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We investigate the dynamics of a one dimensional spin system with facilitation constraint that
can be studied using Rydberg atoms in arrays of optical tweezer traps. The elementary degrees
of freedom of the system are domains of Rydberg excitations that expand ballistically through
the lattice. Due to mechanical forces, Rydberg excited atoms are coupled to vibrations within their
traps. At zero temperature and large trap depth, it is known that virtually excited lattice vibrations
only renormalize the timescale of the ballistic propagation. However, when vibrational excitations
are initially present — i.e., when the external motion of the atoms is prepared in an excited Fock
state, coherent state or thermal state — resonant scattering between spin domain walls and phonons
takes place. This coherent and deterministic process, which is free from disorder, leads to a reduction
of the power-law exponent characterizing the expansion of spin domains. Furthermore, the spin
domain dynamics is sensitive to the coherence properties of the atoms’ vibrational state, such as the
relative phase of coherently superimposed Fock states. Even for a translationally invariant initial
state the latter manifests macroscopically in a phase-sensitive asymmetric expansion.

Introduction — One of the central topics in quan-
tum many-body physics relates to the study of transport
properties of excitations, correlations or energy, which
allows to categorize models into different classes [1, 2].
For example, chaotic systems generically feature diffusive
transport [3–7], while disorder may induce subdiffusive
dynamics or even localization [8–11]. On the contrary,
ballistic transport and diffusive dynamics are typically
featured in free and interacting integrable systems [12–
20], since they are characterized by an extensive num-
ber of local conserved charges [21]. An intermediate be-
havior between diffusive and ballistic dynamics has been
observed, also experimentally [22–26], in a class of in-
tegrable models with certain additional symmetries [27–
32], which appear to lie in the Kardar-Parisi-Zhang uni-
versality class [33].

Recently, transport properties have also been studied
in quantum systems subject to kinetic constraints [34–
40]. These are generally characterized by slow dynam-
ics and reduced transport due to the scarce connectiv-
ity between different many-body states [41–44]. Physi-
cal manifestations of such models can be efficiently im-
plemented in Rydberg quantum simulators, in which
trapped atoms, excited to high-lying electronic states,
feature strong state-dependent dipolar interactions [45–
48]. Thanks to their versatility, these experimental plat-
forms have led to several breakthroughs in the fields of
quantum simulation and quantum computation [49–57].
Concomitant to the strong electrostatic interactions are
mechanical forces, that couple the internal atomic de-

grees of freedom to the external motional ones [58, 59].
On the one hand, these forces can — when uncontrolled
— be sources of undesired incoherent effects, such as dis-
sipation and heating [60–62]. On the other hand, coher-
ent spin-phonon couplings allow to engineer long-range
multi-body interactions [63], to implement cooling proto-
cols [64], to explore polaron physics [65–69] and to realize
artificial molecular systems [70, 71]. The impact of coher-
ent lattice vibrations on the non-equilibrium dynamics of
kinetically constrained quantum systems is currently un-
explored. However, with the recent advancements in the
domain of Rydberg quantum simulation platforms, such
studies will be soon within reach [72].

In this work we explore the dynamics of elementary
degrees of freedom (spin domains) in a chain of Ry-
dberg atoms subject to the facilitation (anti-blockade)
constraint. We show that the interaction with lattice
vibrations manifests in an alteration of the power-law
exponent characterizing the expansion of spin domains.
At zero temperature, the exponent does not depend on
the spin-phonon coupling strength, provided that it is
sufficiently weak, as scattering is off-resonant. How-
ever, when vibrational excitations are initially present,
resonant scattering between phonons and spin domains
leads to a quantitative decrease of the exponent. Coher-
ent spin-phonon interactions thus may inhibit excitation
transport, thereby providing a connection to disorder-
free settings that display localization phenomena [73, 74].
Finally, we show that the spin domain expansion dy-
namics is sensitive to the phase of the vibrational states,
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which causes an asymmetric expansion even in a trans-
lationally invariant system [75, 76].

