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Globe-LFMC 2.0, an enhanced 
and updated dataset for live fuel 
moisture content research
Marta Yebra et al.#

Globe-LFMC 2.0, an updated version of Globe-LFMC, is a comprehensive dataset of over 
280,000 Live Fuel Moisture Content (LFMC) measurements. These measurements were 
gathered through field campaigns conducted in 15 countries spanning 47 years. In contrast 
to its prior version, Globe-LFMC 2.0 incorporates over 120,000 additional data entries, 
introduces more than 800 new sampling sites, and comprises LFMC values obtained from 
samples collected until the calendar year 2023. Each entry within the dataset provides 
essential information, including date, geographical coordinates, plant species, functional 
type, and, where available, topographical details. Moreover, the dataset encompasses 
insights into the sampling and weighing procedures, as well as information about land cover 
type and meteorological conditions at the time and location of each sampling event. Globe-
LFMC 2.0 can facilitate advanced LFMC research, supporting studies on wildfire behaviour, 
physiological traits, ecological dynamics, and land surface modelling, whether remote 
sensing-based or otherwise. This dataset represents a valuable resource for researchers 
exploring the diverse LFMC aspects, contributing to the broader field of environmental and 
ecological research.

Background & Summary
Live Fuel Moisture Content (LFMC), a critical parameter in fire-related research, quantifies the vegetation water 
content. It is computed as:

= − ×LFMC[%] (W W ) /W 100f d d

where Wf represents the weight of fresh plant material, measured post-sample collection, Wd indicates the weight 
of the same sample after thorough drying, often in an oven.

Numerous studies have demonstrated LFMC’s influence on various wildfire metrics, including flammabil-
ity, rate of spread, fire occurrence and cumulative burnt area1–5. Growing interest surrounds the exploration of 
LFMC dynamics in relation to ecological, meteorological and ecophysiological parameters6–10, especially within 
the context of a changing climate11.

However, conducting fieldwork, collecting measurements, and recording data can be costly, time consum-
ing, and resource-intensive. Therefore, the convenience of having access to a readily available LFMC dataset 
proves beneficial for advancing research. As a result, several LFMC datasets12,13, including the 2019 version of 
Globe-LFMC14, have emerged online.

Globe-LFMC 2.015, presented herein and accessible at the figshare repository, represents an updated version 
of the 2019 release. It incorporates previously published datasets and adds more than 120,000 additional meas-
urements hitherto unavailable to the research community.

This extensive dataset comprises over 280,000 LFMC values derived from samples gathered at more than 
2,000 locations across 15 countries. It includes data from more than 500 different species or combinations of 
species. The timeframe of the data spans from 1977 to 2023 (Tables 1, 2, Fig. 1).

The compilation process included formatting source data, performing rigorous and recursive quality checks, 
merging data from co-authors, and introducing supplementary information. Notably, each data point now 
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includes land cover type and meteorological variables, aligned with the sampling date and location. An outlier 
detection analysis was executed, and its findings are presented (Fig. 2).

Distinguishing Globe-LFMC 2.015 from its predecessor, it presents two significant enhancements. First, it 
incorporates a large number of LFMC measurements from individual samples, broadening its coverage across 
various geographic and climatic conditions. Second, it includes additional descriptor variables per sample 
(Tables 3, 4) and rectifies inaccuracies and typos that may have been present in the previous version. These 
improvements not only increase the comprehensiveness of the dataset but also enhance its adaptability for 
end-users, allowing them to process the data and aggregate the samples as they see fit.

Globe-LFMC 2.015 applications are manifold. Researchers can employ it to develop and validate models 
for LFMC estimation from remote sensing data16,17, or for other types of land surface modelling, such as those 
derived from climate variables3. It is equally valuable in investigating the relationship between LFMC and wild-
fire occurrence and behaviour, as well as its associations with other plant water status metrics, meteorological 
parameters and ecological drivers.

In conclusion, as we plan to keep the dataset updated and publish future versions, we invite researchers and 
other interested parties to contact us if they wish to contribute.

Methods
Compilation of Live Fuel Moisture Content measurements.  Globe-LFMC 2.015 is the result of col-
laborative efforts involving international researchers and agencies, incorporating data from multiple sources, 
including publicly available datasets12–14,18,19.

The authors meticulously adapted their datasets to conform to the template spreadsheets, aligning with the 
structured format of Globe-LFMC 2.015 (a comprehensive breakdown of the dataset fields is available in the Data 
Records section). These refined spreadsheets were subsequently integrated into a unified dataset, following a rig-
orous visual quality check. This check was essential to verify data integrity, and rectify any typographical errors, 
formatting inconsistencies and obsolete information to ensure the dataset’s reliability and accuracy.

