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Abstract

Animal psychophysics can generate rich behavioral datasets, often comprised of many

1000s of trials for an individual subject. Gradient-boosted models are a promising machine

learning approach for analyzing such data, partly due to the tools that allow users to gain

insight into how the model makes predictions. We trained ferrets to report a target word’s

presence, timing, and lateralization within a stream of consecutively presented non-target

words. To assess the animals’ ability to generalize across pitch, we manipulated the funda-

mental frequency (F0) of the speech stimuli across trials, and to assess the contribution of

pitch to streaming, we roved the F0 from word token to token. We then implemented gradi-

ent-boosted regression and decision trees on the trial outcome and reaction time data to

understand the behavioral factors behind the ferrets’ decision-making. We visualized model

contributions by implementing SHAPs feature importance and partial dependency plots.

While ferrets could accurately perform the task across all pitch-shifted conditions, our mod-

els reveal subtle effects of shifting F0 on performance, with within-trial pitch shifting elevat-

ing false alarms and extending reaction times. Our models identified a subset of non-target

words that animals commonly false alarmed to. Follow-up analysis demonstrated that the

spectrotemporal similarity of target and non-target words rather than similarity in duration or

amplitude waveform was the strongest predictor of the likelihood of false alarming. Finally,

we compared the results with those obtained with traditional mixed effects models, revealing

equivalent or better performance for the gradient-boosted models over these approaches.

Author summary

The sorts of listening challenges faced by real-world listeners are rarely captured by most

laboratory-based auditory paradigms, particularly those testing animal models. However,

many labs are attempting to utilize more realistic experiments, and more complicated

behavioral paradigms require more sophisticated approaches to analyzing the resulting

data. Here, we used a new behavioral paradigm to test the ability of ferret listeners to iden-

tify target speech sounds and assess their ability to generalize across changes in pitch. To

make sense of the resulting dataset, we used machine learning to understand how trained

ferrets perform this task. Gradient-boosted regression and decision trees are well-
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established machine learning methods that do not require users to predetermine interac-

tion effects and are accompanied by visualization tools that allow insights into how multi-

ple factors ultimately shape behavior. We compare the use of gradient-boosted models to

more standard regression approaches and that this machine learning approach is ideal for

analyzing behavioral data in animal models.

Introduction

Psychophysics paradigms in non-human animals are often designed to yield tractable datasets

for relating brain and behavior. Most common laboratory-based paradigms rely on artificial sti-

muli presented within the confines of simple tasks—such as two-alternative forced choice para-

digms in which animals must discriminate a single sound token, or Go/No-Go tasks in which

animals detect a change in a repeating sequence of sounds. Such paradigms offer tight experi-

mental control, and can be successfully analyzed using standard statistical approaches such as

mixed effect models and more sophisticated approaches that allow, for example, the identifica-

tion of how and when non-sensory factors shape performance [1, 2]. Yet animals can be trained

to perform more complex tasks, generating rich behavioral datasets that potentially can require

new approaches for their interpretation. One promising approach for modeling both categori-

cal and continuous data is gradient-boosted decision and regression trees [3]. Not only are such

models powerful, but they are also interpretable through the use of tools that allow visualisation

of the contributions of variables and combinations of variables to prediction outcomes.

The general approach of the gradient-boosted decision and regression tree model is a form

of ensemble learning in which we use an initial weak decision tree to predict an outcome of a

trial and then iteratively build upon the error of the first tree (after calculating the loss) by fur-

ther splitting the data in a way that improves the model prediction. Once our loss plateaus or

we reach the maximum number of training epochs, we stop training the model and calculate

our test accuracy, or how well the model could predict our target variable on a held-out test set

of data. We chose this method as our data is inherently dense (from long periods of behavioral

training and testing) and tabular, which makes gradient-boosted regression and decision trees

an excellent candidate for the prediction of binary data (such as was the trial a hit or a miss)

and continuous data (such as reaction times) compared to a nonlinear neural-network-based

classifier [3]. Here, we highlight the utility of both the model itself and the visualization tools

available to understand what features the model finds informative and compare this approach

to more traditional mixed effects models.

We applied gradient-boosted models to animal psychoacoustics data designed to probe the

role of pitch in perceptual invariance and auditory scene analysis. Pitch is a fundamental fea-

ture of a person’s voice, and a hallmark of human voice processing is recognizing a word

regardless of voice pitch. Differences in pitch allow us to separate competing voices, while

sounds are grouped together over time into ‘streams’ if they share a common pitch [4]. How-

ever, it is not clear whether the ability to use pitch continuity to link sounds into streams is

uniquely human or whether it can be considered a more general feature of the mammalian

auditory system. To address such issues, we trained ferrets to detect the word “instruments”

within a stream of other randomly drawn non-target words (Sollini and Bizley, in prep.).

Within a trial, all word tokens were drawn from a single female or male voice, and the whole

stream could be shifted upwards or downwards in fundamental frequency (F0, which deter-

mines pitch). The F0 of each word within a stream could also be randomly shifted to assess

whether pitch contributes to streaming. We collected 20487 trials of data from 5 animals. We
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analyzed these using gradient-boosted models to address two research questions: firstly, can

trained ferrets generalize their learned discrimination across variations in pitch, and secondly,

whether, like humans, animals can use pitch as a streaming cue to link sounds together over

time.

Through the application of gradient-boosted models, we were able to demonstrate that

while performance was robust to changes in pitch, shifting the F0 of words within a trial signif-

icantly slowed reaction times and elevated the likelihood of a false alarm, providing evidence

that ferrets, like humans, use pitch to form perceptual streams. Moreover, this approach

allowed us to identify words that ferrets consistently confused with the target word, suggesting

that errors were not simply random lapses in attention. Analysis of acoustic features of non-

target words identified spectro-temporal similarity but not duration or waveform similarity as

a predictor of the likelihood of a false alarm.

Methods

Ethics statement

All experimental procedures were approved by local ethical review committees (Animal Wel-

fare and Ethical Review Board, at University College London and the Royal Veterinary Col-

lege, University of London, and performed under license from the UK Home Office (Project

Licenses PP1253968, 70/7267).

Animals. Subjects were five pigmented ferrets (Mustela putorius, female) who started

training from 6 months of age and were tested until ages between 18 months and 4 years of

age. Animals were maintained in groups of 2 or more ferrets in enriched housing conditions,

with regular otoscopic examinations to ensure the cleanliness and health of ears. All animals

were trained in the behavioral task, using water as a reward. During testing periods, animals

were water-regulated. Animals were tested twice daily from Monday to Friday, with free access

to water from Friday afternoon to Sunday afternoon. Each ferret received a minimum of 60

ml/kg of water per day through a combination of task performance and supplementation with

a wet mash made from water and ground high-protein pellets. Each ferret’s weight and water

consumption were logged daily throughout the experiment.

Equipment. We controlled the task and stimulus presentation through an RZ6 controller

(Tucker Davis Technology, Florida, USA) using OpenEx with custom-written “GoFerret” soft-

ware [5] on a Windows PC. The right and left-hand speakers were calibrated to match the

sound levels using a Bruel & Kjaer measuring amplifier (Type 2610). We presented each trial

at a mean sound level of 65 dB SPL; stimuli were scaled to be constant in sound level across tri-

als and talker types.