5 10

5

10

15
0 0.0

0.5

1.0

10 20
0.0

0.5

position

ti
m
e

(b)

(d)(c)

position
ti
m
e

(a)

FIG. 1. Spin-phonon scattering in a Rydberg chain. (a)
Atoms are treated as (fictitious) spins where the spin-down
state is the ground state and the spin-up state is the Rydberg
state. A laser with Rabi frequency Ω and detuning ∆ excites
the atoms to the Rydberg state under the facilitation condi-

tion ∆+V
(0)
NN = 0, i.e., the detuning is chosen such that it can-

cels the nearest neighbor interaction V
(0)
NN . Atoms are trapped

in a state-independent harmonic potential with frequency ω
and δxj is the deviation of the j-th atom from the center of
the respective trap. Spin and motional degrees of freedom are
coupled, with spin-phonon coupling constant κ which is pro-
portional to the gradient of the potential V evaluated at the
lattice spacing a0. (b) Ballistic expansion of a spin domain
(blue) in the absence of spin-phonon coupling: an excited Ry-
dberg atom facilitates the excitation of the neighboring one
at a rate proportional to Ω. (c) Spin-phonon scattering: the
vibrational state of each atom is prepared in the ground state
(Gaussian profile), except for one atom which is initialized
in a higher-lying Fock state. When the domain wall reaches
this site, it scatters off the phonon excitation. (d) Numerical
simulation of the spin-phonon scattering, where the atom at
site j = 10 is initialized in the Fock state |2⟩ and all others
in Fock state |0⟩. Scattering (back-reflection) of the domain
wall reduces the Rydberg density ⟨nj⟩ beyond j = 10 (orange
dashed line). This is clearly seen in the inset which shows the
Rydberg density ⟨nj⟩ at time Ωt = 9 (white line in main plot)
with the phonon excitation at site j = 10 in Fock state |2⟩
(brown points) and without it (blue points).

Model — We consider a one-dimensional chain of N
atoms, each one loaded in an optical tweezer trap and
whose electronic structure is modeled as a two-level sys-
tem (see Fig. 1a). The state |↓⟩ denotes the ground
state, while |↑⟩ represents the Rydberg (excited) state.
The traps, which are separated by a nearest neighbor
distance a0, have a trap frequency ω. The atoms are
driven by a laser with Rabi frequency Ω and detuning
∆ which couples the ground state to the Rydberg state.
Two atoms in the Rydberg state, placed at sites j and k,

interact via a distance dependent potential of the form
V (rj , rk) = Cγ |rj − rk|−γ . Here γ is the characteristic
power law exponent (dipole-dipole interaction: γ = 3,
van der Waals interaction: γ = 6). The Hamiltonian of
the system is then given by (ℏ = 1)

H =

N∑
j=1

Ωσx
j +∆nj +

∑
k<j

V (rj , rk)njnk + ωa†jaj

 ,

where σx = |↑⟩ ⟨↓| + |↓⟩ ⟨↑| is the spin flip operator and
n = |↑⟩ ⟨↑| projects onto the Rydberg state. Writing the
position fluctuations in the traps in terms of the bosonic
operators as δxj = (a†j+aj)/

√
2mω and neglecting the in-

teractions beyond the nearest-neighbor ones (assumed to
be small compared to Ω, see Supplemental Material [77]),
yields the simplified Hamiltonian [67, 68]

H =

N∑
j=1

{
Ωσx

j +∆nj + ωa†jaj (1)

+
[
V

(0)
NN − κ

(
a†j + aj − a†j+1 − aj+1

)]
njnj+1

}
,

where periodic boundary conditions are adopted. Here

V
(0)
NN is the interaction between two excited nearest-

neighboring atoms when they are located at the cen-
ter of the respective traps and κ = γCγ/(a

γ+1
0

√
2mω) is

the spin-phonon coupling constant, which is proportional
to the gradient of the interaction potential evaluated at
the lattice spacing a0 (see Fig. 1a). Such spin-phonon
coupling accounts for the mechanical forces arising from
the interaction between neighboring Rydberg excitations.
These forces displace the atoms from the center of the re-
spective traps only when they are in the Rydberg state,
thereby coupling the internal (spin) degrees of freedom
to the external (motional) ones.
Facilitated dynamics — We consider the situation

in which the dynamics of the Rydberg chain is subject to
the facilitation (anti-blockade) constraint [78–84]. This is
obtained when the otherwise detuned laser is put on res-
onance by the single-atom energy shift induced by the

