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A B S T R A C T   

Aluminum Alloy 5052 is one of the excellent corrosion resistant alloys among the Aluminum 5000 series alloys. 
Despite the favourable corrosion resistance, it exhibits low resistance to wear and perform poorly in various 
tribological applications. This study attempts to investigate the impact of TiB2 reinforcement on the mechanical 
and tribological properties of Aluminum Alloy 5052 matrix alloy, fabricated using the stir casting technique. 
Composites with varying weight percentages (0, 2.5, 5 and 7.5 wt %) of TiB2 were prepared. Vicker’s hardness 
testing was conducted to assess the effect of TiB2 content on composite hardness. Hardness of composites 
increased from 65.5 to 85.16 HV in tandem with the TiB2 content depicting a rise of about 30 %. Tribological 
properties were studied through dry sliding wear tests using a pin-on-disc tribometer, with varying loads (10 N 
and 50 N) and sliding speeds (1 m/s and 3 m/s). The results demonstrate that the addition of TiB2 significantly 
improves the wear resistance of the composites, being optimum in composite with 5 wt % of TiB2. A maximum 
increase of about 36 % in wear resistance was observed at high load and high-speed conditions corresponding to 
5 wt % TiB2 concentration. FESEM analysis revealed distinct wear modes and the role of TiB2 in changing the 
wear mechanism from abrasion to delamination. This study underscores the pivotal role of TiB2 in enhancing the 
mechanical and tribological properties of Aluminum Alloy 5052, expanding its application scope, particularly in 
lightweight engineering applicationsin general and marine in particular.   

1. Introduction 

In the recent decades, the usage of Metal Matrix Composites (MMCs) 
has seen a rising trend in industries such as automobile, aerospace, 
marine due to their superior mechanical, thermal and electrical prop-
erties [1,2]. MMCs typically exhibit better strength to weight ratio as 
well as performance to cost ratio in comparison to conventional alloys 
[3]. MMCs are materials having metal as the primary phase and are 
fabricated with reinforcements of ceramic, carbon, or metallic materials 
[1]. However, alloys are preferred over pure metals for the development 
of MMCs due to their enhanced proprieties. Aluminum being one of the 
most abundant materials on earth is most widely used as metallic matrix 
material becauseof its exceptional combination of mechanical and 

corrosion properties [4,5]. Moreover, aluminum based MMCs owing to 
their low density, high strength, and toughness are considered light 
weight high-performance materials [6–8]. 

The metal matrix composites can be developed through various 
methods and routes such as liquid state processing, solid state processing 
and vapour state processing. The fabrication process to be employed 
depends upon the composite that is to be developed, required properties 
and the constituent components [9]. However, most of the Aluminum 
Metal Matrix Composites (AMMCs) are fabricated with liquid state 
processing. Among the liquid state processing methods, stir casting is the 
most extensively employed owing to its simplicity, flexibility, and 
affordability. It is the most economical method among almost all the 
processing routes available for the fabrication of MMCs [10,11]. 

Although, Aluminum Alloy 5052 is known for their impressive 
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resistance to corrosion. However, despite the excellent corrosion resis-
tance, this alloy tends to have limited durability when it comes to wear 
and often underperform in different conditions involving friction and 
wear. One way to improve their wear and friction characteristics is by 
incorporating ceramic particles into the alloy. Incorporation of ceramic 
reinforcements in the AMMCs significantly improve their tribological 
performance. Researchers have used a variety of ceramic materials, 
including TiB2, B4C, Al2O3, SiC, TiC, Si3N4, TiO2 and others [12–14]. 
However, titanium diboride (TiB2) has emerged as an excellent choice 
for reinforcement material, owing to its superior hardness, high young’s 
modulus, low specific gravity, high electrical conductivity, and superior 
wear resistance [15–19]. TiB2 is recognised as the hardest material 
which can be used as reinforcement in an aluminum matrix [20]. 
Additionally, TiB2 particles do not react with molten aluminum, pre-
venting the production of brittle reaction products at the 
reinforcement-matrix contact. This phenomenon results in the devel-
opment of Al–TiB2 composites with unique and favourable properties 
[21–23]. 

