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A B S T R A C T   

Electric vehicles (EVs) and heat pumps (HPs) are key in reducing carbon emissions from transportation and 
domestic heating, yet their adoption may increase peak load demands on electrical networks. One of the aims of 
this research is to assess the potential impact of uncontrolled EV charging on community-scale distribution 
networks, exploring how this could stress the existing electrical infrastructure. It also explores the role of EVs in 
Vehicle-to-Grid (V2G) and smart charging applications, aiming to enhance community distribution systems. The 
study investigates the maximum stabilisation level achievable under various scenarios, highlighting the impor-
tance of smart energy management in integrating renewable energy and addressing uncertainties in the 
modelling process. Additionally, this study discusses the proposed systems’ scalability, consumer behaviours’ 
impact on the suggested energy solutions, and the potential implications of recent technological advancements 
for simulated communities. The research employs a sophisticated, integrative approach, combining stochastic 
methods with several robust energy software. Key findings suggest that uncontrolled EV charging can lead to grid 
capacity issues at high EV penetration levels, particularly during colder months. While smart charging and V2G 
technologies can moderate peak loads in many scenarios, achieving 100 % sustainable technology integration 
requires enhanced energy management or increased network capacity, especially in winter. Wind and solar 
power integration demonstrates strategic complementarity, particularly in winter, enhancing the reliability and 
stability of the community grid. It is also observed that peak solar generation hours misalign with the com-
munity’s highest demand times, posing challenges for solar energy utilisation in EV charging in residential-based 
areas.   

1. Introduction and literature review 

The International Energy Agency (IEA) (International Energy Agency 
(IEA) 2023) reported that fossil-based sources were still responsible for 
60 % of the global electricity market at the end of 2022. The IEA also 
added that restrictions on natural gas have led to an increase in 
coal-based electricity production, and CO2 emissions from electricity 
production have reached a record level of 14.8 Gt CO2. The UK has made 
significant progress in reducing carbon emissions from electricity gen-
eration. Compared to 1990, the UK’s carbon emissions from electricity 
generation have been reduced by almost three-quarters, to the current 
level of 53.7 Mt of carbon emissions annually (Department for Energy 
Security and Net Zero (DESNZ) 2023). 

Renewable energy sources (RESs) are considered a key solution to 
grid decarbonisation and climate change mitigation (Sinsel et al., 2020). 
IEA (International Energy Agency (IEA) 2023) estimated that by the end 
of 2023, the global renewable energy market will experience its highest 
annual increase, exceeding 440 GW, with solar photovoltaics (PVs) ac-
counting for two-thirds of this increase. The UK has also achieved sub-
stantial progress in the field of renewable energy (RE) integration. While 
RES were responsible for 2 % of the UK energy market in 1991, RES 
accounted for 43 % of the production in the market and surpassing fossil 
production for the first time in 2020 (National Grid, 2023). In 2023, 
wind energy accounted for 29.4 % of total electricity production, while 
solar energy made up 4.9 % of the renewable energy market (National 
Grid, 2023). Significant increases in wind and solar energy production 
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are expected in the UK in the coming years. By 2030, offshore wind 
generation is expected to increase to 50 GW, and solar PV capacity is 
expected to increase to 70 GW (National Grid, 2023). Moreover, within 
the scope of 2050 zero carbon targets, 90 % of the electrical energy 
produced should be from renewable sources, and 70 % of this renewable 
energy supply should be provided by wind and solar energy (Bouckaert 
et al., 2021). 

In the UK the transportation sector is the largest contributor to car-
bon emissions, contributing 34 % of UK carbon emissions in 2022 
(Department for Energy Security and Net Zero (DESNZ) 2023). The 
decarbonisation of this sector is well underway through the gradual 
introduction of EVs (Arowolo & Perez, 2023). EV sales in the UK have 
continued their growing trend in 2023. Statistics from ZAPMAP (Zap--
Map, 2023) indicated that, as of September 2023, there are 1489,000 
units of EVs on UK roads (920,000 BEV and 560,000 PHEV). Even 
compared to 2019, EVs have grown by approximately 450 %. The 
infrastructure for EV charging is one of the most critical factors for the 
adaptation of EVs. The UK has achieved significant progress in its EV 
charging infrastructure. A recent report by the UK government (HM 
Government, 2022) reveals that the UK has 29,600 public chargers, 
including 5400 fast sockets. More specifically, considering England 
motorways and major A roads, no EV is now further than 25 miles from 
the fast charge point. Additionally, the UK government estimates that 
300,000 charging stations will be installed by 2030 to align with the 
decision to ban ICE vehicles by that year. The government also antici-
pated that this figure could reach 700,000 with the potential high 
adoption of on-street chargers (HM Government, 2022). Looking ahead, 
the UK government detailed the timeline of the transition to EVs, with 
plans such as requiring zero-emission vehicles in 2035, eliminating 
charging station infrastructure concerns, and introducing various sup-
port packages within the scope of the Road to Zero targets (Department 
for Transport (DfT) 2021). Furthermore, all major automakers have 
agreed to shift towards EVs to electrify their vehicle fleets (Dik et al., 
2022). However, the complete phasing out of internal combustion en-
gine cars may take several decades, and the transition will vary by 
market and vehicle type. Equally important, National Grid (National 
Grid ESO, 2023) has updated their 2040 EV number estimates to 
approximately 30 million based on a rapid decarbonisation scenario and 
23 million based on a non-target scenario in the UK. This update marks a 
significant development, as a reliable power grid is fundamental to 
supporting the growth of the EV market and achieving zero-emission 
targets (Dik et al., 2022; Held et al., 2019). However, a recent UK gov-
ernment report (HM Government, 2022) emphasised that EV charging 
operations will significantly impact the power network. The report ac-
knowledges the lack of data to assist decision-making, especially the 
unknown future demand modelling. 

Similarly, the decarbonisation of heat in buildings, which accounts 
for over 17 % of total carbon emissions, is another target of the UK 
government to achieve net zero emissions (Department for Energy Se-
curity and Net Zero (DESNZ) 2023). Hence, in the UK and many 
developed countries, there are concerted efforts, towards replacing 
carbon-based gas boilers with electrically driven heat pump (HP) sys-
tems. According to a report from the UK Parliament, while HPs possess 
significant growth potential in the UK, political uncertainties have 
impeded their growth rate (Harris & Walker, 2023). The report also 
stated that 72,000 HP units were installed in the UK in 2022 and 
emphasised the UK government’s target to increase annual HP in-
stallations to 600,000 units by 2028. Given this target, it is reasonable to 
anticipate a significant increase in the number of HPs in the UK in the 
near future. However, according to current HP statistics, HPs have been 
installed in only 1 % of UK home stock so far, and it is predicted that HP 
will be required in almost 80 % of homes to meet net zero targets (Harris 
& Walker, 2023). Globally, it is estimated that 600 million HP will need 
to be actively operated by 2030 to achieve global net zero targets, but 
with this current growth rate, only 40 % of the target might be achieved 
(Heat Pumps London, 2023). However, at this point, it is known that 

global investments will increase to 160 billion dollars by 2030 to in-
crease HP adoption within the scope of 2050 targets. In the UK, ASHPs 
and GSHPs are the most commonly used types of HPs. Although the 
exact rate of adoption of these two types in the UK is unknown, ASHPs 
are responsible for 60 % of global HP sales, while GSHPs account for 
only 2.5 % of HP installations in the European Union (EU) (Heat Pumps 
London, 2023). While there are no specific statistics on SAHPs, it is 
projected that their market value, estimated at 4523 billion dollars in 
2022, will increase to 8732 billion dollars by 2030, with a 7.53 % 
compound annual growth rate (Research and Markets, 2023). The UK 
Parliament report (Harris & Walker, 2023) underscored that many 
people are unfamiliar with heat pumps and that there is a shortage of 
qualified installers. The report (Harris & Walker, 2023) also noted the 
absence of clear long-term strategies for utilising heat pumps to reduce 
carbon emissions in domestic heating. 

Based on these efforts and the introduction of various technologies 
and strategies, a concept known as ’sustainable community’ has 
emerged. It is an increasingly important concept to support countries’ 
carbon targets by combining several decarbonisation measures. Today, 
independent communities from the grid, which produce and consume 
their own energy, are attracting significant attention. For example, 
Swansea Community Energy and Enterprise Scheme, and Awel Co-op, 
are real-world projects supporting the sustainable community concept 
in the UK and more details about them can be found in (Wales Gov-
ernment, 2023) and (Wales Government, 2023), respectively. However, 
it might be beneficial to know that the communities involving unpre-
dictably complex dynamics because of decentralised high-capacity PV 
and wind energy production, EV charging and discharge operations, and 
HP high-performance requirements should be examined with 
random-based approaches. 

A growing body of literature recognises the importance of sustain-
able communities equipped with low-carbon technologies (Abbasi et al., 
2023; Han et al., 2022; Tostado-Véliz et al., 2022). A detailed compar-
ative analysis between the current study and the most recent related 
research is shown in Table 1. 

The table summarises key parameters analysed in recent community- 
based energy management studies, particularly the past two years. The 
explanation of each given aspect or parameter is as follows: 

The current study offers a foundational context by analysing the UK’s 
grid system, incorporating considerations of the existing distribution 
system’s capacities for real-world applications. In addition, as shown in 
the table, the study evaluates the country’s sustainable targets in the 
near and distant future with the national carbon neutrality progress 
assessment and provides a perspective in different time zones with 
penetration scenarios at different scales. Additionally, the study in-
corporates an analysis of housing and vehicle stock, factoring in power 
network capacity. This approach allows for a more nuanced analysis of 
energy demand, recognising the direct impact of the number of houses 
and EVs on consumption patterns. 

Furthermore, energy demand seasonality analysis is important in 
such modelling to capture the fluctuations in energy needs, whether 
caused by thermal systems or EV charging. Examining EV and charger 
trends can reveal technological advancements in the market. Further-
more, a detailed analysis of electric vehicle types and charger needs 
underscores the diversity in the electric vehicle market and its effect on 
grid demand. Comprehensive insights into EV scheduling and driving 
pattern variability are essential to better predict grid behaviour on an 
hourly basis. These insights allow for more precise energy supply 
planning, especially given the variability across different day types. The 
importance of stochastic EV charge demand calculation is its ability to 
consider randomness and uncertainties, thereby enabling a more sensi-
tive approach to charge demand calculation for robust grid management 
strategies. Lastly, the integration and effective management of renew-
able energy sources and heat pump technologies, as observed in RES 
integration analysis and HP technology integration, respectively, un-
derscore the need to diversify and incorporate varying sustainable 
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solutions for a balanced and decarbonised grid system. 

1.1. Research novelty, aims and objectives 

A general review of recent literature reveals promising findings 
regarding the integration of renewable energy sources, particularly solar 
PVs. However, there’s a notable gap in studies that holistically centre on 
locating EVs as instrumental tools to enhance large-scale RESs such as 
solar PVs and wind turbines. Additionally, a major problem with such an 
application is capturing the complex details of combining different el-
ements like grid and EV status and dynamic local renewable source 
outputs, while also dealing with natural uncertainties such as fluctuating 
weather conditions and varying EV charging/discharging patterns 
influenced by user behaviours. This present study performs an 
advanced, multi-staged and comprehensive stochastic model to discover 
and optimise the possible benefit of EVs in supporting the community 
grid and improving PVs and wind turbine integration to make an 
essential contribution to the field. 

According to the UK government’s road map, there is a growing in-
terest in HPs (Harris & Walker, 2023). However, rather than considering 
the penetration of EVs and integration of different types of HPs as solely 
sustainable solutions, our study collectively considers the potential 
stress pressures on the grid due to the electricity needs of these tech-
nologies and explores the inherent complexities of electricity con-
sumption patterns. The multi-stage analysis in this investigation is 
designed to address various uncertainties, ranging from the impact of 
seasonal changes to the unpredictability of market trends. This is ach-
ieved by combining environmental variabilities with probabilistic 
modelling techniques. While the study’s comprehensive design in-
troduces a realistic simulation of the developing energy ecosystem in the 

near and long future, it also provides valuable insight to many stake-
holders, from households to network operators. 

Finally, this investigation builds upon our previous paper (Dik et al., 
2023), which provides a fundamental understanding of the synergy 
between EVs, HPs and the grid at the individual household level. In this 
paper, the analysis was carried out for scaling to a community level and 
integrating large-scale RES, HPs, and EVs may provide a realistic 
simulation of the real world. Undoubtedly, the building up of such a 
system, however, also brings numerous uncertainties, ranging from 
localised energy generation to varying demand patterns in heating and 
EV charging throughout the year. This study offers a robust approach to 
navigating these uncertainties by performing an advanced multistage 
stochastic model. In this way, a comprehensive methodology is pre-
sented to evaluate the effectiveness of EVs with V2G technology and 
smart charging to stabilise community distribution systems and decar-
bonise distribution networks by enhancing renewable energy usage 
within an uncertain environment. 

2. Methodology 

2.1. Study concept and defined scenarios 

Undoubtedly, technological developments and incentives based on 
carbon reduction targets contribute to an increase in EVs and HPs. 
However, both technologies can potentially change the amount of en-
ergy demanded from the distribution grid. Given the necessity to 
maintain a balance between energy generation and consumption in the 
system, the adaptation of these technologies into the network should be 
examined in detail. 

This prospective study was first designed to analyse the impact of 

Table 1 
Comparative analysis of some features between the current study and related research.  

Aspects/Parameters This Study (Mohammadi 
et al., 2022) 

(Han 
et al., 
2022) 

(Lo 
et al., 
2023) 

(Doroudchi 
et al., 2018) 

(Abbasi 
et al., 
2023) 

(Zhu 
et al., 
2023) 

(Dorotić 
et al., 
2019) 

(Tostado-Véliz 
et al., 2022) 

(Liu 
et al., 
2022) 

Grid System Analysis 
(Country Codes) 

GB – GB – – PK – HR – CN 

National Carbon Neutrality 
Progress Assessment 

✓ – – – – – – ✓ – – 

Housing Stock Analysis 
(No. of houses) 

384 4 384 1 1 40 Scale- 
based 

2424 6 Scale- 
based 

Vehicle Stock Analysis 
(No. of EVs) 

461 4 465 23 1 2 200 5630 2 200 

Seasonality Analysis for 
Thermal (T) and EV 
Charging (V) Demands 

✓ – T – ✓ V – T – T 

EV (V) and Charger (C) 
Market Trends 

✓ – – V – – – – V – 

Comprehensive EV Type 
Analysis for Charging 
Needs 

✓ – – ✓ – – ✓ – ✓ – 

Comprehensive EV 
Charger Analysis for 
Charging Needs 

✓ – – – – – ✓ – – – 

Comprehensive EV 
Scheduling Insights 

✓ – – ✓ ✓ – ✓ – – – 

Driving Pattern Variability 
in EVs Based on Day 
Type 

✓ – ✓ – ✓ – ✓ – – – 

Stochastic EV Charge 
Demand Calculation 

✓ – – – ✓ – ✓ – – – 

RES Integration Analysis PV and 
Wind 

PV PV PV PV PV PV and 
Wind 

PV and 
Wind 

PV PV 

Heat Pump Technology 
Integration 

ASHP, 
GSHP and 
SAHP 

– GSHP – GSHP – – – – ASHP 

Seasonal & Hourly HP 
Efficiency Variation 

✓ – – – – – – – – – 

*Abbreviations: GB - Great Britain, PK - Pakistan, HR - Croatia, CN - China, T - Thermal-related, V - EV-related, C - Charger-related, PV - Solar Photovoltaic, ASHP - Air 
Source Heat Pump, GSHP - Ground Source Heat Pump, SAHP - Solar Assisted Heat Pump. 
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technologies such as EVs and HPs by including possible uncertainty and 
randomness. This research also examines the emerging role of V2G in 
the context of power network balancing on the community scale. The 
last purpose of this study is to discover the synergy between EVs, HPs, 
and renewables to manage the distribution networks of electrified 
communities safely and enhance large-scale renewable energy 
integration. 

