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Abstract Computer models of the human ventricular cardiomyocyte action potential (AP) have 
reached a level of detail and maturity that has led to an increasing number of applications in the 
pharmaceutical sector. However, interfacing the models with experimental data can become a 
significant computational burden. To mitigate the computational burden, the present study intro-
duces a neural network (NN) that emulates the AP for given maximum conductances of selected 
ion channels, pumps, and exchangers. Its applicability in pharmacological studies was tested 
on synthetic and experimental data. The NN emulator potentially enables massive speed-ups 
compared to regular simulations and the forward problem (find drugged AP for pharmacological 
parameters defined as scaling factors of control maximum conductances) on synthetic data could 
be solved with average root-mean-square errors (RMSE) of 0.47 mV in normal APs and of 14.5 mV 
in abnormal APs exhibiting early afterdepolarizations (72.5% of the emulated APs were alining with 
the abnormality, and the substantial majority of the remaining APs demonstrated pronounced prox-
imity). This demonstrates not only very fast and mostly very accurate AP emulations but also the 
capability of accounting for discontinuities, a major advantage over existing emulation strategies. 
Furthermore, the inverse problem (find pharmacological parameters for control and drugged APs 
through optimization) on synthetic data could be solved with high accuracy shown by a maximum 
RMSE of 0.22 in the estimated pharmacological parameters. However, notable mismatches were 
observed between pharmacological parameters estimated from experimental data and distribu-
tions obtained from the Comprehensive in vitro Proarrhythmia Assay initiative. This reveals larger 
inaccuracies which can be attributed particularly to the fact that small tissue preparations were 
studied while the emulator was trained on single cardiomyocyte data. Overall, our study highlights 
the potential of NN emulators as powerful tool for an increased efficiency in future quantitative 
systems pharmacology studies.
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eLife assessment
This valuable prospective study develops a new tool to accelerate pharmacological studies by using 
neural networks to emulate the human ventricular cardiomyocyte action potential. The evidence 
supporting the conclusions is convincing, based on using a large and high-quality dataset to 
train the neural network emulator. There are nevertheless a few areas in which the article may be 
improved through validating the neural network emulators against extensive experimental data. In 
addition, the article may be improved through delineating the exact speed-up achieved and the 
scope for acceleration. The work will be of broad interest to scientists working in cardiac simulation 
and quantitative system pharmacology.

Introduction
Computer models of human physiology are becoming increasingly detailed and mature and the area 
of ventricular cardiomyocyte electrophysiology (EP) is one of the most advanced. The most updated 
models include fine representations of ion movements through various important channels, pumps, 
and exchangers, and take the complex handling of intracellular calcium accurately into account (Grandi 
et al., 2010; O’Hara et al., 2011; Tomek et al., 2019; Bartolucci et al., 2020). While these models 
have individual strengths and limitations in replicating different aspects of physiology, pathology, and 
pharmacology (Corrado et al., 2021; Amuzescu et al., 2021), their degree of credibility has reached 
a level that has led to an increasing number of applications in academia and beyond. This holds in 
particular for the pharmaceutical sector, where much effort is spent on using computer modeling to 
reduce traditional preclinical and clinical methodologies for assessing the efficacy and safety of novel 
drug candidates (Mirams et al., 2011; Passini et al., 2017; Li et al., 2019; Passini et al., 2021). To 
improve the regulatory assessment of a drug’s proarrhythmic potential, the Comprehensive in Vitro 
Proarrhythmia Assay (CiPA) was proposed in 2013 following a workshop at the US Food and Drug 
Administration (Sager et al., 2014; Colatsky et al., 2016; Strauss et al., 2021). A central component 
is a computer model of human ventricular cardiomyocyte EP that is coupled to a pharmacological 
model describing the interaction between a given drug and multiple arrhythmia-relevant channels 
(Dutta et al., 2017; Li et al., 2017; Li et al., 2019). For a given drug, experimental channel block 
data are collected to inform the pharmacological model and corresponding simulations of the action 
potentials (AP; time course of the transmembrane potential) are performed to predict the proar-
rhythmic risk based on a mechanistically motivated biomarker (Chang et al., 2017; Li et al., 2017; Li 
et al., 2019). The prediction is then compared with findings in experimental (Blinova et al., 2018) and 
clinical (Vicente et al., 2018) studies. To compute the drugged AP for given pharmacological parame-
ters is a forward problem, while the corresponding inverse problem is to find pharmacological param-
eters for given control (before drug administration) and drugged AP. Some relevant examples for the 
latter have been presented by Bottino et al., 2006 who estimated pharmacological parameters from 
APs of canine Purkinje fibers and by Tveito et al. who estimated pharmacological parameters from AP 
biomarkers measured in human induced pluripotent stem cell-derived cardiomyocytes (Tveito et al., 
2018) and several animal ventricular cardiomyocytes (Tveito et al., 2020). Furthermore, Jaeger et al., 
2021 identified the optimal polypharmacological treatment for recovering APs of mutant ventricular 
cardiomyocytes based on biomarkers of simulated wild type and mutant APs.

When the models are interfaced with experimental data, attention should be paid to the inherent 
uncertainty in the data that results from beat-to-beat variability (intrinsic variability), cell-to-cell vari-
ability (extrinsic variability), and measurement errors (observational uncertainty) (Mirams et al., 2016). 
Uncertainty propagates through the given problem from APs to estimated parameters or from param-
eters to predicted APs and must be properly quantified to draw reliable conclusions from the results. 
Multiple methodologies exist for this purpose (Oakley and O’Hagan, 2004; Mirams et al., 2016; 
Sher et al., 2022) but usually require many simulations, which even for ordinary differential equa-
tion (ODE)-based models of cardiomyocyte EP can become a significant computational burden when 
considering that each simulation includes a substantial number of beats to reach the model’s limit 
cycle, (also often called steady state). To overcome this problem, surrogate models have emerged 
which approximate (emulate) chosen outputs for given inputs multiple orders of magnitude faster. In 
line with uncertainty quantification literature, the cardiomyocyte EP model is from now on termed the 
‘simulator’, whereas the surrogate model is termed the ‘emulator’. Earlier work has reported on an 

https://doi.org/10.7554/eLife.91911
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emulator based on linear interpolation of a multi-dimensional lookup table Mirams et al., 2014 and 
more recently, Gaussian process (GP) emulators have become popular. Their key advantage is that 
in- and outputs are modeled as random distributions which allows for rapid sampling of the posterior 
distributions (Chang et al., 2015; Johnstone et al., 2016; Coveney and Clayton, 2018; Ghosh, 2018; 
Rasmussen, 2019; Coveney et al., 2021) and while outputs of recently published GP emulators were 
relevant biomarkers of the AP (Chang et al., 2015; Johnstone et al., 2016; Coveney and Clayton, 
2018; Ghosh, 2018; Coveney et al., 2021), the emulation of the entire AP can also be realized, for 
example through dimensionality reduction techniques such as the principal component analysis or 
regressing state-transition models (Mohammadi et al., 2019). However, GP emulators are not well 
suited to capture discontinuities of the response surface as standard GP emulators assume a smooth 
and continuous response to changes in parameter values. Applying GPs for modeling discontinuous 
functions therefore remains a largely open problem. Thus, they may fail to capture AP abnormalities, 
which is a particular drawback for pharmacological studies where bifurcations in behavior such as early 
afterdepolarizations (EAD) can occur (Ghosh, 2018). To address this, Ghosh, 2018 presented a two-
step approach for the emulation of the AP duration at 90% repolarization that first sets up a GP for 
the location of discontinuities and then fits separate GP emulators for the output of interest either side 
of these boundaries. In contrast, it has been proven that neural networks (NN) can approximate even 
discontinuous functions with arbitrary precision in theory (Hornik et al., 1989), while recent works 
using NNs show empirically promising results for modeling partial differential equations containing 
discontinuities (Jagtap et al., 2020). These features render NN emulators suitable emulation candi-
dates and while Lei and Mirams, 2021 have recently investigated NN emulation of hERG channel 
kinetics, Jeong et al., 2023 proposed a neural network using AP shapes as input for the prediction of 
a drug’s proarrhythmic risk. However, to the best of our knowledge, NN emulators have not yet been 
used as surrogate for cardiomyocyte EP models.

