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Abstract

A shell and tube heat exchanger (STHE) for heat recovery applications was studied to dis-

cover the intricacies of its optimization. To optimize performance, a hybrid optimization

methodology was developed by combining the Neural Fitting Tool (NFTool), Particle Swarm

Optimization (PSO), and Grey Relational Analysis (GRE). STHE heat exchangers were

analyzed systematically using the Taguchi method to analyze the critical elements related to

a particular response. To clarify the complex relationship between the heat exchanger effi-

ciency and operational parameters, grey relational grades (GRGs) are first computed. A

forecast of the grey relation coefficients was then conducted using NFTool to provide more

insight into the complex dynamics. An optimized parameter with a grey coefficient was cre-

ated after applying PSO analysis, resulting in a higher grey coefficient and improved perfor-

mance of the heat exchanger. A major and far-reaching application of this study was based

on heat recovery. A detailed comparison was conducted between the estimated values and

the experimental results as a result of the hybrid optimization algorithm. In the current study,

the results demonstrate that the proposed counter-flow shell and tube strategy is effective

for optimizing performance.

1. Introduction

Thermal energy is efficiently transferred using heat exchangers in various engineering applica-

tions [1]. Despite their numerous applications, heat exchangers play a vital role in the optimal

use of energy resources, from regulating the climate in buildings to converting chemical
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processes into electricity [2,3]. Owing to their cost-effectiveness, ease of fabrication, and

remarkable energy transfer efficiency, double-pipe heat exchangers have gained popularity

among the many types of available heat exchangers [4].

Heat exchanger performance optimization is a primary challenge in the field. Researchers

have experimented with coiled wires, helical/twisted tapes, wings, and extended surfaces in

various ways to improve efficiency [5,6]. Heat exchangers are difficult to optimize when using

conventional mathematical models, particularly when dealing with nonlinear relationships

and intricate calculations. Alternative methods have been explored as a result of this challenge,

with Artificial Neural Networks (ANN) emerging as a promising approach [7–10].

A number of machine learning techniques are available to predict the heat exchanger per-

formance, including ANNs. However, it is challenging to achieve the desired level of accuracy.

Innovative methodologies have been proposed for estimating heat transfer rates using artificial

neural networks [11,12]. We propose a breakthrough solution to this challenge using hybrid

grey neural networks. With this innovative approach, heat exchanger performance can be pre-

dicted and optimized more effectively with fewer learning errors [13].

Although engineering advances are incredibly significant, their impact extends far beyond

it. Environmental preservation and energy efficiency are globally imperatives. Heat exchangers

contribute to substantial reductions in energy consumption and carbon emissions not only by

improving the systems into which they are integrated. Sustainable resource management and

energy efficiency are of profound importance in an era in which sustainability and responsible

resource management are central. Research in this field has had a positive impact on these

areas. As a result of our study, there is an urgent need for innovation and improvements in the

technology of heat exchangers in this crucial area.

As energy efficiency in heating, ventilation, and air conditioning, chemical processing, and

power generation continues to increase, this research takes advantage of this demand. A

hybrid method combining grey relational analysis, neural adaptation, and particle swarm opti-

mization was presented to augment counterflow shell-and-tube heat exchangers. NFTool and

GRE are advanced tools used in this study to identify critical factors in heat-exchange pro-

cesses that maximize efficiency and dependability and provide a solution applicable to multiple

areas of engineering. As a hybrid methodology, the hybrid methodology synergizes the

strengths of each component, resulting in a highly efficient and precise optimization process.

In response to global imperatives for energy efficiency and environmental preservation, such

research plays a significant role in improving sustainable engineering practices by reducing

energy consumption, operational costs, and ecological footprints.

The comprehensive assessment of counter current shell-and-tube heat exchangers (STHEs)

are mentioned in Section 2. The methodology, numerical approach and pseudo code of the

proposed approach are presented in section 3. Sections 4 provide the experimental design with

respect to Heat Exchanger setup specifications. Empirical Investigations of Heat Exchangers is

presented in section 5. GRA, NFTool, and PSO based optimization results are presented in

Section 6. Section 7 highlights the novelty and potential significance of the proposed integrated

approach by considering its significant contributions, future directions and highlights with

respect to the novelty and potential significance of countercurrent STHE improvements.

2. Related works

In a study by Garcia-Morales et al. [14], inverse artificial neural networks (ICANNi) are pro-

posed to control a heat exchanger. ICANNi control is simple, parameter-independent, and

computationally efficient. It outperforms PID and ANNi controllers, achieving faster conver-

gence and no overshoots during reference changes. A mean square error of 0.2025 is
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obtained with the ICANNi control after an average establishment time of 23 s. Its flexibility

suggests potential application to other systems, warranting further investigation.

A novel metaheuristic approach based on neural networks to predict global gold market sig-

nals was introduced by Mousapour Mamoudan et al. [15]. By combining CNN-BiGRU models

and allocating influence variables with moth-flame optimization algorithms, they developed a

method based on a CNN-BiGRU model optimized using the firefly metaheuristic algorithm.

The approach, which can also be used in other precious metals markets, was first created for

the gold market to improve forecast accuracy and reduce investor losses.

Ebrahimi-Moghadam et al. [16] performed a thorough hydro-thermal study and optimiza-

tion for disturbance in nanofluid flow within heat exchangers using helical coil insertion. By

analyzing sensitivity and optimizing genetic algorithms (GA), entropy was minimized. It was

found that the coil pitch-to-diameter ratio had the most significant impact on thermodynamic

properties, followed by the nanoparticle volume fraction. The use of nanoparticles up to 0.02

vol% improved the generation of dimensionless entropy by 13.93%.

