 
Lee et al. (2021); Schmidt, Ariza and Steinicke 
(2020); Schmidt, Nunez and Steinicke (2019); 
Hartholt er al. (2019); Huang, Wild and Whitelock 
(2021); Lee et al. (2019); Schmidt, Ariza and 
Steinicke. (2020); Schmidt, Nunez and Steinicke 
(2019) 

Intelligent tutor systems Huang, Wild and Whitelock (2021) 

Game characters 
(including serious games) 

Huang, Wild and Whitelock (2021); Li et al. (2021); 
Oh and Byun (2012) 

Chatbot agents  Nasution et al. (2020); Park and Jeong (2019); 
Miyake and Ito (2012) 

Table 6.5. Taxonomy of the holographic AI 
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However, the holographic AI taxonomy is not universal since it only examines a 

small number of holographic AIs. In the future, this agent may be capable of 

performing multiple functions. 

Question 2 (RQ2). How to create an anthropomorphic holographic AI in practice, 

following this model? 

The PICS model and taxonomy of the holographic AI provides a guideline for 

creating a holographic AI, so that the second study created an intelligent tutor 

system as an example. However, traditional 3D modelling takes time in prototypes 

design and 3D creation, thus it uses 3D scanning technology that can implement a 

semi-automatic method, especially it can directly generate a high-polygon model 

and texture. This study also proposes processes for dealing with disordered 

meshes of 3D scanned models. Then the thesis compared semi-automatic 

methods with the traditional approach for creating 3D characters: it has found 

although 3D scanning can generate 3D avatars quickly, correcting failed meshes 

is time-consuming, and 3D scanning could result in the appearance of the avatar 

almost resembling an actor, but not fully, which could lead to the Uncanny Valley 

effect. The traditional method is more flexible when designing different styles of 

appearances as it provides ways of creating facial animations and body 

animations using blend shapes and motion capture technology. 

Implementation-wise, this thesis developed ways to for the holographic AI to 

verbally interact with users using IBM Watson services, namely, dialogue 

management, speech-to-text, text-to-speech, and translation, so that the resulting 

holographic AI is able to parse and understand users’ utterances, and produce 

corresponding responses. in addition, specific speech content on the part of the 

user can trigger an animation or performance on the part of the avatar. 

Regarding animation, the thesis explored ways of using motion capture 

technologies ranging from working with the Vicon system using optical camera 

tracking to a Rokoko motion capture suit with body-worn sensors. While the 

camera-based system was found to provide stable movement, it cannot record 

covered markers. The motion capture suit resolves this, but is sensitive to 

magnetic objects, which can lead to noise, data loss, and disconnection. 

The sensory awareness of the holographic AI employed spatial understanding. 

The holographic AI can follow the user’s position. However, it should be noted that 

this particular ‘follow the user’ script was created by the MirageXR team, following 

discussions and informed by the research conducted for this thesis (Wekit ECS, 

2022). Besides, the created holographic AI cannot manipulate real objects or 

influence states of the MR environment, but it does not limit to places.  

User model and adaptivity are necessary for recording user preferences in order to 

automatically update interactive information and generate corresponding context in 

real-time. 
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Figure 6.2. The refined model 

Furthermore, some elements of the initial model are replicated as they integrate 

characteristics of the holographic AI. Figure 6.2 presents a refined PICS model, 

which omits redundant and ambiguous elements, including computer vision, 

physical-object understanding/interaction, learning systems, and user motion 

tracking, in accordance with the case study of its creation. The advancement of 

computer vision is crucial for the recognition/interaction with physical objects or for 

spatial mapping. In Chapter 2, computer vision is explored for projecting the 

holographic AI into the real environment. However, this concept is later supplanted 

by AR alignment, which refers to the processes involved in aligning digital and 

real-world environments. The distinction between bidirectional and unidirectional 

interaction determines whether the holographic AI is capable of recognizing or 

manipulating real-world objects. In addition, learning systems emphasize the 

development of educational applications, rather than a specific ability that can be 

generalized to other holographic AIs. Therefore, this aspect is excluded but 

examined in the taxonomy of holographic AIs. Moreover, previous studies have 

primarily examined conviviality in relation to a specific feature of the holographic 

AI, particularly how the level of physical-object recognition/interaction might 

enhance the user's sense of presence. The elements of conviviality should be 

replaced by single-factor measurements and a holistic perception of the user. 

Personalized interaction has been incorporated into the sense dimension since 

interaction modalities serve not only to respond to the user and the interactive 

context but also to offer customized services based on a user model and 

adaptability. 

Question 3 (RQ3). What key instructional gestures should be used by an 

educational holographic AI? 

An experiment was devised in order to collect more gestures and observe the 

different types of gestures used by the trainers to direct the trainees in completing 

the three tasks (navigation, assembly, and precision).  

The objective of the navigation task is to simulate body positioning, while 

participants in the assembly task construct cardboard structures and arrange 

various shapes of panels in the precision task. These three tasks can reveal the 

instructor's organizational, collaborative, cognitive, and mimicry skills. 