The present study introduces NN emulation of the human ventricular cardiomyocyte AP and inves-
tigates the applicability in pharmacological studies. To this end, a NN emulator was developed based 
on data generated using a state-of-the-art simulator (Tomek et al., 2019; Tomek et al., 2020) and the 
evaluation was done for forward and inverse problems on synthetic and experimental data.

Materials and methods
The methodology of this study including the development of the emulator and the evaluation is 
outlined in Figure 1.

Simulator
The simulator of Tomek et  al., 2020 (ToR-ORd-dynCl simulator) was used. This is available in 
CARPentry (Vigmond et  al., 2008) and was implemented based on the published CellML file for 
the endocardial subtype (​ToRORd_​dynCl_​endo.​cellml, https://github.com/jtmff/torord/tree/master/​
cellml; jtmff, 2020). Simulations were performed in CARPentry with the single cell tool bench. To 
compute the gating variables, the Rush-Larsen Method (Rush and Larsen, 1978) was employed, 
which uses an analytical solution assuming fixed voltage over a small timestep, and the remaining 
variables were computed by the Forward Euler method. To ensure low computational cost, we found 
the maximum solver and sampling time steps that still produce accurate results as follows. Various 
solver and sampling time steps were applied to generate APs and the biomarkers (AP biomarkers and 
abnormalities) used in this study were computed and compared with those that correspond to the 
minimum time steps (solver: ‍0.005 ms‍; sampling: ‍0.01 ms‍). We considered the time steps with only 2% 
relative difference for all AP biomarkers (solver: ‍0.01 ms‍; sampling: ‍0.05 ms‍) to offer a sufficiently good 
approximation. APs were stimulated at a pacing cycle length of ‍1000 ms‍ using ‍1 ms‍ long rectangular 
transmembrane current density pulses of ‍53 µA

cm2 ‍ (Tomek et al., 2019). To approach the simulator’s 
steady state, a series of 1000 stimuli were applied for each new parameter set starting from the 
initial states specified in the CellML file (when 1000 additional stimuli were applied, the maximum 
intracellular [Ca2+], [Cl-], and [Na+] changed by 1.5%, 0.15%, and 1.7%, respectively). Note, that the 
simulations can also be performed using open-source software such as (Clerx et al., 2016), OpenCOR 
(Garny and Hunter, 2015) and openCARP (Plank et al., 2021).

https://doi.org/10.7554/eLife.91911
https://github.com/jtmff/torord/tree/master/cellml
https://github.com/jtmff/torord/tree/master/cellml
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Figure 1. Methodology of this study including the emulator development and the evaluation. The simulator is visualized by a schematic human 
ventricular cardiomyocyte that includes all currents considered for the emulator training. Inputs of the emulator (see Figure 3) are the corresponding 
maximum conductances (‍G‍) but for the sake of illustration, only three representatives are shown. Output is the AP (‍Vm(t)‍). Training and validation data 
(maximum conductances ‍̂G‍ and APs ‍̂Vm(t)‍) were generated by the simulator. The evaluationwas performed for forward and inverse problems and to this 
end, the pharmacological parameter s was introduced. This describes the interaction between the drug and a given target and was defined as scaling 
factor of the respective maximum conductance in control conditions (s < 1:block, s=1:no effect, s > 1:enhancement). Synthetic data (control maximum 
conductances and drugged maximum conductances obtained through scaling, and control and drugged APs) and experimental data (control and 
drugged APs) were used for the evaluation (Orvos, 2019). The forward problem was only solved for whereas the inverse problem was solved for both 
synthetic and experimental data. When experimental data were used, estimated pharmacological parameters were compared to distributions derived 
from data published within the CiPA initiative (Chang et al., 2017; Li et al., 2017).

https://doi.org/10.7554/eLife.91911
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Emulator
Here, we present the architecture and capabilities of the implemented and trained emulator. Details 
on the practical implementation and a link to the public code can be found in Code & data availability.

Data
We generated three data sets in the study to train, validate and test the emulator performance.

Training/validation data (#1)
The first data set is the the supervised training data set, containing pairs of maximum conductance 
samples ‍x‍ and the corresponding AP ‍̂Vm(t)‍ that was obtained from the simulator. Sobol’ sequences 
were used to generate 40,000 maximum conductance samples, containing 20,000 maximum conduc-
tance samples between 0% and 200% of the original values and 20,000 maximum conductance 
samples between 50% and 150% of the original values. The first covers a range that was considered 
plausible in terms of physiology and pathology (Britton et al., 2017; Tomek et al., 2019), and in 
terms of pharmacology (where full block is plausible). The latter covers a range that was considered 
particularly relevant in line with experimental calibration results presented in Tomek et al., 2019 and 
patch clamp measurements of channels that were exposed to 30 clinical drugs blocks in up to the 
fourfold of the maximum free therapeutic concentration were analyzed in agreement with the CiPA 
paradigm (Li et al., 2019; Crumb et al., 2016). The SALib-Sensitivity Analysis Library 
(Herman and Usher, 2017) was used in the entire study for the generation of samples based on 
Sobol’ sequences. For each maximum conductance sample, simulations were performed to obtain the 
corresponding 40,000 APs. APs with a transmembrane potential difference of more than 10% of the 
amplitude between ‍t = 0‍ and ‍1000 ms‍ (indicative of an AP that is far away from full repolarization) were 
excluded. This, however, applied to only 116 APs.

Starting from the original APs in data set #1, the data were first extended by ‍10 ms‍ from 

‍t ∈ [0, 1000] ms‍ to ‍t ∈ [−10, 1000] ms‍ to enable some extrapolation of ‍Vm‍ and hence a better align-
ment of the depolarization; for ‍t ∈ [−10, 0] ms‍ the initial resting membrane potential ‍Vm(0)‍ was held 
constant. Then, the data were non-uniformly resampled from the original uniformly simulated APs, to 
emphasize the depolarization slope with a high accuracy while lowering the number of repolarization 
samples. For this purpose, we resamled the APs to ‍4 kHz‍ for ‍t ∈ [−20, −5) ms‍ (resting phase) and 
‍10 kHz‍ for ‍t ∈ [−5, 20) ms‍ (depolarization phase) to ‍4 kHz‍. The repolarization phase (‍t ∈ [20, 1000] ms‍) 
was also resampled to ‍4 kHz‍.

Figure 2. Processed APs used for training and validation (left and center). Additionally we show the excluded APs on the right (see text for description 
of the exclusion criteria).

https://doi.org/10.7554/eLife.91911
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From the initial training data set, 20% were randomly chosen to be used for validation leaving 
31908 pairs of maximum conductances and corresponding APs for training. Figure 2 shows processed 
APs that were used for training, validation and the APs excluded due to missing full repolarization as 
described above.