Fig. 1 shows the conceptual design of the simulated community. 
Nottingham/UK has been selected as the project location. Nottingham is 
a large city in the UK’s East Midlands at 52.58 latitudes and − 1.08 
longitudes. SOLARGIS (SOLARGIS, 2023) and MET Office (MetOffice, 
2023) estimated that Nottingham received 1137.5 kWh of solar irradi-
ation annually and 3.6 m/s average wind speed. 

Today, there are approximately 30 million homes in the UK, 
contributing to 21 % of the country’s total carbon emissions (Depart-
ment for Energy Security and Net Zero DESNZ and Department for 
Business, Energy & Industrial Strategy BEIS, 2021). Experts have noted 
that over 80 % of the residences that are occupied by about 67 million 
UK citizens by 2050 have already been built in the UK (Energy Saving 
Trust, 2021). Given this, the 1930s semi-detached model house, repre-
senting over 3 million homes in the current UK housing stock, was 
selected as the representative house type for this simulation to accu-
rately mirror the current housing stock in the UK (The University of 
Nottingham, 2023). The E.ON research house, a three-bedroom semi--
detached replica of a 1930s home located at the University of Notting-
ham, was the primary reference for the community’s proposed house 
design. E.ON house, which is located at the University of Nottingham 
and is a two-story building with a total interior floor area of 153 m2 

(76.5 m2 for each floor), is taken as a reference to the design of the 
community. The image of the E.ON house can be seen in Appendix 1 
[33]. Dimensions of the building were also taken from the original 
blueprints, ensuring adherence to the actual measurement values. 

In addition to domestic home technologies, the study considers the 
possible integration of EV chargers, Air Source Heat Pumps (ASHPs), 
Ground Source Heat Pumps (GSHPs), and Solar-Assisted Heat Pumps 
(SAHPs) into houses in the community. Furthermore, the community is 
equipped with on-grid solar photovoltaic (PV) and wind energy facil-
ities, which are connected to the distribution grid and contribute to the 
community’s energy supply. 

A comprehensive flowchart illustrating the present research method 
is presented in Fig. 2. The analysis begins with an assessment of the 
community power network’s operational and peak capacities, a crucial 
step for understanding its ability to integrate sustainable technologies 
and manage the dynamic demands of modern energy consumption. This 
assessment is crucial for capturing the operational dynamics of the 
community power network. Subsequent analysis focuses on the resi-
dential energy usage patterns, utilising literature statistics to develop an 
electro-domestic energy consumption profile. Additionally, the Monte 
Carlo Simulation method is utilised to estimate EV charging needs 

within the community, demonstrating a comprehensive approach to 
energy demand assessment. Following that, the Integrated Environ-
mental Solutions Virtual Environment (IES VE) software is then applied 
to calculate thermal energy requirements for household heating and 
domestic hot water. IES VE was chosen here because of its demonstrated 
reliability in literature and widespread usage in dynamically simulating 
and optimising building thermal conditions, offering comprehensive 
modelling capabilities and real-time data integration (IES, 2024; Shah-
zad et al., 2020; Wei et al., 2022). Further, MATLAB is employed to 
analyse the energy consumption of different heat pump configurations, 
including ASHPs, GSHPs, and SAHPs. These are assessed with the goal of 
efficiently meeting thermal demands. An initial assessment then takes 
place, which involves an analysis of the community network without the 
integration of any management strategy. This foundational analysis es-
tablishes the baseline operational parameters of the network, evaluating 
how the current infrastructure performs under both typical and possible 
future load conditions in the absence of management strategies that 
could modulate demand or supply. As the analysis advances, smart 
charging and V2G algorithms are integrated to optimise EV charging and 
discharging processes, aiming to improve the efficiency and stability of 
the community’s energy system. In the next step, the HOMER 
Pro-software is utilised to calculate the community’s potential outputs 
from solar and wind integration over the years. HOMER Pro-which is 
renowned in literature and recommended by experts was also chosen 
here because of its ability to efficiently analyse and optimise hybrid 
renewable energy systems, excelling in grid integration (Allouhi et al., 
2022; Ekren et al., 2021; HOMER 2023; Rahmat et al., 2022). In the final 
step, the research conducts a new assessment that illustrates the outputs 
of renewable energy systems and the impact of smart charging and V2G 
strategies on network performance. The evaluation focuses on the net-
work’s capacity to meet future energy demands and maintain stability, 
and it offers insights into the network’s readiness for sustainable energy 
practices in the future. 

To carry out the simulation, the given assumptions are considered in 
the study:  

• The simulated community, which is solely comprised of homes, is 
equipped with EV chargers, ASHP, GSHP, and SAHP based on sce-
narios. It’s supported by an on-grid solar PV and wind energy system, 
adhering to the sustainable community concept.  

• The EVs and conventional vehicles have similar daily travel patterns.  
• Charge and discharge operations are performed between 20 % and 

80 % SOC. Preferred SOC after discharge operations varies between 
60 % and 80 %. Additionally, vehicles are promptly connected to the 
charger upon their arrival.  

• The necessary technology is available at the grid operators and EVs, 
enabling Smart Charging and V2G discharging.  

• The EV user’s home has the necessary infrastructure for allowing 
discharging. 

Fig. 1. Schematic diagram of the proposed system.  
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The research assumptions can be supported by the practical imple-
mentations observed in European demonstrator projects across 
Denmark, the Netherlands, and Poland, as highlighted in the SERENE 
H2020 project (SERENE, 2024). These projects exemplify the integra-
tion of HPs, renewable energy self-consumption through smart controls, 
and EV charging infrastructures within residential communities. The 
Danish case’s transition from fossil fuels to electric heating, supple-
mented by smart renewable energy management, directly validates this 
present study model’s theory of a sustainable community supported by 
renewable sources and advanced technologies. The Dutch and Polish 
cases further reinforce the feasibility of this research’s assumptions by 
focusing on smart energy systems, community-based renewable inte-
gration, and V2G capabilities. Further substantiation for the current 
paper’s assumptions comes from the literature. The similarity in daily 
travel patterns between EVs and conventional vehicles is supported by 
(Daina et al., 2017), who demonstrate that using conventional driving 
patterns to model EV usage is a common approach, aligning with the 
assumptions of this paper. The SOC range for charging and discharging 
operations, which enhances battery lifespan and ensures cost savings, is 
supported by the literature [ ((Bayram & Tajer, 2017; Department for 
transport (DfT) 2022; Koncar & Bayram, 2021; Kostopoulos et al., 2020; 
Ramadan et al., 2017))] and further detailed in the methodology section 
of this current investigation. Lastly, the availability of technology for 
smart charging and V2G discharging at both grid operators and in EV 
users’ homes is supported by Hoehne and Chester’s research (Hoehne & 
Chester, 2016). 

A detailed discussion can be found in the following sub-sections. 
Additionally, the applied methodological procedure in the investiga-
tion is outlined as follows: 1- Formulation of the scenarios, 2- Identifi-
cation of the community power network, 3- Calculation of the 
conventional energy consumption in the community, 4- Modelling of 
Monte Carlo Simulation (MCS) for EVs’ charging demand and 

discharging operations, 5- Modelling of thermal energy demand, 6- 
Modelling of the HPs for heating and domestic hot water, and 7- 
Designing of off-grid solar and wind energy stations. 

2.2. Scenario description and reasoning 

Reflecting on the statistics and future projections presented in the 
Introduction section of this paper, an increase in the integration of RES, 
notably solar PVs and wind turbines, is expected in the UK. The adoption 
of low-carbon technologies, especially EVs and HPs, is also projected to 
rise in line with national sustainability policies. These trends support the 
development of the scenarios within this research, where a gradual yet 
significant increase in the uptake of EVs and HPs is anticipated, there-
fore advancing local renewable production capabilities. The scenarios 
are designed to reflect the varying degrees of technology penetration 
from the short to the long term, capturing the evolution of community 
energy frameworks as they transition towards sustainable practices. The 
adoption rates, informed by empirical data discussed in the Introduction 
and aligned with governmental targets, form the basis for assessing the 
implications of these technologies on the power network’s infrastructure 
and the network’s capacity to meet future energy demands. 

In the study, five different penetration scenarios are examined. The 
study aims to reflect possible scenarios ranging from 25 % to 100 % 
sustainable technology adaptation that might be encountered in a UK 
community, covering short-term to long-term time horizons. A summary 
of the five case scenarios explored in the study is provided in Table 2. 

Table 2 summarises the five scenarios explored in this study, each 
representing a different level of sustainable technology penetration 
within a UK community, from the short-term to the long-term. These 
scenarios are constructed based on anticipated increases in RES inte-
gration and adopting low-carbon technologies, reflecting national sus-
tainability goals. The following details provide a deeper insight into 

Fig. 2. The methodological framework of the research.  
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each scenario’s unique characteristics and their implications for 
community-based energy management. 

S1 - Short-term scenario: At this stage, the community begins to 
adopt EVs and HPs, though their use is not yet widespread. The en-
ergy supply is predominantly from the grid, with an early inclination 
towards adopting solar panels due to their ease of installation, fewer 
regulatory hurdles, and cost-effectiveness. 
S2 - Medium-term scenario: The community attempts a balanced mix 
of renewable energy, taking advantage of both solar and wind energy 
due to improved infrastructure. While solar energy maintains its 
significance, the focus also shifts towards maximizing the UK’s wind 
energy potential, accompanied by a steady increase in the adoption 
of EVs and HPs. 
S3 - Alternative medium-term scenario: This variation reflects a 
faster integration of EVs and HPs, as some regions might more 
readily embrace these technologies due to supportive, sustainable 
policies and incentives. 
S4 - Long-term scenario: The community’s long-term goal is to 
enhance wind energy generation, tapping into the UK’s vast wind 
potential to achieve zero carbon targets. With the maturing renew-
able infrastructure, the interest in wind energy surges alongside the 
complete integration of low-carbon technologies. 
S5 - Alternative long-term scenario: Similar to the long-term vision of 
scenario S4, this scenario explores the full adoption of EVs and HPs. 
However, it distinguishes itself by illustrating a scenario where solar 
PV integration in the community grid is prioritised over wind energy. 

2.3. Determining system boundaries and capacities in power distribution 
network 

This section evaluates the operational boundaries and capacity of 
community power systems. It aims to examine the existing distribution 
network’s capability to manage the evolving demands of modern energy 
consumption by EVs and HPs and generation from RESs. Central to the 
analysis is identifying the network’s operational and peak capacities, 
which serve as benchmarks for the present research model. This 
assessment attempts to highlight the network sufficiency and strategies 
for adopting low-carbon technologies such as EVs, HPs and RESs. 

The UK power grid system consists of an integrated generation, 
transmission and distribution networks. The National Grid transmission 
network operators (TNOs) operate the high-voltage transmission 
network, while the Distribution Network Operators (DNOs) manage the 
low-voltage distribution networks that supply electricity to consumers. 
Additionally, the Office of Gas and Electricity Markets (OFGEM) pro-
vides independent market regulation of these grid network operators. 

The existing grid system, is a legacy of the traditional one direction 
flow of electricity from large, centralised power generators to the con-
sumer. As a result, these networks may not provide the opertaional 
flexibility to cope with the dynamic fluctuation of renewables, high 
demand from additional consumer loads to facilitate the decarbon-
isation of the heat and transport sectors (Fachrizal, 2020). Therefore, it 
is essential to thoroughly investigate the network’s hosting capacity 
before making any connections to distribution systems (UKEVSE n.d.). 
Hosting capacity refers to the maximum load and production capacity 
that can be added to the network without necessitating upgrades (Bollen 

& Rönnberg, 2017). Western Power Distribution (Western Power Dis-
tribution (WPD) 2020) stated that exceeding the hosting capacity value 
in distribution networks can cause many problems, such as heating in 
cables, reverse power flow to transmission lines, formation of fault levels 
(extreme current levels) due to high currents, and voltage fluctuation. 
For this reason, this study considers the distribution system’s peak and 
operational power capacities, which are directly related to the hosting 
capacity. 

In this study, the assessment of system capacity within the power 
distribution network utilised a model representative of a typical UK 
residential distribution network, as illustrated in Fig. 3. The typical UK 
distribution mechanism forms the basis of a 33/11 kV substation with 
two 15 MVA transformers each. The 11-kV substation supplies the 
power to six 11-kV feeders. Each 11 kV feeder distributes power to eight 
11/0.433 kV substations with 500 kVA capacity, and each of these 
substations then transmits power to 384 households via 4 different 
feeders (Ingram et al., 2003). The designed capacity of the distribution 
networks enabled the determination of the community’s housing ca-
pacity, which amounts to a total of 384 units. Furthermore, Han et al. 
(Han et al., 2022) have identified that the maximum and operational 
capacities of community networks in the UK typically reach 500 kW and 
400 kW, respectively. Consequently, these values have been adopted as 
the peak and operational capacities for the proposed residential com-
munity power distribution network model. 

This evaluation of the operational boundaries and capacities within 
the UK’s power distribution network establishes a foundational frame-
work for the research model developed in this study. The identified 
housing capacity of 384 units, along with the peak and operational ca-
pacities of 500 kW and 400 kW, respectively, serve as critical inputs for 
modelling the integration of sustainable technologies—namely, EVs, 
HPs, and RESs—into the simulated residential community. These ca-
pacity values are instrumental in planning the integration of these sys-
tems and in analysing the potential overloading problems that such 
integration may result into the network. An understanding of system 
capacities not only highlights potential operational constraints but also 
provides a realistic basis for developing solutions that enhance the 
network’s hosting capacity. 