Furthermore, the instructor is prohibited from providing verbal instructions to the 

trainee during each speechless trial, allowing for an analysis of the instructor's 

gesture production. The employment of pointing gestures can effectively 

communicate information about a specific object, location, or direction, which, in 

turn, can improve learners' performance (Atit, Gagnier and Shipley, 2015; 
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Matsumoto and Dobs, 2017). Therefore, this experiment presents three 

hypotheses. 

• H1:  Participants generate more gestures during the speechless segments 

of the three tasks. 

• H2:  For the participants, deictic gestures constitute the key functional 

approach. 

• H3: The three tasks differently affect participants’ way of thinking. 

The experiment utilized a Rokoko motion capture suit to accurately record gesture 

and finger movements. Drawing upon studies of representational gestures 

(Bernard, Millman and Mittal, 2015; Abner, Cooperrider and Goldin‐Meadow, 

2015) and cognitive processes that influence gesture production (Abner, 

Cooperrider and Goldin-Meadow, 2015), the gathered data can be selected and 

annotated. These tasks aid in understanding the motivations behind gesture 

production and the various methods of referencing an object. The type of 

representational gestures mirrors the meaning behind the gestures. 

A comprehensive array of representational gestures was identified and annotated 

in this experiment. These gestures encompass deictic, iconic, metaphorical, and 

beat gestures (Bernard, Millman and Mittal, 2015; Abner, Cooperrider and Goldin‐

Meadow, 2015). Transformational and mimicking gestures are novel types of 

representational gestures since both types of gestures can convey information. 

Transformational gestures are used when instructing a trainee to flip and rotate an 

object, and concern the manipulation of spatial information. The jumping index 

fingers or hand gesture is used when referring to the other side of the object. 

Transformational gestures can appear along with iconic gestures. For example, a 

trainer will firstly generate iconic gestures to imply a referent’s size, and then 

rotate arms to represent the shape needs to be rotated. Besides, mimicking 

gestures tend to schematise a person’s posture.  

The most frequently occurring type of gesture in the experiment was the deictic 

gesture (existing 1290), whereby a trainer’s palm or index fingers can express a 

direction, position, or object. This type of gesture was able to highlight a key point 

to attract the viewer’s attention. If a trainer points in an unclear direction, the index 

finger is loose, or he/she directly uses a hand palm. Therefore, the second 

hypothesis can be supported. 

Other types of representational gestures also appear in this experiment. Iconic 

gestures describe an object’s features, such as size, shape, length, and spatial 

relationship. For example, a trainer may use an index finger to draw a long line to 

represent a referent’s longest side. Or the trainer may stretch out his/her hands 

and position the palms of the hands in such a way that they face each other, in an 

attempt to indicate the subject’s shape and size. Or the trainer may use gestures 

indicating spatial direction and position when instructing the trainee to organise 

and assemble blocks in different positions. 

The emblematic gesture refers to a more specific but widely known category of 

gestures. For example, thumb ups implies that the trainee’s actions are correct, 

whereas the waving index finger indicates they are wrong.  
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Metaphorical gestures can describe metaphorical concepts. For example, a left 

hand moved left refers to past behaviour, while a right hand moved right can 

express current or future behavioural plans.  

Beat gestures can help trainers organise their thoughts and utterance. 

Moreover, a single gesture can also express multiple and mixed meaning. A 

trainer’s hands can simultaneously represent an object’s size, and he/she can then 

his/her wrist when guiding a listener to select a right shape and rotate it to a 

certain degree. In terms of co-speech gestures, the most frequently used word in 

the experiment was ‘side’, it appeared along with deictic gestures to highlight an 

object’s orientation and position. 

Gesture production can also reflect the instructor's cognitive processes, 

substantiating the third hypothesis. When the instructor discusses a complex array 

of objects or events, they segment information into discrete segments using 

gestures (Abner, Cooperrider and Goldin-Meadow, 2015). According to the analysis 

of gestures, the trainer who described an object's shape prior to offering guidance 

used fewer gestures compared to those who did not provide such preliminary 

instructions. It was also observed that if the instructor uses an abstract term to 

describe a concrete shape, this can lead to confusion or misunderstanding. If the 

trainee fails to comprehend an instruction correctly, the instructor may produce 

gestures repeatedly. 

Regarding the first hypothesis, the warm-up trials tend to elicit more gestures since 

these trials are conducted for the first time, and there may not be an implicit 

understanding between the instructor and the trainee. Moreover, although the warm-

up and easy trials involve similar cardboard structures, the instructor took longer at 

the straightforward level. This could suggest that the instructor produces fewer 

gestures but takes more time to structure their language. 

Using the HoloLens and the Rokoko Motion Capture Suit, corresponding gestural 

animations were selected, and their animation files generated. These animations 

can be divided into gestures pointing at a specific object (usually index finger), and 

those pointing at an orientation (using palm and loose hands). Similarly, it was 

also found that when a described the size of the panel, he/she employed iconic 

gestures using two hands, and emphasised a small size with only a hand palm. 