Synthetic test data (#2/#3)
Two sets of synthetic data were created using the simulator and each of the sets consisted of control 
and drug data with pairs of maximum conductances and corresponding APs.

The control data were the same in both sets. They were created using an experimentally cali-
brated population of 100 synthetic cardiomyocytes (Britton et al., 2013; Muszkiewicz et al., 2016; 
Gemmell et al., 2016). and to this end, Sobol’ sequences were used to generate samples of maximum 
conductances with values between 50% and 150% of the original values. Maximum conductance 
samples that produced APs without abnormalities (checked for the last two consecutive APs; see AP 
biomarkers and abnormalities), and with seven biomarker values (derived from the last AP; see AP 
biomarkers and abnormalities) in agreement with experimental ranges (Table 1) were included in the 
population. Please note that the experimental ranges were not derived from the data set described 
in Experimental data (#4).

Data set #2: The motivation for creating data set #2 was to evaluate the emulator on data of normal 
APs. Drug data were created using 100 synthetic drugs represented by a set of pharmacological 
parameters. Each synthetic drug was built to have four different targets, with all channels, pumps, and 
exchangers related to the emulator inputs considered as potential targets. To this end, 100 samples 
of four pharmacological parameters, each with values between 0.5 (50% block) and 1.5 (50% enhance-
ment) were randomly generated. The synthetic drugs were applied to the entire synthetic cardiomyo-
cyte population by scaling each of the relevant control maximum conductances with the corresponding 
pharmacological parameter. The samples that produced APs without abnormalities (checked for the 
last two consecutive APs; see AP biomarkers and abnormalities) were included in the data set. No 
sample was excluded and thus, the data set consisted of 100 control data pairs and 10,000 drug data 
pairs.

Data set #3: The motivation for creating data set #3 was to test the emulator on data of abnormal 
APs showing the repolarization abnormality EAD. This is considered a particularly relevant AP 

Table 2. Pharmacological parameter samples (synthetic drugs) with scaling factors for Gkr and Pca to 
generate the drug data of data set #3.

ID 1 2 3 4 5 6 7 8 9 10

Gkr 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14

Pca 1.20 1.22 1.24 1.26 1.28 1.30 1.32 1.34 1.36 1.38

Table 1. AP biomarkers and their experimental ranges used to generate the population of synthetic 
cardiomyocytes.
These were adopted from Passini et al., 2017. Experimental data were collected at 37°C in small 
right ventricular trabeculae and papillary tissue preparations obtained from healthy human hearts 
during pacing with a cycle length of ‍1000 ms‍ (Britton et al., 2017; O’Hara et al., 2011).

AP biomarker Unit Min Max

‍RMP‍ mV -95 -80

‍dVmMax‍ mVms-1 100 1000

‍Peak ‍ mV 10 55

‍APD40‍ ms 85 320

‍APD50‍ ms 110 350

‍APD90‍ ms 180 440

‍Tri90−40‍ ms 50 150

https://doi.org/10.7554/eLife.91911
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abnormality in pharmacological studies because of their role in the genesis of drug-induced ventric-
ular arrhythmia’s (Weiss et al., 2010). Drug data were created using 10 synthetic drugs with the hERG 
channel and the Cav1.2 channel as targets. To this end, 10 samples with pharmacological parameters 
for ‍GKr‍ and ‍PCa‍ (Table 2) were generated and the synthetic drugs were applied to the entire synthetic 
cardiomyocyte population by scaling ‍GKr‍ and ‍PCa‍ with the corresponding pharmacological parameter. 
Of the 1000 APs simulated, we discarded APs with a transmembrane potential difference of more than 
10% of the amplitude between ‍t = 0‍ and ‍1000 ms‍ (checked for the last AP), indicative of an AP that 
is far away from fully repolarizing within ‍1000 ms‍. This left us with 950 APs, 171 of which exhibit EAD 
(see EAD classification).

Experimental data (#4)
In the experimental data set, APs were recorded in small right ventricular trabeculae and papillary 
tissue preparations that were isolated from healthy human hearts (Orvos, 2019). The hearts were 
obtained from organ donors whose hearts were explanted to obtain pulmonary and aortic valves 
for transplant surgery. Before cardiac explantation, organ donors did not receive medication apart 
from dobutamine, furosemide, and plasma expanders. Proper consent was obtained for use of each 
individual’s tissue for experimentation. The conventional microelectrode technique was used for AP 
recordings and all measurements were carried out at 37°C. Stimulation of APs was done at a pacing 
cycle length of ‍1000 ms‍ using a pair of platinum electrodes that provided rectangular current pulses of 
‍2 ms‍ duration. To allow the preparations to equilibrate, stimuli were delivered for at least ‍60 min‍ before 
the measurements started. Measurements were performed under control conditions and after admin-
istration of five channel-blocking drugs at one concentration in multiple preparations. Drugs were 
cisapride (‍30 nM‍), dofetilide (‍10 nM‍), sotalol (‍30 µm‍), terfenadine (‍1 µm‍), and verapamil (‍300 nM‍). The 
last 10 consecutive APs of each measurement were analyzed to quantify the beat-to-beat variability. 
Overall, the beat-to-beat variability was found to be small (standard deviation in all APs below ‍7 mV‍ 
before the peak due to time alignment mismatch and below ‍2 mV‍ after the peak) and thus, the last 10 
consecutive APs of each measurement were averaged. In most of the preparations, the standard devi-
ation between beats did not vary over time and thus, no temporal correlation of noise was assumed. 
Averaging also reduced the noise level. The experimental data set contained one pair of averaged 
control and drugged AP per preparation per drug. Pairs were excluded if the biomarker values (see 
AP biomarkers and abnormalities) of the control or the drugged AP were not in the range found in 
the training data (see Training). This applied to seven pairs and the final data set contained three pairs 
for cisapride, dofetilide, sotalol, and terfenadine, and one pair for verapamil. All measurements were 
performed at the University of Szeged, Hungary, and conformed to the principles of the Declaration 
of Helsinki. Experimental protocols were approved by the University of Szeged and by the National 
Scientific and Research Ethical Review Boards (No. 51-57/1997 OEj and 4991-0/2010-1018EKU [339/
PI/010]).

An overview of all utilized data is given in Table 3.

Table 3. Summary of the data used in this study, along with their usage and the number of valid 
samples.
Note that each AP is counted individually, also in cases of control/drug pairs.

ID Description Usage Origin Samples

#1
Training/validation 
data

Training and validating the emulator, choosing the best 
architecture (Architecture) Simulation 39,884

#2
Synthetic drug data, 
normal APs

Testing forward and inverse performance for normal 
APs (‘Forward problem’ and ‘Inverse problem based on 
synthetic data’) Simulation 104

#3
Synthetic drug data, 
including EAD APs

Testing forward performance of abnormal (EAD) APs 
(‘Forward problem’) Simulation 950