2.4. Electro-Domestic energy consumption trends and analysis 

The energy consumption data published by National Statistics 
(Department for Energy Security & Net Zero DESNZ and Department for 
Business, 2022) showed that the annual energy demand for UK domestic 
use has been increasing in recent years. The gathered data for domestic 
electrical energy demand and the number of households in the UK is 
represented and compared in Fig. 4. As shown in Fig. 4, the electrical 
energy demand had an upward trend between 2000 and 2005, then 
there has been a gradual fall until 2019 and starts to rise again. This 
inverse proportion between electricity demand and population may be a 
result of the increased energy efficiency and implementation of demand 
side management (DSM) strategies. 

In buildings, electrical energy is typically demanded for three pri-
mary purposes: operating electronic home appliances (electro-domestic 
load), charging EVs, and heating. This part of the study discusses the 
conventional electrical load profile consumed in homes, except for EV 
charging and heating demands. 

Table 2 
The proposed scenarios for community-based energy management with EVs.  

Scenarios Time Horizon EV Penetration [%] HP Penetration [%] Conventional Supply [%] Renewable Supply (Solar PV/Wind) [%] 

S1 Short-term 25 25 75 25 [60 %/40 %] 
S2 Medium-term 50 50 50 50 [50 %/50 %] 
S3 Alternative Medium-term 75 75 50 50 [50 %/50 %] 
S4 Long-term 100 100 25 75 [40 %/60%] 
S5 Alternative Long-Term 100 100 25 75 [60 %/40 %]  
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In the present investigation, an energy analysis which was conducted 
by the Energy Saving Trust (EST), the Department of Energy and Climate 
Change (DECC), and the Department for Environment, Food and Rural 
Affairs (DEFRA) (Owen & Foreman, 2012) was used as a reference in the 
modelling of conventional load demand. Their analysis was based on 
long-term electric metre monitoring. They was determined home elec-
tricity consumption habits and the amount of the load in the UK. For the 
analysis, 251 houses were monitored in the UK, and the average hourly 
electricity load pattern was analysed by gathering the data in 2- and 
10-minute intervals. 

2.5. Approach for modelling electric vehicle charging and discharging 

EV charging might be a fundamental factor that affects the decar-
bonisation of networks EVs, as regular electricity consumers, draw 
electrical energy to meet travel needs, with the increasing number of 
EVs directly raising the electrical energy demand for charging. This 
suggests that EVs could significantly stress the network in the future (Dik 
et al., 2022). To anticipate potential overloading issues and to imple-
ment necessary precautions, it is crucial to thoroughly discuss the ca-
pacities of the distribution networks and the potential load demands of 
future EV batteries. 

Studies over the past two decades have provided important infor-
mation about the modelling of EV charging. Deterministic and stochastic 
approaches are the most widely used methods to estimate the charging 
demand of EVs (Gholami et al., 2022; Kavousi-Fard & Khodaei, 2016). 

However, deterministic approaches, which often involve constant as-
sumptions regarding battery capacity, State of Charge (SOC), charger 
power range, efficiency, and the EV types, may lead to severe limitation 
in charging load calculations. This is due to the variability of these 
factors in real-world applications, contrary to the fixed assumptions 
made. Modelling that excludes any probabilistic factors can cause 
serious network problems and unnecessary excessive network in-
vestments (Kim & Hur, 2020). Consequently, incorporating stochastic 
approaches that consider all parameters is critical for the accurate 
modelling of EV charging demands. This study seeks to tackle uncer-
tainty and possibility factors in charging load estimation by developing a 
model with advanced stochasticity. For this purpose, in this study, a 
Monte Carlo Simulation (MCS) was modelled in MATLAB to dynamically 
simulate the uncertainties in the vehicle and charger variety, 
day-dependency, vehicles’ arrival and departure times, temperature 
effect and daily travel habits. All these factors are detailed below. 

The National Travel Survey (NTS) (Department for Transport (DfT) 
2022) serves as one of the primary reference sources for this study’s 
methodology. NTS is an annual survey study with 7000 households and 
16,000 people from all age groups in England. The main purpose of the 
survey is to establish personal travel patterns. The average number of 
vehicles per household and per person by year using NTS data in 2021 is 
presented in Fig. 5. It might be essential to know that the presented data 
includes only people over 17 years old. It is observed that the number of 
vehicles per household and per person in England has increased slightly 
over the years. More specifically, the number of vehicles per household 

Fig. 3. Overview of the UK distribution mechanism.  

Fig. 4. Interrelation between the number of households and domestic electricity consumption in the UK.  
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in 2021 has been determined to be 1.2. In the present study, since the 
number of households in the simulated community is 384, the total 
number of EVs in the community is determined as 461 in a fully EV 
adaptation scenario such as Scenario 4&5. 

Vehicle variety is a critical parameter that should be evaluated in 
predicting the charging demand for EVs. The International Energy 
Agency (IEA) (International Energy Agency (IEA) 2023) highlighted that 
globally, 500 electric car models were available at the end of 2022, with 
around 150 models available in the UK. This diversity indicates that 
vehicles may vary significantly in communities, necessitating the in-
clusion of vehicle variety in vehicle charge load calculations. To address 
this, the ten most popular EVs in the UK and some of their technical 
features were examined. Table 3 lists these vehicles by popularity in the 
UK and shows their battery capacity and consumption rates adapted 
from [ ((Department for Transport (DfT) 2022; EV-Database, 2023))]. 
This information is then given as input for the MATLAB model, and the 
model randomly selects and assigns one of these cars for each vehicle in 
the community. 

The total number of public EV chargers in the UK was just above 
40,000 units at the end of April 2023. Although ultra-rapid chargers 
have the lowest share in the market, they are responsible for the charger 
group that provided the highest increase in the last four months 
(Department for Transport (DfT) 2023). Moreover, Zap-Map (Zap-Map, 
2023) pointed out that the number of charging stations installed in 
homes and businesses is estimated to be more than 400,000, although 
the exact number is unknown. DfT (Department for Transport (DfT) 
2018) also stated that these home chargers are mostly rated with 3 kW 
and 7 kW of power output. Therefore, this study assumes that the 
simulated community is equipped with both 3-kW and 7-kW chargers, 
with the model randomly selecting and assigning one of these chargers 

for each EV charging and discharging operation. 
EV availability is another factor that affects the charging demand 

predictions of EVs. Modelling EVs’ arrival and departure times is 
essential as this can impact the hourly charging loads imposed by EVs on 
the grid. Additionally, the hour-based charging needs of EVs are vital in 
efficiently planning and managing energy infrastructure. Unanticipated 
energy load on the grid can result in overloads and potential power 
outages. In this study, the analysis results of the UK 2000 time of use 
survey (TUS) by Wang and Infield (Wang & Infield, 2018) are used for 
EVs’ arrival and departure times. TUS, conducted by the Office for Na-
tional Statistics, is a survey that examines the travel behaviour of 
approximately 10,127 people (Burchardt, 2000). In this survey, 
travel-related data such as modes of transportation, travel times, and 
purposes are collected and then analysed. The survey aims to understand 
how participants allocate their time to activities like commuting, 
socialising, and education, focusing on the specific hours dedicated to 
these activities (Burchardt, 2000; Short, 2006). For this study, the 
vehicle percentages for arrival and departure time slots were obtained 
from (Wang & Infield, 2018) and normalised. The arrival and departure 
times were generated stochastically for the EVs in the community based 
on empirical distributions using the inverse transform sampling method. 
The two-sample Kolmogorov-Smirnov (K-S) test was conducted to assess 
the similarity between the generated and original samples statistically. 
The original distribution of the EV availability period on weekdays and 
weekends is shown in Fig. 6a and b, respectively. 

This study analyses daily EV usage habits and mileage of vehicles to 
calculate the demand for EV charging. According to a travel report 
published by DfT (Department for Transport (DfT) 2022), vehicles in the 
UK travel 5200 miles per year; thus, the average daily travel is roughly 
15 miles. However, to create a more realistic model for the mileage 
distribution, the annual travel ranges and percentages of vehicles taken 
from the DfT’s National Travel Survey (NTS) (DfT, 2022) were used to 
create random samples. Two methods, Weighted Random Sampling 
(WRS) and Uniform Random Sampling (URS), were used to generate 
random samples. WRS was utilised as a first step to assign probability 
weights based on the raw data mileage ranges. Subsequently, URS was 
conducted to generate specific mileage values within these ranges. As an 
accuracy check step, a Chi-Square goodness-of-fit test was performed as 
a control step. This test determines how well the generated data matches 
the original distribution. It is worth mentioning that Plug-in Hybrid 
Electric Vehicles (PHEVs) are not considered in this study due to their 
reliance on traditional fuel sources for daily travel. The main reason for 
this decision is the complexities in modelling PHEVs, which use both 
electricity and traditional fuels. It is a challenge to accurately predict 
PHEVs’ state of charges and electricity demand due to variable driving 

Fig. 5. The average number of vehicles per person and per household in the UK by years.  

Table 3 
Comparison of most popular EV models in the UK.  

Popularity 
Rank 

Vehicles Type Capacity 
[kWh] 

Consumption Rate 
[kWh/mile] 

1 TESLA MODEL 3 BEV 60 0.232 
2 NISSAN LEAF BEV 40 0.269 
3 KIA NIRO BEV 68 0.27 
4 RENAULT ZOE BEV 54.7 0.274 
5 VOLKSWAGEN 

ID3 
BEV 62 0.264 

6 JAGUAR I-PACE BEV 90 0.36 
7 TESLA MODEL Y BEV 60 0.267 
8 AUDI E-TRON BEV 93.4 0.34 
9 BMW I3 BEV 42.2 0.261 
10 HYUNDAI KONA BEV 67.5 0.261  
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patterns and fuel usage. 
MCS is a numerical technique used in probabilistic systems analysis 

by sampling random variables according to their probability distribu-
tions and calculating the resulting output variables. It utilises a 
computational model to perform experiments that provide statistical 
insights into the behaviour of complex engineering systems under un-
certainty (Mahadevan, 1997). In the context of EV charging/discharging 
operations, MCS works by simulating thousands of scenarios for how 
EVs might be charged or discharged throughout a day or over longer 
periods. Each scenario can consider various uncertainties such as arrival 
times of vehicles, the duration of stay, the state of charge on arrival, and 
more. By aggregating the outcomes from these simulations, MCS can 
provide a probability distribution of potential demands on the char-
ging/discharge infrastructure and the power network (Harris & Webber, 
2014; Lopez et al., 2021; Wang & Infield, 2018). 

In this research, the MCS stochastic model is used to simulate the 
variability in EV charging demand, taking into account a variety of 
parameters such as vehicle types, battery capacities, arrival times, stay 
durations, types of chargers and more, as detailed below. The proposed 
model utilises probabilistic distributions to capture the uncertainty 
inherent in these parameters, providing a detailed view of potential 
charging demand scenarios. A sensitivity analysis is also presented in the 
results section to illustrate the impact of parameter variability on system 
performance, offering a comparative assessment between systems with 
randomised variable EV parameters and those with fixed ones. 

As can be seen in Fig. 7, in this research, MCS starts with the initi-
alisation phase by defining key parameters such as the number of EVs 
(referred as ‘n’), charging power rates, charging efficiency and the 
number of iterations (referred as ‘i’). The required parameters for the 
ambient temperature effect on EV charging are introduced here. The 
approach utilised for this matter was developed by Hao et al. (Hao et al., 
2020), who discovered that when the ambient temperature falls below 
10 ◦C, the electricity consumption of EVs increases by 2.4 kWh per 100 
km per each 5 ◦C decrease in temperature. Conversely, they found that 
when the temperature rises above 28 ◦C, the energy consumption of cars 
increases by 2.3 kWh per 100 km per each 5 ◦C rise in temperature. 

A key element of the present methodology is using average daily 
temperature values to assess the impact of temperature on EVs’ energy 
consumption during charging and discharging operations. This 
approach was necessitated by the limitations of the dataset, particularly 
the lack of detailed information on the exact usage times of the vehicles. 
As a result, while the research analysis provides a foundational under-
standing of temperature effects on EV energy consumption, it may not 
capture the full extent of intra-day temperature fluctuations. Despite 
this, this method can offer valuable insights into how ambient temper-
ature variations broadly influence EV consumption and energy 
requirements. 

The iterative process is the main part of MCS, where each iteration 
simulates a single instance of the charging demand scenario based on 
random input data sampling. In each iteration, MCS first generate 
random EV characteristics such as EV model, battery capacity, energy 
consumption rates, and arrival/departure times, which are sampled 
based on probability distributions of the given data. Following that, the 
simulation calculates the charging demand for each EV, and then the 
individual charging demands are aggregated to provide a system-level 
view of the energy required over the simulation period. It is also 
important to note that for the MCS model, the number of iterations and 
charging efficiency are set as 1000 and 90 %, respectively. 

SOC is the ratio showing the total available capacity of the battery, 
and the depth of discharge (DoD) of a battery specifies the percentage of 
the battery’s capacity that can be depleted. Factors such as driving 
models, travel distances, EV types, battery capacity, and consumption 
rates significantly affect the SoC of EVs. Consequently, there are 
inherent uncertainties in calculating the SoC for EVs. 

Eqs. (1)–(3) can be used to determine the SoC and DoD of the bat-
teries, as detailed in our previous study (Dik et al., 2023). In Eq. (1), 
Pbattery is the power capacity of the battery, and Psupply refers to the 
instantaneous power supply from the battery to the load at any given 
moment. Additionally, QD represents the amount of charge extracted 
from the battery at any given moment in Eq. (2). 

Fig. 6. Distribution of departure and arrival times of the vehicles, a) on weekdays and b) on weekends.  
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SoCt = SoCt− 1 −
1

Pbattery

∫t

0

Psupply(t)dt (1)  

DoDt =
QD

Pbattery
× 100% (2)  

DoDt = 100% − SOCt (3) 

In the modelling conducted in this study, the SoC was calculated by 
including some important variables such as travel distance, car con-
sumption rate, and battery capacity to account for uncertainties. Addi-
tionally, all the variables were randomly selected in each iteration, as 
previously explained. Eq. (4) demonstrates how the initial SoC was 
computed as part of this study’s EV model by considering the travel 
distance of the vehicles. In Eq. (4), Dmile represents the daily travel dis-
tance driven by the car, measured in miles, before returning home, and 
μEV refers to the electricity consumption rate of the vehicle in kWh per 
mile. 