Therefore, this feature should also be highlighted in holographic AI animations.  

Additionally, when a holographic AI needs to explain a complicated arrangement, it 

should indicate how spatial information can be packaged into different units by 

way of iconic gestures. The holographic AI should perform diverse gestural forms 

when describing a similar or identical referent. In the experiment, although the 

trainers extracted previous spatial information and generate similar gestures, they 

generally simplified or reduced the gestural generation if the information appeared 

again, by using deictic gestures. On a final note, although the thumb up gesture is 

not instructional, it is a mean of encouragement. Likewise, waving an index finger 

or hand is not instructional, although these gestures signal that the viewer/trainee 

needs to correct a mistake. 

Figure 6.3 presents that this study fills the gap of instructional gestures and 

extends the dimension of persona in the PICS model.  
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Figure 6.3. Instructional gestures extend persona in PICS model 

On the other hand, the types of instructional gestures are informed by 

representational gestures. It was found that methods of instruction can influence 

gesture production and the learner’s performance. However, due to the unique 

design of the experiment, limited data are available to draw conclusions about this 

finding. Additionally, the types of gestures observed in this experiment are based on 

three tasks, so other gestures might be observed if the tasks varied. Moreover, the 

study does not investigate how educational backgrounds and cultural influences 

impact gesture production, and the participants are from the general population 

rather than a specific profession. 

Question 4 (RQ4). What factors affect the user’s sense of trust towards an 

educational holographic AI? 

Trust is a fundamental aspect of both interpersonal relationships and HCI. Prior 

research has applied the constructs of interpersonal or automation trust to 

characterize the trust between users and holographic AIs (Kulms and Kopp, 2018; 

Phillip et al., 2020). Yet, it is critical to acknowledge that user interactions with 

holographic agents may deviate from those with human counterparts. 

Consequently, this study is dedicated to elucidating a specific definition of trust in 

the context of holographic AI. 

• Definition - What is trust towards the holographic AIs?  

Kim et al. (2018) investigate whether users trust holographic AI in different 

situations of physical-object interaction, but the study focuses on its security. In 

order to measure a user's sense of trust towards holographic AI, this study 

develops a new scale. Therefore, a subordinate RQ was proposed: 

• Scale - How to develop a novel scale for measuring the sense of trust 

towards the holographic AI? 

Utilizing the Likert scaling technique, this research gathered and selected 

statements related to trust in virtual agents (Trochim, 2021). The study undertakes 

the compilation of hundreds of statements to investigate the notion of trust and to 

formulate a new scale tailored for holographic AI, drawing on the trust model 
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proposed by Mayer et al. (1995) and the implications of the trust statements. A 

novel trust model has been developed to accommodate the unique dynamics of 

holographic AI. 

While Mayer et al. (1995)'s model is traditionally employed to assess interpersonal 

trust, it is also applicable in the context where holographic AI emulates human 

interaction within a MR setting, thereby assisting in defining the meanings of each 

trust dimension. 

The dimension of competence indicates the holographic AI’s abilities and specific 

skills, how it can use these abilities to help achieve a goal.  

Integrity refers to truthfulness, i.e. whether the holographic AI can tell the truth. 

Besides, according to the interpersonal trust model. Besides, the concept of 

integrity is pivotal in evaluating whether the holographic AI upholds consistent 

interaction principles that users find credible (Mayer et al., 1995). It means the 

holographic AI’s performance should match its intention to achieve goal, in order 

to generate a positive attitude towards such agent.  

Benevolence reflects a user’s affect aspects of trust. This dimension can be used 

to assess whether a holographic AI intention is good towards a user, e.g. shows 

kindness (Sousa, Lamas and Dias, 2014). For example, the holographic AI wants 

to do good by respecting children’s willingness. 

Compassion also is affective-based trust. This process entails the holographic AI 

expressing concern, empathy, caring, and promising. Although this dimension 

does not exist in the interpersonal trust model (Mayer et al., 1995), it can yield 

optimism (Jones, 2019). For instance, the holographic AI encourages children to 

correct mistakes instead of blaming them, so that they are able to feel a sense of 

understanding. On the other word, the holographic AI's compassion is based on its 

ability to recognize the user's needs and provide them with personalized services. 

The dimension of relationship is an outcome of trust, i.e. whether the user and 

holographic AI can establish a positive relationship. Moreover, the holographic AI 

inherently operates under a default assumption of trust towards the user, creating 

a unidirectional perception of trust, which is distinct from the reciprocal nature of 

interpersonal trust. Additionally, a robust trust dynamic in human-holographic AI 

interactions can foster a positive relationship, as evidenced by findings from 

Salanitri et al. (2015), McKnight et al. (2011), and Vanneste, Puranam and 

Kretschmer (2013). Therefore, this relationship is an outcome. 