#4
Experimental 
cardiomyocytes

Testing and comparing the inverse performance with data 
published by the CiPA initiative (Li et al., 2017; Chang 
et al., 2017; ’Inverse problem based on experimental 
data’) Orvos, 2019 26

https://doi.org/10.7554/eLife.91911
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Architecture
The emulator takes maximum conductances of channels, pumps, and exchangers as inputs and 
computes the corresponding AP (‍Vm(t)‍) after the last stimulus as output. It was trained to represent 
human ventricular cardiomyocytes under control and drugged conditions and the inputs were selected 
based on two assumptions: (1) The kinetics of channels are preserved, while the number of channels, 
pumps, and exchangers vary due to different expression levels (Syed et al., 2005; Groenendaal et al., 
2015; Krogh-Madsen et al., 2016). These numbers are captured in the simulator by the maximum 
conductance parameters (or permeability parameters but maximum conductance is used as general 
term here for the sake of simplicity) that determine the respective current densities; (2) Channels, 
pumps, and exchangers are potential (intended and unintended) drug targets and the interaction 
between drugs and their targets can be described by a scaling of the related maximum conductances 
(Brennan et al., 2009). The corresponding scaling factors are pharmacological parameters. These 
assumptions allowed us to focus on maximum conductances and we considered those as inputs which 
either the AP is sensitive to (GNa, GNaL, PCa, Gto, GKr, GK1, GNCX, PNaK) or which are related to common 
drug targets (GNa, GNaL, PCa, Gto, GKr, GKs, GK1; Crumb et al., 2016) leading to the following selection: 
GNa, GNaL, PCa, Gto, GKr, GKs, GK1, GNCX, and PNaK. AP sensitivity was quantified using a global sensitivity 
analysis (GSA; see.Appendix 2) and the inclusion threshold was a total-effect Sobol’ sensitivity index 
(ST) above 0.1 with respect to any of the considered biomarkers (see.Appendix 1).

Several emulator architectures were tried on the training and validation data sets and the final 
choice was hand-picked as a good trade-off between high accuracy on the validation set (#1) and 
low computational runtime cost. We decided to utilize a two-stage emulator architecture: First, the 
maximum conductances ‍x‍ – normalized to the range ‍xi ∈ [−0.5, 0.5]‍ – are encoded using a first NN 
(‍Θ1‍) into a latent representation ‍ϑ‍. Second, this intermediate representation parameterizes a function 

‍fϑ : R → R‍ defined by a second NN (‍Θ2‍) that can be continuously evaluated to receive the emulated 
AP at time ‍t‍. To help the second NN in computing the fast depolarization, a simple depolarization 
term ‍(tanh)‍ is added to ‍fϑ‍. The parameters of this depolarization function are slope (d1), offset (d2), and 
amplitude (d3), and are created by encoding the parameters through the first network, similar to the 
latent code. The AP approximated by the emulator is thus defined by

	﻿‍ Vm(t) := fϑ(t) + tanh(d2
1(t − d2)) + d2

3.‍� (1)

A schematic drawing of the emulator architecture is provided in 2. Splitting the network into two parts 
— one for encoding the parameters into a latent space and a second one for evaluating ‍fϑ‍ — allowed 
us to give the emulator enough complexity without markedly increasing the computational cost: in 

Figure 3. Conceptual architecture of the neural network emulator. The maximum conductances ‍x‍ are encoded into depolarization parameters di and 
a latent space representation ‍ϑ‍ that uniquely defines the time series functional ‍fϑ : R → R‍. The time is normalized and encoded in polynomials up to 
degree 8 (‍tp‍ for ‍p ∈ {1, 2, . . . 8}‍), before being appended to the latent code ‍ϑ. fϑ‍ is then used in conjunction with the depolarization helper ‍tanh‍ to 
approximate the AP ‍Vm(t)‍.

https://doi.org/10.7554/eLife.91911
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most cases, it is desirable to compute the whole AP in the entire range, for example ‍[0, 1000] ms‍, and 
not only at a single time step. Creating a single network that computes the mapping from maximum 
conductances to the transmembrane potential at a single time step (compare Figure  3) is either 
orders of magnitudes slower than encoding the parameters into a latent vector (only done once per 
AP) or would require to reduce the complexity of the network, which led to inaccurate emulations in 
the validation. The additional depolarization term was introduced to address the difficulty of fitting 
the depolarization phase during training and decreased the required training time substantially. Note 
that the mapping from maximum conductances ‍x‍ to depolarization parameters ‍{d1, d2, d3}‍ is also 
learned through ‍Θ1‍.

The exact architecture employed – chosen by a cross-validation approach (see Validation) – 
comprised a first network (‍Θ1‍) of four fully connected layers of 256 neurons, each to encode the 
parameters into the latent vector ‍ϑ ∈ R256‍. This first network additionally generates the parameter-
ization for the depolarization model ‍{d1, d2, d3}‍. The second network, computing the APs from the 
latent representation (‍Θ2‍), consisted of four fully connected layers of 64 neurons each. Exponential 
linear unit (ELU) activation functions Clevert et al., 2016 were used for all layers, except for the final 
non-linear layer, which was modeled using a ‍tanh‍ activation function followed by a ‍[−1, 1]64 → R‍ linear 
layer.

Training
Although different regularization schemes such as variational losses (e.g. ‍

dVm
dt ‍) were tried, the wealth 

of training data allowed us to define the training loss purely in terms of mean-squared-error (MSE)

	﻿‍

L(Θ1,Θ2) = 1
2|T|

∑

(x,V̂m)∈X̄⊂X

∑
t∈T

(
fϑΘ1 (x),Θ2 (t) − V̂m(t)

)2
dt,

‍�
(2)

where ‍fϑΘ1 (x),Θ2‍ describes the output of the emulator using the current NN weights ‍Θ1/Θ2‍, ‍̄X ‍ refers 
to the current training batch and ‍X ‍ is the training data set containing both target APs ‍̂Vm‍ and corre-
sponding maximum conductances ‍x‍. For the training, increasing batch sizes (‍|X̄|‍ 1250 to 1800) were 
used, both in terms of the entire AP and considering only subsets over time ‍T ⊂ T‍ from ‍

1
16 |T|‍ to ‍|T|‍, 

resulting in a reduction of training time needed. The neural network was trained for a total number 
of 5000 epochs using the first-order gradient-based algorithm ADAM Kingma and Ba, 2017. The 
training time was approximately ‍4 h‍ on the GPU specified in Computational performance.

Validation
A cross-validation approach was used to quantify and compare the performance of various emulator 
architectures. The validation was based on 20% of the initial training data set (7976 pairs of maximum 
conductances and corresponding APs, see Training). For each pair, the emulated AP ‍Vm‍ was compared 
against the simulated AP ‍̂Vm‍, given the same maximum conductances. The mismatch was quantified 
by the root-mean-squared error (RMSE) defined as

	﻿‍
RMSE(Vm, Ṽm) :=

√
1
|T|

ˆ

T

(
Vm(t) − V̂m(t)

)2
dt.

‍�

The mismatch was also quantified in terms of AP biomarkers ‍b ∈ RN ‍ (see AP biomarkers and abnor-
malities) and normalized maximum conductances ‍x‍ (see Time series fitting and estimation of maximum 
conductances and pharmacological parameters) in which case the RMSE was defined as

	﻿‍
RMSE(b, b̃) :=

√
1
N

||b − b̃||22 and RMSE(x, x̃) :=
√

1
N

||x − x̃||22,
‍�

for ‍N ‍ samples.

Time series fitting and estimation of maximum conductances and pharma-
cological parameters
Time series fitting is the basis for solving the inverse problem. To fit a given AP ‍̂Vm‍, defined on a subset 
of the trained domain ‍̂T ⊂ T‍, the first step was to choose a trial set of maximum conductances ‍x0‍. 

https://doi.org/10.7554/eLife.91911
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Then, for the given trial set, the corresponding AP was emulated and the trial set of maximum conduc-
tances was iteratively updated by solving the following minimization problem:

	﻿‍

min
x,t0

1
2|T̂|

∑

t∈T̂

(
Vm(x, t − t0) − V̂m(t)

)2
dt + λx0

2
||x − x̂||22 + δ[−0.5,0.5](x),

‍�
(3)

where ‍Vm(x, t) := fϑΘ1 (x),Θ2 (t)‍ is a shorthand for the emulator approximation function and t0 is a 
temporal offset parameter helping in fitting the exact depolarization timing. Here, ‍δ[−0.5,0.5](x)‍ is the 
element-wise indicator function on the normalized feasible parameter space ‍[−0.5, 0.5]‍. The minimiza-
tion was done using ADAM (Kingma and Ba, 2017) combined with a projection on the feasible space.