SoCinitial,n = 80% −

(Dmile,n × μEV,n

Pbattery
× 100

)

(4) 

The preferred charge/discharge SoC rate in vehicles is a 

controversial issue. The DfT (Department for transport (DfT) 2022) 
conducted a survey investigating the driving behaviours, EV charging 
behaviours, and attitudes to the public charging infrastructure of UK 
electric vehicle drivers. The survey asked vehicle owners about the level 
of their battery SOC before charging and after charging at home and in 
public places. 83 % of participants who charge at home typically charge 
their vehicles to a SOC of 70 % or higher, with 66 % of these participants 
charging their vehicles to a SOC of 80 % or higher. Although there were 
some outlier values in the survey results, the results showed that the 
median battery percentage level reported by EV owners before charging 
at home was 24 %, and it rose up to 94 % after charging. While current 
charging behaviours somewhat deviate from the 20− 80 % SOC range, 
the benefits of maintaining this range—such as enhancing battery life-
span and ensuring cost savings—are well-documented in the literature 
(Bayram & Tajer, 2017; Koncar & Bayram, 2021; Kostopoulos et al., 
2020; Ramadan et al., 2017). Additionally, Kostopoulos et al. (Kosto-
poulos et al., 2020) found that charging batteries above 80 % doubles 
the losses compared to charging between 20 % and 80 %. Considering 
the documented advantages of adoption to the 20− 80 % SOC range, our 
study aims to model a scenario grounded in this optimal practice. 
Therefore, in the simulated community, it was assumed that vehicles 
were not charged beyond 80 % and not discharged below 20 %. The 
intention is not to disregard the current reality but to present a potential 
trajectory that maximises the benefits of EV usage. This approach can 
offer insights into potential grid support, energy savings, and battery 
health benefits that could be achieved if a shift towards this optimal 
charging behaviour were realised. This approach could also be a chance 
to visualise the outcomes of optimal charging practices for stakeholders 
and may show the tangible benefits of promoting such behaviours. This 
could also drive educational campaigns, technological innovations in 
smart charging, and even policy adjustments to encourage EV owners to 
adopt the 20− 80 % SOC charging range to avoid increased waste from 
depleted batteries. 

The amount of energy required for a full charge (E80%), the time 
required to meet this energy demand (T80%) and the hourly charging 
demand of the vehicle on the grid (EEV load) can be calculated as shown in 
Eqs. (5)–(7), respectively. In Eq. (6), when the term Pcharger represents 
the power rating of the EV’s charger, μcharger denotes the efficiency 
charger, which is set at 90 % in this study. 

E80%,n = Pbattery,n × (0.8 − SoCn) (5)  

T80%,n = E80%,n ÷
(
Pcharger,n × μcharger

)
(6)  

EEV load,t = min
( (

E80%,n,t ÷ μcharger
)
,
(
Pcharger,n × 1 hour

))
(7) 

On the other hand, in this study, the Vehicle-to-Grid (V2G) tech-
nology and smart charging method (specifically the charging delay 
technique) have been utilised for the energy balance mechanism after 
showing the effect of the uncontrolled charging situation on the com-
munity grid. The methodological framework of the EV charging and 
discharging operations is shown in Fig. 8. This model is designed to 
optimise the community grid’s balance by managing EV charging and 
discharging operations. The model considers the grid’s demand profile, 
energy supplies, the vehicle owners’ post-operation SOC preferences and 
the duration of EV parking. 

As shown in Fig. 8, the model initially integrates the previously 
developed MCS logic to generate a random EV dataset with the afore-
mentioned uncertainty and to manage charging and discharging activ-
ities. Energy data inputs, including electro-domestic and heat pump 
loads, renewable generation from solar PV and wind turbines, and 
conventional generation, are then imported into the model to calculate 
the grid’s net electric demand. The simulation proceeds to loop through 
the fleet of EVs (n = 1 to 461 in scenarios 4&5) and iterates over multiple 
simulation runs (i = 1 to 1000) to ensure robustness and account for 
variability. In each iteration for each car, it is assessed whether there is 

Fig. 7. Flow diagram of the MCS approach for EV demand forecasting.  
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adequate time for charging delay or V2G strategies; if not, it defaults to 
initiating direct charging upon arrival and determines the hourly 
charging demand. A safety margin (SM) of 1.5 was used to identify 
unsuitable vehicles for smart charging or V2G as given in Eq. (8). That is, 
if the parking time of a vehicle is less than 1.5 times the time required for 
a full charge, then these vehicles are charged directly. 

Iunsuitable =
{

n |
Tdep,n − Tarr,n

60
≤ T80% × SM

}

(8) 

Subsequently, the simulation organised the rest of the EVs according 
to their stay duration, ranging from short to long, and established SOC 

preferences for each EV participating in V2G discharge operations. 
These preferences were assumed using a uniform random distribution 
between 60 % and 80 %, drawing inspiration from the DfT survey 
(Department for transport (DfT) 2022). 

To balance the grid and manage the charging and discharging ac-
tivities, the hourly EV energy demand and supply can be calculated by 
updating Eq. (7), as expressed in Eqs. (9) and 10. Where Egrid surplus refers 
to the energy available on the grid for EV charging after deducting the 
electro-domestic and HP demands, while Egrid deficit represents the energy 
deficit exceeding the grid operational capacity limit. 

Fig. 8. Flow diagram of the model for EV charging and discharging under Smart Charging and V2G.  
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EEV demand,t = min
( (

E80%,n,t ÷ μcharger
)
,
(
Pcharger,n × 1 hour

)
,
(
Egrid surplus,t

))

(9)  

The EV’s SOCs and the grid net demand is continually and dynami-
cally updated following each EV’s energy transaction. The model also 
ensures that the grid’s operational capacity remains below the threshold 
and that the discharged EVs reach their preferred SOC after the 
operation. 

2.6. Approach for modelling thermal energy demand 

This section details the steps performed to model the community 
thermal energy needs of the houses, which includes the space heating 
and hot water requirements of the houses in the simulated community. 
The location selected for the model was Nottingham, UK. IES VE soft-
ware was used to model the houses and analyse the thermal energy 
demand. 

IES VE is a dynamic thermal simulation tool designed for detailed 
evaluation and optimisation of building and system designs. It has been 
widely used in modelling heat transfer processes, including thermal 
insulation, building dynamics, and various environmental factors like 
climate and shading (Shahzad et al., 2020; Wei et al., 2022). The tool 
operates using real weather data and can simulate thermal conditions 
over periods ranging from a day to a year. It can provide a variety of 
outputs, from energy consumption to detailed performance measures 
like room temperatures and air exchanges. This makes it an invaluable 
tool for calculating the heating demand of the buildings. The techniques 
and equations employed in the tool are briefly outlined in Appendix 2. 

Since the heating load of the building is related to the materials used 
in designing the house, the E.ON house was simulated in IES VE ac-
cording to the actual fabrics used and the default user profiles such as 
occupancy schedule, lighting preference and thermostat settings. Hall 
et al. (Hall et al., 2013) analysed the E.ON Research House to evaluate 
energy efficiency and occupant comfort. They investigated various 
retrofit technologies and approaches in their study. The study conducted 
by Hall et al. was used as one of the key references for the thermal 
modelling of the present paper. Table 4 shows the main structural ele-
ments and the modelled U values of these structural elements. The data 
presented in Table 4 are taken from (Hall et al., 2013). 

In the developed IES VE model, it is assumed that a family of four, 
comprising two parents and two children, lives in this house. Further-
more, temperature set points, lighting, and occupancy profiles for the 
home are illustrated in Appendix 3. These profiles are determined based 
on the hours of the day and differentiated for weekdays and weekends. 

In the model, the user profile is introduced by taking into account the 
residents’ night-time, morning-time, day-time, evening-time and late- 
night-time activities. The Chartered Institution of Building Services 
Engineers (CIBSE) environmental design guide (CIBSE, 2006) was used 
here to determine the heating profile of the house. Between 8:00 and 
15:00 on weekdays, the occupancy percentage at home is 25 %, and the 
temperature is kept at 18 ◦C. Although the weekend occupancy rate 

varies depending on time, the temperature set value between 8am and 
10pm is set as 21 ◦C to make an average temperature of kitchen, hall, 
bedrooms and living rooms due to possible day-long activities at home. 

During the sleep period, temperature values are set at 17 ◦C. Addition-
ally, unlike the weekday profile, the temperature value for possible 
late-night activities is 19 ◦C between 22:00 and midnight on weekends. 
On the other hand, as shown in Appendix 3, the lighting profile varies 
depending on the occupancy profile and activities. While the lighting 
percentage is as low as 5 % during the night, this rate rises to 85 % when 
everyone comes home and in the evening. 

The IES VE model used Nottingham’s weather data. The total heating 
gain, maximum sensible gain, maximum latent gain and infiltration are 
set at 530 W, 90 W/person, 60 W/person, and 0.25 ach, respectively, as 
indicated in (Kutlu et al., 2022). 

Following that, the domestic hot water requirement for the house is 
computed based on a 7-h demand, factoring in morning routines (2 h) 
and evening periods (5 h) on a typical day. The daily hot water 
requirement per individual and the hot water temperature is set at 30 L 
and 60 ◦C, respectively. 

2.7. Approach for modelling heat pump systems 

Heat pumps are systems that move the heat from a cold environment 
(source) to a warm environment (sink). This heat transfer requires 
external electrical energy, and the amount needed depends on various 
factors. The primary performance parameter of a heat pump is the 
temperature difference between the heat sink and the heat source. In this 
research, common types of heat pumps, including ASHP, SAHP, and 
GSHP were analysed. The performance effects and energy consumption 
of these HP types have been introduced and compared by modelling 
them within the study. 

The most common type is the ASHP, whose performance directly 
depends on ambient temperature. This reliance can be a drawback in 
very cold temperatures. SAHP utilise solar energy, storing it in a buffer 
tank. Their performance is better than the ASHPs as long as the buffer 
tank’s temperature remains higher than the ambient temperature. 
However, their effectiveness depends on the solar profile of the location. 
Lastly, GSHP offers the most stable performance amongst these options 
as the earth’s temperature doesn’t change considerably compared to 
ambient temperature. 

HP modelling operates on certain assumptions, regardless of the type 
of HP used. Since the heating requirements are determined using IES VE, 
the HPs are designed to provide an amount of heating that precisely 
matches the building’s heating demand profile. Therefore, the conden-
sation temperature of the heat pumps is maintained at a constant 70 ◦C. 
This approach ensures that the hot water delivered to the building can 
reach approximately 65 ◦C, a temperature sufficient for hydraulic 
heating systems such as radiators. 

Coefficient of performance (COP) of an HP is calculated by Eq. (11): 

COP =
Q̇˙

cond

Ẇ˙
comp

(11) 

Where Ẇ˙
comp and Q̇˙

cond are compressor consumption and condenser 
load, respectively. 

For GSHP energy calculations, COP is taken constant. This is in line 
with the assumptions made in reference papers, which typically use a 
COP value of 3 (Doroudchi et al., 2018; Han et al., 2022). Therefore, the 
electricity consumption of the GSHP is calculated using the COP 

Table 4 
Materials and their corresponding U-values.  

Roof [W/ 
m2K] 

Floor [W/ 
m2K] 

External Wall [W/ 
m2K] 

Window [W/ 
m2K] 

Door [W/ 
m2K] 

0.13 0.12 0.54 0.7 3  

EEV supply,t = min
( (

Eavailable,n,t × μcharger
)
,
(
Pcharger,n × μcharger × 1 hour

)
,
(
Egrid deficit,t

))
(10)   
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equation. However, the electricity consumption of ASHP and SAHP must 
be calculated using more detailed heat pump modelling. The evapo-
rating temperature for the ASHP is determined by considering it to be 10 
◦C lower than the ambient air temperature (Kutlu et al., 2023), ensuring 
adequate heat transfer rate between the air and the refrigerant (Hundy, 
2016). 

It is important to note that ASHP systems require defrosting when the 
ambient temperature falls below 2.5 ◦C, and the relative humidity ex-
ceeds 70 %. An empirical equation, developed by Roccatello et al. 
(Roccatello et al., 2023), is employed to account for the defrosting 
phenomena during ASHP operation. They conducted experiments at 
ambient temperatures ranging from 2.5 ◦C to − 4 ◦C, and relative hu-
midities of 70− 80 % and 90 %. The equation determines the required 
COP drop, which is then used to update the calculated electricity con-
sumption when defrosting occurs. 

COP drop= a+b⋅RH+ c⋅Tam +d⋅RH⋅Tam+ e⋅Tam
2 + f ⋅RH⋅Tam

2 +g⋅Tam
3

(12) 

Coefficients in the correlation are a = 15.05, b=− 0.2543, c =
0.01351, d= − 0.007022, e = 0.4319, f=− 0.005945, g = 0.03681. 

SAHP consists of evacuated solar collectors, a buffer tank and an HP 
unit. The solar collectors capture solar energy and store it in the buffer 
tank, which serves as the heat source for the heat pump. The tempera-
ture of the buffer tank varies based on the heat input from the collectors 
and the heat extracted by the heat pump. The details of the ASHP and 
SAHP modelling were the subject of previous publications (Erdinc et al., 
2023) and (Dik et al., 2023), respectively. The present study considers a 
solar collector area of 30 m2, considering the building’s floor area, and 
an 800-litre buffer tank is used. 

In winter conditions, solar irradiance can vary significantly from day 
to day. On days with low solar irradiance, the heat collected may be 
insufficient to meet the heat pump’s evaporator load. Consequently, the 
temperature in the buffer tank drops, leading to reduced HP perfor-
mance. As the area available for solar collectors on the roof limits the 
size of the solar collector array, the performance of SAHP systems may 
fall below that of ASHP systems when relying solely on the SAHP unit for 
heating. Therefore, during the cold winter months (December and 
January), the heating load of the SAHP is restricted to 30 % of the total 
heating requirement. This strategy allows the system to capitalise on the 
higher performance of the SAHP, while its contribution to the overall 
system performance remains limited to 30 %, with the remaining heat 
supplied by the ASHP. This contribution percentage was determined 
based on various simulations, for instance, when SAHP covered 100 % of 
the heating load, the COP was significantly lower than the sole ASHP 
COP. With a coverage ratio of 40 %, the overall COP was found to be 
3.45 % higher than the sole ASHP COP. However, when the coverage 
ratio is 30 %, overall COP improvement reaches 5.65 % in January. 

To calculate the overall COP for the SAHP system in January and 
December, Eq. (13) is used: 

COPSAHP− J,D =
Q̇˙

demand

Ẇ˙
SAHP + (1 − cover) ∗ Ẇ˙

ASHP
(13) 

Where cover represents the coverage ratio of SAHP heating in rela-
tion to the total demand. As the supplied heating is lesser, buffer tank 
temperature remains higher than the ambient temperature, leading to 
reduced compressor consumption. However, to determine the overall 
COP, the consumption of the ASHP must also be included as given in Eq. 
(13). 

