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A B S T R A C T

Traditional methods of evaluating the performance of journal bearings, for example thermal-elastic-
hydrodynamic- lubrication theory, are limited to simplified conditions that often fail to accurately model real-
world components. Numerical models that include additional phenomena such as cavitation and fully coupled
effects like deformation, temperature, pressure and viscosity can be more accurate but require a large amount of
computational overhead, making analysis slower and more costly. To address this limitation, a novel machine
learning-driven approach is developed to predict the 2D distribution of surface deformation, film thickness,
temperature, and pressure across the bearing surface as a function of design variables such as load and speed.
The training dataset, generated using a fully coupled Reynolds’ Equation solver implemented in OpenFOAM,
contains a significantly extended range of conditions than in previous studies with approximately 39 000 000
points encompassing 4925 different test cases. Modelled bearing speeds range from 2000 to 10 000 rpm, while
load values are varied between 1 and 30 kN. Predicting surface deformation, film thickness, temperature and
pressure across the bearing surface results in a mean absolute percentage error below 0.4% or better. The
work also demonstrates that the trained models have a strong ability to generalise the prediction beyond
the original training data range with only a 1% error at up to 200% of the highest trained speed. This
work also demonstrates that machine learning-based processes are a practical alternative to physics-based
numerical modelling, especially in cases where rapid performance evaluation is desired as real-time calculation
is possible with significantly reduced computational cost. This has the potential to enable development of rapid
design optimisation tools and real-time performance monitoring at high resolution and with low latency. Using
consumer hardware, it is found that the neural network-based approach is faster than the existing numerical
modelling technique by a factor of over 10 000, enabling real-time predictions of lubrication systems.
1. Introduction

Journal bearings are frequently used to support high-speed rotating
components due to their unique combination of low friction and wear
rates. Despite a long history of applications [1] the design process of
such bearings can be slow, as finding an acceptable design requires
the optimisation of multiple variables such as the wear rate, power
loss, physical dimensions and manufacturing constraints. Evaluation of
a prospective design is also difficult as current numerical modelling
techniques can be computationally intensive. This is further exacer-
bated when the expected operating conditions feature particularly high
speeds or loads, where more complex coupled physical phenomena
including elastic deformation of the components and the effects of heat
production in the bearing (such as variation in lubricant viscosity and
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thermal expansion) must be modelled. As a result of this, there is a
clear case for the development of a new modelling process as existing
methods are slow and costly for a design environment.

A possible alternative to numerical modelling is the application of
Machine Learning (ML). By developing a database of previous results,
it can be possible to eliminate the need to solve the same set of
coupled Thermo-Elastic Hydrodynamic Lubrication (TEHL) equations
repeatedly throughout the design process and by shifting computational
overhead away from a recurring cost towards an up-front one, the
design evaluation process can be accelerated and greater insights can be
gained into the underlying mechanics for further design optimisation.

In general, the effectiveness of ML models depends significantly
on the quality of the data used to train them. Previous studies have
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301-679X/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.triboint.2024.109670
Received 25 September 2023; Received in revised form 19 March 2024; Accepted 1
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

4 April 2024

https://www.elsevier.com/locate/triboint
https://www.elsevier.com/locate/triboint
mailto:benjamin.rothwell@nottingham.ac.uk
https://doi.org/10.1016/j.triboint.2024.109670
https://doi.org/10.1016/j.triboint.2024.109670
http://creativecommons.org/licenses/by/4.0/


Tribology International 196 (2024) 109670S. Cartwright et al.
investigated the application of ML approaches to model hydrodynamic
lubrication problems, however these studies are often limited by in-
sufficient data volume, limited ranges of modelled conditions and low
mesh resolutions. This study seeks to address these limitations through
the use of higher resolution meshes describing a broader range of speed
and load conditions to generate a significantly larger dataset and to
demonstrate that ML-based modelling techniques have the potential to
enable fast and accurate models applicable for real-world conditions.

One ML technique that has seen widespread adoption in many
engineering contexts is the use of feedforward neural networks. They
are trained using data from a fully coupled TEHL solver implemented
in OpenFOAM [2], and are used to model four important variables for
quantifying the performance of a journal bearing: the lubricant film
thickness and associated surface deformation, as well as the tempera-
ture and pressure distributions across the bearing surface. Feedforward
neural networks are chosen to be implemented in this study due to
the use of a large, multidimensional dataset. A frequent limitation of
Reynolds’ Equation-based numerical design tools is that they depend
on an initially unknown eccentricity ratio as an input; this is addressed
in this study by limiting inputs to known design variables such as the
bearing speed and load.

These models are then evaluated against an existing TEHL solver [2]
for each modelled variable, and where possible evaluated against exper-
imental data.

2. Background

2.1. Elastohydrodynamic contact

Modelling of elastohydrodynamic lubrication problems is typically
achieved via two different means; solving the Navier Stokes (NS) equa-
tions using a discrete approach, or simplifying the NS equations using
several assumptions before solving the more problem-specific Reynolds’
equation [3] (although other modelling techniques such as molecular
dynamics simulation [4] have been demonstrated). An early example
of the former approach is by Almqvist (2002) [5]. A low resolution
finite-volume mesh is generated for a line-contact EHL problem and
solved using commercial computational fluid dynamics (CFD) code.
Acceptable solutions are found for cases with smooth geometry, how-
ever the author notes that the model requires small under-relaxation
factors which significantly slow the convergence of the model in order
to avoid problems with numerical instability. Similar results were
obtained by Hartinger (2005) [6] who also noted numerical instability
under high-load conditions.