The addition of TiB2 in LM4, AA 6061, and AA 6082 alloy matrices 
significantly reduced the wear rate and coefficient of friction [24–28]. 
However, with higher percentages of TiB2, the mechanical and tribo-
logical characteristics of AMMCs deteriorates. The recommended opti-
mum weight percentage of TiB2 is 5–10 % for improved mechanical and 
tribological behaviour [29,30]. Rajan et al. [31], reported enhanced 
microstructure and improved hardness of AA7075/TiB2 composites with 
increasing TiB2 content up to 9%. Onara [32] reported improved high 
temperature mechanical properties in AA 6061 and AA 7075 based 
MMC’s reinforced with TiB2 particles. Ram Kumar et al. [33], observed 
an increase in the hardness and reduction in grain size with increasing 
TiB2 concentration in AA 7075 matrix composites. Several studies have 
examined the mechanical and tribological behaviour of Aluminum Alloy 
5052 with various reinforcements such as WC, SiC, ZrB2, Al2O3 and 
graphite particles [30,34–39]. The introduction of different proportions 
of ZrB2 led to a reduction in the wear rate of composites based on 
Aluminum Alloy 5052. However, concurrently, the coefficient of friction 
exhibited a proportional rise with the ZrB2 content [40]. Similarly, the 
inclusion of Al2O3 particles in AA 5052 matrix increased the hardness as 
well as the wear resistance of the composites [41]. In another study, 
lower wear rate and better mechanical properties were exhibited by AA 
5052 reinforced with Al2O3 and graphite particles [42]. 

The existing research indicates that a majority of the studies have 
focused on composites with base matrices derived from the 6000 and 
7000 series aluminum alloys. Surprisingly, there is a noticeable lack of 
significant research in the literature when it comes to exploring the 
mechanical and tribological properties of composites utilizing 
Aluminum Alloy 5052 as the matrix material and incorporating TiB2 as 
the reinforcement material. Furthermore, it’s worth noting that most of 
the Al–TiB2 composites examined in previous studies were manufac-
tured using in-situ methods, while the ex-situ stir casting approach has 
received limited attention from researchers. Therefore, this study aims 
to fill this gap in the research and serve as a foundational step for future 

investigations into Aluminum Alloy 5052/TiB2 Metal Matrix 
Composites. 

In view of the above research gaps, the study aims to examine the 
effectiveness of TiB2 reinforcement on Aluminum Alloy 5052 fabricated 
through the stir casting technique. In this study, a varying percentage of 
TiB2 is reinforced in Aluminum Alloy 5052 based MMC to study its 
mechanical and tribological properties. The hardness, friction coeffi-
cient, and wear loss were evaluated for 0, 2.5, 5 and 7.5 wt% of TiB2 
reinforcement. The wear tests were carried out at different loads and 
sliding speeds. The wear tracks were analysed using FESEM to gain in-
sights into the prevalent wear mechanism. 

2. Materials and methods 

2.1. Matrix and reinforcement 

Owing to excellent mechanical strength-to-weight ratio and corro-
sion resistance and widespread applications in marine and aircraft ap-
plications, Aluminum alloy 5052 was selected as the base/metal matrix 
in this study and was purchased from Bharat Aerospace Metals Ltd. 
(Mumbai, Maharashtra, India). The elemental composition of Aluminum 
Alloy 5052 is presented in Table 1. The physical and mechanical prop-
erties of Aluminum Alloy 5052 and selected reinforcement (TiB2) are 
presented in Table 2. The average particle size of the TiB2 powder 
employed in this study ranges from 4 to 6 μm and the alloy was 99 % 
pure. 

2.2. Fabrication and characterisation of composites 

The composites in the study were developed using the Stir Casting 
technique. The raw material Aluminum Alloy 5052 was carefully 
cleaned and weighed before placing them in the crucible. The concen-
tration of TiB2 particles was varied as 0 %, 2.5 %, 5 % and 7.5 % by 
weight of the developed composite (Table 3). The chosen variations 
were based on trial tests and previous findings in the literature [48,49]. 
The matrix material was melted using an electric muffle furnace and the 
temperature was maintained above 850 ◦C to compensate for the heat 
loss during the stirring, improve the wettabilityand pouring operation. 
Afterwards, the reinforcement material (TiB2) was preheated in another 
furnace for about 1 h at a temperature of about 500 ◦C. The purpose of 
preheating the reinforcement is to remove any moisture content and 
consequently improve the wettability between the reinforcement and 
matrix. The detailed stir casting process parameters used have been 
taken from the previous literature [29,50] are presented in Table 4. 