2.8. Modelling techniques for solar PV and wind energy generation 

Solar PV and wind energy systems are amongst the most crucial 
energy solutions for the sustainable energy supply of communities. This 
section discusses the modelling technique used to predict the electrical 
outputs of on-grid solar PV and wind energy systems, which are 

expected to be integrated at varying scales from the short-term to the 
long-term, as detailed before. The renewable energy system model 
employed in this study is required to capture these resources’ inter-
mittent and fluctuating outputs accurately. This is essential to maximise 
the utilisation of energy derived from these sources through EVs, 
ensuring a safe and efficient transfer to the grid. 

In each of the outlined scenarios, the generation capacities from both 
renewable and conventional energy sources have been determined to 
reflect realistic and strategic energy mixes (details in the scenario 
reasoning section). For instance, in Scenario 1, 25 % of the grid capacity 
is designated to come from renewable energy sources, specifically solar 
PV and wind energy, which contribute 60 % and 40 % of the renewable 
mix, respectively. The remaining 75 % of the energy is sourced from 
conventional generation methods. All summarised capacity values for 
PV and wind energy, corresponding to each scenario, are detailed in 
Table 5. 

This study modelled the proposed on-grid wind and solar energy 
systems using the HOMER Pro-microgrid software (HOMER Energy by 
UL, 2023) to estimate the potential electricity generation from these 
sources. HOMER stands for Hybrid Optimisation of Multiple Energy 
Resources. HOMER Pro is a comprehensive and powerful software 
widely recognised in the literature for analysing the design of hybrid 
renewable energy systems and optimising their integration into the grid 
(Allouhi et al., 2022; Ekren et al., 2021; Rahmat et al., 2022). It simu-
lates equipment by evaluating all possible combinations for optimisation 
in microgrid designs. This software stands out in grid integration ana-
lyses of conventional and RESs and is trusted by governments and en-
ergy experts (HOMER 2023). 

HOMER Pro-also has advanced capabilities to simulate the impacts 
of weather variability on solar and wind energy outputs with precision 
in modelling renewable energy generation. Given the critical impor-
tance of accurate renewable energy supply forecasts, HOMER Pro’s 
deterministic simulations are particularly suited for capturing the dy-
namic fluctuations of solar and wind power generation (Mehta & Basak, 
2020; Rahmat et al., 2022). This approach is complemented by the 
stochastic modelling of EV charging behaviour, providing a balanced 
methodology that addresses the uncertainties in both energy supply and 
demand. The integration of HOMER Pro’s deterministic tool within the 
broader stochastic framework enriches the research by thoroughly 
analysing the intermittent nature of renewable energy sources. 

Modelling of the on-grid renewable system in HOMER Pro-was car-
ried out in five steps, as shown in Fig. 9. The first two steps involved 
determining the location of the simulated system as Nottingham, UK, 
and defining the region’s solar irradiation, ambient temperature, and 
wind speed values. The solar radiation, ambient temperature, and wind 
speed data were transferred from the IES model used in this study, which 
utilised the EnergyPlus weather data database (EnergyPlus, 2023), to 
ensure consistency in weather conditions across the overall model. 

The PV system design is performed in the next step using HOMER 
Pro-software, which offers a library of various PV models for system 
modelling. For this study, the Sunpower E20–327 solar PV panel was 
selected. Detailed specifications of the chosen PV panel are presented in 
Table 6. All information regarding the PV panel was sourced from the 
HOMER Pro-software (HOMER Energy by UL, 2023). 

HOMER Pro-estimate the potential electricity generation from the 
sources by operating with a set of fixed equations and algorithms, con-
ducting analysis based solely on user-defined parameters and system 
configurations. The software calculates the power outputs of PV arrays 
using Eq. (14), which is defined as follows: 

Table 5 
The proposed capacity values for PV and wind energy by scenarios.  

Scenarios S1 S2 S3 S4 S5 

Solar PV Capacity [kW] 60 100 100 120 180 
Wind Turbine Capacity [kW] 40 100 100 180 120  
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PPV = YPV × fPV ×

(
GT

GT,STC

)

×
[
1+ αp ×

(
Tc − Tc,STC

)]
(14) 

Where YPV is the rated capacity of the PV array and measured in kW. 
fPV which is the PV derating factor is also considered in the equation as a 
percentage. This is a rate showing efficiency losses due to some real 
weather conditions such as ageing, dirty surface, and snow cover. The 
PV derating factor, in the analysis, was adjusted to 88%, following the 
default value given in the software. Solar radiation on the PV array 
during the current time step (GT) in kW/m2 and the standard test con-
dition radiation (GT,STC) of 1kW/m2 are the key parameters in Eq. (14) to 
calculate power output from the PV array. Temperature effects are also 
accounted for via the temperature coefficient (αp) in%/ ◦C, and the PV 
cell temperatures both in the current time step (Tc) and under standard 
test conditions (Tc,STC), determined as 25 ◦C. 

On the other hand, the Eocycle EO10 wind turbine, selected from the 
software’s library, was used for the wind energy system design. Details 
about the turbine can be found in Table 7. All information regarding the 
PV panel was sourced from the HOMER Pro-software (HOMER Energy 
by UL, 2023). 

The wind turbine energy system’s output is realised in a few steps in 
the software (HOMER, 2023). Since the wind speed measurement height 
(Uanem) may differ from the turbine’s hub height, the software initially 
calculates the wind speed at the turbine hub height (Uhub). This is caried 
out using a logarithmic law, as outlined in Eq. (15). Where, ’Zhub’ and 
’Zanem’ represent the hub height of the selected wind turbine and the 
anemometer height, respectively, both also expressed in meters. The 
term ’Z0’ refers to the surface roughness length, a parameter indicating 
the terrain’s roughness around the system’s location. In the current 
analysis, this value was set to represent ’few trees’ and was taken as 0.1. 
Following that, the software uses Eq. (16) to calculate the wind turbine 
output (PWTG). Where PWTG,STP is the wind turbine output power based 
on the power curve of the turbine, ‘ρ’ refers to actual air density and ‘ρ0’ 
represents air density at standard temperature and pressure. 

Uhub = Uanem ×
ln(Zhub ÷ Z0)

ln(Zanem ÷ Z0)
(15)  

PWTG =

(
ρ
ρ0

)

× PWTG,STP (16)  

3. Results and discussion 

3.1. Comparative performance analysis of heat pump systems 

This section thoroughly examines HP systems, focusing on their 
operational efficiency across various seasons. It starts by analysing how 
seasonal heating demand fluctuations affect residential heating re-
quirements, establishing the context for assessing HP systems’ adapt-
ability and efficiency. Following this, the section proceeds to a 
comparative analysis of different HP types, including ASHPs, GSHPs, 
and SAHPs, regarding their ability to meet heating demands and their 
electricity consumption. This evaluation aims to provide insights into 
selecting effective and efficient HP systems for sustainable residential 
communities. 

While energy utilisation for heating generally decreases with warmer 
temperatures, reflecting a lower need for heating, this study specifically 
focuses on heating and domestic hot water requirements without 
considering the increase in energy demand for cooling in warmer 
months. The relationship between energy consumption and temperature 
is multifaceted, influenced by factors like regional climate and socio-
economic status, which can result in varied electricity demand responses 
to temperature changes (De Cian et al., 2013). 

In this context, the IES VE output captured in Fig. 10 presents a 
visualisation of the seasonal heating demand fluctuations and their 
consequential impact on residential heating and hot water needs. The 
graph details the heating demand in kW across a 48-hour timeframe for 
three different months, illustrating the diverse seasonal conditions and 
highlighting the necessity for HP systems that can respond to these de-
mands. In December, heating demand can be significantly high and 
varies, with one observed day nearing 7 kWh. This variability indicates 
the potential for both higher and lower demands throughout the winter, 
posing a risk of substantial strain on the grid. Such fluctuations and high 
demands can necessitate robust heating solutions and efficient energy 
management to ensure grid stability. April’s profile, marked by mod-
erate peaks, suggests a transitional period where heating demands are 
present but less intense than in winter, reflecting the mild temperatures 
commonly experienced during spring. Despite July’s overall minimal or 
non-existent heating demand, due to the warm weather significantly 
reducing or eliminating the need for space heating, there remains a 
consistent demand for domestic hot water heating. 

Fig. 9. The simplified modelling steps for on-grid solar PV and wind energy 
systems in HOMER Pro. 

Table 6 
The characterisation of the solar PV panel utilised in the model.  

Specification Details 

Model SunPower E20–327 
Panel Type Monocrystalline Flat Plate 
Rated Capacity 0.327 kW 
Panel Efficiency 20.4 % 
Temperature Coefficient − 0.380 %/ ◦C 
Nominal Operating Cell Temperature 45 ◦C  

Table 7 
The characterisation of the wind turbine utilised in the model.  

Specification Details 

Model Eocycle EO10 
Nominal Capacity [kW] 10 
Hub Height [m] 16 
Cut-in Wind Speed [m/s] 2.75 
Cut-off Wind Speed [m/s] 20  
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Given the outlined seasonal variations in heating demand, with 
December experiencing significant high demands and July showcasing 
minimal to non-existent needs beyond hot water heating, the ensuing 
analysis turns to a closer examination of how different HP type-
s—ASHPs, GSHPs, and SAHPs—perform under different conditions and 
proposed scenarios in the paper. This detailed comparison, initiated 
with an overview of solar irradiance and ambient temperature varia-
tions, aims to assess each HP type, focusing on their efficiency and 
electricity consumption patterns. 

Fig. 11a shows a typical solar irradiance and ambient temperature 
variation in December for 48 h, including Friday and Saturday. As ex-
pected, the peak solar irradiance appears to be just under 200 W/m2, on 

the first day, solar irradiance reaches a maximum of 100 W/m2. At the 
same time, the ambient temperature varies between − 3 ◦C and 7 ◦C. 
Fig. 11b shows the electricity consumption of three types of HPs to meet 
the calculated building heating demand. On weekdays, the building 
demand profile exhibits two peak periods: one in the morning and one in 
the evening. During the weekend, the morning peak is noticeable, while 
the evening peak is more subdued; however, the heating load is higher 
throughout the daytime. This profile is shaped by factors such as 
ambient temperature, solar irradiance, and, of course, the user profile 
and temperature settings within the building. The total heating demand 
for a given 48 h is 87 kWh. 

The electricity consumption profiles of all heat pumps follow a 

Fig. 10. Seasonal heating demand variation in a home in the simulated community.  

Fig. 11. a) Weather data of 48 h in December and b) Variation of electricity consumption profiles of HPs given heating demand.  

A. Dik et al.                                                                                                                                                                                                                                      



Sustainable Cities and Society 107 (2024) 105412

16

pattern similar to the heating demand profile. amongst the heat pumps, 
the GSHP unit has the lowest total consumption, at 29 kWh. Its assumed 
constant COP of 3 makes it the best option for heating in December, as 
GSHP performance is not directly affected by severe weather conditions 
and high heating demand. In contrast, ASHP performance depends on 
ambient temperature and, most of the time in the given period, the 
ambient temperature is less than 4 ◦C, necessitating a performance 
reduction due to the need for defrosting. For this 48-hour period, the 
ASHP’s electricity consumption is found to be 38.6 kWh, which corre-
sponds to an average COP of 2.25. 

SAHP performance is influenced by various conditions, such as solar 
irradiance, ambient temperature, and the demand profile. Since the heat 
source is limited, the buffer tank temperature fluctuates with heat 
charge and discharge cycles. As previously mentioned, SAHP perfor-
mance can be lower than that of a conventional ASHP when the solar 
heat input is insufficient to cover the HP’s evaporative heat load. For this 
reason, the SAHP’s contribution to the heating demand is limited to 
30%, allowing for 70% of the heating load to be provided by the ASHP. 
Consequently, electricity consumption is primarily dominated by ASHP 
performance. However, overall, the system still benefits from solar en-
ergy, as shown in Fig. 11b. The combined SAHP system’s electricity 
consumption is 36.42 kWh, resulting in a COP of 2.38. This difference of 
2.2 kWh in lesser consumption translates to a 5.6 % reduction in elec-
tricity use compared to the standalone ASHP unit. 

Fig. 12 presents the same parameters but under April weather con-
ditions. Fig. 12a shows solar irradiance peaking at 580 W/m2. Notably, 
the longer solar hours are beneficial for SAHP performance as they allow 
for more heat collection and increase the buffer tank temperature. A 
higher buffer tank temperature reduces the pressure difference between 
the condenser and evaporator, leading to improved performance. The 
ambient temperature varies between 15 ◦C and 5 ◦C, resulting in fluc-
tuating COP values for the ASHP. 

Fig. 12b displays the heating demand profile and the electricity 
consumption of all heat pump units during 48 h of operation in April. On 
Friday, two distinct load profiles emerge as the temperature settings are 

adjusted to maintain comfortable conditions in the morning and eve-
ning. However, the building’s heating demand is much lower compared 
to winter conditions due to higher ambient temperatures and the 
reduction in heating requirements afforded by solar heat input. In 
winter, the heating requirement exceeds 7 kW, but in April, it peaks at 3 
kW, totalling 21.5 kWh over the two days under review. 

The highest electricity consumption is observed in the ASHP unit, 
with a total of 8 kWh consumed over 48 h, resulting in a COP of 2.68. 
The COP for the GSHP is pre-set at 3, with a total consumption of 7.16 
kWh. Yet, the advantage of having a GSHP is less pronounced due to the 
higher ambient temperatures. In contrast, the SAHP demonstrates 
promising performance with a COP of 9.4 on these selected days. The 
main reason is the high solar irradiance combined with the low heating 
demand, leading to an elevated buffer tank temperature and signifi-
cantly improved SAHP performance. 

Analysis of the weather conditions for two days in December and 
April demonstrates that the SAHP can perform up to 2.5 times better 
than the ASHP. However, it should be noted that the solar profile in April 
might not always be as favourable as on the days examined. These days 
represent the best-case scenario and offer insight into the potential 
performance in other months, such as May or June, when considering 
Domestic Hot Water (DHW) needs, which average around 5 kWh daily. 

For this case, the COP calculations were extended to a monthly 
analysis to indicate the benefits of utilising an SAHP unit over an ASHP. 
The improvements in monthly COP were calculated at 5.65 %, 9.19 %, 
55.23 %, and 156.13 % for January, February, March, and April, 
respectively. 

3.2. Uncontrolled EV charging 

The first set of analyses examined the availability of EVs in the 
community. The original distributions of arrival and departure times, as 
analysed by (Wang & Infield, 2018) from the UK 2000 TUS, were 
received in half-hour intervals and then used to generate 1000 random 
samples using the inverse transform sampling method. Fig. 13 presents 

Fig. 12. Weather data of 48 h in April and b) Variation of electricity consumption profiles of HPs given heating demand.  
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the results obtained from the sampling method and gives a distinct 
pattern of the EV drivers’ daily travel habits. It can be seen that the most 
significant population of EV owners leave the house in the early morning 
to commute and return around 5–6pm. However, the temporal distri-
bution of vehicle travel during weekends exhibits a more homogenous 
pattern throughout the day. 