Stimuli. Stimuli were composed of a sequence (or ‘stream’) of consecutively presented

words, all of which came from the same talker. Continuous speech from two talkers (1 male, 1

female) reading the same passage from the Spoken Corpus Recordings in British English

(SCRIBE) database was manually segmented into words and linked together with a minimum

gap of 0.08s of silence between words. The audio files were recorded at 20000 Hz but

upsampled to 24,414 Hz for presentation.

Task. In a sound discrimination task, we trained five ferrets to recognize the target stimu-

lus (the word ‘instruments’) against 54 other non-target stimuli (which were also English

words) in a stream. Each stream (or string of words) consisted of a series of non-target words

and one occurrence of the target word, which could occur anytime from 500 ms to 6.5 s after

the onset of the trial (with the target timing drawn from a uniform distribution). As well as

being preceded by non-target words, the target was followed by a sequence of non-target

words that exceeded the duration of the response time (2s, see below). Streams were
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constructed de novo at the start of each trial with non-target words drawn randomly (with

replacement) from a pool of 54 non-target words per talker.

The whole trial was comprised of word tokens from the same talker and presented from

either the left or right speaker. Once trained, animals were required to initiate a trial by nose-

poking at a center port that contained an infrared sensory and water delivery system. They

were required to maintain contact until the target was presented. Once the target sound was

presented, they were required to move to the response port on the same side as the stimulus

presentation. A correct response required the animal to release the center port within 2s of the

target word onset and correctly lateralize the sound stream (although, in practice, animals

rarely made localization errors). Catch trials (25% of all trials) contained only non-target

words and were constructed to be equal in duration to the non-catch trials. On catch trials, the

animal was required to remain at the center port and received a water reward from the central

port at the end of the trial if they did so.

Training. Initially, ferrets were trained to move between the 3 lick ports (left, center, and

right side) by alternating water reward at each port. Once this was accomplished (usually

within 1 to 2 sessions), they were trained to lateralize the target sounds (‘instruments’). This

was achieved by rewarding the initiation of a trial (a response at the center port) and present-

ing several repetitions of the target sound from one of the lateral locations (either left or right).

The ferret would receive a second reward only if they responded at the corresponding location.

Once ferrets could perform this target lateralization task at a high rate of performance (>90%

correct) over =>2 sessions, the delay between initiating the trial and presenting the target

word was systematically increased to 5 seconds over sessions, requiring that performance

remained above 80% correct as the delay was increased. Once the ferret was capable of waiting

5 seconds at the center port for target presentation and accurately lateralizing the stimulus, we

reduced the target presentation to a single-word token. We then gradually introduced non-tar-

get words before and after the target. Non-target words were initially presented with a 60 dB

attenuation cue that was gradually reduced until animals were performing with the target and

non-target at an equivalent sound level. 3/5 animals were trained first on the female talker and

then the male talker, whereas F2105 and F2002 were trained with both simultaneously. All

word tokens within a trial were drawn from the same talker, but the talker identity was ran-

domly drawn across trials. Even once trained, we included a proportion of trials (25–50%) that

included a 10 -20 dB attenuation cue. These trials were excluded from the analysis but helped

maintain the animals’ motivation to perform the task. 25% of trials were catch trials in which

the target word was not presented. Baseline training varied in duration from 3 months to 8

months.

Pitch roving. Animals were considered fully trained once they consistently performed

above 70% correct on trials without an attenuation cue (chance performance is approximately

33% given the 6s trial duration and a 2s response window, i.e., 2s / 6s = 1/3). Once trained on

the natural (‘Control’) F0 trials, we introduced F0 (pitch) roving. For each talker, we used

STRAIGHT (which separates source and resonator information, therefore allowing manipula-

tion of F0) [6] to shift the F0 up or down by 0.4 octaves. This resulted in F0 values of 109 and

144 for the male voice, where the natural F0 was 124 Hz, and 144 and 251 Hz for the female

voice, where the natural F0 was 191 Hz.

In inter-trial roving, the pitch of the entire trial shifted up or down, whereas, in intra-trial

roving, the F0 value of each word was randomized. As in training, all word tokens within a

trial came from the same talker.

Data analysis. Any trial has four possible outcomes: hit, correct response, miss, and false

alarm. A hit was defined as moving away from the center port (‘release’) and responding at the

target location within 2s of the target word presentation. A correct rejection was defined as

PLOS COMPUTATIONAL BIOLOGY Machine learning reveals multiple contributors to auditory task performance

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011985 April 16, 2024 4 / 25

https://doi.org/10.1371/journal.pcbi.1011985


remaining at the central port for the entire duration of the trial (on a catch trial), a miss as fail-

ing to leave the central port within 2s of the target word presentation, and a false alarm as

releasing from the center port before target word presentation or the end of a catch trial. False

alarms immediately terminated the sound presentation and elicited a time-out (signaled by a

modulated noise burst). Time outs lasted 2 seconds, during which the ferret could not reini-

tiate a trial.

We define p(hit) = n hits/(n hits + n misses), and the proportion of false alarms (FA) as p
(FA) = n false alarms/[n hits + n misses + n correct rejections + n FA]. We consider correct

responses (C.R.) as either a hit or a correct reject, where p(correct) = [n hits + n correct rejec-
tions]/[n hits + n misses + correct rejections + n FA]. We also calculated a sensitivity metric (d’)

[7], where d0 = z(p(hits)) − z(p(FA)), where z represents the normal distribution function. We

define reaction time as the central port release time rather than the lateral response time rela-

tive to the timing of the target word. To analyze whether word tokens systematically elicited

behavioral responses, we defined the response time as the exit time from the central port rela-

tive to trial onset. All data analysis, from behavioral metrics to computational models, was pro-

grammed using Python 3.9.

Computational models. The general approach of the gradient-boosted decision and

regression tree model is a form of ensemble learning in which we use an initial weak decision

tree of a depth larger than 1 to predict an outcome of a trial based on our behavioral data and

then iteratively build upon the error of the first tree (after calculating the loss) by constructing

the next tree based on the residuals of the previous tree. Once the loss plateaus or a maximum

number of training epochs is reached, training stops and test accuracy is calculated by assessing

how well the model predicts a held-out test set of data. We chose this method as our data is

inherently dense (from long periods of behavioral training and testing) and tabular, which

makes gradient-boosted regression and decision trees an excellent candidate for the prediction

of categorical and continuous data compared to a nonlinear neural-network-based classifier [3].

Linear mixed effect and generalized linear models are commonly used alternatives that

allow trial-based analysis of categorical or continuous behavioral data. While powerful, such

models can fail to capture non-linear or non-monotonic relationships that might be present in

behavioral data. Machine learning approaches offer an alternative model-free approach to

uncovering statistical structure in rich behavioral data sets such as those typical of animal

behavioral work. Models were generated using LightGBM [8]. Gradient-boosted regression

trees were used to model reaction time data. Gradient-boosted decision trees were used to

make classification models for binary trial outcomes (hit vs. miss and false alarm vs. correct

rejection). To optimize hyperparameters for this model, we implemented a grid search using

optuna [9].