The heat exchanger with a corrugated outward surface was optimized using an experimen-

tal design using response surfaces by Wei Wang et al. [17]. The focus was investigating com-

plex turbulent flow features and their impact on enhanced heat transfer, particularly on the

adjacent shell. The findings have shown that fluid-wall impact significantly improved heat

transfer, while spiral flow had minimal effect. An optimum design had a diameter of 38 mm to

obtain a high heat coefficient of transfer while maintaining a low-pressure drop. The experi-

ment’s response surface design was used to match the stream rates of the STHE sides. Heat

transfer efficiency, energy benefit, and pressure drop were all considered. Four ideal options

were presented based on a variety of performance criteria.

According to Azad et al. [18], heat exchangers can be developed using structural theory.

This study considered operational and capital costs to reduce the heat exchanger’s total cost.

Heat transfer coefficients were improved through construction theory, resulting in reduced

capital costs. In addition, frictional pressure loss and pumping energy costs were minimized.

Using structural theory, the authors optimized the objective function using a genetic algo-

rithm. According to the case study, 50% of costs can be saved by modifying the design com-

pared to traditional methods. Heat exchangers with shells and tubes are benefited from

structural theory.

Tien et al. [19] investigated a spiral-shaped double-pipe heat exchanger. The secondary

motion caused by the spiral arrangement improves heat transmission. They evaluated the

impact of operational settings on nanofluid heat transfer using Fluent software. In specified

Reynolds number ranges, optimal performance was obtained with water-Al2O3 (Aluminium

oxide) and water-SiO2 (oxide of silicon) nanofluids. The analysis considered friction coeffi-

cient, pressure drop, and thermal performance, with nanoparticle type becoming more signifi-

cant at higher Reynolds numbers.

Thejaraju et al. [20] thoroughly examine passive improvement approaches in double-pipe

heat exchangers. The review includes experimental and numerical studies, analyzing aug-

mented approaches, working conditions, heat transfer enhancement percentages, and working

fluids. Various techniques like fins, strip inserts, swirl generators, and coiled wires are exam-

ined for their impact on heat transfer performance, highlighting the influence of geometric

parameters, material thermal conductivity, and design configurations.

Ebrahimi-Moghadam et al. [21] analyzed methods to improve heat transmission and fric-

tional aspects of double tube heat exchangers (DTHEs). The research concentrated on passive

approaches such as turbulator insertion, expanded surfaces, geometry alterations, and nano-

fluids. The researchers discovered that raising the Reynolds number improved the heat trans-

fer rate. Twisted tape inserts were also helpful. Integrating nanofluids using other methods has
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promise. Future studies should examine individual approaches, transitory regime effects, and

various fluids for work and technique combinations.

Significant cost reductions on a heat exchanger made of shells and tubes (STHX) were real-

ized in a study by Jamil and colleagues [22]. Researchers investigate how various factors affect

operational expenditures, including mass flow and baffles. This study provides significant

knowledge and views on heat exchangers’ thermal-hydraulic operation and economics.

Abbasi et al. [23] present a novel STHE architecture with sectional plates. They investigate

the thermo-hydraulic effects of these baffles using computational fluid computational tools

and Supervised Learning approaches. Using multi-objective optimization and empirical

research, they discover the ideal design that maximizes heat transmission while minimizing

pressure loss. Heat exchanger efficiency can be significantly improved by this innovative

design method.

Shahsavar et al. [24] address the urban energy crisis by presenting a novel biogas energy

supply framework that is applicable to waste management and green buildings. In their

approach, artificial intelligence (AI) techniques such as Random Forest and Artificial Neural

Network (ANN) are combined with the Response Surface Methodology (RSM). Accumulated

Biogas Production (ABP) can be accurately predicted by ANFIS, which has an impressive cor-

relation coefficient of 0. This study addresses the problems of waste management and bioe-

nergy supply in green buildings, which supports the objectives of sustainable development.

According to Thanikodi et al. [25], a hybrid neural network technique may be utilized to

model and anticipate the heat transfer rate in an STHE. Teaching Learning Optimization

(TLO) is a strategy for enhancing artificial neural networks (ANN) training. Their findings

show that the hybrid technique outperforms traditional methods in prediction accuracy. This

study indicates the suitability and flexibility of the suggested approach for heat exchanger

development and simulation, contributing to field advancements.

Gholizadeh et al. [26] examined how production management is affected by Electric Dis-

charge Machining (EDM), emphasizing its benefits over conventional techniques. The authors

investigated the effects of the electrode corrosion percentage, volumetric flow rate, and surface

roughness on the EDM machining parameters. The research forecasts and optimizes EDM

parameters and offers insights into manufacturing processes and supply chain applications

using a mathematical modeling approach involving an adaptive network-based fuzzy inference

system (ANFIS) and Fuzzy Possibility Regression Integrated (FPRI).

Algarni et al. [27] describe a detailed hybrid optimization approach for nano-additives in

an STHE system. To improve essential system aspects, they employ experiments design, the

computation of fluid dynamics, neural network algorithms and multi-criteria decision-making

methodologies. According to the data, thermal conductivity, density, and specific heat they

were increased significantly. This shows that advancements in energy storage and phase transi-

tion materials are conceivable.

The method presented by Kazi et al. [28] enables the precise design of individual heat

exchangers within the network of heat exchangers. Their method entails a multistep procedure

that includes sub-optimization processes based on modified MINLP and NLP. This technology

assures that the resultant heat exchangers are feasible, reduces nonlinearity, and removes the

need for manual intervention. The strategy’s success is proved through examples and compari-

son with current literature, which contributes to the progress of network fusion and design

approaches.

Saffarian et al. [29] compared STHE with varying tube cross-sections and locations. The

heat transmission performance was best when elliptical tubes near the shell were combined

with circular tubes in the centre. The position of the tubes had a significant influence on heat

transmission, with tubes closer to the shell contributing more to overall heat transfer. When
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elliptical tubes were used instead of circular tubes, pressure decreased on the shell side was

higher. The proposed configurations increased heat transport while increasing pressure

decreased.

Graphene nanofluids were investigated by Fares et al. [30]. Changes in the nanofluid con-

tent, flow velocity, and intake temperature significantly improved the heat-transfer coefficient

and thermal efficiency. As a result of this study, nanofluids have the potential to improve the

performance of heat exchangers and reduce energy consumption.

Zhan et al. [31] present a hybrid approach for assessing China’s low-carbon transportation

infrastructure. Deep learning features are integrated with the CRITIC and DEMATEL meth-

odologies to reduce environmental impact. It provides a quantitative evaluation of low-carbon

transportation, highlights important variables, and shows how sustainable transportation poli-

cies can be applied both domestically and internationally.

Ghazikhani et al. [32] a post-processing system based on machine learning was presented

to improve the forecasting of climate precipitation. Using the random forest algorithm, regres-

sion techniques were applied to data from Climate Forecast System Version 2 (CFSV2). In

addition to software development, this research’s success in Iran helps with disaster prevention

and sustainable development by enabling climate prediction and informed decision-making in

weather-dependent industries.

Liang et al. [33] created a cross-corrugated triangle duct heat exchanger model. Configura-

tion parameters were optimized using particle swarm optimization while functions with objec-

tives such as the Colburn, friction, and thermal-hydraulic performance index were considered.

The multi-objective PSO optimized entropy production rates and total expenses. Air-to-air

heat exchangers were designed and optimized in this study.

Recent advances in heat exchanger design and performance have resulted in the develop-

ment of various optimization strategies. Analytical methodologies, numerical simulations, and

heuristic algorithms such as GA, PSO, and SA are examples of these methods. However, limi-

tations like computationally demanding computations, reliance on correct models, and prob-

lems dealing with large and nonlinear systems remain. More study

is required to solve these issues and develop more effective optimization solutions [34]. To

circumvent these constraints, hybrid optimization strategies that combine the benefits of

many optimization algorithms have been created. Optimization processes that utilize hybrid

optimization techniques perform and improve more accurately while requiring less computa-

tion and expense [35].

Based on the principles of grey relational analysis, neural adaptation, and PSO, a hybrid

optimization approach was applied to counterflow shell-and-tube heat exchangers (STHE). To

identify the factors influencing the performance of the exchanger, this study uses a systematic

approach. The optimal heat exchanger response can be determined by analyzing the critical

factors.

The NFTool was used to estimate the grey relation coefficients of the heat exchanger. These

coefficients provide valuable insights into the relationship between the input parameters and

grey relational grades. GRE is used to create a multi-factor optimization model that provides a

comprehensive understanding of the heat exchanger performance.

Assigning grey relational coefficient values to the effective parameters is a function of the

PSO algorithm. The heat exchanger performance was improved by this optimization process.

The counterflow shell-and-tube heat exchanger performance can be improved by using swarm

intelligence-based algorithms, particularly PSO.

Hybrid algorithms are becoming increasingly popular for solving real-world optimization

problems because they can exploit the desirable features of individual algorithms and improve

the quality of solutions [36]. The hybrid approach achieves improved performance for
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counterflow shell-and-tube heat exchangers by combining grey relational analysis, neural

adaptation, and particle swarm optimization. PSO and GRE are promising approaches that

integrate their individual strengths. NFTool, PSO, and GRE were used together to analyze,

model, and optimize heat exchanger data to address the complexity of heat exchanger optimi-

zation. A variety of optimization problems can be solved more accurately and efficiently using

hybrid methodologies. Because optimization methodologies have matured, a variety of algo-

rithmic techniques have gained importance. Based on the convergence of these methods,

future advancements in counterflow shell-and-tube heat exchanger technology are possible.

3. Methodology

In this study, a hybrid technique was proposed to enhance the performance of countercurrent

STHE. GRE, NFTool, and PSO were used. The grey relational degree is determined using

GRE, while the grey relational coefficients are predicted using NFTOOL. The expected coeffi-

cients were optimized using PSO. The proposed methodology provides a complete approach

for optimizing the heat exchanger performance by integrating various strategies. This enables

the discovery of relevant variables, accurate coefficient prediction with NFTool, and design

optimization with PSO. There are several applications in which the countercurrent STHE can

be improved using this technique.

3.1. Numerical approach

Numerical methods can be used to determine a STHE’s efficiency. This analysis defines effec-

tiveness of the STHE and it is premeditated using these formulas [37]:

ε ¼
Q

Qmax
ð1Þ

To determine the maximum heat transfer rate (Qmax), the logarithmic mean temperature dif-

ference (LMTDs) and heat retention rate of the hot fluid were combined. The LMTD can be

derived from the subsequent equation, which expresses its relationship [38]:

DTlm ¼
DT1 � DT2

ln DT1

DT21

ð2Þ

where ΔT1 represents the temperature delta between the hot fluid inlet and the cold fluid out-

let, while ΔT2 denotes the temperature difference between the hot fluid outlet and the cold

fluid inlet.

The rate of heat capacity (C) is determined by the multiplication of the mass flow rate (m)

and the specific heat capacity (Cp) of the hot fluid.

C ¼ m Cp ð3Þ

The actual heat transfer (Q) can be calculated using the overall heat transfer coefficient (U),

the effective heat transfer area (A), and the mean temperature difference (ΔTlm) as follows

[38]:

Q ¼ U A DTlm ð4Þ

The effectiveness (ε) of a program can be described in the following way:

ε ¼
U A DTlm

m Cp DT1

ð5Þ
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In this numerical approach, the values of U, A, m, cp, ΔT1, and ΔT2 can be obtained through

experimental measurements or simulation techniques. By evaluating the effectiveness, the effi-

ciency of the counter-flow STHE can be assessed, providing valuable insights for design and

optimization purposes.

3.2. Pseudocodes for the algorithms

Function hybrid optimization (data_sets, target_data, num_particles, num_dimensions,

max_iteration)

# Step 1: Define Objective Function (GRE)
def grey_relational_analysis(parameters):
# Implement GRE calculations
# Return grey relational grade

# Step 2: Define Neural Network Model (NFTool)
def neural_network_model (input data):
# Implement NFTool to predict grey relation coefficients
# Return predicted values

# Step 3: Define PSO Algorithm
def particle_swarm_optimization(objective function, num_particles,
num_iterations):
# Initialize particle positions and velocities
# Set personal best positions and global best position
# Define inertia weight, acceleration coefficients, and maximum

velocity
# Iterate through the specified number of iterations
for iteration in range(num_iterations):
# Update particle velocities and positions
# Evaluate fitness of particles using the objective function
# Update personal best and global best positions

# Return the best solution found
# Step 4: Main Optimization Loop
def optimize_system ():
# Specify problem parameters and bounds
# Step 4.1: Initialize PSO

best_solution = particle_swarm_optimization(grey_relational_analysis,
num_particles, num_iterations)

# Step 4.2: Use NFTool to predict grey relation coefficients for
the best solution
predicted_coefficients = neural_network_model(best_solution)

# Step 4.3: Evaluate system performance using the optimized
parameters

system_performance = grey_relational_analysis
(predicted_coefficients)

# Return optimized parameters and system performance
# Step 5: Execute Optimization
optimized_parameters, final_performance = optimize_system()
# Display results
print("Optimized Parameters:", optimized_parameters)
print("Final System Performance:", final_performance)

A hybrid optimization strategy for countercurrent shell-and-tube heat exchangers was

presented in this study. The Process flow diagram for hybrid optimization is shown in Fig 1.

This new method provides a condensed representation of the relationships between input

parameters by presenting the grey correlation coefficients between them. The neural
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network training performed by NFTool allows these coefficients to be refined so that they

can adapt to intricate patterns. These coefficients were used to conduct a methodological

examination of possible configurations indicated by the solution space. The convergence of

the iterative process produces the global best particle, which is the best combination of the

input parameters. Heat exchanger designs can be fine-tuned to maximize efficiency using

this thorough process. By integrating GRA, NFTool, and PSO, the heat exchange systems

were optimized significantly. Finally, it contributes to decreased energy consumption,

lower operating costs, and minimized environmental impacts. This meets the growing

demand for environmentally friendly and energy-efficient heat-exchange systems. This

study contributes significantly to the field of heat exchanger optimization and is in line with

the sustainability goals of the industry.

Fig 1. Process flow diagram for hybrid optimization.

https://doi.org/10.1371/journal.pone.0298731.g001
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4. Design of an experiment

This study used a stainless-steel heat exchanger with a single shell, six tubes, and four baffles.

The heat exchanger was powered by two motors that circulated the water. This experiment

involved the construction of a heat exchanger with the following characteristics. Table 1 lists

the details of the heat exchanger. The experimental setup is shown in Fig 2.

This research cools a high-temperature stream by utilizing both hot and cold water. An

STHE circulates cooling water through the shell and hot water through the tubes. Segmental

baffles improve heat transport. Laminar counter flow configurations are found to be more effi-

cient than parallel flows. The baffle orientations within the heat exchanger are seen in Fig 3.

Baffle spacing is crucial, as higher spacing can lead to less efficient longitudinal flow.

Table 1. Heat exchanger setup specifications.

Parameters Value

Physical shape parameter

Heat transfer characteristics Indirect contact

Heat exchanger span, L 600 mm

Inner shell size, Di 90 mm

Tube exterior diameter, Do 20 mm

Quantity of tubing, Nt 6

Baffle population, Nb 2

Material class SS METAL

https://doi.org/10.1371/journal.pone.0298731.t001

Fig 2. Test configuration of heat exchanger.

https://doi.org/10.1371/journal.pone.0298731.g002
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Additionally, cross-flow and unsupported tube spans increase the risk of flow-induced vibra-

tion and potential tube failure.

Heat transfer coefficients vary by 0.6–0.7 power of velocity on the shell side in turbulent

flow (Re> 1,000), whereas pressure drops vary by 1.7–2.0 power of velocity. Laminar flow

(Re> 100) has a coefficient of 0.33 and a pressure drop 1.0. When baffle spacing is lowered,

pressure drops outpace heat transfer coefficients. Between 0.3 and 0.6 baffle spacing is recom-

mended to ensure efficient heat transfer between the pressure drops and temperatures.

5. Empirical investigations of heat exchanger

Multiple variables were considered, encompassing their impacts on output responses, in the

Taguchi methodology to optimize the experimental arrangement. The mass flow rates for

three distinct test collections ranged from a reduction of 1 kg/min ± 1.42% and 4 kg/

min ± 1.42%. Essential factors influencing the output response are summarized in Table 2.

Table 3 displays the findings of the experimental investigation on the heat exchanger.

Heat is exchanged between the High-Temperature Fluid (HTF) and the Low-Temperature

Fluid (LTF) in the exchanger, resulting in a temperature decrease for the HTF (T1 to T2) and

an increase for the LTF (t1 to t2). Convection is the primary mode of heat transfer. The HTF

and LTF have mass flow rates ranging from 1 to 4 kg/min. Lower HTF flow and higher LTF

flow rates show significant temperature variations, indicating improved heat transfer and

operational efficiency.

Fig 3. Diagrammatic representation of heat exchanger.

https://doi.org/10.1371/journal.pone.0298731.g003

Table 2. Test conditions of the heat exchanger experiment.

Attributes Variables(kg/min) Grades

1 2 3 4

A Flow rate of hot liquid 1 2 3 4

B Flow rate of cold liquid 1 2 3 4

https://doi.org/10.1371/journal.pone.0298731.t002
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6. Optimization results

In this section GRA, NFTool, and PSO are used to optimize the shell and tube heat exchangers.

GRA solves single-objective problems using Bayesian regularization, whereas NFTool works

with Bayesian regularization. In PSO, important variables are concentrated to maximize gray

relationship grades. Using these techniques, the performance of the heat exchangers can be

forecasted and maximized. The cost breakdown is briefly discussed along with the economic

factors.

6.1. GRA-based optimization

GRA integrates qualitative and quantitative data, harmonizing diverse goals and tackling

ambiguity in practical scenarios. In engineering, finance, and management science, multi-

objective optimization challenges can be solved effectively [39–43].

The goal of this study was to evaluate and optimize variables within a system or process by

analyzing gray relations. Several steps were involved in the methodology: (1) normalizing and

preprocessing raw data to create grey relations, (2) determining deviation sequences using Eq

(8), (3) comparing the normalized result with an ideal reference with Eq (9) to calculate the

Grey Relational Coefficient (GRC), and (4) computing the Grey Relational Grade (GRG) by

averaging the GRCs obtained from multiple runs using Eqs (6) and (7). Using this approach,

variable significance can be assessed, and optimization can be more efficient.

Y1 kð Þ ¼
MaxðYðkÞÞ � ðYðkÞÞ

ðMax YðkÞÞ � ðMin YðkÞÞ
ð6Þ

Y1 kð Þ ¼
ðYðkÞÞ � ðMax YðkÞÞ
ðMax YðkÞÞ � ðMin YðkÞÞ

ð7Þ

D0;iðkÞ ¼ jðY
∗
0
ðkÞÞ � ðY∗

l ðkÞÞ ð8Þ

Table 3. Empirical investigation of the heat exchanger.

S.No. mh mc T1 t1 T2 t2 €
Kg/min Kg/min ˚C ˚C ˚C ˚C

1 1 1 80 30 51 59 0.42

2 1 2 75 30 53 52 0.51

3 1 3 70 30 57 47 0.68

4 1 4 65 30 54 44 0.69

5 2 1 75 30 54 49 0.53

6 2 2 80 30 61 48 0.62

7 2 3 65 30 44 47 0.40

8 2 4 70 30 41 53 0.28

9 3 1 70 30 43 63 0.33

10 3 2 65 30 55 52 0.71

11 3 3 80 30 63 55 0.66

12 3 4 75 30 51 48 0.47

13 4 1 65 30 46 58 0.46

14 4 2 70 30 53 55 0.58

15 4 3 75 30 56 47 0.58

16 4 4 80 30 52 58 0.44

https://doi.org/10.1371/journal.pone.0298731.t003
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x0;i kð Þ ¼
Dminþ z:Dmax
D0;I þ z:Dmax

ð9Þ

gi ¼
1

p

Xp

k¼1
x0;iðkÞ ð10Þ

This study employed Grey Relational Analysis (GRA) for single-objective optimization, nor-

malizing the analytical response (Eq 6) between 0 and 1. The method aimed to maximize T2,

t2, and €. GRC (Grey Relational Coefficient) (Eq 9) compared absolute values to idealized val-

ues using an identification coefficient (ranging from 0 to 1). A commonly used value is 0.5,

with minimal impact on parameter significance order in GRA.

In Eq 10, varying weight factors were utilized to compute the Gray Relational Grade (i) by

evaluating the correlation between the reference and comparison sequences based on the Grey

Relational Coefficient (GRC). A GRC value of 1 indicates identical sequences, and the grey

comparison grades are determined by selecting the maximum value from T2, t2, and €.

Weighting responses is crucial in GRA as relevance can differ in real-world engineering sce-

narios. Calculating the weighting factors using an appropriate approach is important to ensure

reliable results when considering T2, t2, and other influential parameters.

Genetic response levels (GRGs) were calculated by averaging the GRCs for each response

shown in Table 4.

6.2. NFTool optimization

The NFTool in MATLAB is a simple interface that facilitates the design, training, and analysis

of neural networks for various applications, including regression, classification, and time-

series prediction. It provides a range of network architectures that allow users to specify the

number of layers, neurons, and activation functions. The tool provides visualizations including

training curves and error histograms to evaluate the performance of trained networks. In

Table 4. GRC and GRG for all response variables.

S. No. Grey relation coefficient GRG

GRC-T2 GRC-t2 GRC-€
1 0.52 0.39 0.61 0.51

2 0.48 0.54 0.48 0.50

3 0.41 0.76 0.35 0.51

4 0.46 1.00 0.34 0.60

5 0.46 0.66 0.46 0.53

6 0.35 0.70 0.39 0.48

7 0.79 0.76 0.64 0.73

8 1.00 0.51 1.00 0.84

9 0.85 0.33 0.81 0.66

10 0.44 0.54 0.33 0.44

11 0.33 0.46 0.36 0.39

12 0.52 0.70 0.53 0.59

13 0.69 0.40 0.54 0.55

14 0.48 0.46 0.42 0.45

15 0.42 0.76 0.42 0.53

16 0.50 0.40 0.57 0.49

https://doi.org/10.1371/journal.pone.0298731.t004

PLOS ONE Hybrid optimization algorithm for enhanced performance of counter-flow shell and tube heat exchangers

PLOS ONE | https://doi.org/10.1371/journal.pone.0298731 March 25, 2024 12 / 30

https://doi.org/10.1371/journal.pone.0298731.t004
https://doi.org/10.1371/journal.pone.0298731


addition, NFTOOL provides data import and pre-processing capabilities that allow users to

process various data formats and perform necessary transformations. In addition, cross-valida-

tion procedures are recommended to evaluate the generalization

performance of trained models. Using GRC in heat exchanger applications, NFTool can

estimate GRG using GRA.

During the NFTOOL validation process, the 16 samples were divided into three sets: train-

ing, validation, and testing. Training samples accounted for 60%, validation samples for 20%,

and testing samples for 20%. This Figure illustrates how the fitting neural network defined the

hidden neurons. As illustrated in Fig 4, Bayesian regularization was used as the training algo-

rithm. NFTool’s architecture is shown in Fig 5. Using Bayesian regularization helps improve

the model’s generalization capability and prevents over-fitting. The resulting neural network

model was then validated and tested using the partitioned data shown in Fig 6. These steps,

depicted in Figs 4, 6 and 7, demonstrate the process of using NFTOOL to develop and validate

an accurate neural network model for predicting the Gray Relational Grade (GRG) in the con-

text of heat exchanger applications.

Fig 4. Neural fitting architecture.

https://doi.org/10.1371/journal.pone.0298731.g004
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Fig 8 depicts the training box used in the Neural Fitting Tool (NFTool), which gives vital

information into a neural network model’s correctness and performance. After training, the

model’s efficacy is assessed using performance metrics, regression results, and error histo-

grams supplied by the tool.

The performance metrics, such as mean squared error (MSE), root mean squared error

(RMSE), mean absolute error (MAE), or the coefficient of determination (R^2), quantify the

quality of the model’s predictions and its overall performance. These metrics are calculated

using the predicted outputs (ŷ) and the corresponding target outputs (y). For example, MSE is

computed as:

MSE ¼ ð1=nÞ∗Sðŷ � yÞ2̂ ð11Þ

where n represents the data point count. Smaller MSE values indicate stronger correspondence

between the forecasted and desired outcomes.

Fig 5. NFTool architecture.

https://doi.org/10.1371/journal.pone.0298731.g005
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Regression coefficients offer valuable insights into the correlation between the anticipated

outputs and the desired outputs. The regression equation expresses this association and can be

formulated as:

ŷ ¼ b0þ b1 ∗ x1þ b2 ∗ x2þ . . .þ bn ∗ xn ð12Þ

where ŷ denotes the forecasted output, b0 represents the intercept, and b1, b2,. . ., bn symbolize

the regression coefficients, while x1, x2,. . ., xn signify the input variables.

Using histograms to visualize error distributions between predicted and target outputs, it

visualizes errors distribution. Calculate the error (e) by making the following comparison

between the predicted output (ŷ) and the target output (y):

e ¼ ŷ � y ð13Þ

When examining the error distribution, it becomes easier to identify biases or patterns in

model predictions.

Researchers can evaluate the accuracy and reliability of their trained neural network models

using performance metrics, regression values, and error histograms as shown in the figures. By

Fig 6. Train network.

https://doi.org/10.1371/journal.pone.0298731.g006
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providing comprehensive insight into the performance of the model, further improvements or

adjustments can be made to improve its predictive capabilities.

Training and validation errors are plotted visually in NFTOOL as a function of training

epochs. This helps evaluate the convergence and generalization capabilities of the neural net-

work model. By monitoring error trends, researchers can make informed decisions about

model adjustments and optimization, which helps avoid overfitting and achieve better normal-

ization of unseen data. Overall, as shown in Fig 8, performance plots are valuable tools for eval-

uating and improving the performance of neural network models in NFTOOL.

In Fig 9, NFTOOL highlights the importance of monitoring network progress and perfor-

mance during training. This graph provides important information including the number of

epochs, training errors, and validation errors. The training state analysis facilitates the optimi-

zation of the training algorithm and increases the overall training progress by evaluating the

convergence and performance of the network. Because of this detailed examination of the

training state, neural network models can be developed for a wide range of applications that

are more accurate and effective.

Fig 7. Validation and test data.

https://doi.org/10.1371/journal.pone.0298731.g007
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Regression analysis should be conducted in NFTOOL to determine the efficiency of the

trained neural network. This is the case, as shown in Fig 10. By comparing the predicted out-

puts with the actual outputs, researchers can assess the accuracy of the model. The predicted

and target values were plotted in a regression plot. This allowed us to gain insight into the

accuracy and consistency of neural networks. An analysis of this type helps determine whether

the trained model is effective and identify potential discrepancies. Model refinement and opti-

mization can be effectively improved by analyzing the regression plot, resulting in improved

model reliability and performance.

A histogram of the error distribution between the predicted and actual values is shown in

Fig 11. Error characteristics such as bias or skewness can be used to identify patterns or outli-

ers. This analysis helps fine-tune the model for better predictive capability. An error histogram

is a valuable tool for evaluating the reliability and effectiveness of a trained neural network

model for capturing underlying data relationships.