A K-S test was applied to determine if the developed time series 
pattern followed the actual time series figure. The calculated p-values 
are 0.9716 and 0.8228 for the arrival and departure times, respectively, 
in weekday data. For weekend data, the p-values are 0.9916 for arrival 
times and 0.9771 for departure times. Using a significance level (α) of 
0.05, this result shows that it failed to reject the null hypothesis that 
states two samples have the same distribution, for both departure and 
arrival times on weekdays and weekends. 

The daily distance travelled by these EVs was considered to calculate 
the charging load of the vehicles in the community. The annual vehicle 
utilisation levels, on the mile-basis, provided by DfT were modelled for 

EVs in the community using WRS and URS methods, as detailed in the 
methodology section. The obtained distribution for 1000 random sam-
ples from the analysis is shown in Fig. 14. The findings indicate that 
vehicles are primarily driven between 10 and 20 miles per day in the 
community. This aligns very well with the average daily driving distance 
of 15 miles reported by DfT (Department for Transport (DfT) 2022) in 
2023. The samples generated using WRS and URS were designed to 
follow the distribution that is already specified, but still, as a validation 
tool, the Chi-Square test was conducted in the model. The test result 
calculated the p-value as 0.4644. This means that it failed to reject the 
null hypothesis considering α of 0.05, that is, the differences between 
the original and empirical distributions were not considered statistically 
significant. 

The initial phase of the research aims to analyse the simulated 
community grid to illustrate the impact of uncontrolled EV charging and 
grid status with total electricity demand, including electro-domestic 
load and HP consumption. 

Fig. 13. The generated arrival and departure time distributions, a) arrival time on weekdays, b) departure time on weekdays, c) arrival time on weekends, and d) 
departure time on weekends. 

Fig. 14. Distribution of the daily travel mileage of the vehicles.  

A. Dik et al.                                                                                                                                                                                                                                      



Sustainable Cities and Society 107 (2024) 105412

18

MCS is performed to estimate the charging demand of EVs within the 
community under various scenarios, which include different penetration 
rates and seasonal variations. The MCS, designed to incorporate multi-
ple uncertainties, was conducted for 116 EVs in Scenario 1, 231 EVs in 
Scenario 2, 346 EVs in Scenario 3, and 461 EVs in Scenarios 4 and 5, as 
determined in this research scenarios. 

Scenario 1, and Scenario 5, were examined over a 48-hour period, 
capturing the dynamics of EV charging under uncontrolled conditions 
during both a typical winter day in December and a summer day in July. 
The MCS model outputs for the EVs’ charging load in the community 
without a charge control strategy in Scenarios 1 and 5, is shown in 
Fig. 15. One of the coldest Friday (2 ◦C) and Saturday (2.52◦) in 
December, as well as one of the warmest Friday (23.61 ◦C) and Saturday 
(21.01 ◦C) in July were selected to demonstrate the potential seasonal 
variations in EV charging demand. Fig. 15a presents the uncontrolled 
charging demand in Scenario 1 with 116 EVs on the selected Friday and 
Saturday, while Fig. 15b illustrates the demand in Scenario 5 with 461 
EVs, for both the selected Fridays and Saturdays, respectively. 

In the model, no charging management strategy is applied, and it is 
assumed that vehicles are directly plugged into the charger upon arrival. 
This approach provides insights into potential network challenges that 
could arise in future scenarios involving uncontrolled EV charging. 

The analysis of EV charging demands in community grids reveals 
critical insights, particularly when considering the impact of tempera-
ture variations and EV penetration levels. In both scenarios under study, 
a significant increase in charging demand is observed during the colder 
month of December. This trend is more apparent in Scenario 5, where, 
on a colder Friday, the peak charging demand touches an alarming 
466.32 kWh. This is nearly the grid’s peak capacity of 500 kW. The 
reason for the rise in charging demand is the increased internal resis-
tance of batteries in cold weather, which reduces discharge efficiency 
and necessitates additional power for heating, as highlighted in refer-
ence (Hao et al., 2020). In contrast, during the warmer month of July, 
although the demands are lower, they remain substantial. For instance, 
in Scenario 5, which represents 100 % EV penetration, the peak demand 
hits 374.96 kW, indicating a considerable load on the community grid. 

The comparative analysis of these scenarios indicates the possible 
scalability challenges of community grids. The peak charging demand in 
December jumped from 117.6 kWh with 25 % EV adoption (Scenario 1) 

to 466.32 kWh with 100 % EV penetration (Scenario 5). This dramatic 
rise underscores the necessity for a more robust grid infrastructure to 
support the growing popularity of EVs. In this point, the adoption of 
renewable energy supported EV charging stations could be a promising 
solution. Integrating renewable energy sources in EV charging infra-
structure could significantly reduce the stress on the grid caused by high 
EV penetration, as suggested in the reference (Dik et al., 2023). 

Additionally, the analysis showed distinct charging patterns between 
the selected Fridays (as a typical weekday) and Saturdays (as a typical 
weekend). Fridays consistently show a higher demand in both scenarios 
and seasons, which could be reflective of behavioural travel changes like 
weekday commuting and weekend events. 

As known, there is a direct correlation between the number of EVs 
and the charging load created. On Friday, specifically in Scenario 5 with 
461 EV units, considerably higher peak charging demands were 
observed. For instance, on the Friday of December, a typical weekday, 
the peak demand due to EV charging alone reached 466.32 kW at 6pm, 
which exceeds the operational capacity of the community grid. In 
contrast, this peak was just around 117.6 kW in Scenario 1, with 116 EV 
units at the same time. The charging demand pattern on weekdays 
typically starts low between midnight and early morning, gradually 
increases throughout the morning, and increases sharply in the evening. 
This pattern seems linked with typical commuting times, suggesting that 
full EV penetration could bring about a considerable challenge to grid 
capacity, especially during evening peak times on weekdays. It might be 
worth noting that even with a 25% EV penetration, the grid’s peak de-
mand capacity at 6pm on a weekday is significantly impacted by EV 
charging, especially in colder seasons. 

A noteworthy observation is that on weekdays, scenarios with 75 % 
or higher EV penetration, without any charge control strategy, result in 
an additional grid demand of over 200 kW. This load accounts for more 
than half of the grid’s operational capacity, emphasising the stress on 
existing distribution networks. The upcoming sections of this study will 
further explore how, especially during winter months, the increased 
need for heating can compound these challenges, potentially leading to 
inevitable grid management issues. However, the given MCS outputs for 
the EVs’ charging load under uncontrolled charge would be beneficial 
for a better understanding of the effect of EVs on the distribution grid 
and strategic planning in grid infrastructure. 

In addressing the impact of uncertainties on system performance, the 
study introduced a refined MCS model with uniform parameters—a 3 
kW charger and a Tesla Model 3, reflecting the UK’s most popular EV 
configuration. Fig. 16 compares hourly EV charging demands between 
this updated model and the original for December under Scenario 5, 
showcasing the influence of EV and charger diversity on demand pre-
dictions over 24 h. 

The peak demand in the updated model was 397.61 kW at 6PM, 
notably less than the original model’s 466.32 kW peak. Moreover, the 
total demand observed was 2264.24 kW, around 12% lower than the 
original’s 2581.49 kW. These results highlight the impact of un-
certainties such as EV specifications and charging behaviours on de-
mand forecasting and system design. The analysis emphasises the need 
to account for a range of uncertainties to develop resilient power grid 
planning and operation strategies that are representative of real-world 
variability. 

The next phase of the research explores the dynamics of total elec-
tricity consumption within a community integrating EVs without a 
charge control mechanism and different types of HPs under various 
scenarios, focusing on the impact of these sustainable technologies on 
the existing power grid. Our analysis revealed significant variance in 
peak electricity demands across scenarios, particularly when comparing 
the colder month of December to the warmer month of July. The total 
electricity consumption, combining the community’s electro-domestic 
load, uncontrolled EV charging, and different HPs’ consumption under 
various scenarios in December and April, is presented in Fig. 17. 

In December, when the total heating load of the community was 

Fig. 15. EV charging demand on community grid with uncontrolled charging, 
a) Scenario 1, and b) Scenario 5. 
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1016 kW, the peak demand with ASHP in Scenario 1, representing a 25 
% penetration of EVs and HPs, was approximately 546.85 kWh at 5pm 
on a typical weekday. This demand considerably grew in scenarios with 
higher EV and HP penetrations, reaching about 1480.46 kWh at the 
same time in Scenarios 4 & 5, corresponding to 100 % penetration. 
During weekends in December, the grid load was higher. Considering 
Scenario 4&5 with ASHPs, the total daily electricity demand in the 
community on a selected Friday was 13,231 kWh, while on Saturday, 
this increased to 14,191 kWh due to the rising heating demand. Addi-
tionally, on an hourly basis, the peak load on the Saturday morning at 
8am in Scenario 1 was 506.64 kWh with ASHP, which increased by 
approximately 200 % to 1508.02 kWh in Scenarios 4 & 5. As can be seen 
in Fig. 17a, even the 25 % penetration scenario in December exceeded 
the network’s operational capacity of 400 kW and even the peak ca-
pacity of 500 kW. This is indicative of potential overloading problems in 
the UK’s current distribution networks during the colder months in the 
near future, necessitating the rapid integration of energy management 
methods. 

In April, when temperatures rose and the community’s total heating 
halved to 521.9 kW compared to December, significant potential over-
loading situations were still observed on the grid. The peak demands 
were generally lower, because of the reduced heating requirements. In 
Scenarios 4 & 5 with ASHP, for instance, the peak demand was around 
786.59 kWh. However, in scenarios with more than 50 % penetration of 
sustainable technologies, the network’s operational and peak capacity 
values were exceeded. A key point, as seen in Fig. 17f, is that introducing 
SAHPs, benefitting from increased solar radiation in April, effectively 
reduces the peak network demand, unlike ASHP and GSHP, keeping the 
net demand below the 500-kW capacity. In July, when temperatures 
exceed 20 ◦C and the heating load due to domestic hot water needs is 
only 146.64 kW, the stress on the grid significantly decreases. However, 
the current network, considering weekday loads, can only accommodate 
up to 50 % technology penetration. It has been observed that technology 
integration exceeding 50 % during summer months, even with the use of 
GSHP, leads to overloading problems on the grid. 

3.3. Community network evaluation 

In the context of sustainable technology integration in power grids, 
the implementation of smart charging and V2G technologies presents a 
promising solution for managing grid load by increasing renewable 
energy usage and supporting network decarbonisation. Fig. 18 demon-
strates the performance of these technologies in a 50 % EV and ASHP 
penetration scenario during the peak demand months of December. The 
figure was generated from the output of the 100th iteration of the model, 
which in total comprises 1000 iterations, serving as an illustrative 
example. 

In Fig. 18, the smart charging and V2G model was applied to a 

simulated community for 48 h, covering a typical cold Friday and Sat-
urday (around 2 ◦C) in December. The data reflects the relation between 
EV charging demand, EV discharging (V2G), baseline demand 
(comprising electro-domestic consumption and ASHP usage), and the 
regulated demand on the grid by the control mechanism, including 
smart charging and V2G. 

This analysis revealed a significant moderation in the total electrical 
load when compared to the earlier uncontrolled system findings, where 
peak loads under Scenario 2 in December reached 857.81 kWh on 
weekdays and 841.04 kWh on weekends (as illustrated in Fig. 17b). The 
introduction of the smart charge and V2G model successfully regulated 
the demand, maintaining grid stability even during peak hours. 

The V2G technology and smart charging played a crucial role in this 
moderation. The model in this study considers the departure times of 
vehicles and their SOC requirements to determine the most optimal 
charging and discharging times. During periods of low grid demand, 
vehicle charging is directed through smart charging protocols, effi-
ciently utilising off-peak hours. Also, when the grid experiences demand 
exceeding its capacity, the V2G protocols take place to transfer energy 
back to the grid from the available vehicles. This dual approach not only 
ensures the efficient use of energy sources but also plays a critical role in 
stabilising the grid during high-demand periods. 

The model manages vehicle charging processes while accommoda-
ting the preferences of vehicle owners for their post-operation SOC 
within the framework of smart charging and V2G participation. Key 
parameters in this process include the availability of the vehicle and the 
sufficiency of energy within the network. If sufficient energy is available 
on the grid, vehicles can be charged up to 80 %, but the process ensures 
that vehicles are at least charged to the minimum preferred SOC by the 
end of the operation. Fig. 19 illustrates the final SOC of vehicles as 
observed in the 100th iteration on a typical weekday (on Friday) in 
December and April under Scenario 2. As shown in Fig. 19a, despite 
some vehicles not achieving a full 80 % charge in the high-demand 
month of December, the decreased demand on the grid in April allows 
for vehicles to be fully charged. This variation underscores the impact of 
grid demand on charging outcomes and the adaptability of the model to 
different energy availability scenarios. Furthermore, in Fig. 19, it is 
observable that there are designated spaces for certain EVs. This in-
dicates that these are the EVs that lack sufficient time to participate in 
V2G and Smart Charging and are, therefore directly charged upon 
arrival at home. 

Fig. 20 presents a comparative analysis of charging demand, heat 
pump electricity consumption, and electro-domestic load in the com-
munity before and after the implementation of Smart Charge and V2G 
technologies in Scenario 3 (December) and Scenario 5 (April). The an-
alyses across various scenarios demonstrate that this dual approach 
effectively utilises excess energy in the grid and manages to bring the 
excess demand below the network’s capacity limits, even in cases of 100 

Fig. 16. Comparative analysis of hourly EV charging demand under uniform and variable parameter.  
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% sustainable technology integration in months other than the winter 
season. As seen in Fig. 20d–f, in April, the balanced network capacity 
does not exceed the operational limits even during peak hours. However, 
in the colder months, such as December, where temperatures drop and 
the EV charging load increases due to colder weather, this dual approach 
operates efficiently, with up to 50 % penetration. Nevertheless, in the 
winter season, the reduced efficiency of ASHPs and SAHPs under low- 
temperature conditions leads to marginal insufficiency problems in the 
network capacity. This is evident in Fig. 20a and b, where, even in the 75 
% penetration scenario during weekends, the grid exceeds the 500-kW 
peak capacity by small margins of 29.64 kWh and 4.92 kWh, respec-
tively. However, as observed in Fig. 20c, the issue of capacity excess 
appears to be addressed by the utilisation of GSHPs because of the higher 

COP of GSHPs in winter compared to the other types. 
These findings underscore the need for more enhanced energy 

management mechanisms or potential increases in network capacity to 
accommodate the 100 % integration of these technologies during winter 
months in the UK’s current distribution grid infrastructure. Table 8 il-
lustrates the necessary network capacity enhancements to support the 
grid system during winter months under a scenario with 100 % EV and 
HP penetration when integrating V2G and Smart Charge systems. 