One potential benefit of the CFD approach is that the film is consid-
ered as a three-dimensional structure, rather than the two dimensions
considered by the Reynolds’ equation when neglecting through-film
variation in pressure and viscosity. Examples of this approach in-
clude [6–9]. In isothermal conditions this 2D film approximation is
shown to be accurate, however a temperature gradient through the
film [10] has been shown to result in viscosity and pressure gradients
that limit model performance under high-viscosity conditions [8].

Recent work has allowed some of these limitations to be mitigated
by coupling multiple models to better capture the complex physics of
EHL conditions [11–13]. Although this is associated with a significantly
increased computational cost [14], the modelling of fluid–structure
interaction (FSI) under high pressures is found to be more accurate and
numerically stable [15]. A greater degree of coupling was developed
by Layton (2023) [2] where the film region of an EHL line contact is
modelled using the Reynolds’ equation technique, while simultaneously
coupled to a CFD region to model lubricant flow within a bearing inlet.
This approach was found to exhibit high accuracy (with mean errors
for pressure and temperature of less than 5% against experimental
data [2]) and an average computational time of less than an hour per
case. For these reasons, this TEHL model will be used to construct the
dataset used in this study.
2

2.2. Machine learning applied to engineering simulation and tribology

The development of ML tools has implications for many fields of
engineering, especially those frequently reliant on computational mod-
elling such as fluid mechanics and tribology. A far broader review of
recent advances in ML-based tribology than can be practically covered
here was published by Paturi (2023) [16].

A multitude of applications of ML for modelling molecular-scale
processes have been demonstrated [4,17], where the potential to assist
development of new surface technologies or lubricants is significant.
The ability to rapidly evaluate ML models using GPU hardware has
significant implications for computationally intensive tasks such as
CFD - previous work has successfully demonstrated ML models capable
of replacing parts of a CFD solver in order to accelerate the solving
process. An example of this is the development of a convolutional
neural network (CNN) technique for solving the Poisson equation [18].
Accuracy was noted to be inconsistent in some conditions, however this
was mitigated using a hybrid approach where the CNN was coupled
with a conventional solver. This resulted in a 320% increase in solve
speed. Neural network-based models for accelerating simulation of FSI
were also documented by Balasubramanian [19] and Güemes [20]. The
super-resolution generative adversarial network (SRGAN) documented
in [20] is particularly noteworthy here as an additional increase in
speed was gained from the model’s ability to upscale the mesh used
for CFD, enabling faster solve times for the same output resolution by
reducing the complexity of the problem. Similar work was published
by Kochkov [21] who also noted strong generalisation ability when
working with conditions outside of the training data.

Several studies have tested the performance of ML frameworks
for predicting the tribological properties of materials. Hasan (2021)
tested models for the performance of aluminium alloys using materials
and tribological test data [22], noting moderate performance (𝑅2 =
0.83). An unexpected result from this study was that the k-nearest-
neighbour algorithm outperformed all of the tested machine learning
models (artificial neural networks, support vector machines, random
forests and gradient boosted machines). It also observed that model
performance was strongly dependent on the distribution of data within
the dataset. Slightly improved performance (𝑅2 = 0.91) was obtained
for PTFE composite materials by Wang (2023) [23] instead using a
gaussian process regression technique. This was followed by a feature
importance process to aid in determining the key parameters affecting
friction and wear rate of PTFE materials.

Other types of EHL contact have also been modelled using ML
processed with similar degrees of success. Issa (2023) [24] trained
a model for predicting the minimum film thickness of an EHL point
contact with a variety of different aspect ratios. A strong generalisation
ability is observed here, but this is attributed to the selection of lin-
earised parameters for training rather than a direct result of the model’s
predictive power.

2.3. Machine learning modelling for journal bearings and other EHL line
contacts

Many previous investigations into the use of neural network ar-
chitectures for journal bearing modelling are limited by a lack of
available training data. Early studies such as that by Sinanoğlu [25]
utilise an experimental bearing rig from which to derive training data.
While real-world data is useful from an accuracy standpoint, it also
introduces a constraint by limiting both the number of data points
per test, and the number of possible test cases. In this experimental
setup, the bearing casing contained 12 pressure tappings around the
circumference, limiting the studied area to the bearing centreline. An
additional 4 tappings are included in a line along the bearing casing.
For each series of tests at a single temperature, this resulted in 48
data points. Multiple feedforward neural networks were trained from
these datasets, with each one modelling the 1-dimensional function
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relating the angular position 𝜃 to the corresponding pressure value on
he centreline. The author noted the close agreement between each
odel’s predictions and the experimental data, however the lack of a
ivide between training and testing data complicated evaluating the
odel’s ability to generalise. This was further limited by the small

cope of each model, as new experimental data is required to train new
odels in order to consider a new load or speed combination which

urther increases the cost of developing and deploying such a model.
Further work was published in 2005 [26] with a similar method,

nvestigating the effects of shaft texture rather than lubricant tem-
erature. An identical neural network structure was used, trained on
entreline pressure data as previously described. It is stated in the
tudy that one useful application of the neural network approach was
hat it enabled the interpolation of values between the measured data
oints [26], however it was not possible to evaluate the accuracy of
his method due to the unavailability of unseen testing data. Since
he experimental setup and input space were identical to the earlier
tudy [25], the dataset size was equally limited and similar constraints
egarding the separation of training and testing data apply.