After the stirring process, the molten mixture was cast into a metal 
mold with dimensions of 80 mm in length and 20 mm in diameter. The 
metal mold was preheated for 30 min at a temperature of about 550 ◦C. 
After the mold was naturally cooled to room temperature and subse-
quently the casting solidified. Thereafter, the casting was taken out from 
the mold. Fig. 1 illustrates the schematic diagram of the stir casting 
process. 

The characterization of the developed samples was carried out using 
X-ray Diffraction (XRD) and Wavelength Dispersive X-ray Fluorescence 
(WDXRF) Spectroscopy. XRD analysis of Aluminum Alloy 5052 was 
conducted using a Rigaku-Smart Lab X-ray diffractometer, and Cu target 
was employed for generating the X-rays. The measurements were car-
ried out using a Cu-Kα (λ = 1.5406 Å) at a voltage 30 kV and 40 mA. 
Moreover, the WDXRF of the AA5052/TiB2 composite with 7.5 % 
reinforcement was carried out using Rh target. The X-rays of Rh-Kα at 
50 kV voltage and 50 mA current was used in carrying out the WDXRF. 

2.3. Mechanical and tribological testing 

The cast samples were machined on a conventional lathe to form the 
samples of required dimensions to study their mechanical and tribo-
logical properties as recommended by previous studies and standards. 

List of abbreviations 

AA 5052 Aluminum Alloy 5052 
TiB2 Titanium diboride 
MMCs Metal Matrix Composites 
AMMCs Aluminum Metal Matrix Composites 
COF Coefficient of Friction 
FESEM Field Emission Scanning Electron Microscopy 
XRD Xray Diffraction 
WDXRF Wavelength Dispersive Xray Fluorescence 
MML Mechanically Mixed Layer  
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The samples were prepared in pin form, with a diameter of 8 mm and a 
height of 10 mm. The pins were first polished using SiC emery papers of 
grit sizes 320, 400, 800, 1000 and 2000 in a sequential manner. After-
wards, the samples underwent polishing with diamond pastes of particle 
sizes 3 μm, 1 μm, and 0.25 μm to achieve a mirror-like finish. The surface 
roughness of the polished samples was evaluated using a 3D profil-
ometer (UP-5000 by Rtec Instruments), and it was found that the 
roughness for all the samples was approximately 350 nm. Fig. 2 displays 
a representative 3D profilometer image of a polished composite (5 wt % 

TiB2) sample surfaceindicating that the surface of the prepared samples 
was highly polished before any testing were carried out. 

The Vicker’s hardness test of the developed composites was done to 
identify the effect of reinforcement on the hardness of the matrix ma-
terial. The hardness measurementsof polished samples were done using 
Micro hardness tester (Innova Test- Falcon 500). The microhardness 
testing was done as per the ASTM E92 standard [51]. A load of 100 g 
with a dwell time of 10 s was used for the measurement of hardness. The 
hardness values were taken at ten different locations on each sample and 
the mean value has been reported. 

The tribological characteristics were assessed in dry sliding condi-
tions using a computer-integrated Pin-on-Disc Tribometer (DUCOM- 
TR20LEPHM400). The frictional test was conducted following the ASTM 
G99 standard [52]. Cylindrical pins with dimensions of 8 mm in diam-
eter and 10 mm in height were employed for the tribological analysis. A 
steel disc (EN 31) with a hardness value of 60 HRC was chosen as the 
counter-body material. The pins were held against the rotating steel 
counter disc during the test. The tribo-testing was carried at 10 N and 50 
N at low and high sliding speed of 1 m/s and 3 m/s respectively for a 
total sliding distance of 1500 m. The track diameter was maintained at 
130 mm during all the tests. The tribological tests were conducted at an 
ambient temperature of 30 ◦C.The counter disc and the pins were 
cleaned thoroughly after each test to remove any wear debris sticking to 
the disc or sample. Moreover, the pin samples were checked prior to 
each test for an effective contact between the surface of pin and steel 
disc. To assess the wear loss, the weight of the samples was measured 
before and after each test using an electronic weighing balance. The 
objective of this testing was to investigate the influence of the TiB2 

Table 1 
Elemental composition of aluminum alloy 5052.  