3.4. Renewable energy contribution 

This section analyses the energy generation outputs from an array of 
solar photovoltaic (PV) and wind turbine installations across five 

Fig. 17. Total electricity demand of the community on a weekday including grid operational (yellow dashed line) and peak (blue dashed line) capacity, a) Scenario 1 
in December, b) Scenario 3 in December, c) Scenario 5 in December, d) Scenario 1 in April, e) Scenario 3 in April, and f) Scenario 5 in April. 
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scenarios within a simulated community. The scenarios are designed to 
represent a spectrum of renewable energy system sizes, ranging from 
smaller-scale installations in a short period to more sustainable power 
networks in a long-time horizon, as part of the community’s distributed 
energy resources (DERs). As detailed in Table 5, Scenario 1 features a 
60-kW solar PV paired with a 40-kW wind system, providing a baseline 
for comparison against the more extensive systems in the following 
scenarios. Scenarios 2 and 3 have equal capacities of 100 kW for both 
solar PV and wind systems to evaluate the impact of balanced renewable 

generation. Scenario 4 scales up to a 120-kW solar PV system alongside a 
more extensive 180-kW wind turbine setup, exploring the effects of a 
wind-dominant energy mix. Lastly, Scenario 5 inverses the dynamic 
with a 180-kW solar PV and a 120-kW wind system, assessing the po-
tential of a solar-dominant approach. 

Fig. 21 presents the monthly energy outputs from the installed solar 
PV and wind turbine systems across the five scenarios. The figure shows 
the performance of each renewable energy configuration, measured in 
MWh, offering a detailed view of the generation capabilities throughout 
the calendar year. 

Examining the monthly energy outputs from the solar PV and wind 
turbine systems, it is apparent that there is a significant variation in 
generation, both within each scenario and across the different configu-
rations. These fluctuations are primarily related to the inherent vari-
ability in solar irradiance and wind speeds throughout the year. 

The analysis of monthly energy outputs reveals notable trends across 
the five scenarios, emphasising the impact of system size and seasonal 
variability on renewable generation. Scenario 1 shows pronounced 
seasonal variation with peak solar output in July (6.79 MWh) and wind 
in January (18.77 MWh). Scenarios 2 and 3, with equal capacities of 100 
kW for solar and wind, yield a substantial combined output, exempli-
fying the benefits of system scaling. March’s output of 40.65 MWh, for 
example, represents a significant increase (approximately% 130) from 
Scenario 1′s output, underscoring the enhanced energy generation 
through capacity scaling. 

In Scenario 4, the 180-kW wind system dominates, peaking at 84.5 
MWh in January, while Scenario 5, with a 180-kW solar PV system, 
peaks in solar generation at 20.39 MWh in July, nearly tripling S1′s 
annual solar output, and maintains a significant wind contribution with 
56.33 MWh in January. These scenarios illustrate the strategic 
complementarity between wind and solar power to provide a reliable 
energy supply and contribute significant CO2 emissions savings, 
particularly during the winter months. 

This data underscores the importance of renewable energy systems 
that are designed by considering specific local conditions and the po-
tential for substantial environmental benefits, providing a further un-
derstanding of the strategic advantage of combining solar and wind to 
meet energy demands sustainably. 

After highlighting the variability in solar and wind energy generation 
across various scenarios, it is essential to address how this uncertainty 

Fig. 18. Analysis of EV charging and discharging, baseline demand (ASHP consumption and domestic electricity usage), and regulated net demand in the 100th 
iteration on the selected Friday and Saturday of December under Scenario 2. 

Fig. 19. Final SOC of vehicles as observed in the 100th iteration of a weekday 
under Scenario 2, a) in December and, b) in April. 
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affects the reliability and stability of the community energy network. 
The inherent uncertainties in RES, such as fluctuating solar irradiance 
and wind speeds, necessitate adaptive and resilient energy system de-
signs. To mitigate these challenges, the paper suggests integrating en-
ergy storage solutions and hybrid renewable systems, which can buffer 
against variability and ensure a consistent energy supply. Additionally, 
adopting smart grid technologies underscores the importance of 
responsive and flexible grid management to accommodate the dynamic 
nature of renewable energy generation. Moreover, future research di-
rections could also focus on enhancing forecasting models for RES to 
improve predictability and developing strategies to align community 
members’ behaviour with renewable energy availability. 

Hourly data for solar radiation and wind speed were collected for a 
representative Friday and Saturday in April and July, as depicted in 
Fig. 22. The figure provides insights into these environmental parame-
ters’ daily and seasonal variability. 

In April, solar radiation and wind speed variability presented distinct 
patterns. The solar radiation exhibited a mean value of 0.135 with a 
standard deviation of 0.163 during these two days, indicating moderate 
daily variability. The wind speed in April had a mean of 5.36 m/s and a 
standard deviation of 1.23 m/s, showing a relatively steady wind flow 
with occasional fluctuations. This steadiness in wind speed is advanta-
geous for wind energy generation, offering a reliable energy source with 
predictable outputs in the community’s region. 

In contrast, the data from July showed different variability patterns. 
The solar radiation had a higher mean of 0.279 and a standard deviation 
of 0.295 during these two days, reflecting more intense and variable 
solar exposure compared to April. This increased variability in solar 
radiation could lead to higher, yet less predictable, solar energy gener-
ation. The wind speed in July showed a slightly lower mean of 4.75 m/s 
but maintained a similar level of variability to April, with a standard 
deviation of 1.15 m/s. This better consistency in wind speed throughout 
the seasons benefits wind energy projects by providing a more reliable 
and stable wind energy source across different times of the year. 
Although the data from these two days indicate a relatively stable 
pattern in wind speed, the observations also included days with signif-
icant fluctuations, featuring either no wind or extreme wind speeds. 
Such variability can notably impact the output of wind energy genera-
tion systems. 

Fig. 23 shows how strategic integration of renewable sources in 
community networks can significantly contribute to meeting community 

Fig. 20. Comparison of Charging Demand, Heat Pump Electricity Consumption, and Electro-Domestic Load Before and After the Application of Smart Charge and 
V2G, a) ASHP in December, Scenario 3, b) SAHP in December, Scenario 3, c) GSHP in December, Scenario 3, d) ASHP in April, Scenario 5, e) SAHP in April, Scenario 
5, and f) GSHP in April, Scenario 5. 

Table 8 
Network capacity enhancements for 100 % EV and HP penetration with V2G and 
smart charge integration.  

Penetration Scenarios Operational Capacity [kW] Peak Capacity [kW] 

100 % EV and ASHP 525 625 
100 % EV and SAHP 500 600 
100 % EV and GSHP 425 525  
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energy demands in the regulated network. This system, equipped with 
technologies such as V2G and Smart Charging, not only supports the grid 
balance but also increases the potential usage of renewable energy 
sources. 

In April’s Scenario 4 (Fig. 23a), the data reveals an interesting 
interplay between renewable energy generation and regulated demand 
within a residential community. Before dawn, wind generation consid-
erably sustains the energy supply, with an output of 113.44 kWh at 1am 

Fig. 21. Comparative monthly energy outputs from solar PV and wind turbine systems by scenarios a) in Scenario 1, b) in Scenario 2&3, c) in Scenario 4 and d) in 
Scenario 5. 

Fig. 22. Hourly solar radiation and wind speed on selected Fridays and Saturdays, a) in April, and b) in July.  
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against a demand of 400 kWh. As solar generation begins post-dawn, it 
peaks at 31.27 kWh at noon, demonstrating the potential of solar power 
during daytime hours. However, the peak solar hours do not align with 
the peak demand periods, as the community’s demand is lower during 
the day when most residents and their vehicles are likely away from 
home. This mismatch causes a challenge for solar energy utilisation in 
EV charging, especially in such kinds of simulated communities that 
only consist of dwellings. This situation also highlights the critical 
importance of integrating storage solutions with PV systems to manage 
and utilise solar energy effectively during periods of peak demand. 
Conversely, the stable nature of wind energy, providing substantial 
generation consistently, becomes crucial, particularly at night. For 
instance, at 11pm, wind generation nearly meets the regulated demand, 
offering almost 200 kWh (half of the grid operational capacity) when 
there is no solar generation. This stability is a cornerstone for smart 
charging strategies, allowing for the deferral of EV charging to night 
time, thus enhancing the use of wind energy, and reducing reliance on 
non-renewable sources. The April data underscores the system’s 
adaptability, ensuring the efficient use of renewable energy and 
demonstrating the significant potential of integrating wind generation 
with smart energy management technologies in residential 
communities. 

July’s data from Scenario 4 (Fig. 23c) further explains the impact of 
solar PV on the grid. On a clear sunny day, solar generation peaks, 
significantly contributing to the total energy mix and, at times, resulting 
in excess generation. For instance, at 12pm, there is a notable increase in 
solar generation, leading to surplus energy (approximately 180 kWh in 
the four hours) when combined with wind generation at 11am, 12pm, 
2pm, and 3pm. This surplus should be transitioned into the national grid 
in on-grid systems to avoid possible balance problems. 

During the days analysed in April under Scenario 4, the community’s 
RESs (solar PVs and wind turbines) were key contributors to meeting a 
substantial portion of the electricity demand. The total community de-
mand over these two days was approximately 15,007 kWh, with 
installed RESs covering around 7441.5 kWh, nearly 49.6 % of the total 
demand. Similarly, in April’s Scenario 5, the demand was again 15,007 
kWh, and RESs contributed 5539.17 kWh, accounting for approximately 
36.9 % of the demand because of the decreased wind turbine and 

increased solar PV capacity. 
Moving to July’s data, Scenario 4 shows a total demand of 12,924.3 

kWh, with RES providing 6318.75 kWh, fulfilling about 48.8 % of the 
community’s needs. In Scenario 5 for the same month, RES supply to the 
community was 5115.73 kWh, equating to nearly 39.6 % of the total 
demand. 

On the other hand, considering the combined total of selected Fri-
days and Saturdays, a 25 % renewable energy system integration (60 kW 
solar capacity and 40 kW wind capacity), as observed in Scenario 1, 
yielded renewable energy production of 1849.4 kWh in April (with 
273.54 kWh from solar PV and 1575.84 kWh from wind) and 1728 kWh 
in July (with 513.98 kWh from solar PV and 1214 kWh from the wind 
turbine). It is noteworthy that even in a solar-dominant renewable en-
ergy system, the total renewable production in July, which has 
maximum solar irradiance, was less than that in April. This underscores 
the significant contribution of wind turbines to this kind of system in the 
UK. Despite the reduction in solar radiation in December, the strong 
output from wind energy supports the system. Additionally, in the 50 % 
renewable energy system integration scenario, the total renewable en-
ergy generated in the community on the selected Fridays and Saturdays 
was 4395 kWh in April (455.9 kWh from solar PV and 3939.6 kWh from 
wind) and production of 3891.8 kWh in July (856.64 kWh from solar 
PVs and 3035.19 kWh from wind turbines). 

The percentage coverage by RES indicates a significant shift towards 
sustainable energy practices and highlights the possible potential of 
using RESs, especially wind energy, for delayed EV charging operations. 
This kind of technology combination might be a way to pave the way for 
more environmentally friendly and energy-secure communities. 

The paper validates the modelled renewable energy systems based 
on Scenario 1. This validation process employs benchmarks from 
existing literature and reports to assess the accuracy and reliability of 
the model’s performance predictions. In the solar PV system analysis, an 
annual energy output of 827 kWh per kWp was calculated based on 
Scenario 1. This figure emerges from the total annual energy production 
of a 60 kW solar PV system, totalling 49,620.13 kWh. The CIBSE Energy 
Performance Group (Chartered Institution of Building Services Engi-
neers (CIBSE) Energy Performance Group 2024) suggests that, as a 
general rule, a well-designed PV installation in the UK is expected to 

Fig. 23. Hourly analysis of solar and wind energy generation versus regulated net demand (including ASHPs) in the community network with V2G and Smart Charge 
integration, a) in Scenario 4 (April), b) in Scenario 5 (April), c) in Scenario 4 (July) and, d) in Scenario 5 (July). 
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generate between 780 and 850 kWh per year per kWp, depending on the 
available solar irradiation. Additionally, an analysis conducted by 
Koumpli (Koumpli, 2017) has reported a solar PV system performance 
value of 855 kWh/kWp in the UK. Furthermore, a report by the UK 
Government (Department of Energy, and Climate Change (DECC) 2011), 
utilising performance ratio derived from the Department of Ener-
gy&Climate Change (DECC) projections and analyses by consultants 
Cambridge Economics Policy Associates (CEPA) and Parsons Brinck-
erhoff (PB), alongside OFGEM, indicates a performance ratio for do-
mestic PV systems at approximately 850 kWh/kWp. This data was 
received from a case study involving a 2.6 kW solar PV installation in the 
UK. The performance ratio of 827 kWh per kWp, identified in the present 
study, is slightly lower than some reported values yet falls within the 
expected range of performance for solar PV systems in the UK context. 
The model’s performance closely matches established benchmarks, with 
small differences. These differences can result from varying factors, such 
as exact project location, system design, and installation year, which 
affect comparisons. Despite these, the model’s results are within ex-
pected ranges, confirming its accuracy. 

On the other hand, the calculated annual energy output for the wind 
energy system in Scenario 1, achieving approximately 3700 kWh per kW 
of installed capacity, serves as an indicator of its efficiency. (Ryberg 
et al., 2019) have documented that in optimal locations within the UK, 
onshore wind turbines typically achieve between 3400 and 4000 
kWh/kW. The performance of the simulated wind system in this paper 
closely aligns with this range. However, it is crucial to recognise that the 
variability in turbine performance depends on several factors, including 
rotor diameter and tower height (Junginger et al., 2005). Wind energy 
generation is also subject to a wide range of influences, including 
geographic location, technological choices, and specific environmental 
conditions, all of which can significantly impact the kWh/kW metric. 

3.5. Urban energy futures: scability and technological impacts 

This section explores the scalability of proposed energy solutions, the 
impact of consumer behaviours, and advancements in EVs and HPs. It 
assesses how these technological advancements and consumer behav-
iours influence proposed systems’ effectiveness while examining the 
broader implications of system changes. 

In the context of integrating EVs, HPs, and RESs into sustainable 
communities, alongside proposing grid management tools like V2G and 
Smart Charging, understanding the concept of scalability is paramount. 
Scalability ensures that these innovative solutions can adapt to urban 
environments’ growing and dynamic electricity demands without 
introducing excessive costs or complexities. Factors influencing scal-
ability include technological maturity, infrastructure readiness, regula-
tory support, and social acceptance. Additionally, the ability of 
renewable energy installations, HP systems, and EV charging infra-
structure to evolve within urban constraints, such as space limitations 
and existing grid capacities, is crucial. Urban spaces present unique 
challenges to the scalability of these technologies, including restricted 
areas for renewable installations and increased grid capacity needs due 
to elevated EV charging demands. The retrofitting requirements of HPs 
in existing buildings and potential battery degradation from V2G ap-
plications add complexity to scalability. Addressing these challenges 
may involve innovative urban planning, smart grid technologies, and 
policy frameworks designed to support the seamless expansion of these 
technologies, transforming the vision of sustainable urban communities 
into a practical reality. 