While these early studies [25,26] are useful as proofs of concept,
heir real-world applicability is limited due to the use of scaled model
earings. There is a significant difference in the relative load between
he scaled model and full-scale components, as the changes in dimen-
ions are relatively small (𝑙 = 70mm and 𝐷 = 55mm [25] vs. 𝑙 =
00mm and 𝐷 = 100mm [27]), however the load changes significantly
rom 8.3N to 30 kN. As a result of this, the mean pressure on the
caled bearing is significantly smaller at 2 kPa, in contrast with studies
n full-scale bearings [27] where loads up to 30 kN produce mean
ressures of 3000 kPa. The effect of this difference is compounded by
he limited speed of 3000 rpm [25], while other non-scaled studies
ocument behaviour up to 10 000 rpm [27]. As the expected pressures
re so low, pressure-coupled effects such as elastic surface deformation
nd heat generation are less significant than under full-scale conditions.

A more recent application was found for optimisation of combustion
ngine journal bearings [28]. In this case, the previous training data
ottleneck was avoided by switching to a Finite Element (FE) model.
his enabled a large increase in the volume of data that can be
btained, both by increasing the resolution of an individual test case
nd by expanding the range of tested conditions. The use of numerical
odelling over experimental data avoids a potential problem faced
uring testing where the presence of pressure tappings in the outer
urface interacts with the film, potentially introducing a source of error
nto the data.

In this newer study [28], 1848 points of data were used compared
o 48 in earlier studies [25,26]. Multiple neural networks were trained
ith the goal of predicting important performance metrics such as the
il loss rate and power loss as a function of the engine speed, oil
iscosity and load; these were then used as a cost function for a genetic
lgorithm, with the goal of optimising for minimum power loss and oil
onsumption. A Pareto front was established that was deemed to be an
mprovement in all metrics from the currently established design point.
ue to the accuracy of the results from the designed models, this work
emonstrated the practicality of the use of feedforward neural networks
s design tools in cases where limited experimental data is available.

An alternate approach was documented by Hess [29]. Rather than
complete prediction being obtained from input coordinates or design
ariables like in earlier studies, this model demonstrated using a CNN
o transform an input film thickness field into a predicted pressure
ield. Strong agreement was observed between the ML approach and
he numerical model used to generate training data. One potential
rawback of this approach is that it requires knowledge of the rigid film
hickness profile before a pressure field can be calculated, although the
tudy does suggest that an iterative approach to varying the eccentricity
an allow for a target shaft load to be obtained. It is unclear whether
3

his approach is able to scale for eccentricity values greater than 1,
here the idealised shaft and bushing geometries intersect and the rigid
ilm thickness becomes negative in some places.

An example of the potential for ML-based tribology models for
erformance monitoring is found in Rossopoulos (2021) [30]. A dataset
as constructed linking liftoff speed, shaft load and misalignment with
odels trained to predict each variable as a function of the other two.

t is theorised that these models could be paired with onboard sensor
ata to detect anomalies in the operation of marine journal bearings to
id in the detection and diagnosis of faults earlier than with traditional
eans.

A Finite Element technique was applied by Kumar et al. [31]. In this
ase, a similar workflow to [25,26] involved utilising a Hydrodynamic
ubrication solver to generate a dataset by systematically varying the
nput parameters, which was then employed for training a neural
etwork model. The models trialled displayed good performance when
redicting the maximum pressure and minimum film thickness with
maximum error of ±1% [31]. A key limitation of the 2022 study

is the mesh size of 36 cells which is reduced down to 2 data points:
maximum pressure and minimum film thickness. In addition to this,
the finite element model developed for this study does not consider
any pressure- or temperature-coupled effects and so the real-world
performance under high loads may be impacted.

Several recent studies have identified conditions for obtaining op-
timum performance of ML models. Baş (2023) [32] noted that perfor-
mance of an artificial neural network trained on experimental data for
predicting friction torque was good for conditions in the hydrodynamic
regime, but degraded under boundary or mixed conditions. Gheller
(2023) [33] observed that the accuracy of the numerical model was
a key factor in the ML model’s performance, while Gheller [33] and
Marian [34] both found that variation in the model size, dataset size
and format all significantly impacted performance. The effect of model
size was further documented by Singh (2023) [35], who obtained high
accuracy (𝑅2 = 0.998) by maximising the model’s parameter count
before the onset of overfitting.