LFMC values in this dataset were derived from destructive measurements of plant materials obtained during 
field sampling. While sampling and weighing protocols varied among contributors, the common procedure 
involved weighing fresh plant material, typically leaves, either in the field or a laboratory after secure transporta-
tion in a sealed bag or container. Subsequently, the samples were oven-dried for several hours at a minimum of 
60 °C and re-weighed. Sampling details, including location, date, and sometimes the time of sampling, as well as 
specific sampling protocols, were meticulously recorded.

Unlike the previous version of Globe-LFMC14, efforts were made to avoid data aggregation and preserve indi-
vidual sample measurements wherever possible. This means that values corresponding to the same combination 

Country Observations Sites Years Range Most Common Species
Land Cover Types 
(IGBP)

LFMC 
Min

LFMC 1st 
Quartile

LFMC 
Median

LFMC 3rd 
Quartile

LFMC 
Max

LFMC 
Mean

Global 287551 2231 1977–2023
Adenostoma fasciculatum; 
Pinus ponderosa; Artemisia 
tridentata ssp. wyomingensis

Grasslands; 
Woody Savannas; 
Savannas

0.00 78.25 97.00 119.25 1278.87 105.79

Argentina 227 17 2008–2010
Unidentified grass; 
Prosopis alpataco; Condalia 
microphylla

Grasslands; Open 
Shrublands; 
Savannas

6.94 57.67 79.78 115.11 377.16 92.60

Australia 3227 283 2005–2022 Eucalyptus tereticornis; 
Banksia sp.; Calothamnus sp.

Woody Savannas; 
Grasslands; 
Evergreen 
Broadleaf Forests

5.90 70.50 97.75 124.57 627.98 102.17

China 257 226 2013–2021
Kobresia humilis, Kobresia 
pygmaea, Kobresia tibetica; 
Pinus yunnanensis; 
Unidentified grass

Grasslands; 
Evergreen 
Broadleaf Forests; 
Woody Savannas

52.37 134.10 166.17 201.99 323.44 170.73

England 24 6 2008–2017 Calluna vulgaris Savannas; Woody 
Savannas 64.00 90.61 115.03 133.45 145.90 111.86

France 23788 85 1996–2022
Cistus monspeliensis; 
Erica arborea; Rosmarinus 
officinalis

Woody Savannas; 
Evergreen 
Needleleaf Forests; 
Savannas

17.14 63.86 76.80 94.56 211.53 80.10

Israel 2165 30 2018–2019 Rhamnus alaternus; Ephedra 
foeminea; Pistacia palaestina

Grasslands; 
Croplands; 
Savannas

2.49 58.56 69.64 83.93 185.97 73.38

Italy 2591 1 2005–2012
Pistacia lentiscus; 
Rosmarinus officinalis; 
Juniperus phoenicea

Evergreen 
Needleleaf Forests; 
Woody Savannas

34.12 75.68 97.18 118.50 236.97 100.50

Table 1.  Metadata and Descriptive Statistics by Country (part 1 of 2). Prior to generating the descriptive 
statistics, outliers identified using the Isolation Forest method were excluded. The “Observations” column 
presents the count of LFMC values. “Sites” denotes the number of distinct sampling locations, while “Years 
Range” provides the span of years during which LFMC measurements were collected. In the “Most Common 
Species” category, we list the three species with the highest number of LFMC measurements. In cases where more 
than three species share the same number of observations, we organise the list alphabetically and trim to the first 
three names to streamline the species report. Combinations of species were treated as a single species name.
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of species, sampling location, and date were not averaged together. In cases where data from the 2019 version of 
the dataset were included, averaging was replaced with the original individual measurements, when available.

Entries that remained as mean LFMC values for multiple measurements were flagged in a dedicated dataset 
column.

Country Observations Sites Years Range Most Common Species
Land Cover Types 
(IGBP)

LFMC 
Min

LFMC 1st 
Quartile

LFMC 
Median

LFMC 3rd 
Quartile

LFMC 
Max

LFMC 
Mean

Portugal 51 20 2016–2016
Unidentified grass; Quercus 
pyrenaica, Quercus robur; 
Betula alba

Woody Savannas; 
Savannas 10.29 60.11 79.17 143.94 378.87 107.67

Scotland 250 6 2019–2021
Calluna vulgaris; 
Unidentified moss and 
litter

Savannas 13.07 92.18 107.63 190.98 418.46 140.51

Senegal 94 3 2010–2010 Unidentified grass Grasslands; Croplands 14.25 76.81 105.95 174.20 327.35 129.60

South Africa 922 57 2016–2018

Erica spp., Metalasia spp., 
Brunia spp., Berzelia spp., 
Agathosma spp., Cliffortia 
spp.; Leucadendron 
spp., Penaea sp., Protea 
spp.; Cyperaceae spp., 
Restionaceae spp.