Element Mg Si Cr Fe Cu Mn Zn Others Al 

Weight % 2.2–2.8 0.25 0.15-0.35 0.4 0.1 0.1 0.1 0.15 Remaining  

Table 2 
Properties of matrix material aluminum alloy 5052 and TiB2.  

Properties Density (g/ 
cc) 

Melting Temperature 
(◦C) 

Thermal Expansion 
(K− 1) 

Tensile Strength 
(MPa) 

Modulus of Elasticity 
(GPa) 

Shear Modulus 
(GPa) 

Poisson’s 
Ratio 

References 

AA 5052 2.68 607 23.7 × 10− 6 288 70.3 25.9 0.33 [43–45] 
TiB2 4.52 3230 8 × 10− 6 373 575 191 0.1-0.15 [46,47]  

Table 3 
Different composites and the corresponding composition.  

Composite Weight of 
AA 5052 
(in grams) 

Weight of 
TiB2(in 
grams) 

Total Weight of 
Composite (in 
grams) 

Percentage of 
Reinforcement 
(Approx) 

AA 5052 255.539 0 255.539 0 % 
AA 5052/ 

2.5 wt % 
TiB2 

289.200 7.421 296.621 2.5 % 

AA 5052/5 
wt % TiB2 

243.645 12.823 256.469 5 % 

AA 5052/ 
7.5 wt % 
TiB2 

211.210 17.126 228.336 7.5 %  

Table 4 
Parameters used for stir casting.  

Process Parameter Value 

Stirring Speed 300 RPM 
Temperature of Melt 850 ◦C 
Stirring Time 10 min 
Preheat temperature of TiB2 500 ◦C 
Preheat Temperature of Mold 550 ◦C  

Fig. 1. Schematic diagram of the stir casting process.  

Fig. 2. 3D profile of the polished composite (5 wt % TiB2)sample with sur-
face parameters. 
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content percentage, applied normal load, and sliding speed on the co-
efficient of friction and wear loss. Additionally, surface analysis of the 
worn surfaces was conducted using FESEM (ZEISS Gemini SEM 500) to 
study the wear mechanisms. 

3. Results and discussions 

3.1. Characterisation of composites 

The XRD diffraction pattern of Aluminum Alloy 5052 was observed 
for a 2θ angle ranging 10◦ to 90◦. The X-ray diffractogram of Aluminum 
Alloy 5052 is shown in Fig. 3. It shows that Aluminum Alloy 5052 has a 
highly crytsalline structure with aluminum peaks corresponding to 2θ 
angles of 38.45, 44.70, 65.03, 78.18 and 82.36 in the directions of (111), 
(200), (220), (311) and (222) respectively. The ICDD card number for 
the aforementioned phases is 00-004-0787. 

The WDXRF of the AA5052/TiB2 with 7.5 % reinforcement is shown 
in Fig. 4. It clearly shows the presence of Ti in the sample. However, the 
boron could not be detected due the limitation of WDXRF and other such 
techniques to detect light elements. But the presence of Ti in the sample 
suggests that the reinforcement has successfully incorporated in the 
matrix. 

3.2. Hardness 

The hardness of the developed composites was determined by per-
forming indentation using Vicker’s indenter using a 100 g load. Fig. 5 
shows the variation of Vickers hardness of composites at different per-
centages of TiB2. The hardness of the composites increased in tandem 
with the concentration of TiB2 as observed in Fig. 5. The hardness of 
base alloy was found to be 65.5 HV. The composition with 7.5 % TiB2 
exhibited highest hardness of 85.2 HV showing a 30 % increase in the 
hardness as compared to the base alloy. The hardness increased signif-
icantly with the addition of 2.5 % and 5 % TiB2 to the base alloy. 
However, the cumulative increase in the hardness after the addition of 
7.5 % TiB2 was lower as compared to the other two compositions. The 
improved hardness could be attributed to the dispersion strengthening 
and solid solution strengthening caused by TiB2 particles. Additionally, 
grain refinement ability, interfacial bonding, and load-bearing capa-
bility of TiB2 may have contributed to the hardness improvement, with 
particle size and volume fraction playing essential roles. The increase in 
hardness with percentage of TiB2 is consistent with the findings of 

several other studies [53,54]. 