This study seeks to expand upon the previous work by significantly
increasing the volume of data. More data can be obtained by increasing
the resolution of the numerical model’s film mesh and by widening the
sweep of input parameters that are used to construct the dataset. The
physical accuracy of the training data is improved in comparison to
existing data-driven models through the use of a fully coupled TEHL
model described in Section 3.1. The scope of the models is increased in
two ways; firstly, additional variables such as temperature and surface
deformation will be predicted in addition to film thickness and pres-
sure. Secondly, the limitation from early studies of predicting centreline
values is addressed by designing models capable of predicting the value
across the whole bearing surface.

3. Materials and methods

3.1. TEHL model and numerical procedure for data generation

To construct and train neural network-based models, a training
dataset is built describing the bearing’s performance across a range
of different conditions. This data is generated using a Thermo-Elastic
Hydrodynamic Lubrication model implemented in OpenFOAM [2]. This
model solves multiple coupled equations to converge on a solution that
considers the heat production in the lubricant film, the temperature-
dependent viscosity of the lubricant, and the effect of the calculated
pressure distribution on the deformation of the shaft and bush. Sim-
ulation of cavitation in the low pressure regions is carried out using
the Elrod–Adams model [36]. Each section is solved sequentially, and
eccentricity ratio is updated iteratively to converge towards a target
load.

The highly coupled nature of the system of equations solved by

the OpenFOAM model results in slow convergence of the solution due
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Fig. 1. Diagram of the journal bearing geometry used for the TEHL model with relevant dimensions annotated.
to the large number of iterations required. The function for calculat-
ing surface deformation is particularly computationally intensive and
has the largest effect on computational time, especially as the mesh
resolution increases.

The model in OpenFOAM is based on the Reynolds equation [3,37]
which is derived based on the thin-film assumptions for hydrodynamic
lubrication:

• Pressure gradients normal to the surfaces are negligible.
• The flow is laminar.
• Body forces of the fluid are negligible.
• The fluid is Newtonian.
• Curvature affects are negligible.

Applying these assumptions for a viscous fluid derives the equation:

𝜕
𝜕𝑥

(

𝜌ℎ3

12𝜇
𝜕𝑃
𝜕𝑥

)

+ 𝜕
𝜕𝑧

(

𝜌ℎ3

12𝜇
𝜕𝑃
𝜕𝑧

)

= 𝜕
𝜕𝑥

(𝜌𝑈ℎ) (1)

where p is the pressure, 𝜌 is the density, U is the average velocity
between the surfaces, h is the film height, 𝜇 is the dynamic viscosity
and 𝑥 and z are special dimensions in the circumferential and axial di-
rections respectfully. Cavitation affects in the fluid are modelled using
the Elrod–Adams algorithm [36] which incorporates a pressure–density
function and switch variable:

𝛩 =
𝜌

𝜌𝑐𝑎𝑣
(2)

𝑃 = 𝑃𝑐𝑎𝑣 + 𝑔𝛽 ln(𝛩) (3)

𝜕
𝜕𝑥

(

𝑔𝛽ℎ3

12𝜇
𝜕𝛩
𝜕𝑥

)

+ 𝜕
𝜕𝑧

(

𝑔𝛽ℎ3

12𝜇
𝜕𝛩
𝜕𝑧

)

= 𝑈 𝜕𝛩ℎ
𝜕𝑥′

(4)

where g is the switch variable, 𝛽 is the bulk modulus of the fluid and
𝛩 is the relative density. The switch variable is dependent on 𝛩 and
solved using an iterative procedure:

𝛩 < 1, 𝑔(𝜃) = 0
(5)
4

𝛩 ≥ 1, 𝑔(𝜃) = 1
Elastic deformation of the surfaces from the pressure field in the
fluid is estimated using the half-space approximation:

ℎ𝑑 (𝑥, 𝑧) =
2𝜋
𝐸′ ∬

𝑃 (𝑥𝑖, 𝑧𝑘)
√

(𝑥 − 𝑥𝑖)2 + (𝑧 − 𝑧𝑘)2
𝑑𝑥𝑖𝑑𝑧𝑘

𝐸′ = 2
1−𝑣21
𝐸1

+
1−𝑣22
𝐸2

(6)

where E′ is the effective Young’s modulus. An energy equation is
included to approximate the temperature in the fluid:

𝜕
𝜕𝑥

(

𝑐𝑝𝜌𝑢𝑇
)

+ 𝜕
𝜕𝑧

(

𝑐𝑝𝜌𝑤𝑇
)

− 𝑘𝜕
2𝑇
𝜕𝑦2

= 𝜇
(

𝜕𝑢
𝜕𝑦

2
+ 𝜕𝑤

𝜕𝑦

2)

(7)

where u and w are velocity components in the 𝑥 and z directions
respectively, 𝑐𝑝 is the specific heat capacity, ℎ̄ is the relative film height
( ℎ𝐶 ), k is the thermal conductivity and 𝑈𝑠 is the shaft surface velocity.
A temperature–viscosity model is also incorporated:

𝜇𝑇 = 𝜇0𝑒
𝛾𝑇

(

𝑇−𝑇𝑟𝑒𝑓
)

(8)

where 𝛾 is the temperature–viscosity coefficient and 𝜇0 is the viscosity
at temperature 𝑇0.