Evergreen Broadleaf 
Forests; Closed 
Shrublands; Savannas

45.41 99.66 115.91 148.20 637.97 131.32

Spain 18338 183 1996–2021
Quercus coccifera; Salvia 
rosmarinus; Pinus 
halepensis

Grasslands; Woody 
Savannas; Savannas 0.18 71.35 94.88 117.88 1278.87 107.65

Tunisia 430 10 2010–2022
Erica arborea; Cistus 
monspeliensis; Quercus 
suber

Croplands; Evergreen 
Needleleaf Forests; 
Evergreen Broadleaf 
Forests

26.18 75.85 94.27 117.86 220.01 98.51

Türkiye 661 45 2017–2022 Quercus coccifera; Cistus 
creticus; Pinus brutia

Savannas; Grasslands; 
Woody Savannas 15.03 94.20 125.42 182.95 861.54 148.24

USA 234526 1259 1977–2023
Adenostoma fasciculatum; 
Pinus ponderosa; Artemisia 
tridentata ssp. wyomingensis

Grasslands; Woody 
Savannas; Savannas 0.00 82.00 99.00 122.00 887.00 108.35

Table 2.  Metadata and Descriptive Statistics by Country (part 2 of 2).

Fig. 1  Locations of sampling sites. The sampling sites are represented as coloured points on the map, with 
the colour intensity indicating the abundance of LFMC values collected at each location. To enhance clarity, 
points have been ordered on the z-axis based on the number of LFMC samples, with sites having fewer samples 
placed beneath those with a higher data count. Predominantly, the sampling sites and LFMC measurements are 
concentrated in the USA, France, and Spain. The base map for this figure is derived from NASA’s Visible Earth 
‘Explorer Base Map’30.
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A comprehensive review of the 2019 dataset was undertaken to rectify typos and inaccuracies, encompassing 
species names, protocol details, and, in a limited number of instances, sampling dates (a list of the dates changed 
is available at the figshare repository15).

The US National Fuel Moisture Database (NFMD)19 was redownloaded from the original source, leading 
to differences from the previous Globe-LFMC14 version. Some data entries were added, others were removed. 
Dead Fuel Moisture measurements were excluded, while all LFMC values were retained, irrespective of whether 
they were later identified as outliers during the quality check. The decision not to delete these values was due to 
impracticality in contacting the original data providers for further investigation.

After compiling all data sources, extensive efforts were made to harmonize the diverse datasets, ensuring 
uniformity and consistency across Globe-LFMC 2.015. In cases where the same site name was associated with 
different coordinates, we introduced unique identifiers at the end of the name to distinguish them. Conversely, 
when identical coordinates were linked to multiple sites, their names were merged. This meticulous process 
culminated in a dataset where each site name corresponded exclusively to one set of coordinates, and vice versa, 
fostering data integrity and precision.

Land cover data.  Land cover type information was also added to the final dataset following the IGBP classifica-
tion from LP DAAC MCD12Q1.061 (MODIS/Terra + Aqua Land Cover Type Yearly L3 Global 500 m SIN Grid)20.

The process started by downloading the complete set of MCD12Q1.061 sinusoidal tiles products spanning 
the years 2001 to 2022. Subsequently, these tiles were mosaicked into yearly raster images at a spatial resolution 
of 500 m within the WGS84 reference system.

For each LFMC value, the mosaic corresponding to the respective calendar year was employed to retrieve 
the land cover ID by selecting the pixel value at the precise sampling location. Additionally, the descriptive land 
cover name (e.g., “Grasslands”) was incorporated into the dataset.

Given that the available land cover time series extended from 2001 to 2022, the land cover type of 2001 
was attributed to all samples collected before 2001, as it most closely represented the respective sampling date. 
Similarly, for samples collected after 2022, the land cover type of the year 2022 was assigned. This method 
ensured consistent land cover information across all samples.

Meteorological data.  Meteorological data was sourced from AgERA5 (Agrometeorological indicators from 
1979 to present derived from reanalysis) AgERA5 is a high level product built upon ERA5 data, which were aggre-
gated to obtain daily values and downscaled to 0.1° × 0.1° spatial resolution21.