To estimate maximum conductances for a given control AP, the control AP was fitted using the 
original maximum conductance values as initial guesses and priors: ‍x0 = x̂ = 0‍. To estimate maximum 
conductances for a given drugged AP, the drugged AP was fitted using the maximum conductances 
estimated for the respective control AP as initial guesses and priors: ‍x0 = x̂ = xc

‍. The pharmacological 
parameters (scaling factors of control maximum conductances) were computed as element-wise ratios 

between the drugged and control maximum conductances ‍(s)i := (Gd)i
(Gc)i ‍ but here, ‍Gd‍ and ‍Gc‍ are the 

non-normalized maximum conductances, where ‍(Gc)i > 0‍.
Since multiple sets of maximum conductances produced similarly good fits of the given AP, the 

parameter ‍λx0‍ was introduced which minimizes the difference between original and control maximum 
conductances and between control and drugged maximum conductances, respectively. The value was 

Figure 4. Comparison of an averaged raw and an averaged filtered experimental AP. One dofetilide control AP is shown as example.

https://doi.org/10.7554/eLife.91911
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chosen to be ‍λx0 = 10‍ with respect to the highest accuracy found for the synthetic data set #2 that was 
generated for the evaluation (see Synthetic test data (#2/#3)).

Evaluation
The evaluation was performed for forward and inverse problems in pharmacological studies on 
synthetic and experimental data.

The raw experimental data were obtained without filtering but some filtering was applied before 
interfacing the data with the emulator. The APs contained a stimulus artifact between 0 and ‍1.5 ms‍ 
that was filtered as follows. For each of the last 10 consecutive APs, the transmembrane potential ‍Vm‍ 
closest to the end of the recorded time series was defined as the resting transmembrane potential 
‍RMP‍ and ‍Vm(t) = RMP‍ was set for ‍t ∈ [0, 1.75]ms‍. Then, the APs were resampled at ‍100 kHz‍ and a low-
pass filtering was performed with a second-order butterworth filter (cutoff at ‍2.5 kHz‍) to reduce the 
high-frequency noise of the signal. Finally, the filtered APs were averaged and the averaged AP was 
again resampled at ‍1 kHz‍ for ‍t ∈ [15, 1000]ms‍ (repolarization) and ‍100 kHz‍ in ‍t ∈ [0, 15)ms‍ (depolariza-
tion). An example comparison of a raw and a filtered averaged AP is given in Figure 4.

Computational performance
The simulation of a single AP (see Simulator) sampled at a resolution of 20 kHZ took 293 s on one 
core of a AMD Ryzen Threadripper 2990 WX (clock rate: 3.0 GHZ) in CARPentry. Adaptive timestep 
solver of variable order, such as implemented in Myokit (Clerx et al., 2016), can significantly lower 
the simulation time (30 s for our setup) by using small step sizes close to the depolarization (phase 
0) and increasing the time step in all other phases. The emulation of a steady state AP sampled at 
a resolution of 20 KHZ for ‍t ∈ [−10, 1000] ms‍ took 18.7 ms on a AMD Ryzen 7 3800 X (clock rate: 3.9 
GHZ) and 1.2 ms on a Nvidia A100 (Nvidia Corporation, USA), including synchronization and data copy 
overhead between CPU and GPU.

The amount of required beats to reach the steady state of the cell in the simulator has a major 
impact on the runtime and is not known a-priori. On the other hand, both simulator and emulator 
runtime linearly depends on the time resolution, but since the output of the emulator is learned, the 
time resolution can be chosen at arbitrarily without affecting the AP at the sampled times. This makes 
direct performance comparisons between the two methodologies difficult. To still be able to quan-
tify the speed-up, we ran Myokit using 100 beats to reach steady state, taking 3.2 s of simulation 
time. In this scenario, we witnessed a speed-up of 171 and ‍2 · 103‍ of our emulator on CPU and GPU, 
respectively (again including synchronization and data copy overhead between CPU and GPU in the 
latter case). Note that both methods are similarly expected to have a linear parallelization speedup 
across multiple cells.

For the inverse problem, we parallelized the problem for multiple cells and keep the problem on 
the GPU to minimize the overhead, achieving emulations (including backpropagation) that run in 120 s 
per AP at an average temporal resolution of 2 KHZ. We consider this the peak performance which will 
be necessary for the inverse problem in Inverse problem based on synthetic data.

Forward problem
The emulator evaluation for the forward problem, i.e. to find the drugged AP for given pharmaco-
logical parameters, was only performed on synthetic data since maximum conductances were not 
available experimentally. The maximum conductances of data sets #2 and #3 were used to consider 
data with normal APs and with abnormal APs exhibiting EADs. Pharmacological parameters are not 
inputs of the emulator but drugged maximum conductances that were computed as control maximum 
conductances scaled by the given pharmacological parameters (see Synthetic test data (#2/#3)). 
These were used to emulate drugged APs. The RMSE was used to quantify the mismatch between 
the emulated and the ground truth AP.

Inverse problem
The emulator evaluation for the inverse problem, that is to find the pharmacological parameters for 
given control and drugged APs (through optimization), was performed on both synthetic and exper-
imental data. When using synthetic data, the data set #2 was used including data with normal APs. 
First, control and drugged maximum conductances were estimated based on control and drugged 

https://doi.org/10.7554/eLife.91911
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APs and then, pharmacological parameters were computed as ratios of drugged and control conduc-
tances (see Time series fitting and estimation of maximum conductances and pharmacological param-
eters). The mismatch between estimated and ground truth maximum conductances were quantified 
using the error that is defined through

	﻿‍ en :=
(
x − x̂

)
,‍� (4)

where ‍x‍ and ‍̂x‍ are the normalized estimated and ground truth maximum conductances (see Archi-
tecture). Similarly, we computed the mismatch between estimated and ground truth scaling factor 
vectors (‍s‍ and ‍̂s‍ respectively) as

	﻿‍ es :=
(
s − ŝ

)
.‍� (5)

When using experimental data, maximum conductances and pharmacological parameters were 
estimated in the same way but due to a lack of experimental maximum conductances, the mismatch 
between estimated and ground truth values could not be quantified. Instead, the estimated phar-
macological parameters were compared with distributions computed from data published within the 
CiPA initiative (Li et al., 2017; Chang et al., 2017) (CiPA distributions). The data set (https://github.​
com/FDA/CiPA/tree/master/Hill_fitting/results; Chang and Li, 2017) includes 2000 IC50 values and Hill 
coefficients for each drug and for up to seven targets (‍INa‍, ‍INaL‍, ‍ICaL‍, ‍Ito‍, ‍IKr‍, ‍IKs‍, ‍IK1‍). The pore-block 
model (Brennan et al., 2009) was used to obtain the corresponding scaling factors.

Results
Evaluation
Forward problem
The emulator evaluation for the forward problem was only done on synthetic data and both data sets 
#2 and #3 (see Synthetic test data (#2/#3)) were used to analyze the solution accuracy for normal and 
abnormal APs exhibiting EADs.