3.3. Friction and wear behaviour 

3.3.1. Coefficient of friction 
In the wear tests conducted on both unreinforced and reinforced 

samples at 10 N and 50 N at two different sliding speeds of 1 m/s and 3 
m/s, the resulting average coefficient of friction values were deter-
mined. The effect of TiB2 reinforcement percentage, applied load and 
sliding speed on coefficient of friction and wear was studied. Figs. 6 and 
7 shows the Coefficient of friction at various percentages of TiB2 at 
sliding speeds of 1 m/s and 3 m/s respectively tested at normal loads of 
10 N and 50 N. 

Fig. 6 illustrates a notable decrease in the coefficient of friction at a 
sliding speed of 1 m/s. Specifically, at a load of 10 N, the COF decreased 
from 0.195 to 0.176 as the reinforcement content increased from 0 % to 
2.5 %. Similarly, at a load of 50 N, the COF exhibited a decrease from 
0.331 to 0.263 with the same increase in reinforcement content. The 
COF increased from 0.176 at 2.5 %. However, beyond the 2.5 % TiB2-

content, COFexhibited an upward trend with increasing TiB2 content. 
Specifically, at a 10 N load, the COF reached 0.199 and 0.212 at 5 % and 
7.5 % TiB2 content, respectively. Likewise, under a 50 N load, the COF 
increased to 0.273 and 0.336 at 5 % and 7.5 % TiB2 content, 
respectively. 

The lower friction observed in the MMC with 2.5 % TiB2 compared to 
the base alloy may result from the good dispersion of reinforcement in 
the matrix, facilitated by the ease of dispersion at lower concentrations 
of reinforcement. Some researchers have opined that formation of ox-
ides like TiO2 and B2O3 also leads to the lubricity [55–57]. A good 
dispersion results in decreased coefficient of friction due to several 
reasons. Firstly, the well-distributed hard ceramic particles function as 
micro-polishers during sliding, smoothing out surface irregularities and 
reducing friction. Secondly, the presence of ceramic particles alters 
surface morphology, reducing the effective contact area between sliding 
surfaces, further lowering frictional forces. Lastly, the even dispersion 
enhances heat dissipation and minimizes localized heating during 
sliding, contributing to the overall reduction in friction [58]. Beyond 
2.5% reinforcement, the increase in the COF can be attributed to the 
formation of clusters and an uneven dispersion of reinforcement at 
higher concentrations. Similar findings have been reported by Bar-
adeswaran and Perumal [59]. 

Similarly, as evident from Fig. 7, at a sliding speed of 3 m/s, the COF 
consistently increases as the percentage of TiB2 particles in the com-
posite increases. COF increased from 0.129 for base alloy to 0.245 at 
7.5% TiB2 content at a 10 N load. Similarly, at a higher load of 50 N, the 
COF increased from 0.280 to 0.329 at 7.5% TiB2 content. Similar trends 
have been reported by Rao and Das [60]. Since, TiB2 exhibits abrasive 
properties which generate additional frictional forces during sliding 
[40]. Moreover, the rough surfaces of TiB2 particles create more inter-
locking points and increased adhesions evident from the FESEM imaging 
(Fig. 11), discussed in section 3.3.3 resulting in higher friction [61]. The 
COF is altered by synergetic effect of oxide formation and polishing 
effect caused by hard ceramic particles. At high speeds due to more wear 
and formation of more wear debris the COF increases and dominates the 
polishing mechanism. 

Further, it can be seen from Figs. 6 and 7 that COF increases with the 
applied normal load for all the composite concentrations as well as the 
sliding speeds. At higher loads, the coefficient of friction tends to in-
crease because the increased load causes more wear on the surface of the 
composite leading to increased roughness of the surface. Moreover, the 
heightened wear generates more wear debris, including hard TiB2 par-
ticles, which may contribute to a ploughing mechanism, further 
enhancing the friction [24]. Besides, the increased load also leads to a 
higher number of contact points between surface asperities, which can 
alsocontribute to an overall increase in the COF at the interface. This 
intensified contact between asperities exacerbates frictional resistance Fig. 3. XRD of aluminum alloy 5052.  
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[62]. 
The minimum COF value is noticed at lower load of 10 N for unre-

inforced Aluminum Alloy 5052 at a sliding speed of 3 m/s and a 
maximum value is obtained at a load of 50 N for Aluminum Alloy 5052 
reinforced with 7.5 % TiB2 composite. At a sliding speed of 1 m/s, the 
COF lies in between 0.195 to 0.212 and 0.26 to 0.34 for all compositions 
at 10 N and 50 N load respectively. Similarly, at 3 m/s, the COF ranges 
from 0.129 to 0.245 for 10 N and 0.28 to 0.33 for all compositions. 

The frictional curves of all composites at loads (10 N and 50 N) at 
sliding speed of 1 m/s and 3 m/s are presented in Fig. 8. The friction 
coefficient is initiallyhigher but soon it reaches a stable value and then 
remains almost constant throughoutthe duration of sliding. It can be 
observed for all the tests that the steady state is reached afterthe 

duration of almost 300 s which corresponds to the sliding distance of 
300 m. Overall, more stable friction curves can be observed at lower 
speeds. 

During the initial stage of sliding, the low frictional force may be 
attributed to the presence of an oxide layer. Aluminum tends to undergo 
oxidation in the presence of air, which results in the oxide film sepa-
rating the two surfaces during the initial sliding. Moreover, the oxide 
film possesses a relatively low shear strength, so it helps to reduce 
friction [63,64]. As sliding continues, the deposited layer or film may 
eventually break down, bringing the two metallic surfaces into contact. 
This can lead to an increase in the bonding force between the contacting 
surfaces. However, as sliding progresses, several other factors can 
contribute to a rise in friction which include the ploughing effect, the 

Fig. 4. WDXRF of AA5052/7.5%TiB2.  

Fig. 5. Vickers Hardness at different TiB2Percentages.  
Fig. 6. Coefficient of Friction with varying percentage of TiB2 at 10 N and 50 N 
at 1 m/s. 
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entrapment of wear debris, and the roughening of the contact surfaces. 
Over the time, these parameters reach a steady-state value, causing the 
friction coefficient to remain constant for the remainder of the sliding 
process [65,66]. 

3.3.2. Wear Behaviour 
The wear loss results from the pin-on-disc dry sliding wear test 

performed on the composites at two different sliding speeds of 1 m/s and 
3 m/s are shown in Figs. 9 and 10. The wear loss results indicate the 

material loss from the pins during the test due to the rubbing of prepared 
pins against the counter face. Since the material of the disc is harder than 
the composite pins, the material is removed from the pins. The total 
material loss during the test is determined by quantifying the removed 
material, which involves weighing the samples before and after each 
test, and calculating the change in weight of the pin to obtain the wear 
loss. 

It is observed from Figs. 9 and 10 that the wear loss decreases with 
increase in the percentage of reinforcement content up to 5 %in the 
matrix. With further addition of TiB2, the wear loss increases. This 

Fig. 7. Coefficient of Friction with varying percentage of TiB2 at 10 N and 50 N 
at 3 m/s. 

Fig. 8. COF vs Time at Sliding Speed of 1 m/s at Load of (a) 10 N and (b) 50 N and sliding speed of 3 m/s at Load of (c) 10 N and (d) 50 N.  

Fig. 9. Variation of wear loss at 10 N and 50 N and sliding speed of 1 m/s.  
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indicates that the wear resistance of the composites is improved with the 
addition of TiB2 particulates in the matrix at both loads (10 N and 50 N) 
and at both sliding speeds only up to 5 wt % of reinforcement. At a 
sliding speed of 1 m/s and a load of 10 N, the wear loss exhibited a 
decreasing trend, dropping from 0.0053 g at 0 % TiB2 content to 0.0047 
g at 2.5 % TiB2 content, and further to 0.0044 g at 5 wt % reinforcement 
content. However, as the reinforcement content increased from 5 to 7.5 
%, the wear loss subsequently increased to 0.0051 g. A similar trend was 
observed at a higher load of 50 N, with wear loss decreasing from 
0.0219 g to 0.0177 g as the reinforcement content increased from 0 to 5 
wt %. Nevertheless, the wear loss increased again to 0.0207 g at 7.5 wt % 
TiB2. Similarly, at a sliding speed of 3 m/s, an increase in reinforcement 
content from 0 to 5 wt % led to a reduction in wear loss from 0.0025 g to 
0.0018 g at a load of 10 N, and from 0.0204 g to 0.0131 g at 50 N. 
However, the wear loss subsequently increased to 0.0022 g and 0.0184 g 
at 7.5 wt % under 10 N and 50 N, respectively. From the above results, it 
is observed that the pure Aluminum Alloy 5052 alloy exhibits the 
maximum wear loss, thus the minimum wear resistance followed by AA 
5052/7.5 % TiB2 composite. Moreover, the composite reinforced with 5 
% TiB2 content showed the best wear resistance among all the com-
posites irrespective of load and sliding speed. The difference in the wear 
loss between different compositions of composites is significantly lower 
at 10 N compared to a higher load of 50 N where the difference between 
the different composites is comparatively significant. 