The initial step involved downloading NetCDF files containing specific meteorological variables: total daily 
precipitation, relative humidity at 2 m above surface at four distinct times (6am, 9am, 12 pm and 3 pm), maxi-
mum daily air temperature at 2 m above surface, mean daily air temperature, mean daily vapour pressure, mean 
daily wind speed at 10 m above surface and mean daily dewpoint temperature at 2 m above surface.

Subsequently, the values for each meteorological variable were extracted from the downloaded files at the 
date and location of each entry in the dataset.

Additionally, cumulative precipitation data for the preceding 3 days, 1 week, 4 weeks, and 12 weeks before the 
sampling date was included in the final dataset.

Fig. 2  Workflow followed to compile Globe-LFMC 2.015.
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Detection of possible outliers.  The process of identifying potential outliers within LFMC values consisted 
of a two-step strategy, combining both manual inspection and the application of two distinct statistical models.

We define outliers as values that deviate notably from the norm, being either anomalously high or low. Such 
deviations may arise from measurement inaccuracies due to instrument or human errors. Additional context 
regarding the interpretation of outlier detection is available in the “Technical Validation” section.

Step 1: Manual Inspection and Data Provider-Specific Methods
In the initial phase, when possible, data providers meticulously examined each dataset comprising 

Globe-LFMC 2.015. Since these datasets varied significantly in structure, the authors customized outlier detec-
tion methods for each. The outcomes of this initial assessment were documented in the “Extra information/
Quality Flag” column of the dataset. The methods used in this step were tailored to the specific dataset’s char-
acteristics, involving visual inspections, percentile-based, or standard deviation-based approaches to identify 
outliers.

Step 2: Statistical Model-Based Outlier Detection
The second approach leveraged the Isolation Forest algorithm22, a tool that utilises binary trees to identify 

data points as outliers via random splits in the dataset. Fewer splits required to isolate a data point indicate 
a higher likelihood that it is an outlier. The implementation of this method was conducted through Python’s 
Scikit-Learn 1.3.0 library23 as illustrated in Fig. 3. Isolation Forest analysis was executed on separate data subsets 
categorised by species. The variables integrated into the models were time, latitude, longitude, and LFMC to 
account for both variations among local populations of the same species and fluctuations in time series data.

Due to the unsupervised nature of this model, hyperparameters were predefined with a theoretical approach 
as the true anomalies were unknown. Key hyperparameters included the number of trees (“n_estimators”) set at 
10,000, which was considered sufficient for building a precise model without excessive computational demands. 
Additionally, “max_samples” was set at 75% of each subset total data points to facilitate the detection of outlier 
clusters. The inclusion of bootstrap, “max_features” set at 4, and a contamination ratio of 0.05 was determined 
based on a conservative assessment of the data following preliminary visual examination.

A potential limitation of this approach is its propensity to identify data points as anomalies when they are 
isolated in time or space, even if their LFMC values are within the expected range. To minimize this risk, a 
complementary model was simultaneously applied to the same subsets. This model specifically focused on time, 
latitude, and longitude, with a “max_features” setting adjusted to 3. It aimed to detect data points isolated inde-
pendently of their LFMC values. The anomalies identified by this secondary model were then subtracted from 
those found by the LFMC-inclusive model, producing a refined list of anomalous LFMC values.

Given the stochastic nature of the Isolation Forest algorithm, five model versions were created (both including 
and excluding LFMC as a variable), each employing different random states. A data point was designated as a possi-
ble outlier only if all five LFMC-inclusive models identified it as isolated, and at least one of the five models without 
LFMC did not isolate it, as depicted in Fig. 3. Data points isolated by all models with and without LFMC were not 
classified as outliers, as their isolation could be attributed to time or spatial factors unrelated to their LFMC values.

The results of all ten models, along with their respective scores, are provided in the figshare repository15.
Moreover, the repository contains results from an alternative outlier detection method: Cook’s Distance24, 

which gauges the influence of a data point on a regression line. This analysis was conducted using the Python 
library statsmodels 0.14.025. It involved grouping data points by species and sampling location, calculating ordi-
nary least squares regression, and comparing Cook’s Distance scores to the “4/n” threshold (where “n” stands for 
the number of observations within a group of samples), commonly used to identify influential data points26,27. 
An additional criterion was considered, flagging data points with Cook’s Distance values more than three times 
the mean Cook’s Distance of data points in the same group.

In cases where Cook’s Distance resulted in NaN (not a number) or infinite values, “NA” (not available) was 
assigned to all data points within the same group.