The data set #2 was used first and Figure 5 illustrates the distribution of RMSEs between emulated 
and ground truth drugged APs. In total 104 APs were emulated in 0.6 s. The average RMSE over all 
APs was 0.47 mV and only for a few APs the RMSE was >1 mV with 1.5 mV being the maximum. 
Largest mismatches were located in the phases 0 and 3 of the AP. While the mismatches in phase 3 
were simply a result of imperfect emulation, the mismatches in phase 0 were a result of the difficulty 
in matching the depolarization time exactly.

Figure 6 shows the distribution of biomarker mismatches between emulated and ground truth 
drugged APs. The low RMSEs between the APs translated into low RMSEs between the AP biomarkers. 

Figure 5. Analysis of solution accuracy of the forward problem on synthetic data including normal APs (drug data of data set #2). Left: histogram of 
RMSEs for the APs, right: APs with the largest RMSEs. The RMSE is given above each subplot.

https://doi.org/10.7554/eLife.91911
https://github.com/FDA/CiPA/tree/master/Hill_fitting/results
https://github.com/FDA/CiPA/tree/master/Hill_fitting/results
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Likewise, the difficulty in exactly matching the depolarization time leads to elevated errors and more 
outliers in the biomarkers influenced by the depolarization phase (‍TP‍ and ‍dVmMax‍).

The data set #3 was used second and Appendix 3 shows all emulated APs, both containing the 
EAD and non-EAD cases. The emulation of all 950 APs took 0.76 s on the GPU specified in Training We 
show the emulation of all maximum conductances and the classification of the emulation. The compar-
ison with the actual EAD classification (based on the criterion outlined in Appendix 1) results in true-
positive (EAD both in the simulation and emulation), false-negative (EAD in the simulation, but not 
in the emulation), false-positive (EAD in the emulation, but not in the simulation) and true-negative 

Figure 6. Analysis of solution accuracy of the forward problem on synthetic data including normal APs (drug data of data set #2) with respect to AP 
biomarkers. Histograms of mismatches for each biomarker are shown and the RMSE is given in the upper left corner. The number in the right upper 
corner denotes the number of outliers of the 10,000 samples which lie outside the shown ranges.

Figure 7. Analysis of solution accuracy of the forward problem on synthetic data including abnormal APs exhibiting EADs (subset of data set #3). Left: 
histogram of RMSEs for the APs, right: APs with the largest RMSEs. Of the 171 emulated APs, 124 exhibit the expected EADs (based on the criterion 
outlined in Appendix 1). The RMSE is given above each subplot. All emulated APs are shown in Appendix 3.

https://doi.org/10.7554/eLife.91911
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(no EAD both in the emulation and simulation). The emulations achieved 72.5% sensitivity (EAD cases 
correctly classified) and 94.9% specificity (non-EAD cases correctly classified), with an overall acurracy 
of 90.8% (total samples correctly classified). A substantial amount of wrongly classified APs showcase 
a notable proximity to the threshold of manifesting EADs. Figure  7 illustrates the distribution of 
RMSEs in the EAD APs between emulated and ground truth drugged APs. The average RMSE over all 
EAD APs was 14.5 mV with 37.1 mV being the maximum. Largest mismatches were located in phase 
3 of the AP, in particular in emulated APs that did not fully repolarize.

Inverse problem based on synthetic data
The emulator evaluation for the inverse problem was first done using synthetic data (data set #2, see 
Synthetic test data (#2/#3)). For this, we minimized (3) by using ADAM (Kingma and Ba, 2017) with no 
batching for 104 iterations for all 100 cardiomyocytes times 100 drugs (i.e. 104 APs), resulting in a total 
of 108 emulations, taking approximately 3.5 h on the GPU specified in Training. Control and drugged 
APs could be fitted with an average RMSE of 0.8 mV. Largest mismatches were located in phase 0 and 
3 of the AP for the reasons given above (see Forward problem). Figure 8 shows the distribution of 
the errors between the estimated and the ground truth maximum conductances and pharmacological 
parameters. For both the maximum conductances (RMSE ‍≤0.18‍) and the related pharmacological 
parameters (RMSE ‍≤ 0.22‍), the errors were closely distributed around zero. However, the RMSEs 
increased from the control maximum conductance over the drugged maximum conductance to the 
pharmacological parameters and there were distinctive differences among maximum conductances 
and related pharmacological parameters with the smallest for GKr and the largest for GKs.

Inverse problem based on experimental data
The emulator evaluation for the inverse problem was then done on experimental data (Experimental 
data (#4)). Similar to the synthetic inverse problem, we optimized (3), this time for ‍5·104‍ and ‍2.5·104‍ 
epochs for control and drug APs for each drug sample. The total computational time spent on this 
task was 2.8 hr on the GPU specified in Training.

Figure 9 shows the fitted and the ground truth APs for all drugs. Control and drugged APs could 
be fitted with average RMSEs shown in Table 4. The largest mismatch was located in phase 0 for most 
APs, which was the result from an imperfect matching of the exact depolarization timing.

Figure 10 compares the estimated pharmacological parameters and the CiPA distributions. Phar-
macological parameters that fell into the range spanned by ‍µ±

(
0.15 + σ

)
‍ of the CiPA distribution, 

where ‍µ,σ‍ are the distribution’s mean and standard deviation respectively, were classified as success-
fully estimated while the others were classified as unsuccessfully estimated. In total, 50% of the phar-
macological parameters could be estimated succesfully and while all pharmacological parameters 

Figure 8. Analysis of solution accuracy of the inverse problem on synthetic data (data set #2). Left: boxplot of errors between normalized estimated 
and ground truth control maximum conductances, middle: boxplot of errors between normalized estimated and ground truth drugged maximum 
conductances, right: boxplot of errors between estimated and ground truth pharmacological parameters. Error definitions are given in (4) and (5). The 
RMSE over all data is given below each parameter.

https://doi.org/10.7554/eLife.91911
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related to GKs could be successfully estimated, unsuccessfully estimated parameters were found across 
all maximum conductances, in particular related to GK1 for which all pharmacological parameters could 
not be successfully estimated (Table 5).

Discussion
NN emulation of the human ventricular cardiomyocyte AP was introduced and the applicability in 
pharmacological studies was investigated.

Evaluation
The evaluated NN emulator showed highly accurate AP emulations for the forward problem on 
synthetic data. High accuracy was found in normal APs in data set #2 (average RMSE was 0.47 mV; 
Figure 5) and to a lesser extent also in abnormal APs exhibiting EADs: of the emulated EAD APs, 
72.5% exhibited alignment with the abnormality, and the substantial majority of the remaining APs 
demonstrated pronounced proximity, while the average RMSE among the EAD APs was 14.5 mV 
(Figure 7). In comparison, the normal APs exhibiting no EAD in data set #3 could be reconstructed 
with an average RMSE of 4.02 mV and the overall accuracy of classifying EAD on emulated APs 
was 90.8%. Increasing the amount of training data within the relevant range could lead to further 
enhancements in accuracy for abnormal APs. Nevertheless, this observation demonstrates that the 

Figure 9. Analysis of fit quality of the inverse problem on experimental data. Comparison of the fitted APs (solid lines) and the experimental APs 
(dashed lines) at control (red) and after drug administration (blue) for all drugs.

Table 4. Average RMSE over control and drugged APs measured in all preparations per drug.
All values in mV.