Temperature in the adjacent bush region modelled with a conduc-
tion equation:

𝑘
(

𝛿𝑇
𝛿𝑥

+ 𝛿𝑇
𝛿𝑦

+ 𝛿𝑇
𝛿𝑧

)

= 0 (9)

The solution procedure is outlined in Fig. 2. An iterative procedure
is applied for the TEHL system of equations. An outer iterative proce-
dure is applied between the TEHL and solid bush regions to converge
towards a coupled solution.

3.2. Training dataset generation

The bearing dimensions and other parameters are given in Table 1.
The dimensions are chosen to match the setup documented by Bouyer
& Fillon [38] (illustrated in Fig. 1), to ease the process of evaluating
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Fig. 2. Flowchart of the OpenFOAM model iterative process.
Table 1
A table of the input variables and constants for the TEHL model.

Bearing length (mm) l 80
Bearing diameter (mm) d 100
Clearance (μm) c 117.5
Lubricant viscosity (Pa s, 40 ◦C) 𝜇 0.0277
Young’s modulus (GPa, shaft) 𝐸𝑠 90
Young’s modulus (GPa, bush) 𝐸𝑏 90

against experimental data. The mesh dimensions for the OpenFOAM
model were selected according to the mesh study conducted in [2], such
that further refining the mesh results in a <1% change in the predicted
temperature values.

The training dataset for this model is constructed by conducting a
parametric sweep, varying both the speed and load. The speed ranges
from 2000 to 10 000 rpm in 500 rpm increments, while the load is varied
from 1 to 30 kN in 100N steps. 30 test cases are selected with speeds of
2250, 3750, 5250, 6750, 8250 and 9750 rpm, and loads of 5, 10, 15, 20
and 25 kN. These are chosen so that the behaviour of the model is well
documented under a variety of load conditions, while the intermediate
spacing of the speed values ensures that the model is not tested on
data that it was already exposed to during training. The distribution
of training and testing data is illustrated in Fig. 3.

For each load–speed combination in the dataset, the OpenFOAM
model is solved and the film mesh is extracted, for a total of 4925
training cases and 30 test cases. These are compiled into a training and
testing dataset where each line in the dataset represents a single mesh
cell, containing the cell’s co-ordinates and the film thickness, deforma-
tion, temperature and pressure at that location. Due to the assumption
of no shaft misalignment, it is known that all of the aforementioned
modelled outputs are symmetrical across the bearing midplane (located
at 𝑧

𝑙 = 0.5). Due to this, the full mesh can always be reconstructed
by taking one half and mirroring across the midplane. By altering
the prediction process to only model half of the surface and then
reflecting the result, only 8000 cells of each 16 000 cell mesh are needed.
As a result, the dataset size can be reduced by 50% with no loss
in information, to speed up the training process. The final training
dataset size is 39 416 000 points (7.8GB), and evaluation is performed
on 240 000 unseen points.

Each case has a mean convergence time of 584 s. By running mul-
tiple instances of the solver in parallel, the dataset can be generated
more efficiently; using 96 CPU cores, generation of the training data
took 10 h. The full dataset is then preprocessed and split into training,
validation and testing datasets as illustrated in Fig. 4.

3.3. Data preprocessing

As a result of their generation by the parametric sweep outlined in
Section 3.2, all of the input variables have a uniform distribution in the
5

Fig. 3. Distribution of training and testing data. Contours of constant 𝜖 are plotted.
It can be seen that gaps are present for some eccentricity values; this is due to the
OpenFOAM model deviating from the target load under some specific conditions. 5
combinations are missing from an expected total of 4930.

Table 2
New preprocessing algorithms for the deformation and pressure categories.

Deformation Calculate 𝑙𝑜𝑔10 of each value, then rescale into the range (0,1).

Pressure Shift all values up by the minimum value + 1 atm to eliminate
negative values, then calculate 𝑙𝑜𝑔10 of each variable. Finally,
standardise the dataset to have a mean of 0 and standard
deviation of 1.

training data. As such, preprocessing these variables by linear rescaling
into the range (0, 1) is appropriate [39]. However, the output variables
(film thickness, deformation, temperature and pressure) follow more
complex distributions as shown in Fig. 5.

It can be seen that the film thickness and temperature columns
are approximately symmetrical with little skew and few outliers, so
these perform well when preprocessed by linear rescaling similar to
the inputs. For the deformation and pressure columns, there are a
large number of outliers corresponding to the maximum values and a
significant overrepresentation of the minimums. This is addressed using
a new preprocessing scheme defined in Table 2.

The results of applying this new preprocessing scheme are shown
in Fig. 6. This technique works well for the deformation distribution,
as the skewness is significantly reduced and there are no longer any
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Fig. 4. Diagram showing the data flow for generating the training dataset and using it to train the neural network models.
d

Fig. 5. Histograms of the distribution of the four output variables within the training
dataset, with no preprocessing applied.

significant outliers. The algorithm could be further fine-tuned to obtain
a symmetrical distribution by altering the base of the logarithm func-
tion applied to the data. The technique for the pressure column is also
an improvement as for the pressures above ambient the distribution is
approximately uniform, however it can still be seen that low pressures
(resulting from the majority of every mesh in the test data contain-
ing many cells at ambient pressure) is significantly overrepresented.
Thus, some further refinement to this algorithm could improve the
performance of the pressure-predicting neural network model.