Data Records
The Globe-LFMC 2.0 dataset15 is available in an MS Excel file containing three sheets: “Contact” (Table 5), 
“LFMC Data” (Tables 3, 4) and “Protocol” (Table 6). The primary dataset is located within the “LFMC Data” 
sheet, which contains the core LFMC values along with associated information. The “Contact” sheet offers sup-
plementary details regarding the contact person responsible for each sub dataset, facilitating direct communica-
tion and inquiries related to the data. In the “Protocol” sheet, a comprehensive description of the sampling and 
weighing procedures employed to obtain the LFMC measurements is presented, providing essential context for 
data interpretation.

Accompanying the dataset, additional files are provided for reference and extra data. In these files it is pos-
sible to retrieve all the outcomes generated from the outlier detection procedures, offering transparency and 
insight into data quality control, as well as the references to the original sources and datasets incorporated into 
Globe-LFMC 2.015. The files are equipped with column descriptions where needed, enhancing the accessibility 
and usability of the dataset.

Technical Validation
A rigorous quality check of the LFMC data was conducted individually by each contributing author, as outlined 
in the Methods section. Furthermore, to ensure data integrity, two outlier detection methods, the Isolation 
Forest and the Cook’s Distance, were applied across the entire dataset (see Usage Notes for details).

Upon removal of data points flagged as potential anomalies by the Isolation Forest method, the LFMC values 
generally fell within expected ranges, as demonstrated in Fig. 4 and detailed in Table 7, which provides example 
LFMC distributions and descriptive statistics for some of the most common species in the dataset.

https://doi.org/10.1038/s41597-024-03159-6


6Scientific Data |          (2024) 11:332  | https://doi.org/10.1038/s41597-024-03159-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

Notably low LFMC values may be attributed to samples that contain a combination of live and dead plant 
material or, in some cases, exclusively dead material from living vegetation. Similarly, very high LFMC val-
ues not identified as potential outliers could originate from juvenile leaves, fleshy plant species, or samples 
influenced by waterlogged soil conditions. Whenever available, this contextual information was included in the 
dataset.

It is important to acknowledge that certain data points may not have been identified as anomalies by the 
method depicted in Fig. 3, potentially due to isolation in time or space, irrespective of their LFMC value.

Moreover, although efforts were made to detect outliers, it is possible that a small number of very high values 
remain unidentified due to the stochastic nature of the method applied (Isolation Forest).

The correctness of the land cover and meteorological values added to the dataset was verified visually by 
comparing the output of the Python scripts with the source raster images in a Geographic Information System 
(GIS) software. This validation process was conducted on a small randomly selected subset consisting of 15 data 
points (one per country).

Usage Notes
The “LFMC data” sheet contains various attributes that can be utilized for data filtering and categorization as per 
research requirements. Additionally, it offers valuable meteorological and land cover data that can support the 
study of LFMC dynamics. Tables 3, 4 provide detailed explanations for each column, but further guidance on 
how to effectively use some of the more intricate attributes is provided below.

The “Species functional type” column provides a generic classification of the sampled species. It is particularly 
valuable for understanding the vertical structure of the collected species within the plot, especially when different 
species are sampled from the same location. The functional types were assigned by data providers based on their 
expertise. Hence, intermediate-size plants were occasionally categorised using different terms depending upon 
each author’s judgement (e.g., “small tree” and “large shrub” could refer to plants having analogous size).

Functional type information is especially useful for optical remote sensing studies, particularly in closed 
forests, where the canopy may obstruct visibility of lower vegetation layers. In such cases, it is advisable to select 
only measurements from trees.

For remote sensing applications, it is recommended to average the LFMC measurements taken on the same 
date and located within the same pixel of the product employed in the study. The choice of which functional type 
to include in the average can be guided by the land cover type of that pixel. For example, in open canopy forests, 
both trees and shrubs (or grass) could be included.

However, caution is advised when utilising land cover information, given the 500 m spatial resolution 
and inherent uncertainties in the satellite-based product, which may compromise the accuracy of land cover 
classification.