Drug RMSE control RMSE drug

Cisapride 1.53 2

Dofetilide 2.05 1.73

Sotalol 1.4 2.51

Terfenadine 1.22 1.08

Verapamil 1.93 2.21

https://doi.org/10.7554/eLife.91911
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emulator is also capable of accounting for discontinuities of the response surface. This is particularly 
useful in pharmacological studies and a key advantage over existing emulation approaches (Chang 
et al., 2015; Johnstone et al., 2016; Coveney and Clayton, 2018; Ghosh, 2018; Rasmussen, 2019; 
Coveney et al., 2021).

The emulator was further evaluated for the inverse problem on synthetic and also on experimental 
data. Maximum conductances and related pharmacological parameters could be widely estimated 
with high accuracy on synthetic data (RMSE ‍≤0.18‍ and ‍≤0.21‍ for all maximum conductances and phar-
macological parameters, respectively; Figure 8).

The RMSEs increased from the control maximum conductance over the drugged maximum 
conductance to the pharmacological parameters which may be because the estimation of drugged 

Figure 10. Analysis of solution accuracy of the inverse problem using experimental data. The histograms compare the estimated pharmacological 
parameters (dashed vertical lines) from data of multiple preparations with the CiPA distributions (blue; see Inverse problem). The black dash dotted 
vertical lines are the borders of the range (grey) that was used to determine if the estimation of the given pharmacological parameter was successful. 
The range is spanned up by µ ± (0.15 + σ) of the CiPA distribution. Successfully estimated parameters are shown as green lines and unsuccessfully 
estimated parameters are shown as red lines. The number in the upper left corner indicates for how many preparations the parameters could be 
successfully estimated in relation to the total number of preparations for the given drug.

Table 5. Pharmacological parameters related to maximum conductances that were considered 
successfullyor unsuccessfully estimated across all preparations and drugs.
For each channel, the drugs are stated forwhich respective data from the CiPA initiative were 
available. C, D, S, T, V, A mark cisapride, dofetilide, sotalol,terfenadine, verapamil, all drugs 
respectively.

Gna GNaL Gto GKr GKs GK PCa Total

Successful 6 6 8 3 9 0 5 37

Unsuccessful 3 1 5 10 0 10 8 37

Ratio 0.67 0.86 0.62 0.23 1 0 0.38 0.5

https://doi.org/10.7554/eLife.91911
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maximum conductances depends on the control maximum conductances and the computation 
of pharmacological parameters depends on both control and drugged maximum conductances 
(see Time series fitting and estimation of maximum conductances and pharmacological parame-
ters) allowing that errors can propagate and amplify. Distinctive differences were observed among 
the maximum conductances and related pharmacological parameters and the largest RMSEs were 
found for GKs throughout. This can be attributed to various degrees of parameter identifiability 
Sarkar and Sobie, 2010; Zaniboni et al., 2010; Groenendaal et al., 2015; Jaeger et al., 2019; 
Whittaker et al., 2020 and the results agree with the GSA that indicates almost non-identifiability 
of GKs (Appendix 2).

Larger inaccuracies were found in the inverse problem solutions on experimental data (Figure 10, 
Table 4). The first reason may be low parameter identifiability and we want to highlight inaccuracies 
in estimating the pharmacological parameters related to GKr, PCa, and GNaL when the hERG channel 
was blocked in parallel to the Cav1.2 channel (verapamil) or in parallel to both the Cav1.2 and the 
Nav1.5-late channel (terfenadine). The hERG channel block (prolongation of the AP), and the Cav1.2 
and Nav1.5-late channel block (shortening of the AP) are known to have opposite effects on the AP 
Orvos, 2019. At the given drug concentrations, these effects were apparently counterbalancing, 
which resulted in negligible changes of the AP (Figure  9). This situation made the estimation of 
pharmacological parameters very challenging and led to particularly large inaccuracies for terfen-
adine. The accurate estimations of the pharmacological parameters related to GKs are surprising 
at first in light of the almost non-identifiability. This was due to the combination of two factors: (1) 
different from synthetic data, the drugs at the given concentrations did not affect the corresponding 
KCNQ1-MinK channel and (2) the difference between control and drugged maximum conductance 
was weakly enforced to be minimal (see Time series fitting and estimation of maximum conductances 
and pharmacological parameters) which leads to almost no difference in non-identifiable parameters 
and hence, to a pharmacological parameter of one. The accuracy will likely be much lower in drugs 
that affect the KCNQ1-MinK channel.

The second and probably main reason for the inaccuracies may be the fact that the data were 
collected in small tissue preparations, whereas the emulator was trained on data generated by a 
simulator that represents single cardiomyocytes. APs in small tissue preparations are slightly different 
from those in single cardiomyocytes. Differences can arise from electrotonic coupling and the mixture 
of cells including fibroblasts that are able to modify the EP (Kohl and Gourdie, 2014; Mayer et al., 
2017; Hall et al., 2021). This can hamper the fitting of the APs and consequently, the estimation of 
the maximum conductances and pharmacological parameters.

Emulator
The presented NN emulator enables a massive speed-up compared to regular simulations and the 
evaluation for the forward problem on synthetic data showed also highly accurate AP emulations. 
Cardiomyocyte EP models are already very quick to evaluate in the scale of seconds (see Computa-
tional performance), but the achieved runtime of emulations allows to solve time consuming simulation 
protocols markedly more efficient. One such scenario is the presented inverse maximum conductance 
estimation problem (see Inverse problem based on synthetic data and Inverse problem based on 
experimental data), where for estimating maximum conductances of a single AP, we need to emulate 
the steady state AP at least several hundred times as part of an optimization procedure. Further 
applications include the probabilistic use of cardiomyocyte EP models with uncertainty quantification 
(Chang et al., 2017; Johnstone et al., 2016) where thousands of samples of parameters are poten-
tially necessary to compute a distribution of the steady-state properties of subsequent APs, and the 
creation of cell populations (Muszkiewicz et al., 2016; Gemmell et al., 2016; Britton et al., 2013). 
In addition to the aforementioned strengths of the presented NN emulator, some further valuable 
features are worth mentioning that arise from the continuous nature of the emulator. First, the AP can 
be emulated and fitted at any desired resolution. Second, timing offsets, for example between stimuli 
in the data to be fitted and the training data, can be accounted for using t0 in (3) without retraining. 
Last but not least, the transmembrane potential gradient ‍

dVm
dt ‍, recently highlighted in terms of proar-

rhythmic potential prediction (Jeong et al., 2022), can be continuously derived and is not dependent 
on the temporal discretization.