We generated 5 models to address our research questions. Two classification models were

developed; one considered determining whether a ferret missed a target word (miss vs. hit

model), and the second considered the factors that influenced the likelihood of a false alarm/

correct rejection of a non-target word (false alarm/correct reject model). Our reaction time

model used gradient-boosted regression to determine the parameters influencing the animals’

reaction time to the target word. Our response time models (one each for male and female

talker trials) predicted the release time within a trial based on the timing of the words. They

were used to assess whether animals made systematic false alarms with particular words. Hyper-

parameters for model fitting are provided in the supplemental tables (S15 and S16 Tables).

We determined which features were significant using cumulative feature importance,

which sums the contributions of each variable across all of the trees in which it is utilized, and

permutation testing, which shuffles a feature of our data (e.g., the target F0) and then selects

the drop in performance the model has due to that feature being shuffled. We generated
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permutation importance plots from the sci-kit learn (sklearn) package to quantify the extent to

which shuffling any given feature decreased the quality of the model, thereby establishing

which features contributed significantly to model performance. The classification models were

tuned using binary log loss with an evaluation metric of binary log loss across 10,000 epochs

and implemented early stopping of 100 epochs. The regression models implemented the l2

loss function over 1000 epochs with an early stopping of 100 epochs. For the classification

models, all hyperparameter optimization minimized binary log loss, whereas, for the regres-

sion (reaction time) model, hyperparameter optimization minimized the mean-squared error

(l2 loss function).

The regression models’ test and train mean-squared error was calculated using 5-fold cross-

validation. The train and test accuracy and balanced accuracy were calculated using 5-fold

cross-validation for the classification models. Noise floors were calculated for the regression

models by calculating model performance when utilizing trials in which the relationship

between reaction / response times was randomly shuffled 1000 times, while keeping the hyper-

parameters constant. We then used Shapley Additive values to assess parameter influence on

the trial outcome. For the classification models, this was the likelihood of a miss/hit or false

alarm; for the regression models, this was the reaction time. To visualise the contributions of

model features (i.e., feature importance and cumulative feature importance), we used the

SHAP package [10], an implementation of Shapely Additive Importance features to elucidate

explainability from the typically ‘black-box’ regression and classification tree models. The

SHAP package allowed us to plot partial dependency plots to see how the impact of the model

would vary as inter-related features changed (such as talker gender and trial number). For the

categorization models, we applied subsampling of the data to equalize trial counts; to force the

model to weight trial types with equal importance, we sub-sampled control F0 trials to match

intra and inter-F0 roved trials. To weigh the trial outcomes with equal importance, we sub-

sampled hit responses to match the number of miss responses for the miss/hit classification

model and sub-sampled non-false alarm responses to match the number of false alarm

responses in the false alarm model.

For the regression model that calculated the absolute response time within the trial (rather

than relative to the target), we used sub-sampling to create a uniform distribution of words.

This sub-sampling, or bootstrapping, was done so our gradient-boosted regression tree model

wouldn’t associate higher-frequency words with a higher likelihood of a false alarm or

response just because of its higher frequency. However, word sampling was not always fully

independent, particularly for a subset of trials in two animals in which some of the words were

programmed to occur 80% more frequently than other words in order to optimise data collec-

tion for neural recordings. Thus, to achieve something close computationally to a mathemati-

cally perfect bootstrapping procedure, we created a loop for each of the 54 non-target words,

found the trials that contained that non-target word, and placed them into a data frame.

We then sub-sampled this resulting data frame to 700 samples (the minimum number of

counts across all words in the original data frame) unless the non-target was a naturally high-

frequency occurring word, where it was sub-sampled to 50 samples or skipped entirely. After

all 54 words were iterated through in order, the resulting sub-sampled data frame was

appended to an array. Next, we repeated the same process but went through the non-target

words in reverse order to ensure some words wouldn’t be over-sampled in the resulting distri-

bution. This whole process of iterating through all the non-target words and flipping the order

of iteration was repeated 18 more times (S5(A) and S5(B) Fig). The results reported are from

this subsampled data frame. However, we repeated the analysis using the natural (biased) fre-

quencies of word occurrences and obtained very similar results (S5(C) Fig), illustrating that

the GBM does not require balanced data to yield sensible results.
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We implemented generalised linear mixed effect models and linear mixed effects models

using the rpy2 and statsmodels packages in Python using a binomial model (logit link) for cat-

egorical data or a gaussian model (identity link) for reaction time data.

Results

Ferrets can discriminate speech sounds, and their performance is robust to

pitch shifting

Ferrets were trained to detect the target word “instruments” within a stream of randomly

drawn non-target word tokens. Subjects initiated a trial by nose-poking in a central port that

contained an infrared sensor and water delivery spout and were required to remain at the cen-

ter port until the presentation of the target word. On each trial, all tokens came from the same

talker and position in space, and ferrets were rewarded for responding at the lateral port adja-

cent to the speaker within 2s of the target word (Fig 1A and 1B). On catch trials, in which only

Fig 1. Task design and basic behavioral data. A, Schematic of the experimental booth. To trigger a trial, ferrets had to

nose-poke a center port that contained an IR sensor and water port. This triggered the presentation of a stream of

words from either the left or right speaker (Image source: Journal of Genetics, Vol. XI, No. 2, Public Domain, https://

commons.wikimedia.org/wiki/File:Ferret-Polecat-Hybrid.jpg). B, Ferrets were trained to remain at the center until the

presentation of the target word (‘instruments’) and received a water reward at a lateral port if they correctly released

within 2s of target presentation and responded to the lateral port whose side matched that of the speech stream. C,

Catch trials did not contain the target word, and the ferret was rewarded if she remained at the central port for the

duration of the trial. D, Behavioral metrics across animals distributed by talker type. Bars indicate the across-animal

average; symbols show the individual animals. Trials are separated according to the identity of the talker and the pitch

roving condition (control = no pitch shifting, inter = F0 shifting of the whole trial, intra = F0 shifting of the tokens

within a trial). (D) % correct over all trials, E, hits; F, false alarms; G, sensitivity (d’). H, impact of F0 on hit rate (top)

and false alarm rate (bottom). False alarm rates are plotted separately for intra-trial pitch roving because the F0

changed from token to token, making it impossible to assign a false alarm to a distractor of a given F0. I, Violin plot of

reaction times during correct responses on trials in which the target was correctly identified for all animals, separated

by talker type.

https://doi.org/10.1371/journal.pcbi.1011985.g001
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non-target words were presented, ferrets were rewarded for remaining at the central port (Fig

1C). Ferrets were trained with a single male and single female voice. Once performance was

stable, trials were introduced in which the F0 of the whole trial was shifted (‘inter-trial roving’)

or individual word tokens within the trial were shifted (‘intra-trial roving’). We will first pro-

vide an overview of the data before using gradient boosted decision trees to understand and

quantify the factors that shape the animals’ performance in this task.

Ferrets’ were able to learn and perform the task across control and F0-shifted conditions;

performance ranged from 57%-85% correct for all animals and conditions, where 33% would

be considered chance performance (Fig 1D). Hit rates were generally high (Fig 1E) and false

alarms low (Fig 1F) for both talkers and both types of pitch-shifted trials. Overall, performance

was higher for the female voice, with a small decrease in d’ evident for pitch-roved trials com-

pared to natural F0 ones (Fig 1G). Nonetheless, all d’ values were well above 1, indicating the

animals were well able to perform the task.