Field Description

Sorting ID Unique ID, useful for referring or point to specific rows of the dataset

Contact Last name of the contact person for a subset. Further details in the “Contact” sheet

Site name Name of the sampling location

Country Country where the sample was collected

State/Region State or region where the sample was collected

Latitude (WGS84, EPSG:4326) Latitude of the sampling location (WGS84 decimal degrees)

Longitude (WGS84, EPSG:4326) Longitude of the sampling location (WGS84 decimal degrees)

Sampling date (YYYYMMDD) Date when the sample was collected (in the format YYYYMMDD)

Sampling time (24 h format) Time when the sample was collected (in the format hh:mm)

Protocol ID of sampling and weighing protocol. Detailed procedures reported in the “Protocol” sheet

LFMC value (%) Live Fuel Moisture Content value, calculated as (Wf - Wd)/Wd × 100, where Wf is the weight of the fresh 
sample and Wd is the weight of the same sample after being dried

Species collected Scientific name of the species sampled

Species functional type High level functional type of vegetation sampled (e.g., tree, shrub, grass)

Individual sample or mean value Whether the LFMC value was obtained by measuring an individual sample or by computing the mean of 
LFMC values from multiple samples (simple average, unless specified)

Old or new leaves Whether the sample was composed by old growth or new growth plant material

Elevation (m.a.s.l) Elevation in metres of the sampling location

Slope (%) Percentage slope of the sampling location

Extra information/Quality Flag Optional extra information beneficial in interpreting and using the data. The information was added by 
the providers of the data and it is unique to each subset (i.e., it is not consistent across the whole dataset)

Isolated data point True if a data point was identified as isolated by the combination of Isolation Forest models (details in 
the method section). This column can be used to further investigate values that could be outliers

Reference Citation of relevant studies that employed the data or of source datasets and their licence

Name of picture file Name of the photograph showing the sampling site

Table 3 .  Attributes Describing the Contents of the “LFMC Data” Tab (part 1 of 2).
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The “protocol” column and accompanying protocol sheet can be used to filter the data based on specific 
research requirements. For instance, selecting only LFMC values retrieved following a specific sampling and 
weighing criteria or excluding samples that might have included flowers or buds.

Land cover type and meteorological data are provided to aid preliminary studies and hypothesis testing 
regarding LFMC dynamics or investigation of reasons behind anomalous LFMC values, or retrieval of informa-
tion about the plant type sampled.

The “Extra information/Quality Flag” column contains additional miscellaneous information provided by 
data providers to enhance the understanding of the data. It may include markers for suspected anomalies, expla-
nations for unusual LFMC values, or information about the plant type sampled.

“Isolated data point” reports the output of the Isolation Forest models (Fig. 3). Users can employ this column 
to filter the dataset by removing “isolated” data points, which could be potential outliers (by only selecting the 
“FALSE” values; i.e., not isolated).

Instead of removing potential outliers from the dataset, adding flags enables each user to employ the data in 
the way that best suits their research needs.

It is important to note that if a data point is identified as isolated (value “TRUE”), it may not necessarily be a 
true outlier, as the algorithm compares it only to other data points in the same subset without prior knowledge 
of LFMC variability of a given species.

Moreover, it is possible that anomalous LFMC values were not flagged as outliers because those data points 
were selected as isolated in time or space by all the models without LFMC (see Methods for details), and they 
were subtracted from the potential outliers.

Lastly, due to the random nature of this method, both false positives and false negatives are possible.
Further outlier detection criteria are provided in the figshare repository15, including columns reporting 

the results from Cook’s Distance method. The columns “Above 4/n Cook Distance” and “Above 3xMean Cook 
Distance” are two ready-to-use quality flags that can help identify influential data points. Cook’s Distance meth-
ods tended to detect a much higher number of outliers; hence they appear to be more conservative than the 
Isolation Forest. However, it can also sometimes fail to identify possible outliers with suspiciously high (or low) 
LFMC values, if there are other values in the same subset that are even higher (or lower).

Moreover, additional output data from both outlier detection methods are also shared, providing dataset 
users with the flexibility to create customized filters to suit their specific requirements. For instance, users can 

Field Description

IGBP Land Cover Land cover type according to the International Geosphere-Biosphere Programme (IGBP) classification (from 
LP DAAC MCD12Q1.061, https://doi.org/10.5067/MODIS/MCD12Q1.061)

IGBP Land Cover ID Integer ID of land cover type according to the International Geosphere-Biosphere Programme (IGBP) 
classification (from LP DAAC MCD12Q1.061, https://doi.org/10.5067/MODIS/MCD12Q1.061)

Year of Land Cover
Year considered for land cover classification (available range of years: 2001–2022 inclusive. The land cover 
of the year 2001 was also assigned to all years prior to 2001, while the land cover of the year 2022 was also 
assigned to all years after 2022)

Precipitation 24 h sum (mm/day) Total daily (24 hours, local time) precipitation (from AgERA5, https://doi.org/10.24381/cds.6c68c9bb, 
0.1° × 0.1° spatial resolution)

Precipitation sum 3 days before (mm/day) Aggregate precipitation of the 3 days prior to sample collection (from AgERA5, https://doi.org/10.24381/
cds.6c68c9bb, 0.1° × 0.1° spatial resolution)