Generally, trust is an attitude that the user believes the holographic AI can provide 

services with positive intentions and behaviours. Therefore, trust between 

holographic AI interaction and interpersonal trust is different. The user hopes that 

this agent can provide both objective and emotional support. As depicted in Figure 

6.4, the basis of trust is the predisposition to engage, which is established before 

the engagement itself occurs (Lamas and Dias, 2014). Based on holographic AI 

interaction and user engagement, a relationship is generated. Further, these five 

dimensions with 11 statements can be adopted to assess the factors that influence 

the sense of trust using a Likert scale (Hanna and Richards, 2019).   
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Figure 6.4. The refined trust model 

Then a holographic AI is used to help children to identify 3D shapes in order to 

collect and analyse user experience. Chapter 2 has demonstrated that the 

dimension of intelligence can influence user experience, thus the first hypothesis is 

proposed as follow: 

• H1: Competence is a main influence factor in the sense of trust. 

Besides, emotional support, such as benevolence, can positively influence 

children’s sense of trust in education (Landrum, Mills and Johnston, 2013), thus 

the second hypothesis is proposed below:  

• H2: Benevolence can affect the sense of trust. 

The correlation between competence and trust is 0.49, indicating that competence 

exerts a certain impact on trust (p<=0.001), while the correlations between trust 

and compassion is 0.61 (p<=0.001) or benevolence is 0.71 (p<=0.001). The 

perception of benevolence indicates whether the holographic AI can understand 

children's needs, correct their mistakes, and provide encouragement in a way that 

stimulates a sense of ‘realism’. As a result, competence is not the main factor, 

benevolence and compassion are. 

However, the holographic AI’s competence (i.e. intelligence and senses in the 

PICS model) can manage its subjective expressions, thus this set up on the basis 

of competence by natural language processing or senses. Therefore, both 

compassion and benevolence can be influenced by its intelligence (r = 0.32 and 

0.29). Therefore, children may be able to determine whether the holographic AI’s 

behaviour is positive. 

In addition, this study also illustrates a negative correlation with the children’s age 

and subjective feelings (r=-0.3, p=0.04), in that the older children with mature 

cognition can recognize that the holographic AI is not real and cannot actually 

generate emotions like human beings. Besides, the open-ended questions also 

can prove this, because they think the holographic AI relies on database that can 

be hacked. 

On the other hand, perceived competence might share an inverse relationship with 

children’s age (r=-0.04). The experimental results also indicated that the children’s 

trust may be also affected slightly by gender, in that the boys experienced less 

emotional responsiveness. 
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The children with experience in using AR and virtual agents tend to possess a 

higher sense of perceived integrity (r=0.12; r=0.34), but less affective 

responsiveness (r=-0.15; r=-0.49).   

Figure 6.5 represents that this study extends the dimension of conviviality. 

 

Figure 6.5. Holistic use perception in the PICS model  

In the open-ended questions, only 14 children out of the 42 children said they 

would like to share a story with the holographic AI, since they perceived ‘Sarah’ as 

kind and helpful. Those who said they would not share secrets or stories indicated 

that they knew the holographic AI is not real, that the holographic AI cannot make 

a decision. Twenty-one children said they did not believe the holographic AI can 

be trusted to keep secrets; when asked why, they said that a holographic AI relies 

on databases, and it can be hacked. 

Although the trust scale can offer content validity, adaptation for children is not 

examined, such that it is not likely to accurately represent actual meanings of 

statements. This study does not take into account educational backgrounds, 

cultural differences, and experiences in using AR/VR or virtual agents. 

Furthermore, trust is a continuous and dynamic process that necessitates 

increased engagement with the holographic AI to monitor its evolution. 

6.2.1 Summary 
This study delves into holographic AI, drawing on insights from literature reviews, 

case studies, and experimental research. Chapter 2 introduces the initial model, 

Chapter 3 refines it, and Chapters 4 and 5 offer the expanded version. As a result, 

a series of recommendations and guidelines are formulated for designers to 

comprehend the nature of holographic AI, the process of creating agents, and the 

additional factors to consider. 

Chapter 2 featured a systematic literature review of holographic AIs, the aim of 

which is to identify the defining features of holographic AIs and produce an initial 

PICS model. This chapter then proposed a taxonomy of holographic AI features 
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based on the PICS model, which can be used to arrive at an appropriate design 

structure.   

In accordance with the PICS model, Chapter 3 presented a process for creating 

the necessary components of a holographic AI, including 3D modelling, facial and 

body animations, natural language processing, and spatial understanding. The 

study presented examples of holographic AIs developed by selecting features from 

the PICS model that align with the goals of specific applications. The initial model 

is refined based on the experience of creation to remove redundant and 

ambiguous elements and to uncover overlooked aspects of body language and 

user experience. 