The increased wear resistance with the increasing percentage con-
centration of the TiB2 particles can be attributed to the increase in the 
hardness of MMCs resulting from the addition of hard TiB2 particles in 
the matrix. The hard TiB2 particles act as barriers, effectively resisting 
the wearing down of the composite and protecting the underlying matrix 
from damage. It also helps to arrest dislocation movements within the 
matrix thereby significantly reducing material degradation and even-
tually wear loss [67]. Further, the reinforcement particles and good 
interface bonding of the matrix will eventually result in increasing the 
load carrying capacity of composites by transferring loads from 
Aluminum matrix to the hard ceramic particulates plays a crucial part in 
increasing the wear resistance [68–70]. However, due to the increased 
porosity at higher weight percentage of TiB2 reinforcement, the wear 
resistance gets decreased due to the subsurface crack propagation, as 
reported in Ref. [71]. The higher percentage of TiB2 leads to poor 
wettability resulting in formations of clusters of TiB2 particles.These 
particle clusters increase the stress concentration within the material 
leading to localised failure and increased wear. Therefore, in conclusion 
the wear loss is a synergistic function of a) hardness improvement due to 

reinforcement b) bonding strength/interfacial strength at reinforcement 
and matrix interface. The former factor dominates the latter at low 
concentrations while the vice versa happens at higher concentrations 
due to cluster formation. 

It can also be seen from Figs. 9 and 10 that the wear loss rises with an 
increase in the applied normal load at both sliding speeds. The wear loss 
is maximum at higher load of 50 N at both sliding speeds for all com-
positions. This is in agreement with Archard’s wear law [72]. The 
increased wear loss at higher loads results from severity of delamination, 
increased temperature at contact surface and increased penetration of 
hard particles [24,26,59]. The delamination exhibited at higher loads 
results in the higher wear loss of composites [73]. The increased load 
also results in more penetration of hard asperities of harder counter 
surface to the softer pin surface which increases the micro cracking, 
deformation of the softer pin surface which ultimately results in the 
more wear [24,74]. Further, the increase in temperature at contact 
surface at higher loads also adds to the increased wear loss due to the 
softening of material at higher increased temperature and this increasing 
the tendency of delamination [59,75]. 

The wear loss at 3 m/s is significantly lower than the sliding speed of 
1 m/s for all test combinations. The decreased wear loss at higher sliding 
speeds were also previously reported [76,77]. Higher sliding speeds lead 
to a self-polishing effect by gradually eliminating surface roughness 
through shear forces. This enhances surface conformity and reduces 
susceptibility to abrasive wear. Moreover, higher sliding speeds aid in 
expelling wear debris from the contact zone, preventing particle 
entrapment and subsequent third body wear. Also, at higher sliding 
speeds, the heat generated due to friction leads to the formation of tri-
bofilms which prevent direct contact between the sliding surfaces, 
thereby reducing the wear [77–79]. 