https://doi.org/10.7554/eLife.91911
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Limitations and future work
Some limitations have to be considered. First, the emulator has only maximum conductances as 
inputs. Although these explain much of the AP variability seen between cardiomyocytes (Britton 
et al., 2013; Muszkiewicz et al., 2016), the inclusion of parameters related to the channel kinetics 
might enable a more detailed consideration of drug effects in pharmacological studies. In general, 
the question of complete parameter identifiability utilizing only APs remains an open challenge 
(Zaniboni et al., 2010). Channel kinetics determine the contribution of the corresponding current 
to the AP generation in different phases and can thus also modulate drug effects, but were however 
neglected, as the expansion of the input space might be unsuitable for solving the inverse problem 
when only AP data are used. Second, the interaction between drugs and their targets is solely 
captured through scaling of the related maximum conductance at control, which is mostly adequate 
but in fact an oversimplification (Brennan et al., 2009). The interaction can be dependent on time, 
voltage, and channel state, which requires the use of Markov models with many more parame-
ters (Brennan et al., 2009; Li et al., 2017; Lei et al., 2024). Again, this expands the input space 
and might be unsuitable for solving the inverse problem when only AP data are used. Moreover, 
drugs that are applied over a longer period of time can also cause modifications of the maximum 
conductances through changes in gene expression (Shim et al., 2023). This requires attention to 
avoid misinterpretations of found blocking or enhancement effects, for example by estimating the 
control maximum conductances again after a washout procedure. Third, the inverse problem was 
only solved for AP data obtained from one single stimulation protocol. Johnstone et  al., 2016 
have shown that the usage of AP data obtained from various stimulation protocols can improve the 
parameter identifiability and thus, the accuracy of parameter estimates. To be able to use those 
data in the presented approach, the pacing cycle length must be included as additional input in 
the emulator and the emulator may be trained on more than the last AP of the pacing series. This 
would also allow to capture alternans. Last but not least, the number of drugs and concentrations 
considered in the inverse problem on experimental data poses a limitation. The ultimate goal is to 
have a tool that provides highly accurate solutions for drugs with different targets and concentra-
tions. To this end, analyses must be extended by data obtained from a series of available and well 
characterized drugs. The data should be collected in single cardiomyocytes in order to minimize the 
discussed inaccuracies that stem from the use of tissue preparation data. Further simulation studies 
of the inverse problem on tissue slabs versus cardiomyocyte EP model could be integrated to assess 
the impact of differences in setups. This should be addressed in future work. Of note, the presented 
approach can also be straightforwardly applied to other transients, for example intracellular [Ca2+] 
or sarcomere length.

Conclusion
This paper introduced NN emulation of the human ventricular cardiomyocyte AP and tested its appli-
cability in pharmacological studies. The computational cost of the NN emulator was compared to 
that of the simulator, revealing a massive speed-up of more than 1e3. The accuracy of solving the 
forward problem on synthetic data was found to be high for normal APs and this hold mostly true 
for abnormal APs exhibiting EADs. This advantage distinguishes our novel approach from existing 
emulation methods. While larger inaccuracies were observed when utilizing experimental data – a 
limitation thoroughly discussed and particularly inherent to the fact that small tissue preparations 
were studied while the emulator was trained on single cardiomyocyte data – the accuracy of solving 
the inverse problem on synthetic data remained high. Collectively, these findings underscore the 
potential of NN emulators in improving the efficiency of future quantitative systems pharmacology 
studies.
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Data availability
The trained emulator is available as a python package from https://github.com/thomgrand/cardiomyo-
cyte_emulator (copy archived at Thomas, 2024; the code is licensed under AGPLv3, see https://www.​
gnu.org/licenses/agpl-3.0.en.html for details). The trained emulator is provided as a Python package, 
heavily utilizing PyTorch (Paszke, 2019) for the neural network execution, allowing it to be executed 
on both CPUs and NVidia GPUs. Additionally, NumPy (Harris et al., 2020) interfaces are provided for 
easy interfacing with other libraries. Note that the provided repository is a re-implementation of the 
code-base used in this study and thus may deviate in performance or runtime. The training data set 
(data set #1) is available on Zenodo using the link https://zenodo.org/records/10640339.
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Appendix 1
AP biomarkers and abnormalities
The AP biomarkers used in this study were selected such that the key characteristics of the depolarization 
and the repolarization phase can be quantified. They include ‍RMP‍ (resting transmembrane potential 
measured just before stimulation), ‍dVmMax‍ (maximum transmembrane potential slope during the 
upstroke), ‍Peak‍ (peak transmembrane potential at the end of the upstroke), ‍TP‍ (time-to-peak from 
the stimulus until ‍Peak‍ is reached), ‍APDx‍ (AP duration at ‍x ∈ {30, 40, 50, 60, 70, 80, 90}‍% repolarization 
relative to the AP amplitude (‍Peak − RMP‍) measured from the instant of ‍dVmMax‍), and ‍Tri90−40‍ 
(triangulation defined as the difference between ‍APD90‍ and ‍APD40‍ Britton et al., 2017).

For the GSA (see.3) and the creation of synthetic data (see Synthetic test data (#2/#3)), AP 
abnormalities were also considered which included depolarization abnormalities, repolarization 
abnormalities, and alternans. Depolarization abnormalities were defined as an upstroke peak below 
0 mV and an AP that does not reach 0 mV before 100 ms after stimulation (Passini et al., 2017). 
Repolarization abnormalities were defined as a transmembrane potential rate of rise of more than 

‍0.01 mV
ms ‍ from 150 ms after the upstroke peak onwards (representative of early afterdepolarizations) 

and as a transmembrane potential that does not fall below -40 mV (Passini et al., 2017) (representative 
of repolarization failure). Alternans were defined as ‍APD90‍ difference of more than 5 ms between 
two consecutive APs (Morotti et al., 2021).

https://doi.org/10.7554/eLife.91911
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Appendix 2
Global sensitivity analysis
A variance-based Sobol’ global sensitivity analysis (GSA) (Sobol′, 2001) was performed on the 
simulator to quantify the sensitivities of the maximum channel conductances (inputs) with respect 
to the AP biomarkers (outputs; see AP biomarkers and abnormalities). This informed the decision 
on which inputs to consider in the emulator. Furthermore, it was used for the interpretation of the 
solutions of the inverse problem since parameters that are insensitive with respect to the outputs 
indicate non-identifiability (Guillaume et al., 2019).

The maximum conductances used for building the model population in Tomek et al., 2019 were 
considered and Saltelli’s sampling scheme (Saltelli, 2002) was applied with ‍N =1024‍ to generate 
20,480 input samples with values between 50% and 150% of the original values. Simulations were 
performed for each input sample and biomarker values (see AP biomarkers and abnormalities) derived 
from the last AP were used for the analysis. However, data were excluded if not all biomarkers could 
be determined or abnormalities (see AP biomarkers and abnormalities) were detected in the last two 
consecutive APs. First-order (S1) and total-effect (ST) Sobol’ sensitivity indices were computed using 
the Saltelli method (Homma and Saltelli, 1996; Saltelli, 2002). This requires outputs for each input 
sample and to take this into account, excluded outputs were assigned the mean values of included 
outputs. The SALib-Sensitivity Analysis Library (Herman and Usher, 2017) was used for 
the GSA.

The GSA could be performed on the data of all input samples as no data were excluded. 
S1 and ST were mostly very similar which indicates only little interactions among the maximum 
conductivities relative to the AP biomarkers (9). The only exception was ‍TP‍. As was to be expected, 
the analysis underlines the predominant relative sensitivity of GNa with respect to biomarkers of 
the depolarization phase, the predominant relative sensitivity of GNaL, GKr, and GNCX with respect to 
biomarkers of the repolarization phase and the predominant relative sensitivity of GK1, PNaK to the 
resting transmembrane potential. However, GKs has a negligible relative sensitivity to all biomarkers. 
This indicates almost non-identifiability.

Appendix 2—figure 1. Global sensitivity analysis of the ToR-ORd simulator. Sobol’ sensitivity indices are shown 
for each maximum conductance relative to each AP biomarker. Left: first-order (S1), right: total-effect (ST) Sobol’ 
sensitivity coefficient.

https://doi.org/10.7554/eLife.91911
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Appendix 3
EAD classification

Appendix 3—figure 1. Emulated APs based on the pharmacological parameters of data set #3. See also Forward 
problem and Figure 7. From left to right and top to bottom, the plot shows the true positive, false negative, false 
positive and true negative samples. The number next to the title specifies the number of samples belonging to 
each category. The classification criterion is outlined in Appendix 1.

https://doi.org/10.7554/eLife.91911
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Appendix 3—figure 2. Same as Figure 1, but showing the simulated APs.

https://doi.org/10.7554/eLife.91911
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