Chapter 4 presented an experiment using motion capture, the purpose of which 

was to observe and inventories key instructional gestures, as well as document 

gesture types not found in the literature. The results amount to an enriched 

taxonomy of representational gestures. It was found that the deictic gesture was 

the most frequently type occurring during the training sessions. Nevertheless, it is 

necessary for a holographic AI to perform diverse gestural forms based on 

different contexts. Therefore, the refined PICS model is extended in terms of 

persona dimension. 

Finally, trust in the human-holographic AI context is a measure of the extent to 

which a holographic AI and its function can build a relationship with the user. To 

this end, an experiment for trust measurement was devised. This thesis has 

sought to describe in detail children’s trust towards holographic AIs, and consider 

what scales may be employed for measuring this sense. Chapter 5 presented a 

Likert scale which constitutes a novel metric scale, redefines Trust, and which has 

been used to the proposed model of children’s trust towards holographic AIs. The 

experimental results suggest that benevolence and compassion can influence 

perceived trust by understanding and recognizing children’s needs, encouraging 

them to correct mistakes, and respecting their willingness, but it is based on 

whether the holographic AI is able to achieve goals by its competence. This 

chapter provided six recommendations for improving the user’s perception of trust. 

The study also examines a holistic user experience, which can be used to extend 

the conviviality dimension of the PICS model again, since previous studies have 

assessed a single influence factor. 

This thesis contributes to the development of holographic AI in AR and the 

relationship between users and such agents. Children rarely interact with 

holographic AIs, despite their similarities with virtual humans. In some cases, 

children chat with the holographic AIs according to social norms, but they do not 

ask questions or extend their communication. Although some children did not 

express uncanny valley feelings, others could sense that the holographic AI was 

not realistic, which may influence their sense of trust. 

In this context, trust towards a holographic AI can be defined as an attitude based 

on the belief that the holographic AI can achieve goals with beneficial intentions 

and establish a relationship. 
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Figure 6.6. The final PICS model 

 

Figure 6.7. Differences and similarities of types of holographic AIs 

The objective of this study is to establish a comprehensive model for 

understanding the attributes of holographic AIs. Figure 6.6 illustrates the final 

iteration of the PICS model, where expanded components address the gaps in 

gesture performance and user perception. The persona dimension is 

characterized by animations and appearances. Designers may choose from an 

array of body languages to enrich user interaction. Moreover, the size and level of 

realism of the holographic AI are tailored to its intended functions. The AI's 

capability is signified by its intelligence. Conviviality is about not only examining 

individual characteristics but also assessing the overall user experience. 

A taxonomy of holographic AI, grounded in literature analysis and the PICS model, 

is suggested. This taxonomy differentiates various types of holographic AIs, 

particularly emphasizing educational holographic AIs (as shown in Figure 6.7). The 

taxonomy's goal is to aid designers and system developers in selecting the 

suitable dimensions or features for crafting a holographic AI and to guide them in 

effectively integrating the agent's intention, motivation, and emotional support to 

improve interaction quality. 

Techniques such as 3D scanning, reconstruction, and animation permit users to 

semi-automatically generate their own avatars or humanoid agents for real-world 

projection. This study showcases examples of educational holographic AIs. 

Readers can explore the contrasts between intelligent tutor systems (like the 

holoCARE holographic AIs discussed in Chapter 3) and simulation agents (such 

as Sarah highlighted in Chapter 5). Gesture studies enhance the educational 

holographic AI's functionality, allowing animators to select from a variety of gesture 

animations to vividly represent events or concepts in educational contexts, thus 

increasing their affordance. 
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Previous research has overlooked the significance of sensory perception, 

especially tailored interactions. Therefore, the development of holographic AIs 

relies on user model and adaptability to recognize users' needs and to deliver 

suitable exercise animations and instructional content. This includes respecting 

users' preferences and demonstrating social awareness. Furthermore, scaffolding 

/learning (also known as ‘personalisation’ / ‘adaptation’): This is personalisation 

and adaptation. Initially, this was included in intelligence, but in the final model this 

ended up under senses, stressing the input output modality aspect. 

The trust model for holographic AI diverges from the traditional interpersonal trust 

model. This novel model encompasses five dimensions, including competence, 

integrity, benevolence, compassion, and relationship, which redefine the concept 

of trust in the context of holographic AI. It exemplifies the process of trust 

formation through interactions as described by the PICS model. Moreover, this 

study contributes to the creation of a novel scale designed to measure the overall 

user experience, emphasizing the elements that shape the perception of trust. 

While the holographic AI's competence governs its functionalities, inclusive of its 

intelligence and sensory inputs within the PICS model, children tend to 

concentrate more on the AI's emotional expressions, such as benevolence and 

compassion. They prefer these agents to exhibit warmth and avoid coming across 

as mechanical. Developers should expand their focus beyond the technical 

aspects of AI development to also encompass body language and social 

awareness, which can enhance the perceived subjective behaviour of such 

agents. 