Precipitation sum 1 week before (mm/day) Aggregate precipitation of the 7 days prior to sample collection (from AgERA5, https://doi.org/10.24381/
cds.6c68c9bb, 0.1° × 0.1° spatial resolution)

Precipitation sum 4 weeks before (mm/day) Aggregate precipitation of the 28 days prior to sample collection (from AgERA5, https://doi.org/10.24381/
cds.6c68c9bb, 0.1° × 0.1° spatial resolution)

Precipitation sum 12 weeks before (mm/day) Aggregate precipitation of the 84 days prior to sample collection (from AgERA5, https://doi.org/10.24381/
cds.6c68c9bb, 0.1° × 0.1° spatial resolution)

2 m Relative Humidity at 06 h (%) Relative humidity at 6:00am local time and at 2 m above the surface (from AgERA5, https://doi.org/10.24381/
cds.6c68c9bb, 0.1° × 0.1° spatial resolution)

2 m Relative Humidity at 09 h (%) Relative humidity at 9:00am local time and at 2 m above the surface (from AgERA5, https://doi.org/10.24381/
cds.6c68c9bb, 0.1° × 0.1° spatial resolution)

2 m Relative Humidity at 12 h (%) Relative humidity at 12:00 pm local time and at 2 m above the surface (from AgERA5, https://doi.org/10.24381/
cds.6c68c9bb, 0.1° × 0.1° spatial resolution)

2 m Relative Humidity at 15 h (%) Relative humidity at 3:00 pm local time and at 2 m above the surface (from AgERA5, https://doi.org/10.24381/
cds.6c68c9bb, 0.1° × 0.1° spatial resolution)

2 m Air Temperature 24 h max (K) Maximum daily (24 hours, local time) air temperature at 2 m above the surface (from AgERA5, https://doi.
org/10.24381/cds.6c68c9bb, 0.1° × 0.1° spatial resolution)

2 m Air Temperature 24 h mean (K) Mean daily (24 hours, local time) air temperature at 2 m above the surface (from AgERA5, https://doi.
org/10.24381/cds.6c68c9bb, 0.1° × 0.1° spatial resolution)

Vapour Pressure 24 h mean (hPa) Mean daily (24 hours, local time) vapour pressure (from AgERA5, https://doi.org/10.24381/cds.6c68c9bb, 
0.1° × 0.1° spatial resolution)

10 m Wind Speed 24 h mean (m/s) Mean daily (24 hours, local time) wind speed at 10 m above the surface (from AgERA5, https://doi.
org/10.24381/cds.6c68c9bb, 0.1° × 0.1° spatial resolution)

2 m Dewpoint Temperature 24 h mean (K) Mean daily (24 hours, local time) dewpoint temperature at 2 m above the surface (from AgERA5, https://doi.
org/10.24381/cds.6c68c9bb, 0.1° × 0.1° spatial resolution)

Table 4.  Attributes Describing the Contents of the “LFMC Data” Tab (part 2 of 2).
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Fig. 4  Box plots and violin plots illustrating the seasonal variability and statistical distribution of LFMC for 
eight common species found in Globe-LFMC 2.015. The species include Quercus gambelii, a deciduous oak 
(sampled in USA); Quercus coccifera, an evergreen oak (sampled in France, Spain, Türkiye); Pinus edulis, a 
medium sized pine (sampled in USA); Pinus taeda, a tall pine (sampled from the USA); Cistus monspeliensis, 
an evergreen shrub with narrow leaves (sampled in France, Italy, Spain, Tunisia); Arctostaphylos patula, an 
evergreen shrub with round leaves (sampled in USA); Rosmarinus officinalis, an evergreen shrub with narrow 
leaves (sampled in France, Italy, Spain, Tunisia); and unidentified grass encompassing various unidentified 
grass species collected in grasslands (sampled in Argentina, Australia, China, Portugal, Senegal, Spain). The 
seasons were defined based on time ranges between astronomical equinoxes and solstices. (Figure created using 
seaborn31).

Fig. 3  Decision diagram explaining the outlier detection method based on the Isolation Forest algorithm.
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employ algorithms’ scores to establish custom thresholds. Alternatively, in the context of the Isolation Forest 
method, they can flag a data entry as a potential outlier even if does not meet the consensus of five models.

Furthermore, it is possible to employ a combination of different methods. For example, the Cook’s Distance 
metrics can be used to cross-verify LFMC values of data points that were not classified as anomalies by the 
Isolation Forest method only because they were detected as isolated in time and space.