Rydberg interaction, i.e., ∆ + V
(0)
NN = 0. Under this

condition, ground state atoms that are next to an al-
ready excited atom get resonantly coupled to the Ryd-
berg state. The further assumption that both the next-
nearest-neighbor interaction and the Rabi frequency are
much smaller than the detuning, V (r0j , r

0
j+2) ≪ |∆| and

Ω ≪ |∆|, leads to a constrained dynamics that conserves
the number of domain walls delimiting domains of con-
secutive Rydberg excitations. This drastically reduces
the connectivity between the many-body states, and the
Hilbert space is decomposed into disconnected sectors,
labeled by the number of domain walls [85].
Here, we focus on the single domain sector, i.e., the

sector with two domain walls, and initially prepare a
spin domain with r0 consecutive Rydberg excitations. To
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FIG. 2. Expansion of spin domain in the absence and presence of phonons. (a) Rydberg density ⟨nj⟩ for a spin
domain initialized with r0 = 9 Rydberg excitations and centered at j = 0. In the absence of spin-phonon coupling (κ = 0),
the domain expands approximately ballistically, independently on whether the atoms are initially prepared in their vibrational
ground state, |0⟩ (left column), or first Fock state |1⟩ (right column). When the spin-phonon coupling is switched on (we
consider κ = 3.0Ω), ballistic expansion persists in the left column, while a drastic change is visible on the right. The reason is
that when atoms are prepared in their vibrational ground state only virtual transitions to higher-lying phonon states take place,
which merely renormalizes the ballistic propagation speed. In the presence of initial phonon excitations, however, coherent
spin-phonon scattering takes place, which alters the expansion dynamics dramatically. (b) The corresponding Rydberg density
variance difference δσ(t), Eq. (3). The power-law exponent changes at Ωt ≈ 3, where the initial spin domain has dissolved
[see violet dashed line in the top left panel]. A clear change of exponent is observed in the bottom right panel (κ = 3.0Ω,
initial vibrational state of all atoms |1⟩). Data is obtained via TEBD simulations of the dynamics under Hamiltonian (1) for
ω = 8Ω,∆ = 500Ω. The maximum number of phonons per site is truncated to 7.

evaluate its dynamics, we perform numerical simulations
of Hamiltonian (1) utilizing the time-evolving block dec-
imation algorithm (TEBD) [86–92]. In absence of spin-
phonon coupling, i.e. κ = 0, the two domain walls prop-
agate freely along the lattice as free fermions [93]. This
results in a ballistic expansion of the spin domain whose
size increases linearly in time, as sketched in Fig. 1b.
To quantitatively assess this expansion, we evaluate the
dynamics of the Rydberg density variance σ, defined as

σ(t) =

N∑
j=1

j2
⟨nj(t)⟩
N (t)

−

 N∑
j=1

j
⟨nj(t)⟩
N (t)

2

, (2)

where ⟨. . .⟩ denotes the quantum expectation value and

N (t) =
∑N

k=1 ⟨nk(t)⟩ is the total Rydberg density. The
density variance (2), which can be measured experimen-
tally [94], quantifies the spreading dynamics of the spin
domain. It is connected to the mean square displacement
used in Refs. [95–97] and to the width of the density
propagator studied in Ref. [98] for a disordered fermionic
model. The density variance is expected to increase over
time as

δσ(t) = σ(t)− σ(0) ∼ tβ , (3)

where σ(0) = (r20 − 1)/12 is the density variance of the
spin domain at t = 0. When κ = 0, i.e. in the absence of
spin-phonon coupling, we expect β = 2 (free fermions).
This is indeed the case, as shown in the first two panels of
Fig. 2a-b where we plot the time evolution of the Rydberg

density and δσ(t), respectively. We note a crossover time
that separates two regions characterized by two different
exponents. The short-time behavior provides β ≈ 1.98
reproducing our expectation, while for larger times the
exponent decreases to β ≈ 1.63. This behavior is a conse-
quence of the conservation of the number of domain walls:
throughout the facilitation dynamics, the domain walls
cannot coalesce and therefore are subject to a hard-core
repulsive potential [82]. This translates into the interrup-
tion of the ballistic expansion when the two domain walls
are about to collide, which happens at Ωt ≈ 3. Note that
this effect is exclusively due to the finite size of the initial
spin domain [77].