3.4. Neural network model structure

3.4.1. Potential neural network model architectures
Several different neural network structures have been proposed dur-

ing earlier studies. For example, Sinanoğlu (2004) [25] and (2005) [26]
demonstrated predicting centreline pressure by constructing a neural
network to model pressure as a function of the angular position 𝜃, but
requiring multiple different neural networks to model different load
and speed conditions.
6

f

Fig. 6. Distributions of the output variables in the training dataset after applying the
preprocessing algorithms.

Kumar et al. [31] demonstrated using loads and speeds as inputs
to predict minimum and maximum values of the film thickness and
pressure respectively. This method could be expanded on to predict
the whole distribution of each variable across the bearing surface by
adding multiple new pressure and film thickness outputs representing
different co-ordinates, however there are several drawbacks to this
approach. Firstly, the resolution of the output distribution is fixed as it
is determined by the ML architecture itself. This can make evaluation of
the model more difficult by requiring interpolation if the experimental
or numerical data it is evaluated against does not align with the
neural network’s output coordinates. Additionally, this approach would
require a very large number of network parameters, increasing further
if additional variables such as deformation and temperature are also
desired as outputs.

One solution to this is to combine the two ML architectures, from
Kumar [31] and Sinanoğlu [25], to create a model that accepts as inputs
both the load conditions and coordinate (adding an extra coordinate
for axial position 𝑧 to enable modelling of values across the two
imensional bearing surface) and outputs the relevant variables such as

ilm thickness, deformation, temperature and pressure. This approach
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avoids the fixed-resolution problem as the locations to evaluate the
model are determined by the user, resulting in a built-in interpolation
function. Trials were ran using this architecture, however the model
failed to converge during training as it was unable to simultaneously
learn the multiple different functions that describes each of the out-
puts as a function of both the load and the location on the bearing
surface. This could potentially be alleviated by expanding the size and
depth of the neural network, however the cost of this is an increased
computational overhead resulting in slower training and evaluation.

An alternative solution, rather than creating a single unified model,
is to design multiple smaller independent models, each one focusing
on modelling a single output variable as a function of both the load
conditions and the coordinate. This combines the advantages of both
approaches:

• The parameter count is minimised for faster training and evalua-
tion.

• There is no fixed resolution and interpolation across the input
coordinate space occurs implicitly.

• The models can be evaluated at any given location without need-
ing to model the entire surface and extract a specific point after-
wards.

• The independent nature of having multiple models means that
new variables can be modelled without needing to redesign and
retrain the existing neural networks.

• The hyperparameters for each separate neural network can be
separately optimised for the best performance.

3.4.2. Final neural network model structure
For the reasons outlined in Section 3.4.1, the chosen model format

consists of four independent neural networks, each one designed to
predict one of the output variables as a function of the load, speed, axial
position 𝑧 and angular position 𝜃. The neural network’s hyperparame-
ters were determined via experimentation; the final design features 8
hidden layers of 48 neurons each, for each model. The ReLU activation
was tested, however with the chosen preprocessing scheme regularly
producing negative inputs, this function resulted in training instability.
The Sigmoid function was instead selected due to its symmetry with
positive and negative values.

Lower dimensional models with fewer layers were found to perform
worse with larger outlier errors. Increasing the model complexity was
found to improve performance, without raising the risk of overfitting
due to the dataset being significantly larger than the parameter count
of the model. Despite this, a smaller model with 4 hidden layers of 24
neurons was found to display marginally better performance outside of
the training data (documented in Section 4.5). A comparison between
the models with 4 hidden layers of 24 neurons, and 8 hidden layers of
48 neurons, is shown in Fig. 7 where increasing the model complex-
ity reduces the mean percentage error by 0.6%. Further work could
expand on this by conducting multiple independent hyperparameter
optimisation processes on each of the different neural network models.

3.5. Neural network model training

Each model was trained using an Nvidia Tesla V100 GPU. Training
times were different for each model, with the loss calculated per model
ceasing to improve after 380 to 760 epochs. With each epoch taking an
average of 377 s, this results in a training time of between 40 and 80 h.
The training hyperparameters are listed in Table 3.

3.6. Evaluation process

The models are to be evaluated by comparing the resulting pre-
dictions both to the OpenFOAM model and to experimental data. To
compare against the OpenFOAM model, the full distribution of each
variable across the bearing surface is predicted for each of the test
7

Fig. 7. Comparison of neural network models with 4 and 8 hidden layers with 24 and
48 neurons in each layer respectively.

Table 3
Hyperparameters for training each of the neural network models.

Optimiser Adagrad [40]
Loss function L1 loss (Mean absolute error)
Batch size 512
Learning rate 0.03
Learning rate scheduling 0.5% decay every 10 epochs

cases defined in Fig. 3, to ensure that the behaviour of the model
under a wide range of possible inputs is documented. The model will
be evaluated at the same resolution as the resulting mesh from the
OpenFOAM model, so that cell-wise errors can easily be calculated by
subtracting one array from the other.