This study provides an in-depth examination of design principles and 

recommendations for crafting holographic AIs, with a special focus on the 

educational sector. The guidelines and suggestions stem from a comprehensive 

review of pertinent literature, knowledge acquired from case studies, and empirical 

research. Equipped with the ability to address personalized learning requirements, 

the holographic AI offers diverse instructional techniques to bolster engagement 

and interaction. Through an exploration of gestures and user experience, the 

holographic AI can assist in achieving objectives with positive intent and 

motivation, thus improving learners' understanding of material and fostering a 

satisfying relationship.  

6.3 Empirical Contributions 

This section highlights the unique contributions by the two empirical experiments 

to the canon of knowledge for holographic AIs. 

6.3.1 Instructional gestures 
The experiment in instructional gestures invited 22 participants to form 11 units (in 

pairs), so that one participant acts as the trainer, and the other one is acting as the 

trainee.  

Three aspects were measured in the experiment: navigation, assembly, and 

precision. In each task, there are four trials, each with three conditions of co-

speech gestures and a non-verbal condition. In total, 132 task samples were 

recoded. 
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The total number of representational gestures generated was 2348 nodes. The 

reliability value exceeded 0.7.  

In total, 1290 deictic gestures, including 537 pointing position gestures, 502 

pointing objects gestures, and 251 pointing direction gestures, were observed. 

The number of emblematic gestures totals 364: these included 238 thumbs up; 

gestures, 40 counting-finger gestures, and 40 gestures related to waving index 

fingers or hands. 

A total of 292 transformational gestures have been recorded, of which 256 involve 

rotation and 31 involved flipping. 

A total of 198 iconic gestures were recorded, including 145 describing objects' 

shapes and 45 describing spatial positions. 

There were 155 instances of mimicking gestures, and 41 instances of beating 

gestures. 

Only 8 metaphorical gestures were observed. 

On average, the navigation task took 68.09 seconds and generated 9.36 gestures. 

On average, it took 116.30 seconds for the co-speech gestures to be generated, of 

which 7.55 gestures were generated. 

In the assembly task, the average number of gestures was 29.27 and the average 

time was 251 seconds. Under the co-speech condition, the average time was 

522.64 seconds, and the average number of gestures was 16.58.  

During the non-verbal cognition condition in the precision task the average time 

was 245.18 seconds and average number of gestural signals was 41.91. In trials 

with co-speech gestures, trainers on average spent 211.58 seconds and produced 

20.21 gestures.  

6.3.2 Children’s trust towards holographic AIs  
In the trust experiment, 47 children between the ages of 5 and 13 took part, and all 

of them completed the questionnaire. Twenty-five of the children were aged 5-9, 

and 22 of them were aged 10-13. Out of a total of 47 children, there were 23 boys 

and 24 girls. A total of 15 children had experience with AR, and 10 had experience 

with virtual agents, and only 6 children had previously used both technologies. The 

statistical findings based on the children’s responses are as follows: 

The mean value of perceived competence is 3.76, that of integrity is 3.62, that of 

benevolence is 3.74, that of compassion is 3.43, that of relationship is 3.26, and 

that of trust is 3.49. 

The correlation between experience in using virtual agents and perceived integrity 

is 0.34 (p=0.01).  

The correlation between experience in using virtual agents and perceived 

benevolence is -0.49 (p=0.04). 

The correlation between experience in using virtual agents and trust is -0.26 

(p=0.08). 
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The correlation between the Likert-based responses to statement #3 (“I think 

positively about the hologram” / “I like Sarah”) and experience in using virtual 

agents is 0.33 (p=0.01). 

The correlation between the Likert-based responses to statement #4 (“The 

hologram answered my questions truthfully” / “Sarah doesn’t lie”) and experience 

in using AR is 0.24 (p=0.04). 

The correlation between the Likert-based responses to statement #6 (“The 

hologram is benevolence” / “Sarah is kind”) and age is -0.31 (p=0.05). 

The correlation between the Likert-based responses to statement #7 (“The 

hologram feels real to me” / “Sarah feels real to me”) and experience in using AR 

is 0.13 (p=0.5). 

The correlation between the Likert-based responses to statement #8 (“The 

hologram looks out for me” / “Sarah looks out for me”) and relationship is 0.5 

(p=0.0008). 

The correlation between the Likert-based responses to statement #10 (“The 

hologram is compassionate” / “Sarah is caring”) and relationship is 0.48 

(p=0.0014). 

The correlation between benevolence and trust is 0.71. 

6.4 Limitations 

As discussed in Section1.2, this thesis focuses on the domain of holographic AIs 

in order to provide a comprehensive investigation into users’ perceptions and the 

consistency of holographic AI performance, especially holographic AI instructional 

gestures and associated sense of trust. This thesis has revealed that the proposed 

PICS model could serve as a design structure that highlights the key elements that 

make a holographic AI seem engaging and trustworthy. A holographic AI’s 

instructional gestures should align with its intention and context. Further, affective-

based trust is critical for fostering children’s sense of trust towards holographic 

AIs. 