In the presence of spin-phonon coupling, κ ̸= 0, we
find that the expansion of the spin domain strongly de-
pends on the initial state of the phonons. In particular,
when the atoms are initially prepared in their vibrational
ground state ⊗N

j=1 |0⟩, the initial ballistic expansion is
maintained and the effect of the spin-phonon coupling
is limited to a renormalization of the expansion veloc-
ity [67, 68]. On the contrary, when the atoms are initially
prepared in the first Fock state ⊗N

j=1 |1⟩, the expansion
of the domain changes dramatically and the exponent
of the Rydberg density variance drops to β ≈ 1.73 and
β ≈ 1.22 before and after the crossover time (see Fig.2).

Effective model for the spin-phonon scattering
— The reason for the alteration of excitation transport
in the presence of initial phonon excitations is resonant
spin-phonon scattering (see Fig. 1c-d), for which we will
construct an effective model. Since the facilitation dy-
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namics conserves the number of domain walls, the sin-
gle spin domain can expand or shrink, but it is not al-
lowed to split into two domains or disappear. The state
of such spin domain can therefore be characterized with
only two coordinates, namely its center of mass (CM)
position and its relative coordinate (or the number of ex-
citations it contains). The introduction of these two co-
ordinates is particularly advantageous because it allows
to reduce the complex many-body dynamics to a simpler
two-body dynamics. As outlined in the Supplemental
Material [77], we formulate Hamiltonian (1) in terms of
these two coordinates. By further decomposing the CM
coordinate and the boson operator aj into Fourier modes
respectively labeled by q and Ap, and after applying var-
ious unitary transformations, one gets the Hamiltonian
H =

∑N
q=1 |q⟩ ⟨q| ⊗Hq, with

Hq = 2Jq({Np})
N−1∑
k=1

cos

(
kπ

N

)
|k⟩ ⟨k|+ ω

∑
p

Np

+κ
∑
k,k′,p

fk,k′,p |k⟩ ⟨k′| ⊗
(
Ap +A†

p

)
, (4)

where Jq({Np}) = 2Ω cos
[
π
N

(
q +

∑
p pNp

)]
and Np =

A†
pAp. The first term provides a set of quasiparticle exci-

tations labeled by their quasimomentum k, whose disper-
sion relation is connected to the expansion speed of the
spin domain. Their interaction with the phonons is en-
coded in the third term, where fk,k′,p are the spin-phonon
coupling matrix elements which are derived in the Sup-
plemental Material [77]. This spin-phonon coupling term
is responsible for the change in the expansion of the spin
domain shown in Fig. 2. For κ = 0 the free dynam-
ics of the quasiparticles results in the visible light cone
emanating from the boundaries of the initial domain. In
contrast, even for moderate values of κ/ω, the presence of
phonon excitations in the initial state drastically changes
the dynamics of the domain. In order to analytically ex-
plore this regime, we note that the spin-phonon coupling
term is the only one that does not conserve the total
number of phonon excitations Nphon =

∑
p ⟨Np⟩. There-

fore, when |κ| ≪ ω, the subspaces with different Nphon

are only weakly coupled, making Nphon an approximately
good quantum number. In this regime, we can derive an
effective Hamiltonian that describes the facilitation dy-
namics in a given phonon subspace. This is formally
accomplished by applying a Schrieffer-Wolff transforma-
tion [99] to Hamiltonian (4) so that we obtain an effective

Hamiltonian, H
(q)
eff , valid in each of the phonon subspaces,

given by [77]

H
(q)
eff = 2Jq({Np})

N−1∑
k=1

cos

(
kπ

N

)
|k⟩ ⟨k|+ ω

∑
p

Np

−κ2
∑
k,k′

Fk,k′({Ap}) |k⟩ ