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A B S T R A C T   

Autism spectrum disorder (ASD) is a neurodevelopmental disorder in which genetic and envi
ronmental factors interact in its development. Research suggests that the contactin associated 
protein 2 (CNTNAP2) gene may play a role in ASD pathophysiology, yet more studies involving 
human participants and animal models of autism are needed. One such model may be the use of 
prenatal valproic acid (VPA) model to induce autism-like behaviors in offspring rats. The aim of 
this study was twofold: (1) to examine the association of the CNTNAP2 gene rs2710102 variant 
with ASD in children; and (2) to examine the effect of prenatal exposure to VPA on Cntnap2 gene 
expression in the rat brain. The study included 167 children of European ancestry—81 diagnosed 
with ASD (20 girls, 61 boys; age 4.9 ± 1.4 years) and 86 controls (44 girls, 42 boys; 5.1 ± 1.2 
years). In vivo experiments were conducted in 80 rats (40 with the VPA model of autism), with 
Cntnap2 gene expression analysis in the amygdala, hippocampus, prefrontal cortex, and cere
bellum. Results demonstrated that the frequency of the CNTNAP2 gene rs2710102 GG genotype 
was significantly higher in children with ASD when compared with controls (33.3 vs 19.8%; 
OR=2.03, 95%CI [1.004, 4.102], p = 0.035), although, potentially due to bias in cohort selection, 
in the ASD children this polymorphism did not meet Hardy-Weinberg expectations (χ2 =5.40, p =
0.02). In addition, Cntnap2 gene expression was significantly lower (p < 0.01) in the amygdala 
and hippocampus of VPA rats when compared with controls, regardless of sex. These results 
support previous research and provide evidence for the CNTNAP2 gene as a risk factor for ASD.   
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1. Introduction 

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder, characterized by impaired social, verbal, and nonverbal 
communication, repetitive behavior, and restricted interests (Semina et al., 2019; Hirota & King, 2023). Currently, 1 in 100 children 
worldwide are diagnosed with ASD (Zeidan et al., 2022). Childhood autism is the most severe form of ASD, usually diagnosed between 
the ages of 6 and 10, with a higher prevalence in males (Fombonne, MacFarlane, & Salem, 2021)—the average male to female ratio is 
4:1 (Werling et al., 2013). 

ASD is genetically heterogeneous. According to the Simons Foundation Autism Research Initiative (The SFARI; https://gene.sfari. 
org/), most of the genes encoding synaptic cell adhesion molecules cause the development of this pathology (Baig et al., 2017). One 
strong candidate is the contactin associated protein 2 (CNTNAP2) gene, which spans 1.5% of chromosome 7 (7q35-q36.1) and is the 
largest in the human genome (2.3 Mb, 25 exons) (NCBI Gene; https://www.ncbi.nlm.nih.gov/gene/). The gene is expressed at high 
levels in the central nervous system (in the cerebral cortex and the basal ganglia). CNTNAP2 interacts with genes associated with ASD 
that encode voltage-gated potassium channel type 2 and calcium/calmodulin-dependent serine protein kinase (KCNA2 and CASK). The 
CNTNAP2 protein is a cell adhesion molecule that mediates the interaction between neurons and glia during nervous system devel
opment. It is also involved in the localization of potassium channels in differentiating axons (NCBI Gene; https://www.ncbi.nlm.nih. 
gov/gene/). 

Neurobiological studies using animals, and in vivo experiments, show that Cntnap2 contributes to nervous system abnormalities 
and diseases, including epilepsy, deficits in social interaction, reduced auditory processing and responsiveness to stimuli, and ste
reotyped behavior (Scott et al., 2020; Scott et al., 2018; Peñagarikano et al., 2011). Cultured induced pluripotent stem cells from a 
neurotypical patient with a shortened CNTNAP2 gene showed reduced neurite branching and simplified complex neuronal networks 
(St George-Hyslop et al., 2023). 

Genetic studies suggest a link between intragenic deletions and copy number variants (CNVs) in CNTNAP2 and developing ASD 
(Strauss et al., 2006; Bakkaloglu et al., 2008; Nord et al., 2011; O’Roak et al., 2011; Poot et al., 2010). Gene mutations have led to the 
development of characteristic ASD endophenotypes and associated disorders, such as delayed language development and language 
processing disorder, stuttering, hyperactivity, intellectual disability, epilepsy, obsessive-compulsive disorder, schizophrenia, bipolar 
disorder, and anxiety (Strauss et al., 2006; Sehested et al., 2010; Friedman et al., 2008; Gu et al., 2018; Poot, 2017; Smogavec et al., 
2016; Enikeeva et al., 2020). Several studies show phenotypic diversity in gene function, reflecting an association with cognitive 
processes (rs34438057 variant / polymorphism), development of Alzheimer’s disease, and associated biochemical changes: 
beta-amyloid levels and LDL concentrations (rs9271192, rs12154459, and rs117834366 variants) (Gouveia et al., 2022; Jansen et al., 
2019; Lee et al., 2018; Moreno-Grau et al., 2019). CNTNAP2 rs2710119 and rs144958708 variants have also been associated with 
altered gut microbiota, while rs11773362, rs6944674, and rs1026412 have been associated with the obesity characteristic of ASD 
patients (Qin et al., 2022; Scepanovic et al., 2019; Huang et al., 2022; Kichaev et al., 2019; Sakaue et al., 2021). 

One of the most intriguing SNPs for investigating its association with ASD is the rs2710102 located in the intron 13 of the CNTNAP2 
gene. Although the CNTNAP2 rs2710102 variant has not exhibited genome-wide association with ASD, it has consistently demon
strated replication, with evidence across various populations, suggesting that the risk allele (G) of the rs2710102 has functional effects. 
Numerous studies have linked CNTNAP2 rs2710102 to language impairments, encompassing language development, specific language 
impairment, oral and written language delay, dyslexia, and age at first words in both healthy populations and individuals with ASD 
(Alarcón et al., 2008; Newbury et al., 2011; Peter et al., 2011; Whitehouse et al., 2011; Poot, 2014; Uddin et al., 2021). The G allele of 
CNTNAP2 rs2710102 has previously been shown to be a risk factor for developmental delay and language impairment in children with 
ASD, and also leads to specific functional brain changes in ASD patients (Scott-Van Zeeland et al., 2010; Alarcón et al., 2008; Fang 
et al., 2021; Uddin et al., 2021). It is important to note, however, that several studies have found no association between CNTNAP2 
gene variants and the development of ASD (Toma et al., 2018; Murdoch et al., 2015; Werling et al., 2016). Therefore, additional 
replication studies involving different ethnicities are needed. 

It is well known that the CNTNAP2 gene is highly conserved between humans and rodents (Abrahams et al., 2007; Poot, 2017). 
Previous studies using Cntnap2 knockout rat and mouse models have shown that loss of Cntnap2 causes autism-related phenotypes 
(Peñagarikano et al., 2011; Scott et al., 2020). We therefore hypothesized that rats exposed to valproic acid in utero (VPA model of 
autism: Nicolini & Fahnestock, 2018) would have decreased expression of the Cntnap2 gene in the brain. 

The aim of this study was thus twofold: (1) to examine the association of the CNTNAP2 gene rs2710102 variant with ASD in 
children; and (2) to examine the effect of prenatal exposure to valproic acid (VPA model of autism) on Cntnap2 gene expression in the 
rat brain. 

2. Methods 

2.1. Ethics Statement 

Both (human and animal) studies in the present research were approved by the Ethics committee of the Kazan State Medical 
University (protocol number 199, 4 January 2016; and protocol number 3, 29 March 2019). The studies were conducted according to 
the guidelines of the Declaration of Helsinki, and we adhered to the Strengthening The Reporting of Genetic Association Studies 
(STREGA) guidelines: An extension of the STrengthening the Reporting of OBservational studies in Epidemiology (STROBE) statement 
recommendations. Written informed consent was obtained from the parents or legal guardians of the children. 
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2.2. Study samples 

2.2.1. Human study participants 
The study involved 167 children of European (Russian) ancestry—81 children with diagnosed ASD (20 girls, 61 boys; age 4.9 ± 1.4 

years) and 86 controls (44 girls, 42 boys; 5.1 ± 1.2 years) (see Fig. 1). Children diagnosed with ASD underwent hospital examination in 
the Republican Clinical Psychiatric Hospital (named after Academician V.M. Bekhterev of the Ministry of Health of the Republic of 
Tatarstan, Kazan) between March 2019 and December 2021. With the child’s parent or guardian in attendance, ASD severity was 
assessed by two board-certified developmental pediatricians, using the Autism Diagnostic Observation Schedule-Second Edition 
(ADOS-2: Lord et al., 2012). A total of three modules (1, 2, and 3) of the ADOS-2 were used in this study and the appropriate module 
was selected according to the age and language level of the individual. 

Inclusion criteria for participants were (a) a diagnosis of ASD according to the International Classification of Diseases (ICD-10), and 
(b) an age between 2 and 7 years. Exclusion criteria were any other comorbid condition. 

2.2.2. DNA extraction and genotyping 
DNA was extracted from saliva samples using LumiPure (Moscow, Russia). CNTNAP2 rs2710102 was genotyped by multiplex PCR 

followed by hybridization on low-density biochips (Biochip-IMB, LLC, Moscow). 
PCR was performed in 25 µl of the following composition: PCR buffer with HotTaqMulti polymerase, 4 units (Asfogen, Russia), 

5 mM MgSO4, 0.2 mM of each of the dNTPs (Sibenzym, Russia), primer mixture, 200 pmol of Cy5-TCATTGGATCTCATTA universal 
primer, 1 ul of DNA. Amplification was carried out in 0.2 ml PCR-tubes on a SpeedCycler (AnalytikJena, Germany) with the following 
conditions: 95 ◦С for 2 min and 50 cycles in the first stage (95 ◦С for 20 s, 65 ◦С for 30 s, 66 ◦С for 30 s, 69 ◦С for 40 s), then 40 cycles 
in the second stage (95 ◦C - 20 s, 56 ◦C - 30 s, 72 ◦C - 30 s). 

All allele-specific oligonucleotides were produced by Lumiprobe (Russia). The fabrication of hydrogel biochips was carried out on 
Qarray2 (Genetix, UK) in dust-free cleanrooms, according to the original technology of the IMB RAS, as previously described (Fesenko 
et al., 2014). 

Hybridization. The 30-µl chamber of the biochip was filled with a mixture of the following composition: 7.5 µl formamide, 7.5 µl 
20 ×SSPE, 15 µl PCR product. After incubation (10 h, 37 ◦C) and washing (10 min in 1x SSPE at room temperature), the biochips were 
washed with distilled water, dried with compressed air, placed in a portable analyzer “Picodetect” (BIOCHIP-IMB, LLC, Moscow) and 
fluorescence was registered with an exposure of 0.5–2 s. Image analysis was performed using ImaGelStudio software (IMB RAS). 

2.2.3. Animal study 
Wistar rats were purchased from the Stolbovaya branch office of the Scientific Center for Biomedical Technologies (Federal Medical 

and Biological Agency, Russia). The animals were individually-housed and maintained at room temperature, with a 12-hour light/12- 
hour dark cycle, with a complete balanced diet. 

In our previous study, the detailed design of the valproic acid (VPA) rat model was described (Semina et al., 2023). Experiments 
were performed on 80 rats (age 100 ± 3 days): VPA groups with prenatal administration of 500 mg/kg valproic acid on day 13 of 
pregnancy of their mothers (n = 20 rats of each sex) and control groups with saline at the same time in the same volume (n = 20 rats of 
each sex) (Fig. 1). The administration of valproic acid on day 13 of gestation is crucial for embryonic brain development. This is 
because it coincides with the peak of neurogenesis, gene expression in neurotransmitter systems, and the completion of the formation 

Fig. 1. Design for Human and Animal Studies.  
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of the cytoarchitectonics of the fetal cortex and neural tube (Ingram et al., 2000; Schneider & Przewłocki, 2005; pp. 518, 1300; 
Markram et al., 2008; pp. 453, 1301; Servadio et al., 2016). The offspring of these rats exhibit symptoms similar to those of humans 
with ASD, such as increased anxiety, antisocial behaviour, and stereotypy (Schneider & Przewłocki, 2005; pp. 518, 1300; Ingram et al., 
2000; Nicolini & Fahnestock, 2018). The model has been verified using the material described in a recent study (Semina et al., 2023). 

2.2.4. Total RNA extraction, reverse transcription reaction and quantitative PCR 
All rats of VPA groups and control groups were decapitated using a guillotine (NPO Open Science, Russia). The brain was removed 

for subsequent isolation of the prefrontal cortex (PFC), hippocampus, cerebellum, and amygdala. Brain structures were isolated in the 
cold with separate brain samples from each rat were placed into chilled tubes and frozen at –80 ◦C. 

Total RNA was isolated from each rat structure using the ExtractRNA (BC032, Evrogen, Russia) according to the manufacturer’s 
instructions. The concentration RNA was assessed using a NanoDrop Lite spectrophotometer (ThermoFisher, USA). The reverse 
transcription reaction was assessed using the moloney murine leukemia virus (MMLV) reverse transcriptase kit (SK021, Evrogen, 
Russia) and 500 ng of total RNA. The resulting cDNA samples were then subjected to real-time qPCR on a CFX96 (BioRad, USA) using 
commercial TaqMan kits for the Cntnap2 (Cat. 4351372, Applied Biosystems, USA) and the Gapdh as reference gene (Cat. 4448490, 
Applied Biosystems, USA) and with TaqMan Fast Advanced MasterMix (Cat. 4444965, Applied Biosystems, USA). Each analysis was 
performed in duplicate. Relative levels of Cntnap2 expression were analyzed using the 2–ΔΔCt method [Livak & Schmittgen (2001)]. 

2.2.5. Statistical analysis 
Statistical analyses were conducted using GraphPad Prism 8.0.1 (GraphPad Software, Inc., San Diego, CA, USA) software. We used 

chi-squared (χ2) to test for Hardy-Weinberg equilibrium in the human data, developed by Michael H. Court (2005–2008) http://www. 
tufts.edu/~mcourt01/Documents/Court%20lab%20%20HW%20calculator.xls. The frequencies of genotypes and alleles were 
compared between children with autism and controls using Fisher’s exact test. The relationship between CNTNAP2 genotypes and ASD 
severity was performed using multiple regression analysis (adjusted for age and sex). A nominal association was considered significant 
at p < 0.05. The normality of human data was assessed using the Shapiro–Wilk test. In the rat data, we compared gene expression 
between VPA rats and controls using Student’s t-test, with a Bonferroni correction for multiple tests across the four brain structures of 
interest, meaning that results were considered statistically significant if their p-values fell below an alpha of 0.00625 (i.e., 0.05/[4 
brain structures * 2 sexes]). Data are presented as mean ± SEM. 

3. Results 

3.1. Human study 

The rs2710102 polymorphism of the CNTNAP2 gene met Hardy-Weinberg expectations in the control group (χ2 =1.21, p = 0.27), 
but not in children with ASD (χ2 =5.40, p = 0.02). The frequency of the CNTNAP2 gene rs2710102 GG (risk) genotype was signifi
cantly higher in the children with ASD when compared with controls (33.3% vs 19.8%; OR=2.03, 95% CI [1.004, 4.102], p = 0.035) 
(see Table 1). There was no association between the CNTNAP2 gene rs2710102 polymorphism and ASD severity (adjusted for age and 
sex). 

3.2. Animal study 

Relative Сntnap2 mRNA expressions in VPA rats and controls are shown separately in female (Fig. 2a) and male (Fig. 2b) rats. The 
hippocampal Cntnap2 gene expression was significantly lower in VPA rats compared to controls in both females (0.14 ± 0.03 vs. 1.00 
± 0.08; p = 5.1 ×10-5) and males (0.34 ± 0.05 vs. 1.00 ± 0.19; p = 6.0 ×10-4). Similar differences in relative Cntnap2 gene expression 
were observed in the amygdala in both females (0.26 ± 0.07 vs. 1.00 ± 0.19; p = 0.0068) and males (0.14 ± 0.02 vs. 1.00 ± 0.26; 
p = 3.0 ×10-4). After adjustment for multiple testing, these differences remained significant in male rats only (p < 0.00625). In the 
cerebellum, only male VPA rats had significantly lower Cntnap2 gene expression compared to controls (0.19 ± 0.05 vs. 1.00 ± 0.17, 
p = 0.002). In female VPA rats, there was a trend towards increased gene expression in the cerebellum (1.37 ± 0.34 vs. 1.00 ± 0.11, 
p = 0.0241). No significant differences were observed in the prefrontal cortex of rats. 

Table 1 
Genotype Distribution and Allele Frequencies of CNTNAP2 rs2710102 in Children with ASD and Controls.  

Groups Genotypes G (risk) allele frequency, % 

GG GA AA 

ASD children (n = 81) 27 (33.3%)* 30 (37.0%) 24 (29.6%)  51.9 
Controls (n = 86) 17 (19.8%) 48 (55.8%) 21 (24.4%)  47.7 

Note. * p = 0.035, statistically significant differences between ASD children and controls. 
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4. Discussion 

In line with previous work, in the present study we observed that the CNTNAP2 rs2710102 G allele is a risk factor for ASD. 
Additionally, to the best of our knowledge, this is the first study to demonstrate that prenatal exposure to valproic acid may reduce the 
expression of the Cntnap2 gene in the amygdala and hippocampus of rats, regardless of sex. These findings, when considered alongside 
previous Cntnap2 gene knockout studies in rodents, indicate that the CNTNAP2 gene may be implicated in ASD pathophysiology. 

CNTNAP2 is highly expressed in brain structures and is also involved in neuronal development, synaptogenesis, and neuronal 
migration (Peñagarikano et al., 2011). During development, the CNTNAP2 protein acts as a neuronal adhesion molecule and receptor 
(Strauss et al., 2006). Previously, the CNTNAP2 rs2710102 G allele was reported to be associated with language disorders, dyslexia, 
and ASD (Alarcón et al., 2008; Newbury et al., 2011; Peter et al., 2011; Whitehouse et al., 2011; Poot, 2014; Uddin et al., 2021). In our 
sample, we observed the expected association between the CNTNAP2 rs2710102 GG genotype and ASD. The role of the CNTNAP2 
rs2710102 gene in contributing to the development of language delay in children with ASD has been shown in previous studies 
(Alarcón et al., 2008; Fang et al., 2021; Uddin et al., 2021). Another independent polymorphism (i.e., rs7794745 in the CNTNAP2 
gene) has also been shown to have an association with ASD and severity of language impairment in other populations (Nascimento 
et al., 2016; Uddin et al., 2021; Fang et al., 2021). The above said, there is some debate about the role of these two SNPs. In one 
meta-analysis (Zhang et al., 2019), these two SNPs (rs2710102 and rs7794745) were not shown to be associated with ASD devel
opment; in another meta-analysis (Uddin et al., 2021), these same two SNPs were indeed found to be associated with ASD. Using 
integrative multiomic analysis, Jang and colleagues (Jang et al., 2023) sought to explain that the development of Cntnap2-related ASD 
is largely due to mitochondrial dysfunction, axonal impairment, and synaptic activity. Panyard and colleagues (Panyard et al., 2021) 
demonstrated that the G allele of the CNTNAP2 rs2710102 polymorphism was associated with high levels of the metabolite 3-hydrox
y-3-methylglutarate, leading to abnormalities in the cholesterol synthesis pathway and the development of inflammation character
istic of children with ASD (Kwon et al., 2022). 

Several studies have found an association between the CNTNAP2 gene and activity in the brain, using functional magnetic reso
nance imaging (fMRI). One study demonstrated that variants of the CNTNAP2 rs7794745 gene were associated with changes in activity 
of certain regions of the brain that are responsible for language function in healthy volunteers (Tan et al., 2010). Another study found 
an association between the CNTNAP2 rs2710102 variant and brain activity in areas related to social and communication skills in 
children with autism (Scott-Van Zeeland et al., 2010). In particular, children carrying the risk allele (rs2710102 G) were found to have 
decreased long-range functional connections (i.e., fronto-occipital) but increased short-range functional connections (Scott-Van 
Zeeland et al., 2010). Importantly, in an animal model, homozygous loss of the Cntnap2-/- gene resulted in a reduction in local and 
distant prefrontal functional connectivity. This suggests that neurodevelopmental disorders and autism can be explained by selective 

Fig. 2. Change of Relative Cntnap2 mRNA Expression in Different Brain Structures in VPA and Control Female (a) and Male (b) Rats. Note. Data are 
presented as mean ± SEM. * p ≤ 0.002, * * p = 5.1 × 10-5, * ** p = 0.0068. PFC = prefrontal cortex. 
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dysregulation of connections in integrative prefrontal areas (Liska et al., 2018). 
The role and functions of Cntnap2 can be studied by knocking out the gene in animals. Knocking out (KO) the Cntnap2 gene in mice 

leads to various phenotypic changes, including impaired social behaviour, communication, learning, and memory. A complete KO in 
mice led to epileptic seizures and a reduction in the number of interneurons. Neuronal migration was impaired, and the activity of the 
neural network was abnormal (Peñagarikano et al., 2011). In another study, Cntnap2 KO in rats and mice affected behavior and 
electroencephalogram scores in the same way, but with differences in phenotypic expression. Cntnap2 KO rats exhibited severe motor 
seizures, hyperactivity, and increased consolidation of wakefulness and REM sleep. Although Cntnap2 KO mice did not show any 
seizure-like events, they showed hypoactivity and fragmentation of wakefulness (Thomas et al., 2017). In a study by Poulin and Fox 
(2021), gene knockout rat models showed a deficit in social interaction and increased repetitive and anxious behavior. Cntnap2 KO 
mice showed deficiencies in silent gap detection but a surprising superiority in pitch discrimination over control animals. Stereological 
analysis revealed a reduction in the number and density of neurons. There was also a shift in the size distribution of neurons towards 
smaller neurons in the medial geniculate nucleus of mutant mice (Truong et al., 2015). Knocking out the Cntnap2 gene also affects 
learning and memory. Cntnap2 KO mice have problems learning new tasks and remembering and recalling information (Rendall et al., 
2016). These findings suggest that this gene is important for normal brain development and function, particularly in social behavior 
and communication. They also highlight the link between changes in the CNTNAP2 gene and different aspects of ASD. 

Our previous work with these rats demonstrated that prenatal administration of valproic acid induced behavioural changes 
characteristic of autistic patients (Semina et al., 2023). More specifically, VPA rats showed impaired social and anxiety behaviour. 
Male and female rats prenatally administered valproic acid at a dose of 500 mg/kg showed increased contact with a familiar non-social 
object in the Three-Chamber Social Test. In addition, the VPA rats showed a preference for closed arms in the Elevated Plus Maze Test. 
Mitsuhashi et al. (2023) discovered changes in social interaction in mice that received valproic acid at a lower concentration from 
embryonic day 1 to birth. Male mice showed a preference for a new object (an unfamiliar mouse), and there were no differences in arm 
preference in the Elevated Plus Maze between control and test mice (Mitsuhashi et al., 2023). The observed differences may be 
attributed to interspecific convergence and differences between rats and mice (Viggars et al., 2023; Till et al., 2022), as well as 
variations in the route, duration, and dosage of valproic acid administration. 

The present study suggests that the reduction in hippocampal and amygdala Cntnap2 gene expression in rats in the VPA model of 
autism could result from several factors. First, the hippocampus and the amygdala are key structures associated with social behavior 
and emotional responses (Machado et al., 2008; Jonason & Enloe, 1971). The hippocampus plays an important role in memory for
mation and learning, as well as in the regulation of emotions and stress (Kim & Diamond, 2002). The amygdala is involved in pro
cessing emotional signals and forming social bonds (Machado et al., 2008; Jonason & Enloe, 1971). Changes in expression of the 
Cntnap2 gene in these structures may therefore disrupt these functions. Second, valproic acid may have a direct effect on expression of 
the Cntnap2 gene. Valproic acid affects DNA methylation, which can lead to changes in gene activity, including Cntnap2 (Wang et al., 
2010; Hamza et al., 2017). Valproic acid can directly reduce Cntnap2 gene expression in the hippocampus and amygdala (Lauber et al., 
2016; Zang et al., 2022). Finally, genes associated with ASD often show vulnerability to the environment and stress (Hamza et al., 
2017). The VPA rat model of autism can create stressful conditions for brain development, which can lead to altered Cntnap2 gene 
expression in the hippocampus and amygdala (Zang et al., 2022). Overall, the reduction in Cntnap2 gene expression in the rat hip
pocampus and amygdala in the VPA model of autism may be the result of the interaction of several factors, including the role of these 
structures in social behavior and emotional responses, the direct effect of valproic acid on Cntnap2 gene expression, and the effects of 
stress and the environment on susceptibility. 

It was noted a decade ago that the cerebellum plays an important role in cognitive processes and social behaviour (Becker & 
Stoodley, 2013; Basson & Wingate, 2013). Cerebellum aberrant development has been observed in individuals with ASD (Scott et al., 
2009; Sathyanesan et al., 2019). Furthermore, prenatal administration of VPA in mice models has resulted in cerebellar developmental 
defects and an impaired gene expression profile (Becker & Stoodley, 2013; Basson & Wingate, 2013; Guerra et al., 2023). In particular, 
Wang and colleagues (2018) observed premature migration of granular cell precursors and a decrease in the number of Purkinje cells 
(PC) in the cerebellar cortex, which correlates with their impaired synaptic functionality. The Cntnap2 gene is highly expressed in PC 
and regulates their morphology (Gogolla et al., 2009; Wang et al., 2018). Other studies have demonstrated that Cntnap2 KO mice show 
changes in cerebellar volume and defects in cerebellar sensory learning (Ellegood & Crawley, 2015; Kloth et al., 2015). Further, several 
studies have noted that Cntnap2 expression in various brain tissues of the KO model is sex-dependent (Dawson et al., 2023; Schaafsma 
et al., 2017; Townsend & Smith, 2017). Townsend and Smith (2017) observed that mutations of Cntnap2 had a stronger effect on the 
functional responses of cortical circuits and its expression in male mice than in female mice. In contrast to female mice, reduced 
expression of Cntnap2 only in KO or heterozygous male mice resulted in reduced visually evoked activity in upper visual areas 
associated with the dorsal stream. The sex specificity of Cntnap2 expression was also demonstrated in a mice model by Schaafsma and 
colleagues (2017). These authors demonstrated that corticotropin receptor 1-releasing hormone (Crhr1) expression was increased in 
males whose mothers experienced early stress-induced maternal immune activation (Schaafsma et al., 2017). A neurobiological study 
found that male Cntnap2 KO mice microglia showed increased activated morphology and phagocytosis of synaptic structures compared 
to wild type (WT) mice, although no differences were observed in female KO and WT mice (Dawson et al., 2023). The above examples 
notwithstanding, there is a lack of data on sex-dependent changes in Cntnap2 expression in the cerebellum. In the present study, we 
used rats that were exposed prenatally to valproic acid to complement previous findings. In a study by Ojiro and colleagues (2022) the 
cerebral cortex of male rats showed a significant 0.65-fold downregulation in Cntnap2 expression when offspring of post-pubertal male 
rats were orally administered a high dose (900 mg/kg) of valproic acid for 28 days (Ojiro et al., 2022). Our results indicate that only 
males showed a significant decrease in Cntnap2 expression in the cerebellum, while females tended to show an increase. This 
observation may be related to the influence of sex hormones. Hoffman et al. (2016) demonstrated the effect of 17β-estradiol on 
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experiments with danio-mutant cntnap2 fish. The mutants had a deficit of inhibitory neurons and impaired regulation of signal 
transduction in excitatory and inhibitory neurons, leading to the nocturnal hyperactivity observed in individuals with ASD. Estrogen 
receptor agonists suppressed this phenotype (Hoffman et al., 2016). Furthermore, it is possible that sex hormones may influence 
Cntnap2 gene expression in cerebellar tissue through perinatal effects of testosterone in males, which contribute to the development of 
differences in male and female microglia throughout the cerebellum (McCarthy et al., 2017). According to Donna M. Werling’s hy
pothesis, however, such an observed difference may be modulated by natural sexually dimorphic processes in sexually dimorphic 
microglia, specifically the prenatal effects of VPA on Cntnap2 expression (A.M. Werling et al., 2016; D.M. Werling et al., 2016). Taken 
together, these findings emphasize the significance of gender as a factor when evaluating the functional activity of a gene in animal 
models. Further neurobiological studies are required to observe individual brain tissue cell types and explore molecular pathways. 

A key strength of the present research is the combined study of the CNTNAP2 gene in humans and animals. The findings from our 
human study support previous research and provide evidence for the CNTNAP2 gene rs2710102 polymorphism as a risk factor for ASD. 
We also found, in the first study of its kind, that Cntnap2 gene expression was significantly lower in the amygdala and hippocampus of 
VPA rats compared to controls, regardless of sex. Against the backdrop of this study’s strengths, we should note some potential 
limitations—the relatively limited sample size of ASD children and controls, and the lack expression in rats at the protein level. 
Regardless, however, our findings further highlight the importance of the CNTNAP2 gene in ASD and its potential link to the changes in 
brain activity seen with this disorder. 
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