NFTOOL generates classification models such as neural networks using confusion matri-

ces, as shown in Fig 12. This allowed the accuracy of the classification model to be tested by

generating a tabular summary of the prediction and actual class labels. The confusion matrix

Fig 8. Performance during training.

https://doi.org/10.1371/journal.pone.0298731.g008
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was divided into four categories: (2) true positives, (2) true negatives, (3) false positives, and

(4) false negatives. Using this information, the model can accurately categorize instances. Pre-

cision, recall, and F1 score are metrics used to measure classification performance; to improve

the accuracy of the model’s classification, patterns and biases can be identified in the confusion

matrix.

Fig 13 illustrates the ease with which the trained networks can be evaluated using NFTOOL.

Various evaluation metrics can be obtained after training, using an evaluation function. Using

this function, we can calculate the MSE, MAE, and RMSE of a network, which can be used to

assess its performance. These evaluation metrics can be used to measure the accuracy and pre-

diction errors of trained networks.

Based on the training neural network model evaluated using NFTOOL, Fig 14 shows a

regression graph of the predicted versus actual values. By comparing how well the model fits

Fig 9. NFTool’s training state.

https://doi.org/10.1371/journal.pone.0298731.g009
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the data to the target, this graph shows how accurate the variable prediction is by comparing

how well the model fits the data.

In Fig 15, the error histogram shows how the trained network made predictions with differ-

ent errors. An analysis of this histogram provides insight into the magnitude and frequency of

errors, providing a picture of how well the network performs in terms of predicting and allow-

ing for the possibility of bias or skew.

In Table 5, the Training and testing were used to develop the NFTool model. For each

response, NfTool predicted significant values that agreed with the measurements.

6.3. Particle Swarm Optimization (PSO) algorithm

The grey relational grades of the heat exchanger can be optimized using PSO in this section. It

optimizes the grey relational coefficients of the hot and cold outlet temperatures (T2) as well as

effectiveness (€) in order to maximize the grey relationship grade. Here are the implementa-

tion steps for PSO [44,45]:

6.3.1. Initialization. A particle population is initialized by the PSO algorithm. Depending

on T2, t2, and €, each particle represents a potential solution.

6.3.2. Evaluation. Heat exchanger GRG are used to evaluate particle fitness. The GRG

measures the similarity between the particle’s performance and the best performance observed

so far.

6.3.3. Update particle position and velocity. PSO equations are used to iteratively update

particle positions and velocities. By combining the current position and velocity, the position

update equation calculates the updated position. In the velocity update equation, the particle’s

highest positions are incorporated, and the swarm’s most optimal position is determined

globally.

Position Update Equation:

Yiðtþ 1Þ ¼ YiðtÞ þ Xiðtþ 1Þ ð14Þ

Velocity Update Equation:

Xiðtþ 1Þ ¼ z ∗ XiðtÞ þ D1 ∗ t1 ∗ ðPiðtÞ � XiðtÞÞ þ D2 ∗ t2 ∗ ðGðtÞ � XiðtÞÞ ð15Þ

Where,

Fig 10. Regression.

https://doi.org/10.1371/journal.pone.0298731.g010
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• Y(i,t) position t at which particle i is currently located.

• X(i,t) at time t, represents the particle’s current velocity.

• z represents the particle’s inertia weight, which controls the particle’s influence on its previ-

ous velocity. There was a range of 0.9 to 0.2 inertia weight in this study

• D1 and D2 are the acceleration coefficients that control the influence of the particle’s indi-

vidual best (Pi(t)) and the global best (G(t)), respectively. Both parameters are set to 2.

• t1 and t2 are random numbers between 0 and 1.

The inertia weight, denoted as z, regulates the influence of the particle’s previous velocity in

the PSO process. In this study, an inertia weight range of 0.9 to 0.2 was chosen to achieve a

trade-off between exploration and exploitation. A higher inertia weight (e.g., 0.9) facilitates

increased exploration, enabling particles to explore a broader solution space. Conversely, a

lower inertia weight (e.g., 0.2) promotes exploitation, encouraging particles to converge

Fig 11. Error histogram.

https://doi.org/10.1371/journal.pone.0298731.g011
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towards the currently identified optimal solution. The PSO algorithm is balanced between

exploration and exploitation, owing to this range selection.

6.3.4. Update individual and global best. An algorithm for PSO was used in this study.

The number of iterations/generations cannot exceed 100 before the process is terminated.

Fig 12. Confusion matrix.

https://doi.org/10.1371/journal.pone.0298731.g012
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6.3.5. Termination criteria. A termination condition exists after each iteration of the

PSO algorithm. A maximum of 100 iterations or generations was used as the termination crite-

rion in this study. It is possible to incorporate two additional termination criteria into the opti-

mization process to improve its reliability and credibility.

The algorithm terminates when a predefined threshold of difference between the objective

function values of consecutive iterations is reached, as defined by the Convergence Criterion.

A stable and satisfactory solution was achieved because of the optimization process.

Secondly, the Solution Stability Criterion can be incorporated, where the algorithm halts

when the solution remains unchanged for a specified number of consecutive iterations. This

indicates that further iterations are unlikely to yield significant improvements, suggesting that

the algorithm provides a reliable solution.

6.3.6. Output of the result. After the PSO algorithm terminates, the values of T2, t2, and

€ corresponding to the global best position are obtained. A heat exchanger with these values

achieves the highest grey relational grade possible.

Using PSO for ANN parameter optimization improved GRA prediction accuracy was

achieved for heat exchangers using a PSO algorithm. By iterating over neural network weights

Fig 13. Evaluation results of the trained neural fitting.

https://doi.org/10.1371/journal.pone.0298731.g013
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and biases, PSO found the most accurate combination. The GRA ranking values predicted and

achieved were minimized as a result.

According to this study, the parameters used for this algorithm were 50 particles, 0.9 to 0.2

inertial weight, 2 cognitive parameters, 2 social parameters, and 1 maximum velocity.

The algorithm completed the optimization process, yielding a highly accurate prediction of

the heat exchanger performance by effectively optimizing the grey relational grade. The best

Fig 14. Regression graph for evaluating the trained network.

https://doi.org/10.1371/journal.pone.0298731.g014
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fitness value of 0.00036072 indicates a remarkable agreement between the predicted and target

values. The PSO algorithm’s efficacy in achieving optimal results is further reinforced by the

corresponding optimal position of 0.71836.

Table 6 illustrates a comprehensive comparison of the predicted and actual GRG values.

The table also includes the error values, quantifying the disparity between the predicted and

actual GRG values. This meticulous analysis underscores the precision and dependability of

the PSO-optimized model in forecasting heat exchanger performance. The findings highlight

the PSO algorithm’s potential to enhance the accuracy of predictions in various real-world

applications.

PSO-based optimization is illustrated in Fig 16 by the relationship between Fitness Func-

tion and Iteration. It showcases the algorithm’s convergence and progress towards the optimal

solution. Limited space hampers in-depth analysis and discussion. Table 7 showcases the best

optimization results obtained for heat exchanger.

Fig 15. Error histogram for evaluating the trained network.

https://doi.org/10.1371/journal.pone.0298731.g015
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6.4 Cost/Economics

In this section, we examine the financial aspects of shell and tube heat exchangers with an

emphasis on researching their costs and economics. An understanding of the economic

aspects is crucial for the applicability and feasibility of these heat exchange systems. Many

approaches to cost estimation have been developed in the literature that depend on a variety of

important variables, such as the type of apparatus, operating pressure, heat-transfer surface

area, and material composition [46–48].

Table 5. GRG VS predicted GRG.

Target Predicted

Exp. No. GRG GRG Error

1 0.51 0.51 5.6E-08

2 0.50 0.50 5.3E-08

3 0.51 0.51 1.3E-03

4 0.60 0.53 6.6E-02

5 0.53 0.53 3.9E-07

6 0.48 0.48 1.5E-07

7 0.73 0.73 1.2E-07

8 0.84 0.84 -8.3E-08

9 0.66 0.69 -2.8E-02

10 0.44 0.44 2.2E-07

11 0.39 0.39 2.0E-07

12 0.59 0.59 1.0E-07

13 0.55 0.55 9.1E-08

14 0.45 0.45 5.6E-08

15 0.53 0.53 1.7E-07

16 0.49 0.49 8.4E-08

https://doi.org/10.1371/journal.pone.0298731.t005

Table 6. GRG VS predicted GRG.

Target Predicted

Exp. No. GRG GRG Error

1 0.51 0.51 0.0021

2 0.50 0.50 0.0006

3 0.51 0.51 0.0042

4 0.60 0.60 0.0007

5 0.53 0.53 0.0037

6 0.48 0.48 -0.0012

7 0.73 0.73 -0.0003

8 0.84 0.84 0.0004

9 0.66 0.66 -0.0009

10 0.44 0.44 0.0025

11 0.39 0.39 -0.0002

12 0.59 0.58 0.0058

13 0.55 0.54 0.0125

14 0.45 0.45 -0.0032

15 0.53 0.53 -0.0034

16 0.49 0.49 -0.0009

https://doi.org/10.1371/journal.pone.0298731.t006
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The stainless-steel shells and tubes were manufactured at an approximate cost of Rs.

6500/- for the construction of a specially designed shell and tube heat exchanger for labora-

tory research, in the Table 8 shows the consumables cost. The setup costs for the experimen-

tal apparatus were approximately Rs. 500. As a result, the approximate Rs. 7000 total

investment was justified because this heat exchanger was specifically designed to satisfy

highly specialized applications. When shell and tube heat exchangers are produced on a

large scale in an industrial setting, they are more economically competitive for widespread

commercial adoption.

Fig 16. Iteration Vs fitness function.

https://doi.org/10.1371/journal.pone.0298731.g016

Table 7. Optimal parameters.

S.No. mh (kg/min) mc (kg/min) T1

(˚C)

t1

(˚C)

T2

(˚C)

t2

(˚C)

€

1 3 3 78 30 62.98 51.41 0.646

https://doi.org/10.1371/journal.pone.0298731.t007
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7. Conclusion

In conclusion, the hybrid optimization algorithm consisting of Gray Relational Analysis

(GRE), the Neural Fitting Tool (NFTool), and Particle Swarm Optimization (PSO) has proven

to be a highly effective and efficient method for improving the performance of heat exchangers

in heat recovery applications. This hybrid algorithm, by combining multiple techniques, was

able to find the key factors, estimate the target values, and improve the accuracy of the gray

relational grade. Implementation of this algorithm on counter-flow shell and tube heat

exchangers (STHE) resulted in superior performance compared to both experimental and pre-

dicted values, proving its robustness and reliability in achieving optimal performance.

The results of this study have significant implications for industry and researchers involved

in heat recovery efforts. The proposed algorithm provides a practical solution to achieve these

goals and provides valuable insights into heat exchanger design and operation. Additionally,

the hybrid algorithm’s ability to speed up the optimization process compared to traditional

methods such as the basic genetic algorithm (GA) underscores its ability to solve complex opti-

mization problems. The combination of Particle Swarm Optimization (PSO) and GA in a

hybrid approach provides a balanced and efficient solution, enabling rapid engine perfor-

mance optimization in the context of this study.
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