To understand whether ferrets form a pitch-tolerant representation of the target word, we

considered the impact of F0 changes on performance (Fig 1D–1F). Two-way repeated mea-

sures ANOVAs with factors talker (male/female) and rove type (control / inter / intra) showed

that for hit rates, there was a significant effect of talker and significant talker x rove interaction,

but no significant pairwise comparisons across pitch roved conditions (S1 and S2 Tables). For

false alarms, there was again a significant effect of talker, rove, and talker x rove interaction,

with posthoc comparison showing that for the female talker control, F0s elicited significantly

lower false alarm levels than either rove type but that the rove types were not significantly dif-

ferent from each other (S3 and S4 Tables). For sensitivity (d’) measures, there were again sig-

nificant effects of talker and rove type, but post hoc comparisons showed no rove conditions

to be significantly different from each other (S5 and S6 Tables). Therefore, overall, while sub-

jects were better on female talker trials than on male talker trials, the performance on inter and

intra-trial roved trials was largely equivalent (Fig 1D–1F). When the performance was broken

down according to the actual F0 value, we observed there was a modest influence of F0 on hit

rates, such that the highest hit rates were observed for the female talker’s up-shifted F0 trials

(Fig 1H). False alarms, in contrast, were lower for the control F0 values for both the male and

female talkers.

Reaction times varied by ferret and according to the talker (S1(B) Fig). The trend for lower

hit rates at lower F0 and for the female voice to elicit faster reaction times may be a conse-

quence of training, as 3/5 subjects were initially trained on only the female talker. However,

while the hearing range of ferrets fully encompasses that of humans, their frequency resolution

is poorer and most notably so at the lowest audible frequencies [11], and this too may limit

performance at the lowest F0s.

These basic behavioral metrics are designed only to show that ferrets can successfully dis-

criminate a target word from non-target words despite variation in F0. We now turn to gradi-

ent-boosted models (GBMs) to further consider how acoustic and non-acoustic factors

influence individual trial outcomes.

Introduction to gradient boosted models

Gradient boosting is a supervised machine learning algorithm used for classification and

regression problems and is particularly advantageous due to the tools available to visualize

how a model exploits information to perform the task. The basic principle is that decision

trees are built by splitting observations based on feature values, with the algorithm seeking and

selecting a split that results in the highest gain in information by comparing predicted out-

comes to observed ones. We chose this machine learning approach as our data is abundant in
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sample size and tabular. While its application to animal behavioral work is to our knowledge

novel, this scenario of structured, dense data is ideal for gradient-boosted decision trees, as this

type of method has often been used in recommender systems [12] as well as economic predic-

tive modeling for human behavior in customer loyalty [13]. A machine learning approach is

ideal because it can uncover non-linear dependencies in the data without users being required

to predetermine interaction effects in their model. Moreover, we can consider multiple stimu-

lus features, such as the talker and pitch of the word, as well as the trial history parameters

(was the previous trial correct, was the previous trial a catch trial) and non-stimulus features

(such as the timing of the trial within the session, the time of the target word within the trial,

and the side that the animal was required to respond) that may influence performance but do

not necessarily inform our experimental hypothesis.

We used lightGBM [8] to implement a gradient-boosted machine (GBM) approach. We

considered two types of models—decision-tree models that performed categorical discrimi-

nations, for considering whether responses to targets were misses or hits and whether

responses to catch trials were false alarms or correct rejections, and regression tree models to

predict continuous reaction time data. In each case, we trained models using 5-fold cross-

validation and used held-out data to report both the accuracy and balanced accuracy (which

is particularly helpful for data in which observations are unequal in number between catego-

ries and where accuracy may, therefore, be overinflated). To assess which variables were uti-

lized by the model, we used two metrics; feature importance and permutation importance.

The GBM decision and regression tree method consists of many trees, and features will

potentially be used many times to split the data; to understand the contribution of a feature,

the gain provided must be aggregated across trees. Therefore, the feature importance metric

assesses how a given feature improves the model’s accuracy by summing the gain provided

by that feature across all of the times that it’s used in the model. A higher gain implies that

the feature is more important for generating predictions. In lightGBM, the loss functions

(from which gain is computed) are the mean squared error (MSE) for regression tasks and

the log loss for classification tasks. Its units are the same as the target variable, seconds, and

its upper and lower bounds are minus to positive infinity. Permutation importance provides

a complementary measure of the importance that any given feature provides to the model.

The permutation feature importance is the decrease in a model score when a single feature is

randomly permuted. The higher the permutation importance, the larger the contribution a

variable makes to the model; a score of 0.1 for a model with 70% accuracy reflects a drop to

60% accuracy for a classification problem. One caveat with the permutation importance is

that it assumes that all variables are independent, so it can underestimate the contribution of

a given variable in some circumstances [14].

To visualise the way in which variables impacted model predictions, and how variables

interact with one another we used SHapely Additive exPlanations (SHAPs) which are a com-

mon way of understanding machine learning models based on Shapely values. Shapely values

were derived from cooperative game theory and represent the average contribution of each

feature to all possible combinations of features [10]. SHAPs extend this to machine learning

models; for every feature and every observation in the training set, we obtain a SHAP value,

and therefore, there are as many SHAP values as there are observations. For a classification

task the SHAP values are expressed as the log(odds) so can be directly interpreted as the impact

of a given feature on the probability e.g. of making a miss. For our regression models, the

SHAP scores are the impact on reaction times, expressed in seconds. Here we use SHAP sum-

mary plots to provide intuitive and interpretable visualizations of the effects of all variables in a

model and partial dependency plots to visualize combinations of features of interest. The par-

tial dependency plots are particularly helpful for understanding how, for example, behavior
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varies across individual subjects and for examining the potentially non-linear interactions

between features that the model has learned to exploit.

Talker identity drives miss responses

We used lightGBM [8] to model the likelihood of a miss vs hit response using only trials in

which the target sound was presented(i.e., excluding false alarms and catch trials). The vari-

ables provided to the model were: the talker (male/female), the side (left/right) of the audio

presentation, the trial number (in the session), the subject identity (ID), target presentation

time (within the trial), the target F0, whether the previous trial was a catch trial, whether the

previous response was correct, and whether the F0 of the non-target word preceding the target

matched that of the target (non-target F0 = target F0, this selects intra-trial roved trials elimi-

nating those trials where by chance the word before the target matched the target F0).

The performance of the miss/hit model was reasonable despite the sparsity of miss

responses in the behavioral data, with an average balanced accuracy on our a training set of

62.17% and an average test balanced accuracy of 62.09%. We eliminated factors that either did

not significantly increase the cumulative feature importance plot (Fig 2A) or if a permutation

test that randomized the variable in question did not impact model fit (Fig 2B). Thus, trial his-

tory factors (the past trial was correct or a catch trial) and the preceding non-target F0 = target

Fig 2. Talker identity is the strongest predictor of misses. A, the elbow plot of cumulative feature importance over trial features; B, permutation

importance bar plot of the features in the correct hit/miss model; C, SHAP feature importances of the miss/hit model; D, SHAP partial dependency plot

depicting the SHAP impact over each ferret ID color-coded by target F0. E, SHAP partial dependency plot showing the SHAP impact over each talker type

color-coded by target F0. Gray bars indicate the distribution of the number of observations across variables.

https://doi.org/10.1371/journal.pcbi.1011985.g002
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F0 parameter were eliminated. For the remaining features, the feature importance metrics,

permutation tests, and SHAP feature values were all in concordance with each other, with only

minor differences in the ranking of features. The top three features were the talker (the male

talker increased the probability of a miss, Fig 2C), the side of the audio presentation (which

was idiosyncratic across animals, likely reflecting their own individual biases, see S2(B) Fig)

and the trial number (with trials earlier in the session reducing the likelihood of a miss, and

later trials being associated with higher miss rates). The target presentation time within the

trial was significant when assessed by feature importance metrics and not when assessed via

the permutation test (S2 Fig). In any case, there was not a strong or consistent relationship

between miss probability and target time across animals, as shown by the lack of consistent

stratification in the SHAPs plot examining the target presentation time impact for each ferret.

The F0 of the target sound also had a small but significant effect, which varied by ferret (Fig

2E). Only 3/5 animals had stratified miss probabilities which suggested higher F0s were more

likely to elicit false alarms. In contrast, one animal (F1702) showed the opposite pattern the

final animal (F2002) showed no consistent pattern. Whether the non-target word that pre-

ceded the target word was matched in F0 did not significantly influence the likelihood of miss-

ing. We conclude that the talker’s identity was the single biggest stimulus factor that altered

the likelihood of missing, with the F0 of the target word having a modest effect in some ani-

mals. Changing the F0 from word token to word token did not change the likelihood of cor-

rectly detecting the target.

False alarms are influenced by talker identity and F0

Next, we modeled whether a subject would false alarm based on all trial types, using the follow-

ing features: the talker, the pitch (F0) of the trial or for intra-trial roved trials the F0 of the last

non-target word in the trial, the side of audio presentation, the trial duration, the time elapsed

since the start of the trial, the trial number within the experimental session, the ferret ID,

whether the past response was correct, whether the past trial was a catch trial, and whether

there was intra-trial F0 roving. The false alarm model had above-chance accuracy (mean test

accuracy of 61.54% over 5-fold cross-validation; balanced accuracy 61.46%) and returned the

following as the most significant contributors: the time elapsed since the trial started, the trial

number, the ferret ID, the non-target F0, the audio side, and whether the trial was intra-trial

F0 roved (Fig 3A, 3B and 3D).

In contrast to the miss model, the strongest determinants of whether an animal was likely

to false alarm were timing parameters (time in the trial and trial number within the session)

and the individual ferrets. Partial dependency plots (S3 Fig) showed that two ferrets were more

likely to false alarm early in the trial, one late in the trial, and two animals showed unstratified

responses, implying they were not systematically influenced by this parameter (S3(A) Fig).

Trial number, although significant, did also not show clear stratification when considered by

animal (S3(H) Fig).

The speech sound F0 and talker both impacted the likelihood of FA, with the partial depen-

dency plot showing that low F0 words spoken by the female talker were most likely to elicit an

FA. In contrast, the control F0 for the female talker was least likely to elicit an FA (Fig 3D and

S3(C) Fig). The audio side and intra-trial roving also contributed to the model: the audio side

was again idiosyncratic across animals (S3(B) Fig). Whether or not word tokens within a trial

varied in F0 (i.e., intra-trial roving) contributed a significant effect in the predicted direction

(i.e., intra-trial roving was more likely to elicit an FA), but only 3 / 5 ferrets showed this, and

overall, it was a small effect (Fig 3E).
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In summary, the FA model suggests that non-acoustic factors are the key drivers in whether

animals false alarm with only a small contribution of acoustic factors. Pitch-shifting, particu-

larly within trials, had small but measurable effect on false alarm rate.

Gradient boosted regression of reaction time data reveals the impact of

pitch on target detection and streaming

Given our performance measures were generally quite high with, in particular, a very limited

number of miss trials with which to explore whether F0 changes impacted performance, we

focused next on reaction time (RT) measures. To explore whether RTs provided a more sensi-

tive measure of how acoustic and task parameters influenced performance, we used gradient-

boosted regression [8]. In our RT model, derived from responses from correct non-catch trials,

we considered the following factors: ferret ID, talker (male or female), time to target presenta-

tion (within a trial), the trial number (within a session), the side of audio presentation, the tar-

get F0, whether the F0 changed from the preceding non-target word to the target word

(preceding F0 = target word F0), whether the past trial was a catch trial, and whether the past

trial was correct. Our test-set mean squared error (mse) using 5-fold cross-validation was

0.102s compared to a noise floor (calculated by randomizing the relationship between trials

Fig 3. Acoustic and trial timing factors influence false alarms. A, elbow plot depicting the cumulative feature importance of each factor used in the false

alarm decision tree model; B, Permutation importance plot. C, SHAP feature importance values; D, partial dependency plot depicting the SHAP value over

whether the trial was intra-trial roved color-coded by F0. E, partial dependency plot showing the SHAP value (representing the impact on the probability

the trial would be predicted as a false alarm) over ferret ID color-coded by whether the trial was intra-trial roved; Gray bars illustrate the relative proportion

of trials across categories.

https://doi.org/10.1371/journal.pcbi.1011985.g003
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and reaction times) test mse of 0.133s (train mean-squared error = 0.092s, compared to a noise

floor train mse of 0.105s).

From the permutation test, the ferret ID, the talker, the side of the audio presentation, the

time to target presentation, the target F0, and trial number were significant factors (Fig 4B),

whereas SHAP values additionally considered whether the F0 of the previous word equaled the

target word as a significant factor in this reaction time model (Fig 4A). This difference in tradi-

tional permutation importance versus SHAP feature importance is not necessarily surprising,

as target F0 is correlated with the precursor = target F0 feature (i.e., if the target F0 is not a con-

trol F0, the likelihood of precursor not equalling target F0 increases), something which the per-

mutation importance method struggles to account for [14]. Interestingly, a traditional mixed

effects model (see below and Fig 7C) also returned whether the percursor was the same F0 as

the target word as a significant variable, with trials in which both shared the same F0 having

faster reaction times than those that did not. Similar to the miss/hit and false alarm/correct

reject performance models, the model heavily weighted both ferret ID and talker ID; reaction

times were longer for the male talker (in 4/5 ferrets, see Supplemental S4D, female slower in

F2105) and varied systematically across ferrets (Fig 4C). Overall, later targets had faster

Fig 4. Reaction time models establish a contribution of F0 to target detection. A, feature importances of the hit model; B, permutation feature

importance of each factor in the model; C, SHAP summary plot of ranked feature SHAP values of each factor in the reaction time model; D, partial

dependency plot of SHAP impact versus ferret ID color-coded by target F0; E, partial dependency plot of SHAP impact over talker identity color-coded by

the target F0.

https://doi.org/10.1371/journal.pcbi.1011985.g004
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responses (Fig 4B), 3/5 ferrets showed this effect, 1/5 had faster reaction times for earlier tar-

gets, and 1 showed no difference, S4(A) Fig).

Other factors that significantly predicted reaction times were the side of the audio (left

responses were slightly faster than right responses in 2/5 ferrets, right faster than left in 2/5

ferrets, 1/5 did not differ, S4(B) Fig. The model dissociated the effects of talker and F0, with

the effect of F0 being somewhat variable across ferrets, with three ferrets showing slower

reaction times for the lowest male talker F0, one showing slower reaction times for the pitch-

shifted F0 values, and one not showing any F0 effects (Fig 4C). Reaction times were faster

when the preceding non-target word had the same F0 as the target in 4/5 animals (S4(C)

Fig). Factors that did not influence reaction times—as assessed by the permutation test and

feature importance values were the trial number and trial history factors (the previous trial

was a catch trial / correct). Therefore, despite equivalent performance in inter and intra-trial

roving trials, by applying gradient-boosted regression to the reaction time data, we observe

that ferrets’ reaction times are faster when pitch provides a consistent streaming cue (Fig 4B

and 4E).

Gradient boosted regression tree models reveal some words elicit more

frequent false alarms

Our false alarm model implied that false alarms were potentially lapses in concentration

related more to timing than acoustic parameters. However, an alternative possibility is that

particular words drive false alarms independently of the characteristics of the talker. To inves-

tigate this, we used gradient-boosted regression to ask whether subjects consistently false

alarmed to particular non-target words by modeling the animals’ response time within a trial

based on the word token. We modeled data from the female talker and the male talker sepa-

rately using only the timing of each word token in a trial, relative to the onset of the trial, to

predict the animals’ eventual response time (again relative to the onset of the trial rather than

the onset of the target word as in the previous reaction time analysis). The prediction accuracy

of this model was excellent for both talker types, with a test mse of 0.0193s for the female talker

compared to a noise-floor test mse of 1.804s (see Methods) and a train mse of 0.0189s com-

pared to a noise-floor train mse of 1.792s. The test mse for the male talker was 0.0499s com-

pared to a noise-floor test mse of 1.959s, with a train mse of 0.0493s compared to a noise-floor

mse of 1.949s (5-fold cross-validation for both train and test metrics).

Reassuringly, in both male and female talker models, the presence and timing of the target

word had the strongest predictive power about when animals would release from the center

port (Fig 5A–5D). Nonetheless, some words consistently elicited behavioral responses as

shown by both feature importance and permutation importance metrics, suggesting that false

alarms are not simply temporary lapses in attention but rather that some words are perceived

as more similar to the target. Running models on each animal separately (Fig 5E and 5F) con-

firmed that these were repeatable errors across ferrets and talkers. To better understand the

model output, we asked whether any particular acoustic features predicted the errors the ani-

mals made.

Words tokens that elicit false alarms share spectrotemporal similarity with

the target

To explore the acoustic features that might underlie the animals’ false alarm pattern, we con-

sidered three types of measures; first, we used a cochleagram model to estimate the representa-

tion of each token at the auditory periphery (Fig 6A–6D), [15], with the caveat that this is a

human model, and therefore likely overestimates the frequency resolution available to the
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Fig 5. Gradient boosted models identify words that animals consistently false alarm to. A, elbow plot of cumulative

feature importance in the female talker model; B, same as A but for the male talker; C permutation importance of

features included in the female talker model; D, same as C but for the male talker; E, top 5 permutation importances

for each individual animal model for the female talker model; F, same as E but for the male talker.

https://doi.org/10.1371/journal.pcbi.1011985.g005
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ferrets). Second, we extracted the envelope of the amplitude waveform in order to explore the

role of the temporal envelope. Third, we considered the difference in the duration of each

word token and the target word. For the first and second measures, we compared the target

and each word token (for all tokens from the same talker) using, firstly, a point-by-point Pear-

son’s correlation, aligning the tokens at their onset. We also calculated the maximum of the

cross-correlation to acknowledge that we don’t a priori know which elements of a given token

animals might confuse (e.g. we might imagine the “idence” of “confidence” might be more

readily confused with “instr” of “instruments” than “con” might be).

To relate acoustic and behavioral measures, we calculated Spearman’s correlation coeffi-

cient between the permutation importance derived from the GBMs and each measure of

acoustic similarity. The maximum cross-correlation between the cochleagram provided the

strongest relationship (Fig 6G spearman’s r = 0.529), explaining 28% of the variance in the ani-

mals’ behavior. Differences in word duration also had a significant relationship with permuta-

tion importance (r = 0.424). However, this relationship is in the opposite direction of that that

would be predicted if animals were using word duration as a way to identify the target; words

with similar durations were associated with a smaller likelihood of a false alarm. Moreover,

words with the highest permutation importance can be seen to span a range of duration differ-

ences, further confirming the observation that, in all likelihood, similar duration is not a cue

that the ferrets are relying upon to solve the task. Neither of the amplitude waveform measures

produced statistically significant relationships. From this, we therefore conclude that animals

rely most heavily on spectrotemporal features of the word to perform the task.

Fig 6. Spectrotemporal similarity predicts false alarm likelihood. A, top to bottom: waveform, spectrogram, and

cochleagram of instruments for the female talker stimulus. The black line in the waveform plot indicates the extracted

envelope. B, top to bottom: waveform, spectrogram, and cochleagram of ‘more stable’, one of the words associated with

a high chance of response in our absolute reaction time model for the female talker. C, same as A but for the male

talker stimulus. D, same as B but for the word ‘exposure’, which was associated with a high rate of response in our male

talker absolute reaction time model. E, the Pearson’s correlation between the envelopes of the non-target words relative

to the target over each non-target word’s respective permutation importance. F, the maximum cross-correlation

coefficient between each non-target word and the target word over each non-target word’s respective permutation

importance. G, same as E but using the cochleagram representations of the target and non-target words rather than the

envelopes. H, same as F but for the cochleagram of each non-target word relative to the target word rather than the

envelope. I, the absolute difference in duration (length) between each non-target and target word over its respective

permutation importance.

https://doi.org/10.1371/journal.pcbi.1011985.g006
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Comparison to generalised linear mixed effect models

To compare the average performance of our gradient-boosted tree models with traditional sta-

tistical approaches, we used generalised linear mixed effects models (GLMMs) on the variables

used in our corresponding gradient-boosted regression tree models with ferret as a random

(group) effect. Like our gradient-boosted trees, we implemented five-fold cross-validation for

a fair comparison. In most cases, our gradient-boosted decision and regression tree models

were comparable to or better than the GLMM approach in terms of their model accuracy.

Reassuringly, many of the same statistical main effects were found with both approaches.

However, there were some specific instances in which the GBM approach was superior

(described below), and the available tools for the visualization of partial dependencies offered

the advantage that the non-linear interactions between features could be meaningfully

explored and quantified using SHAP values.

A binomial GLMM predicting hit vs. misses had an accuracy of 65.03% for the train split,

64.22% for the test split (this was comparable to the gradient-boosted regression trees, where

the model had an average train balanced accuracy of 62.17% and an average test balanced

accuracy of 62.09%). Mirroring the GBM, significant coefficients were returned for a talker,

audio side, and target pitch (for 191 Hz vs reference of 109 Hz, Fig 7A). Neither the ferret ID,

trial number nor target time parameters returned by the GBM were returned as significant by

the GLMM (S7 and S8 Tables).

Fig 7. Mixed effects models show equivalent or worse performance. Average coefficient values for the mixed effects

model predicting A, a miss response for a target trial, B, a false alarm for a catch trial, and C, the reaction time during a

correct target trial. Reference talker: male talker, reference F0: 109 Hz, reference side of audio: left side. Asterisks

represent mean p-values< 0.05. Error bars represent the mean standard deviation.

https://doi.org/10.1371/journal.pcbi.1011985.g007
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A binomial GLMM predicting false alarms during catch trials had lower accuracy than the

corresponding GMB model (balanced accuracy was 56.94% vs. 61.5% on the train data set, and

56.50% on the test dataset compared to 61.46%). The mixed effects GLMM returned signifi-

cant coefficients for the timing variables (time since the trial start, trial number and past

response was correct), as well as for the F0 of 191Hz vs. reference 109Hz (Fig 7B, S9 and S10

Tables). The GBM additionally assigned feature importance to ferret ID, and whether the trial

was intra-trial roving (Fig 3).

A linear mixed effects model predicting the reaction time for correct hit responses from

behavioural variables had a mse of 0.091s for the train dataset and 0.092s for the test dataset,

which was comparable to the mse of the gradient-boosted regression tree model (train

mse = 0.092s, test mse = 0.102s). Given the restriction that reaction times are between 0–2 s

(meaning there are few outliers and a relatively normal distribution), the similarity in perfor-

mance between the two approaches is perhaps not surprising. The mixed effects model recapit-

ulated the effects of the GBM, returning significant coefficients for talker (faster to female

voice), F0 (124 Hz faster than 109 Hz), trials in which the precursor and target had the same

F0 were faster than those in which they differed, reaction times were faster for targets later in

the trial and for later trials in the session (Fig 7C, S11 and S12 Tables). While the key results

were the same across analysis approaches, the ability to visualize SHAP scores for all observa-

tions from each animal across multiple variables still provides additional clarity, which could

be advantageous when trying to relate brain and behavior. For example, Fig 4D shows how tar-

get F0 impacts reaction time for each individual ferret, showing opposite patterns in F1702

and F2105, something that would not be apparent with the mixed effects model coefficients.

Where the GBM excelled was in predicting the absolute release time solely based on which

words were in a trial. To match the GBM approach, we used ordinary least squares (OLS)

regression, which, like the GBM, did not consider ferret as a factor, and again separated male

talker and female talker trials to generate two models. The mse for the OLS model was nearly

an order of magnitude larger than the GBM model, 0.15 and 0.19s, respectively for the male

and female talker models, compared to errors of 0.0193s and 0.049s for the female and male

talker for the GBM (S5(C) Fig, S13 and S14 Tables). Critically, the size of the coefficient for

‘instruments’ was barely greater than for the first-ranked non-target word in either model.

Although there was some similarity in the ranking of non-target words between the linear

regression and the GBM, the low overall model accuracy would make it hard to confidently

make conclusions about false alarm behavior based on the linear regression alone. This analy-

sis highlights that the GMB model has an advantage when predicting outlier behavior; false

alarms to individual non-target word tokens are inherently rare in trained animals, and there

is not a fixed response latency (as shown in the reaction time analysis) even if we can assume

that animals trigger responses to the onset of word tokens (which the strong relationship

between false alarms and cochleagram cross-correlation but not between correlation coeffi-

cients suggests is not the case). When performing the response time analysis with the GBM, we

subsampled data to ensure that word frequency could not erroneously bias the resulting mod-

els; however we repeated the modeling with the original (non-uniform) distribution of word

frequencies and the resulting permutation importance scores for non-target words were highly

correlated (S5(C) Fig, Spearman’s R = 0.72 and 0.87 for female and male talker models respec-

tively) suggesting that this subsampling was unnecessary.

Discussion

We describe a novel behavioral task in which animals are trained to recognize a target word

embedded in a series of non-target words and employed gradient-boosted models to analyze
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the subsequent behavior. The results of these models allowed us to understand that, like

humans, ferrets are able to form F0-tolerant representations of auditory objects and use F0 to

link sounds together into auditory streams. [16, 17]. The ability to identify and discriminate

sounds across pitch is likely to be a fundamental property of mammalian audition, as the pitch

of a vocal call conveys information about an individual’s size, age, and emotional state [18, 19].

We used gradient-boosted models to analyze the rich behavioral dataset we acquired com-

prising many 1000s of trials from 5 individual animals. We visualized the features that the

models used to make predictions using SHAPs feature importance measures and partial

dependency plots. This allowed us to understand not only what independent contributions

specific variables made to behavior but also how combinations of variables interacted. We

compared the output of the GBM models with traditional mixed effects models, which, in

most cases, were similar or slightly worse in overall model accuracy and returned very similar

main effects. The GBM approach offered two advantages; firstly, the visualization tools are

beneficial for understanding how different animals differentially weigh variables when per-

forming the task (which in turn will be helpful for later relating brain and behavior). In a

mixed-effects design, this is possible by fitting random slopes in addition to random intercepts.

However, understanding and interpreting interaction effects—particularly between multiple

categorical variables—quickly becomes intractable. Secondly, for some datasets, where the

underlying relationships are inherently non-linear, and the samples are unbalanced, the GBM

approach was much more effective, with eventual mean square error substantially lower than

corresponding linear regression models. This, in turn, allowed us to relate false alarm behavior

to acoustic features, revealing that spectrotemporal similarity was the strongest predictor of an

increased likelihood of a false alarm.

The data presented here, in which pitch made only a minor contribution to overall perfor-

mance, extends previous behavioral work in animals showing that non-human listeners can

generalize across variations in F0 for relatively simple sounds. For example, ferrets trained to

discriminate artificial vowel sounds with an F0 of 200 Hz maintain their performance at F0s

from 150 to 500Hz [5, 20]. Both rats [21] and zebra finches [22] trained to discriminate human

speech sounds can generalize across different talkers who naturally vary in their voice pitch,

and marmosets can discriminate pitch-shifted vocalizations [23]. However, not all species

show pitch constancy; guinea pigs trained to categorize calls (e.g., chut vs. purr) in a Go/No-

Go task struggled to perform the task with F0 shifts of +/- half an octave [24]. In our models,

F0 had only a very small effect on the ability of animals to correctly identify a target word (Fig

2) or on their likelihood of making a false alarm (Fig 3) and only modest differences in their

reaction times (Fig 4). Together, these results suggest that performance is robust across varia-

tions in pitch. Our reaction time models suggest that variation in F0 impacts individual ani-

mals differently. One benefit of the models developed in this study is that such individual

differences can be explored and potentially taken into account when interpreting and analyz-

ing brain signals.

Our analysis of response time data on false alarm trials identified words that animals consis-

tently false alarmed to. Analysis of the underlying acoustic cues highlighted spectrotemporal

similarity as the strongest predictor of the likelihood of a word eliciting a false alarm. Previous

work in songbirds has found that songbirds do not require spectral cues to distinguish between

ascending or descending tones and only need the temporal features of the sound to identify the

tones [25]. Other work in mice has shown that mice could discriminate ultrasonic vocalizations

but that vocalizations that were similar to one another were correlated with poorer performance,

suggesting that mice also use spectrotemporal properties to categorize vocalizations [26]. Recent

behavioral work by Osanki and Wang found that marmosets could also categorize intra-species

vocalizations through a similar Go/No-Go task paradigm, in which marmosets had to recognize

PLOS COMPUTATIONAL BIOLOGY Machine learning reveals multiple contributors to auditory task performance

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011985 April 16, 2024 19 / 25

https://doi.org/10.1371/journal.pcbi.1011985


a target vocalization in the presence of an alternate reference vocalization by licking a metal

feeding tube, and could successfully discriminate the same calls when the mean fundamental fre-

quency was shifted upwards from the original F0 [23]; the authors concluded that the marmo-

sets were using multiple acoustic properties to make their categorization choices.

While speech recognition is robust to variation in voice pitch for non-tonal languages,

humans use the pitch of complex sounds to separate simultaneous competing sounds and to

link sounds together over time to form auditory ‘streams.’ Auditory streaming has been stud-

ied in many species, including frogs [27], starlings [28, 29] and gerbils [30]. Evidence from

birds suggests that avians use similar strategies to humans, with differences in intensity and

spatial location used to segregate sounds into streams but a greater tolerance to changes in fre-

quency or timing [31]. Ferrets can also detect the presence of ‘mistuning’ when a single com-

ponent of a harmonic complex is shifted in frequency, suggesting that, like humans,

harmonicity is a strong grouping cue in animals [32]. However, to our knowledge, no one has

assessed whether non-human listeners use the pitch of a complex sound in the formation of

auditory streams. The impact of pitch roving in increasing the likelihood of false alarms and

slowing reaction times is consistent with ferrets using common pitch to link together sounds

over time, offering an advantage for subsequent word recognition. Nonetheless, in the absence

of a competing stream of information, we cannot be sure that it is streaming per se or simply

that greater changes from word token to token make it a more difficult task. One feature of

streaming is that it builds up over time [33], and consistent with streaming occurring, the like-

lihood of missing a target was higher, and reaction times were significantly longer for trials in

which the target was early in the stream compared to those in which it was in the middle or

late in the stream. We predict that the impact of removing pitch constancy might be more

strongly evident in tasks that require separating competing streams.

Here, we demonstrate that gradient-boosted decision trees have high predictive power even

when incorporating highly correlated or very sparsely sampled variables and are ideally suited

for unpicking multiple contributing factors to behavior. Moreover, this gradient-boosted

regression tree method allows us to be agnostic to how factors in our metadata are related to

each other and thus presents an excellent way to conduct both hypothesis-driven and explor-

atory data analysis to uncover otherwise hidden trends in behavioral data and drive analysis.

Overall, these findings from these sensitive and powerful models could inform later behavioral

and neural data studies by giving us an idea of which behavioral factors impact decision-mak-

ing in individual animals.

Supporting information

S1 Fig. A, bias across trial conditions and talker types; B, reaction times of each animal for

correct responses color-coded by F0 of the target word.

(EPS)

S2 Fig. Partial dependency plots for the correct hit response/miss response model. A;

SHAP values over the ferret ID color-coded by target presentation time; B, SHAP values over

ferret ID color-coded by the side of audio presentation; C, same as B but color-coded by talker

type; D, SHAP values over trial number color-coded by whether the trial had the precursor

word F0 equal to the target F0.

(EPS)

S3 Fig. Partial dependency plots for the correct reject/false alarm model. A, partial depen-

dency plot depicting the mean SHAP impact over the ferret ID color-coded by time within the

trial; B, violin plot of the SHAP value over the ferret ID color-coded by the side of audio
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presentation; C, violin plot of the SHAP values over the F0 of the trial color-coded by talker

type; D; SHAP partial dependency plots of false alarm likelihood by F0, color-coded by ferret

ID; E, SHAP values over the F0 of the stream color-coded by trial number; F, same as E but

color-coded by time since the start of the trial; Note that while the 191Hz F0 is associated with

a higher false alarm rate, this should be interpreted in the context of the much lower FA rate

associated with the female talker. G, violin plot of the SHAP value over ferret ID color-coded

by talker type; H, SHAP value over ferret ID color-coded by trial number; I, SHAP value over

trial duration color-coded by F0.

(EPS)

S4 Fig. Correct hit response reaction time model partial dependency plots. A, SHAP values

over the ferret ID color-coded by the time to target presentation; B, violin plot of the SHAP

value over ferret ID color-coded by the side of audio presentation; C, same as B but color-

coded by whether the precursor word’s F0 was the same as the target word’s F0; D, same as C

but color-coded by the talker type for the trial.

(EPS)

S5 Fig. A, distribution of the probability of occurrence in the resampled dataset used for the

response time model in Fig 5; B, same as A but for the male talker absolute reaction time

model; C, scatter plot of the permutation importance of each word with subsampling to equal-

ize the frequency to the distribution plotted in A and B, versus the corresponding permutation

importance scores obtained from a model with the uncorrected word distributions.

(EPS)

S6 Fig. Average coefficients for the mixed effects model predicting the absolute reaction

time of A, the female talker and B, the male talker. Asterisks represent mean p-

values< 0.05. Error bars represent standard deviation.

(EPS)

S7 Fig. Average coefficients for the ordinary-least squares (OLS) model predicting the

absolute reaction time of A, the female talker and B, the male talker. Asterisks represent

mean p-values < 0.05. Error bars represent standard deviation.

(EPS)

S1 Table. Repeated-measures ANOVA for the hit statistic with roving type and talker as

factors.

(PDF)

S2 Table. Pairwise Tukey HSD posthoc test statistics for the hit statistic comparing the

roving types for each talker type.

(PDF)

S3 Table. Repeated-measures ANOVA for the false alarm statistic with roving type and

talker as factors.

(PDF)

S4 Table. Pairwise Tukey HSD posthoc test statistics for the false alarm statistic comparing

the roving types for each talker type.

(PDF)

S5 Table. Repeated-measures ANOVA for the d’ statistic with roving type and talker as

factors.

(PDF)
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S6 Table. Pairwise Tukey HSD posthoc test statistics for the d’ statistic comparing the rov-

ing type.

(PDF)

S7 Table. Average coefficients of the main fixed effects of the miss/correct response model.

(PDF)

S8 Table. Average coefficients of the random effects for the miss/correct response model.

(PDF)

S9 Table. Average fixed effect coefficients for the false alarm linear mixed effects model. 1

indicates yes, 0 indicates no.

(PDF)

S10 Table. Average random effect coefficients for the false alarm linear mixed effects

model.

(PDF)

S11 Table. Average fixed effect coefficients for the reaction time linear mixed effects

model for correct hit responses. 1 indicates yes, and 0 indicates no.

(PDF)

S12 Table. Average random effect coefficients mixed effects model predicting reaction

time for correct target trial responses.

(PDF)

S13 Table. Coefficients for the ordinary least squares (OLS) model predicting absolute

reaction time based on word identity in a trial, female talker model.

(PDF)

S14 Table. Coefficients for the ordinary least squares (OLS) model predicting absolute

reaction time based on word identity in a trial, male talker model.

(PDF)

S15 Table. Trial type numbers distributed by ferret ID and talker type (M = male talker,

F = female talker).

(PDF)

S16 Table. Hyperparameter values for the false alarm categorical model.

(PDF)

S17 Table. Hyperparameters for the miss/hit gradient-boosted decision tree model.

(PDF)

S18 Table. Hyperparameters for the reaction time gradient-boosted regression tree model

predicting the reaction time from the onset of the target word from the subset of correct

hit responses.

(PDF)

S19 Table. Hyperparameters for the absolute reaction time gradient-boosted regression

tree model that predicts the reaction time relative to the female talker type trial start time.

(PDF)

S20 Table. Hyperparameters for the absolute reaction time gradient-boosted regression

tree model that predicts the reaction time relative to the male talker type trial start time.

(PDF)
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S21 Table. Hyperparameters for the absolute reaction time models for each ferret ID bro-

ken down by Female/Male talker type.

(PDF)
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