However, this research project has its limitations. The systematic literature review 

may have overlooked significant previous studies and R&D milestones regarding 

holographic AIs. To be more specific, although the results of the systematic review 

were selected on the basis of word frequency and cluster analysis to ensure 

relevance and accuracy, only 49 studies were chosen. This model relies on 

previous findings to gather and re-organize the holographic AI’s features, thus 

dimensions and elements cannot represent possibilities of future development to 

produce a general model for all types of holographic AIs, since AR technology is 

wildly developing. Several aspects of the initial model proposed are not clearly 

delineated. For example, the domain of computer vision encompasses spatial 

understanding, recognition of physical objects, and projection techniques. The 

concept of conviviality should not be constrained to just three components. 

Moreover, although learning systems incorporate a broad spectrum of ideas, this 

study does not delve into the educational content delivered by holographic AI, the 

interaction processes involved, or their application within educational holographic 

AIs. Besides, this study does not discuss the holographic AI’s styles of 
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appearance, clothing, jobs, rendering, or compression. The classification of 

holographic AI is also founded on a limited number of prior studies, despite the 

study's suggestion that future agents might be integrated and utilized across 

various applications. 

Pursuant to the PICS model and classification, the study outlines various methods 

for creating holographic AIs, ranging from 3D modelling to the cultivation of 

intelligence. However, it primarily addresses intelligent tutor systems, which may 

not be suitable for all types of holographic AIs. The created holographic AI cannot 

perform bidirectional interaction, i.e. manipulate real objects. Besides, although it 

explains how to use 3D scanning to reconstruct a user avatar, the second method 

of traditional 3D modelling in Chapter 3 only presented the head of a stylized 

holographic AI, which was compared with a 3D scanned holographic AI.  

Key instructional gestures are explored for the holographic AI in Chapter 4. 

Referring to the experiment of instructional gestures, the Rokoko motion capture 

suits offer the advantage of portability, and so are not restricted to a fixed motion 

space. However, it has its technological limitations, since the suit is sensitive to 

magnetic objects – which could not easily be avoided in the experimental rooms – 

thus sensors of the Rokoko suit often disconnected, and two sensors on the left 

side of the leg malfunctioned in some groups. The nodes of gestural generation in 

data analysis also may have missing values, especially for the thumbs up gesture, 

since these emblematic gestures tended to be generated too quickly. Although the 

total nodes coded for gestures generated exceeded 2000, the experiment involved 

only 11 participants, and numbers of gestural forms produced may vary with 

culture, age, and gender, for example, this experiment only collected movements 

of three females.  

Regarding data analysis, the instructional methods could have influenced the 

generation of gestures, given that the analysis employed the average number of 

gestures rather than a correlation coefficient. Consequently, these findings can 

only be regarded as inferential. The experimental design paves the way for the 

discovery of new types of gestures, implying that alternate tasks could yield 

different gestures. Apart from cultural and educational experiences, the experience 

of participants might also impact the gestures they use. For example, the study 

does not consider whether prior experience in assembling cardboard models or 

completing puzzle-T tasks could affect gesture production. 

According to Chapter 2, previous studies focus on how a specific aspect affects 

user experience, such as degrees of realism and intelligence, thus the empirical 

experiment on trust in holographic AIs among children measured the holistic 

situation of the holographic AI in Chapter 6, and did not investigate all aspects of a 

holographic AI, such as the level of anthropomorphism or utterance. In terms of 

scale adaptation, the transformation of the trust scale to be more "child-friendly" 

has not undergone revalidation. It could be improved with input from language 

experts to ensure that its simplification does not compromise its precision. As 

mentioned above, it had 10 missing values that were excluded from analysis. 

However, according to received wisdom, a sample of 47 people is unlikely to be 

representative of the human population, and the analysis thereof is likely to 

contain a sizeable degree of bias.  
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Given that this experiment employs a correlation coefficient for comparison, which 

serves as a primary factor, it is challenging to assert with certainty that prior 

experience with AR/VR and virtual agents can influence perceptions of a 

holographic AI's competence. Variables such as participants' educational levels, 

cultural backgrounds, experiences with recognizing 3D shapes, gender, and age 

have not been meticulously controlled or analysed within this study. These factors 

could influence the outcomes. If older children are already familiar with the 

content, their level of engagement might diminish. There may be an inherent 

assumption that the holographic AI is trustworthy when introduced by the 

experimenter. The proposed trust model for holographic AI does not account for 

engagement, despite its critical role in the development of trust. 