After calculating the full set of testing data, it can be filtered
in several ways to analyse the performance of the model. Thus, the
relative error is calculated for:

• The entire bearing surface for every test case, to capture the
performance across all of the input variables.

• The centreline in each test case, to enable comparison against ex-
perimental data which frequently focuses on measuring pressure
and film thickness variation along the centreline.

• The minimum and maximum value for each variable in each test
case.

Additionally, the times to evaluate each model are compared to
validate the ML-based approach’s applicability for rapid or real-time
modelling of bearing performance.

4. Results and discussion

4.1. Comparison of evaluation time

A significant reduction in evaluation time is observed with the ML-
based model, documented in Table 4. The time taken is reduced by
99.990%, a reduction by a factor of 10 300. The neural networks were
evaluated using an AMD Ryzen 5 3600 CPU; it is expected that even
faster performance could be obtained using more specialised hardware
such as CUDA-supporting GPUs [41] as significant increases in speed
are documented when evaluating neural networks using GPUs [42]
especially as the batch size increases.

The total computational capacity expended to produce the training
dataset and train a model is approximately 1440 core-hours. The re-
duction in computational work resulting from evaluating one of the
neural network models instead of the numerical OpenFOAM model is
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Fig. 8. Diagrams of the final model structures for predicting each output variable (deformation, film thickness, temperature and pressure).
Table 4
A comparison of the mean evaluation time of the OpenFOAM model against the time
to evaluate all four models shown in Fig. 8. The usefulness of lubrication models that
can be evaluated at high speed is reviewed by Paturi et al. [16].

Model Mean evaluation time (s)

OpenFOAM 584
4× Neural networks 0.0567

Table 5
Summary of the magnitude of the percentage errors when predicting the state of the
whole bearing surface.

Variable Mean error (%)

Film thickness 0.086
Surface deformation 0.20
Temperature 0.0036
Pressure 0.39

0.16 core-hours. As a result, the expected break-even point for energy
expenditure is reached after evaluating the neural network models
around 8900 times.

Due to the ability to greatly parallelise the process of constructing
these neural networks, especially when generating training data, much
of the computational work to generate these models occurs concur-
rently. The total time for generating the training dataset and training
the models was around 70 h. The time saved by evaluating the neural
networks rather than the OpenFOAM model is, on average, 583.45 s.
Thus, the break-even point for time occurs much sooner, after using
the neural networks 430 times.

4.2. Whole-mesh prediction of film thickness, temperature, pressure and
surface deformation

Across the whole 240 000-point testing dataset, the mean absolute
percentage errors are shown in Table 5. All variables have a mean error
of less than 0.4%.

Additionally, the complete distribution of mean absolute percentage
errors for the whole testing dataset is illustrated in Fig. 9.
8

Fig. 9. Diagram of the distribution of percentage errors for each variable when
predicting the entire bearing surface for every test case.

It can be seen that the majority of errors for all variables are below
1%, however there are a large number of outliers especially for the
deformation and pressure variables. This is partially a result of plotting
data spanning many orders of magnitude in this format (pressure errors
in this dataset vary from 10−5% to 49%) however there is a notable
trend of the relative error increasing for small pressure values, as shown
in Fig. 11(a). The large-scale structure of the dataset, visualised by the
whole-surface predictions for a set of inputs with intermediate load and
speed values from the test dataset in Fig. 10, is in close agreement. It
can be seen that far more deviation from the numerical model occurs
for small values of pressure than for large ones. As this effect does not
occur as significantly for the deformation values in Fig. 11(b), it is likely
this results from the poor performance of the pressure preprocessing
algorithm documented in Section 3.3.

4.3. Prediction of centreline pressure profiles

When limiting the scope of the analysis to the bearing centreline,
the trend of decreasing errors at larger pressure values becomes more
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Fig. 10. A comparison of the predicted temperature and pressure fields from the OpenFOAM and neural network models, at 6750 rpm and 15 kN.
Fig. 11. Scatter plots comparing the magnitude of the variable to the percentage error for each point in the test dataset.
Fig. 12. A comparison of the OpenFOAM and neural network models when predicting centreline pressure at four unseen conditions: (a) 9750 rpm, 25 kN (b) 6750 rpm, 15 kN
(c) 5250 rpm, 10 kN (d) 2250 rpm, 5 kN.
visible. Fig. 12 shows a comparison of the centreline pressure as pre-
dicted by the OpenFOAM and neural network models. It can be seen
that for all of the values above the ambient pressure, the agreement
between the two models is extremely high. The areas responsible for
the greater percentage errors are also visible around 𝜃 = 40 to 60 deg,
where the small difference in the shape of the curve as the pressure
begins to rise produces percentage differences of up to 50%.
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4.4. Prediction of minimum and maximum points

The minimum and maximum values for each variable are not calcu-
lated directly; instead, they are derived by predicting the full distribu-
tion and searching the resulting 2D array for the largest or smallest
value. For the deformation, temperature and pressure the maximum
value is taken, while the minimum is used for film thickness. When
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Fig. 13. Diagram of the distribution of percentage errors for each variable when
predicting the minimum or maximum values.

Fig. 14. A plot of minimum film thickness vs. speed for a 9 kN load. The lower limit
of the speed data contained in the training dataset (2000 rpm) is overlaid.

limited to the minimum and maximum values, the mean accuracy
across all of the conditions is better for deformation and pressure, but
slightly worse for film thickness and temperature.

All errors are within ±0.8% with the exception of two outliers when
predicting the minimum film thickness, with errors of −1.2 and -2.2%.
These occurred at (3750 rpm, 25 kN) and (2250 rpm, 25 kN) respectively,

hich are the two smallest film thickness values in the test dataset (see
ig. 13).

.5. Evaluation against experimental data

Both the neural network models and the OpenFOAM model are
ompared against the experimental data in Bouyer (2001) [38]. Two
ategories are identified to compare the performance of the two types
f model:

• Minimum film thickness as a function of speed, under a 9 kN load.
• Pressure on the centreline as a function of the angular position

with a speed of 4000 rpm and a load of 3 kN.

In Fig. 14, it can be seen that both the neural network and Open-
OAM model overestimate the film thickness for the majority of cases,
lthough this trend does not hold for the lowest speed case. One notable
bservation here is that the neural network and OpenFOAM model
re in close agreement at all points, even at the 1500 rpm point. This
s evidence of the neural network model’s ability to generalise and
uccessfully extrapolate, as the training data contains no information
or any speeds lower than 2000 rpm. Performance of the model outside
f the training data is further demonstrated in Fig. 16. For each test
ase, the minimum film thickness and maximum pressure, temperature
10
Fig. 15. A plot of centreline pressure vs. angular position for a speed of 4000 rpm and
load of 3 kN.

Fig. 16. A plot showing average percentage error in minimum film thickness, maxi-
mum temperature, maximum pressure and maximum deformation for test cases outside
of the training data.

and deformation are calculated. A percentage error is determined for
each, and a single value is obtained by calculating the mean of the four
errors.

It can be seen in Fig. 16 that the peak value Mean Absolute Per-
centage Error (MAPE) for the four output variables remains below 1%
for almost all speed inputs up to 20 000 rpm. However, when increasing
the load beyond the limit of the training data 30 kN the error quickly
increases, although only a small fraction of test points at a maximum
load of 60 kN and minimum speed of 2000 rpm exceed an average error
of 20%. This region comprises of test cases with eccentricity values
between 1.0 and 1.02, while the highest value found in the training data
is 0.8.

The errors measured on test cases outside of the training dataset
are approximately independent of speed, but increase significantly
with load. This is expected given results from experimental work,
in which eccentricity approaches a constant as speed increases [43]
and pressure has significantly smaller variation due to speed than to
load [38], resulting in smaller changes in the output with respect to
speed than to load. The strong extrapolation performance is consistent
with findings from related studies such as Hess (2021) [29] and Kumar
et al. (2022) [31].

Fig. 15 plots the predicted centreline pressure against experimental
data. As with Fig. 14, the agreement between the neural network and
OpenFOAM models is good, however in this test they both perform
worse when compared against the experimental data.

It can be seen that in both tests, the neural network models are able
to match the predictions of the OpenFOAM model with a high degree
of accuracy; the deviation of the neural networks from experimental
data is therefore primarily a result of the inaccuracy of the numerical
model itself, rather than a consequence of the neural networks failing to
adequately learn the required function. However, the neural network-
based approach is essentially model-independent - it is expected that
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the neural networks could be trained similarly well for any other
numerical model, and therefore the real-world accuracy of this method
would increase at a rate similar to the most accurate numerical model
available.

5. Conclusions

In this study it is established that the multi-model neural network
approach is able to closely match the performance of existing numerical
modelling techniques once a dataset is constructed and a model is
trained, with a reduction in mean solution time of 99.990% while
introducing a mean error of less than 0.4%. This reduction in solution
time allows for accurate real-time predictions to be made, enabling
rapid design evaluation for design optimisation [16,35], as well as for
real-time monitoring of the bearing performance during operation. Cur-
rent experimental setups frequently require invasive sensing techniques
such as pressure tappings through the surface of the bush [25,26,38],
which have the potential to disrupt the formation of the lubricant film
in the high pressure region and affect the load capacity of the bearing.
One possible solution to this would be to obtain measurements from
regions of the bearing which are less sensitive to alterations to the bear-
ing surface; these measurements could then be coupled with a neural
network-based digital twin model to estimate the conditions elsewhere
in the bearing where they are difficult to directly measure. Monitoring
performance this way using numerical models results in an extremely
low temporal resolution and high latency due to the comparatively long
convergence time of the model. This approach could potentially extend
the service lives of journal bearings in operation by improving the
ability to detect the anomalous conditions that indicate the necessity
of servicing or replacing components.

One key limitation of the model presented in this work is that the
dimensions of the bearing in this model are fixed, alongside other
physical quantities such as the lubricant viscosity at the reference
temperature, the shaft and bush material properties and the shaft
misalignment angle. While this is not a problem for the performance
monitoring application, the usability of the model could be expanded
by adding additional inputs for these variables to build a more general
model, taking full advantage of the ability to model each value in
two dimensions and enabling the bearing design to be optimised for
minimal heat generation (or any other metric).
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