Understanding consumer behaviour in energy consumption is 
essential for optimising grid efficiency and achieving sustainable energy 
solutions. Behavioural patterns, like peak-hour electricity demand and 
EV charging habits, significantly influence grid load (as EV-based 
changes illustrated in Fig. 16). The adoption rates and usage patterns 
of EVs and HPs are critical in modulating peak demand. This un-
derscores the value of this paper’s time horizon scenario methodology. 

Moreover, as discussed before, the integration of solar PV and wind 
turbines can impact grid effectiveness due to variable outputs, sug-
gesting the inclusion of a smart RES prediction model in future en-
hancements. Factors such as socio-economic status, environmental 
awareness, access to technology, and incentives shape consumer be-
haviours, affecting household energy use and demand management. To 
shift towards sustainable communities with approaches like the pro-
posed model, strategies to boost consumer engagement with EVs, HPs, 
smart charging, V2G systems, and renewables are essential, including 
educational programs, incentives, and policy measures. For example, 
consumer preferences in HP selection, notably the shift from ASHPs to 
more efficient SAHPs, significantly affect energy demand, highlighting 
the importance of guiding consumer choices towards sustainable tech-
nologies. Therefore, tailoring these strategies to consumer behaviour 
can significantly enhance the viability of energy solutions, promoting a 
more stable and sustainable power network. 

The introduction of this paper discusses the current and projected 
states of EVs, HPs, and RESs, underscoring their critical role in decar-
bonising energy systems. Forecasts from leading energy agencies and 
companies and the UK’s ambitious progress in renewable energy inte-
gration and EV adoption set a solid foundation for discussing upcoming 
technological advancements and their implications on future grid 
management strategies.Significant advancements in battery technology 
are anticipated to enhance EV range and charging efficiency notably, 
which is critical for transitioning to an electric-dominant transportation 
sector. With their larger battery capacities than PHEVs, BEVs are also 
expected to lead the EV market (Dik et al., 2022). This development 
towards larger battery capacities can bolster energy storage capabilities, 
potentially increasing the efficiency of V2G applications, a key compo-
nent in this paper’s proposed energy system model. Additionally, ex-
pansions in the operational range of HPs are projected (Harris & Walker, 
2023). This development can enhance HP’s viability in diverse climates 
and support broader adoption for heating needs. In the UK, significant 
improvements in home thermal efficiency are underscored by the rise in 
average energy efficiency ratings from 51.4 in 2008 to 66.3 in 2021 
(Bolton, 2024). Enhanced energy efficiency can notably reduce heating 
demand and energy bills (Bolton, 2024). Therefore, if this upward trend 
continues, it is likely that future HP’s energy consumption will decrease 
accordingly. These technological advancements are directly relevant to 
the study’s energy management model, which explores the optimal 
integration of EVs to support community grids and enhance RES inte-
gration, including solar PVs and wind turbines. As such, they might 
expected to significantly bolster the capabilities of EVs for grid stabili-
sation and RES integration. On the other hand, the seamless integration 
of these advanced technologies into the energy grid may highly 
dependant on adaptive policy frameworks. Encouraging the widespread 
adoption of EVs, HPs, and RESs requires policies that support infra-
structure development, incentivise technological adoption, and update 
regulatory standards. 

3.6. Preliminary economic insights into sustainable technologies 

The economic implications associated with proposed technologies 
are crucial for their widespread adoption and effectiveness. This sub-
section provides a preliminary examination of the economic consider-
ations related to solar and wind energy systems and various HPs, 
focusing on their installation costs. While a comprehensive economic 
analysis extends beyond the scope of this paper and is designated for 
future investigation, the following overview serves to underline the 
significance of economic factors in the context of sustainable technology 
adoption. 

Recent trends in solar PV installation costs in the UK, according to a 
GOV UK report (Department for Energy Security and Net Zero (DESNZ) 
2023), reveal notable fluctuations. In 2022, the average cost for 
small-scale solar PV installations (0–4 kW) started at £1836 per kW and 
experienced a significant increase, reaching a peak of £2627 per kW by 
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January 2023. Notably, larger installations (4–10 kW and 10–50 kW) 
also saw substantial cost increases over the past year. The average cost 
per kW for installations sized 4–10 kW was £2220, whereas for those of 
higher capacities, the cost was more economical at £1392 per kW. In the 
UK, for PV systems with a capacity higher than 3.68 kW, installation 
requires prior approval from DNOs. This process may involve grid ca-
pacity evaluations or necessary network upgrades, with potential costs 
to the system owner (Dik et al., 2023). According to BEIS (Department 
for Business, Energy & Industrial Strategy (BEIS), 2020), for onshore 
wind systems, the capital costs encompass pre-licensing technical and 
design expenses, estimated at £64 per kW, alongside regulatory and 
licensing costs of £45.9 per kW. Additionally, the medium cost of 
infrastructure is expected to be around £3.3 million. Operational ex-
penses are considered constant, amounting to £22,000 per MW. 
Furthermore, the connection and Use of System (UoS) charges for an 
onshore wind farm are reported to be steady at £3109 per MW per year. 
Additionally, the Smart Export Guarantee (SEG) enables producers of 
surplus electricity to sell back to the grid, with tariffs for approved in-
stallations up to 5MW ranging from £0.02 to £0.15 per kWh (Dik et al., 
2023). 

According to the Energy Saving Trust (Energy Saving Trust, 2024), 
the installation cost for an ASHP typically stands at around £14,000, 
with running costs influenced by system design, operational methods, 
and factors such as radiator sizing, electricity tariff, and control mech-
anisms. Conversely, GSHP installation costs can significantly vary, 
typically around £28,000 for systems where the ground loop is buried in 
trenches, with higher expenses if boreholes are required. Costs are 
influenced by access to the ground, the chosen heat pump’s brand, 
model, and size, property size, heating needs, and whether it involves 
new installations or upgrades. Residents in England and Wales may 
benefit from a £7500 grant for ASHP and GSHP installations under the 
Boiler Upgrade Scheme, offering financial relief and encouraging the 
adoption of these sustainable heating solutions. More details can be 
found in (Energy Saving Trust, 2024). For the cost of SAHPs, the 
installation costs include both the ASHP installation expenses and the 
additional costs of solar collectors. 

4. Conclusions 

This study investigates the dynamic interplay between EVs, HPs, and 
community-scale distribution networks, adopting RES integration and 
innovative EV charging strategies to navigate system uncertainties. 
Employing a sophisticated stochastic model, it explores the trans-
formative potential of smart charging and V2G technology in enhancing 
renewable energy utilisation and securing distribution systems against 
the unpredictable nature of energy demand and RES generation in sus-
tainable communities. Based on the analysis, and considering the set 
conditions and assumptions, the conclusions are drawn as follows.  

• ASHPs emerged as the highest electricity consumers, particularly 
affected by temperatures below 4 ◦C. In contrast, SAHPs, dependant 
on solar irradiance, outperformed ASHPs by up to 2.5 times under 
ideal simulated April conditions. Moreover, SAHPs exhibited signif-
icant performance gains over ASHP and GSHP units from January to 
April, with percentage increases in performance ranging from 5.65 % 
to an impressive 156.13 %, underscoring SAHPs’ potential for su-
perior performance under varying environmental conditions.  

• Under uncontrolled charging conditions and full EV adaptation, EV 
charging demand significantly increases during colder months, ex-
ceeds the grid’s operational capacity, and is nearing its peak capacity 
(466.32 kWh in December). In warmer months, EVs also present a 
substantial charging demand, reaching 374.96 kW in July, which 
places a considerable load on the community grid, especially at high 
EV penetration levels. Considering even only the charging demands 
of the community, it seems that the existing distribution networks in 
the UK are not ready for 100 % EV penetration.  

• When considering the total electricity consumption, including the 
community’s electro-domestic load, uncontrolled EV charging, and 
HP consumption, the grid capacity during winter months is insuffi-
cient even for scenarios with 25 % EV and HP penetration. In warmer 
months, such as April, the reduced heating demand provides some 
relief to the grid; however, it remains inadequate for handling more 
than 50 % of technology penetration. During summer months, if 
SAHP is excluded, the grid can operate effectively with up to 50 % 
penetration. 

• Implementing smart charge and V2G models has effectively moder-
ated peak electrical loads in 100 % penetration scenarios, with 
notable exceptions during the coldest months, such as December, 
where the approach still supports sustainable technology penetration 
up to 50 %. While V2G and Smart Charging have bolstered grid 
balance and the utilisation of renewable energy, notably for delayed 
wind power charging, the peak generation times for solar energy do 
not align well with the community’s highest demand periods, chal-
lenging its use for EV charging in residential-only communities. 
Achieving full integration in the coldest winter months requires 
either enhanced energy management or an increase in network ca-
pacity by up to an additional 100 kW. 

4.1. Limitations and future work 

In reflecting on the findings of this research, it is recognised that 
specific areas require further exploration to advance the field of sus-
tainable community energy systems comprehensively. While the present 
study has made marked steps in understanding the integration of EVs, 
HPs, and RESs into community grids, it is imperative to acknowledge the 
limitations inherent in the current approach and propose directions for 
future research. 

A limitation of the study is related to the ambient temperature effect 
on EV energy consumption, where average daily temperature values 
were utilised due to the absence of detailed data on the exact usage times 
of the vehicles throughout the day. This methodological choice, while 
pragmatic under current data constraints, potentially overlooks the full 
nuanced impact of intra-day temperature fluctuations on EV energy 
consumption. Future studies should also aim to integrate exact vehicle 
usage times instead of only arrival and departure times to evaluate the 
ambient temperature’s impact more precisely. 

A vital area for future investigation involves conducting in-depth 
economic and policy analyses. Such efforts should encompass compre-
hensive economic assessments, including detailed cost-benefit analyses 
and evaluations of long-term economic impacts, alongside exploring the 
policy frameworks necessary for supporting a transition to sustainable 
energy systems. This direction is expected to offer nuanced insights into 
the financial viability and policy complexity of implementing sustain-
able energy solutions, guiding informed decision-making and policy 
development. 

Moreover, while robust, the methodology employed in our study is 
constrained by its specific modelling approaches and assumptions 
regarding demand profiles and grid models. These limitations highlight 
the necessity of engaging in real-world pilot studies, and exploring 
advanced grid management strategies such as hybrid energy storage, 
DSM etc. in future research endeavours. 

While comprehensive, the dataset utilised in our analysis may not 
adequately represent the variability across different geographic and 
socio-economic contexts. The scope of our study, primarily addressing 
current technology and policy states, necessitates an expansion to 
include prospective technological advancements and policy shifts. 
Investigating the potential impacts of emerging technologies on grid 
management and sustainability initiatives will be crucial. 

Lastly, investigating the resilience of energy systems to extreme 
weather events and climate change impacts is crucial to ensure robust 
and adaptable energy solutions for the future. These diverse research 
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areas collectively pave the way for further advancement and practical 
implementation of sustainable energy solutions in community grids. 
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APPENDIX 1. The EO.N Research House at the University of Nottingham 

Fig. A1

Fig. A1. The EO.N research house.  

APPENDIX 2. Mathematical Framework of IES Virtual Environment Software 

The given equations described here are sourced from the software manual detailing the modelling processes (IES, 2024). 
In this design tool, Eqs. A.1 and A.2 are essential for simulating the principles of heat conduction and heat storage in building materials, 

respectively. 

W = − λ×∇T (A.1)  

∇.W = − ρ× c×
∂T
∂t (A.2) 

In Eq. A.1, ‘λ′ refers to the material’s thermal conductivity (W /m2K), the term ‘∇T’ represents the temperature gradient within the material (K) and 
‘W’ is the heat flux vector indicating the rate and direction of heat transfer (W /m2). In Eq. A.2, ‘ρ’ refers to the material’s density (kg /m3), ‘c’ is the 
specific heat capacity (J /kgK) and dT/dt represents the rate of temperature change, reflecting heat storage. 

Tool uses Eq. A.3 to calculate the net heat storage in the building’s air masses over time. In Eq. A.3, ‘cp’ is the specific heat capacity of air at constant 
pressure (J /kWK), ‘ρa’ refers to air density (kg /m3) and ‘V’ represents the volume of air in the unit of m3. 

Q = cp × ρa × V ×
dTa

dt
(A.3) 

Eq. A.4 is utilised to model convective heat transfer from air to the surfaces within a building. Where ‘W’ is the heat flux (W/m2), ‘Ta’ is the air 
temperature, ‘Ts’ is the surface temperature, and ‘K’ and ‘n’ are coefficients that describe the convective heat transfer properties. 
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W = K × (Ta − Ts)
n (A.4) 

In the software, Eq. A.5 is used to compute the rate of heat transfer from incoming air into a space. In the equation, ‘Q’ signifies the heat transfer 
rate (W), ‘m’ is the mass flow rate of air (kg/s), ‘cp’ represents the specific heat capacity of air at constant pressure (J/kgK), Ti is the supply air 
temperature (K), and ‘Ta’ is the mean air temperature within the room (K). 

Q = m× cp × (Ti − Ta) (A.5) 

Eq. A.6 is also employed to calculate the net radiative heat loss from a surface. ‘W’ refers to the net radiative loss from the surface (W/m2), ‘hr’ is the 
surface heat transfer coefficient for radiative exchange (W/m2K), ‘Ts’ is the surface temperature (K), and ‘TMRT’ is the mean radiant temperature of the 
enclosure (K). 

W = hr × (Ts − TMRT ) (A.6) 

In the software, Eq. A.7 is implemented to calculate the net long-wave radiation gain for an external building surface. In the equation, ‘L∗(β)’ 
represents the net long-wave radiation gain (W/m2), ‘εe’ is the emissivity of the external surface, ‘Lsky(β)’ and ‘Lg(β)’ are the long-wave radiation 
received from the sky and ground respectively (W/m2), ‘σ’ is the Stefan-Boltzmann constant (W/m2K⁴), and ‘Θe’ is the absolute temperature of the 
external surface (K). 

L∗(β) = εe ×
[
Lsky(β)+ Lg(β) − σ×Θ4

e

]
(A.7)  

APPENDIX 3. Set Temperature, Lighting and Occupancy Profiles for Weekdays and Weekends in IES VE Software 

Fig. A3

Fig. A3. Set temperature, lighting, and occupancy profiles for IES VE Model.  
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