6.5 Future Research Directions 

This project has been an endeavour into understanding how human-agent 

interaction enhances the creation of augmented reality and improves the user’s 

sense of trust. It is hoped that the findings of this thesis will contribute significantly 

to future holographic AI research. There exist a number of avenues along which 

holographic AIs could be improved in terms of realism and trust: 

One future research direction is to improve the anthropomorphism of holographic 

AIs to avoid the Uncanny Valley effect and facilitate behavioural realism, 

especially in the aspect of persona (appearance and behaviours). Although there 

now exist holographic AIs with humanlike appearance and animations, in many 

cases their performance tends to be mechanical. The study will further explore 

how the visual representation of holographic AI may be affected by societal 

stereotypes, including aspects like appearance, hairstyle, attire, and perceived 

professional roles. In Unreal Engine (Unreal Engine, 2023), a game engine, users 

can create photorealistic virtual humans by assembling different shapes and 

colours of eyes, lips, skin, hair, etc. However, this application has a limitation when 

it comes to low polygon counts. For this reason, it will continue to seek a way to 

create high-quality holographic AI for AR smart glasses. The holographic AI will 

enhance interactivity by analysing more types of representational gestures, 

exploring relationships between cognition, body language, and emotional 

expressions. It is also critical to observe presentation performance to investigate 

how people explain an event when they are unable to see referents and rely on 

memory or imagination. Interactive gestures for holographic AIs will be identified, 

expanding the persona's dimensionality. Variables such as cultural background, 

educational level, gender, and prior experiences will be factored into experimental 

designs. 

The second future research direction could be to implement natural language 

processing and enrich dialogue management. While IBM Watson is capable of 

providing basic verbal interaction, the utterance of its holographic AI appears 

delayed, and its speaking rhythm is not natural. Open AI's ChatGPT (OpenAI, 

2022) relies on a language model and a large amount of text data that can 

implement free talk, which causes ChatGPT's responses may not be accurate. 

Therefore, there remains the need for researchers to develop deep reinforcement 

learning and a Recurrent Neural Network for holographic AIs. Besides, co-speech 

gestures could be used to explore how holographic AI can match appropriate 

gestures and more effectively interact with users.  
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Bidirectional interaction is the third direction. In order to recognize and manipulate 

real objects, the holographic AI should integrate with additional sensors and 

actuators. Therefore, in future, the holographic AI with physical-object influence 

will be developed, for example it can move 3D shapes by hands to instruct 

children to learn geometry.  

A fourth direction is investigation into user perception. Although this thesis has 

measured children’s sense of trust towards one holographic AI, trust itself cannot 

be fully gauged using only a short simulation. For a fuller analysis of perceived 

trust, the holographic AI in question needs a plausible story background, 

personality, competence, emotional responsiveness, and consistency of 

performance, so that more practical benefits can be realised from improved 

perception. Besides, the trust scale will be refined to ensure that children can 

comprehend the meaning of statements accurately, taking into account factors 

such as educational level, age, gender, and previous exposure to AR/VR and 

virtual assistants. Since the proposed trust model does not specifically address 

user engagement, subsequent studies will assess usability, acceptance, and user 

expectations to broaden the dimension of conviviality within the PICS model. 

Fifth, future research should focus on an integrated holographic AI, rather than 

limiting holographic AIs to a specific application or function. For example, a 

holographic AI might be able to play the role of a virtual teacher providing one-to-

one learning content, and also play the role of a simulation agent implementing 

practical training following teaching. A real teacher could design a scenario based 

on the student’s requirements, in which a holographic AI’s design no longer is 

confined to uniform interaction. Besides, Tsovaltzi et al. (2012) identified that 

learners can achieve more outcomes through correcting erroneous examples, 

thus, holographic AIs should guide and courage learners to consolidate achieved 

knowledge and skills.  

Advancements in educational holographic AI are transforming and diversifying 

educational methods and channels, facilitating immersive and MR environments 

that support personalized teaching approaches and integrate AI-powered 

assessment tools, instant feedback, and tailored teaching content. Therefore, 

future research will persist in advancing holographic AI technology and refining the 

PICS model. In the realm of educational technology, discussions will also revolve 

around how the integration of interactive processes and design can enhance 

learners' achievements and practical experiences.  
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Appendix 2: Consent form 
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Appendix 3: NVivo coding data 

Name Files Reference 

Representational gestures 132 2348 

Beat 16 41 

Deictic 125 1290 

Deictic_direction 86 251 

Deictic_object 105 502 

Deictic_position 100 537 

Emblematic 65 364 

Emblematic_No 23 52 

Emblematic_counting fingers 18 40 

Emblematic_remove 8 8 

Emblematic_thumb up 46 238 

Emblematic_wait/hold on 15 26 

Iconic 61 198 

Iconic_angle 9 17 

Iconic_length 4 6 

Iconic_shape 54 145 

Iconic_size 3 6 

Iconic_spatial position 15 24 

Metaphorical 7 8 

Mimicking  44 155 

Transformational 79 292 

Transformational _flip 20 31 

Transformational _other side 4 5 

Transformational_rotation 76 256 
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Appendix 4: Participant information sheet (Guardians) 
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Appendix 5: Participant information sheet (Children) 
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Appendix 6: Consent form (Guardians) 
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Appendix 7: Consent form (Children) 
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Appendix 8: Demographic Questions 
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Appendix 9: Questionnaire 
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