3.3.3. Wear mechanisms 
The FESEM images depicting wear tracks from tribo-tests conducted 

under a load of 10 N and a sliding speed of 1 m/s are shown in Fig. 11. In 
composite pins with lower concentrations of TiB2, the predominant wear 
mechanism is abrasion, where the harder steel counter body abrades the 
softer composite material. As the steel counter body slides against the 
softer composite material, it ploughs and removes material from the pin 
surface. This leads to the formation of wear tracks characterized by 
visible grooves and abrasion marks in the FESEM images with Fig. 11 (a) 
and (b). However, as the percentage of TiB2 particles increases in the 
composites, the hardness increases leading to adhesion and delamina-
tion of the material on the surface along with abrasion. At 7.5% TiB2 the 
hardness is more, however at higher reinforcement percentages the in-
crease in the matrix-reinforcement interface points and porosity levels 
leads to more chances of delamination as is evident from the FESEM 
images. This is due to the fact that matrix-reinforcement interface points 
and pores act as crack initiation sites and hence result in more material 
loss and hence more wear. For the pins with higher TiB2 concentration, 
the steel counter body experiences a higher resistance due to the 
increased hardness of the composite surface. This resistance causes 
localized adhesive interactions between the steelcounter body and pin. 
With continued sliding, the adhesive forces between the two surfaces 
exceed the strength of thecomposite material, leading to the formation 
of adhesive bonds between the steel disk and the pin. As the sliding 
continues, these adhesive bonds rupture, causing delamination of the 
pin surface and resulting in the transfer of material from the pin to the 
steel disk as evident from Fig. 11(d). Hence, the shift in wear mecha-
nisms with varying TiB2 concentrations can be attributed to changes in 
the sample hardness and its interaction with the harder steel disk. The 
predominant wear mechanisms observed in the study are abrasion and 
delamination. Increasing the percentage of TiB2 leads to a shift in the 
wear mechanism from abrasion to delamination. Also, more cracks and 
plastic deformation is visible in higher percentages of TiB2. Previous 
studies also suggest role of TiB2 in altering the wear mechanism e.g., 
incorporating TiB2 into Aluminum base alloy shifts the wear mechanism 

Fig. 10. Variation of wear loss at 10 N and 50 N and sliding speed of 3 m/s.  
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from abrasion to adhesion and delamination. Initially, the alloy endures 
abrasive wear, forming wide and deep grooves due to hard steel coun-
terparts. Increased TiB2 content leads to shallower and finer grooves, 
indicating a reduction in abrasive wear. Eventually, delamination, 
characterized by the material pull out, becomes the predominant wear 

mechanism [80,81]. This interaction between disc and pin also leads to 
Mechanically Mixed Layer (MML) which has a significant role in the 
COF and wear between the sliding bodies. The FESEM images also depict 
the role TiB2 plays in shifting the dominant wear mechanism from 
abrasion to delamination. The presence of reinforcement particles also 

Fig. 11. FESEM images of wear tracks at 10 N load and 1 m/s sliding speed for (a) AA 5052, (b) AA 5052/2.5% TiB2, (c) AA 5052/5% TiB2, and (d) AA 5052/7.5% 
TiB2. Insets subscripted as (1) show magnified views. 
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triggers formation of MML [82]. The FESEM images of the wear tracks 
provide visual evidence to support these explanations, showcasing 
distinct wear patterns corresponding to different TiB2 concentrations in 
the composites. 

4. Conclusions  

1. The Aluminum Alloy 5052/TiB2 reinforced composite has been 
fabricated successfully with varying percentage (0, 2.5, 5 and 7.5 wt 
%) of reinforcement using Stir casting technique. The effect of 
reinforcement on mechanical and tribological properties has been 
studied. 

2. The hardness of the composites increased by about 30 % with in-
crease in the percentage of TiB2.  

3. At a sliding speed of 1 m/s, the COF decreased first at 2.5 wt % TiB2, 
but increases continuously afterwards. At 3 m/s, the COF increased 
with increasing reinforcement content. Moreover, the COF for all the 
compositions decreased with an increase in sliding speed from 1 m/s 
to 3 m/s.  

4. The composite with 5 wt % TiB2 exhibited better wear resistance at 
both loads and sliding speeds. The wear resistance at low speed (1 m/ 
s) improved by 17 % at low load (10 N) and by 20 % at high load (50 
N). At high sliding speed of 3 m/s, the wear resistance improved 
substantially by 28 % at low load of 10 N and by 36 % at high load of 
50 N.  

5. The wear is significantly lower at higher sliding speed of 3 m/s 
compared to sliding speed of 1 m/s under both loads (10 N and 50 N). 
Moreover, wear loss increases with increase in normal load.  

6. The SEM analysis revealed distinct wear mechanisms for different 
compositions with primary wear mechanism transitioning from 
abrasion to adhesion and delamination with increasing TiB2 content.  

7. The results obtained suggest that the developed composites shall be 
helpful in various industrial applications under sliding conditions in 
general and marine applications in particular. 
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