Species Observations Sites Countries Years Range LFMC Min
LFMC 1st 
Quartile

LFMC 
Median

LFMC 3rd 
Quartile

LFMC 
Max

LFMC 
Mean

Adenostoma fasciculatum 32434 146 USA 1977–2023 16.00 61.00 71.00 87.00 299.00 78.01

Pinus ponderosa 17839 280 USA 1995–2022 6.00 91.00 101.00 112.00 315.00 103.99

Artemisia tridentata ssp. wyomingensis 14538 118 USA 1984–2022 36.00 87.00 113.00 160.00 358.00 125.79

Pinus edulis 10336 118 USA 1996–2023 25.00 88.00 96.00 105.00 195.00 98.50

Pseudotsuga menziesii 10266 178 USA 1995–2022 8.00 93.00 105.00 120.00 387.00 108.52

Juniperus osteosperma 9817 91 USA 1996–2022 6.00 74.00 81.00 89.00 139.00 82.50

Artemisia tridentata 9733 62 USA 1984–2022 28.00 89.00 116.00 161.00 337.00 126.98

Artemisia tridentata ssp. vaseyana 9036 87 USA 1989–2023 13.00 93.00 123.00 166.00 284.00 130.89

Arctostaphylos patula 7210 103 USA 1982–2022 31.00 89.00 100.00 116.00 226.00 104.55

Juniperus scopulorum 7008 88 USA 1999–2022 20.00 78.00 86.00 96.00 200.00 87.90

Pinus contorta 6793 105 USA 1995–2022 60.00 100.00 109.00 120.00 248.00 111.80

Cistus monspeliensis 5972 34 France; Spain; Italy 1996–2022 21.25 57.34 79.12 112.95 236.97 88.15

Quercus gambelii 5956 87 USA 1995–2022 0.00 97.00 108.00 128.25 337.00 120.04

Arctostaphylos manzanita 5174 38 USA 1983–2023 35.00 86.00 98.00 113.00 352.00 106.61

Quercus coccifera 4907 69 Spain; France; Türkiye 1996–2022 15.03 69.10 73.66 80.19 213.13 75.73

Pinus banksiana 3933 31 USA 1995–2022 21.00 102.00 111.00 122.00 218.00 113.75

Rosmarinus officinalis 3911 48 France; Spain; Italy 1996–2022 20.31 58.00 84.18 108.26 220.22 87.07

Pinus taeda 3627 16 USA 2001–2023 90.00 130.00 143.00 157.00 247.00 144.90

Juniperus coahuilensis 3446 25 USA 2001–2023 46.00 78.00 89.00 100.00 180.00 89.45

Pinus resinosa 3422 29 USA 2001–2022 67.00 93.00 103.00 116.00 202.00 105.95

Table 7.  Metadata and descriptive statistics of the 20 most sampled species in Globe-LFMC 2.015 excluding 
outliers identified by the Isolation Forest method.

Field Description

First name First name of the contact person

Last name Last name of the contact person

Email Contact e-mail address

Phone (include all codes) Contact phone number

Collaborations People who contributed to the data collection

Institution Institution or company where the contact person works

Address Address of the institution

Country Country of the institution

Web page URL to the institutional profile webpage or personal professional webpage

Table 5.  Attributes Describing the Contents of the “Contact” Tab Table.

Field Description

Protocol code ID corresponding to the protocol reported in the “LFMC data” tab

Time range for sampling Range of time designated for field work (i.e., sample collection)

New and old leaves combined Whether the Fuel Moisture Content value is a combination of old growth and new growth leaves

Fresh samples weighing location Whether the sample was weighed at the field or at the laboratory

Weighing device accuracy (g) Accuracy (g) of the weighing device used

Material for transportation Material or equipment used to carry the sample to the laboratory

Drying time (h) Duration (hours) of the drying procedure of the sample

Drying temperature (°C) Temperature (Celsius degrees) which the sample was dried at

OBSERVATIONS Further comments and information regarding the protocol used

Table 6.  Attributes Describing the Contents of the “Protocol” Tab.
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Finally, it is strongly recommended to use the most recent version of the dataset, as it incorporates correc-
tions for occasional inaccuracies and typos. Continued use of the 2019 version is discouraged.

Code availability
The code for the detection of potential outliers and the extraction of land cover and meteorological data was 
developed using Python 3.9.7. The corresponding Jupyter Notebooks are available at the figshare repository15.

The outlier detection code uses the Globe-LFMC-2.015 file as input.
When executing the land cover and meteorological data extraction code, it is essential to have downloaded the 

required input data first.
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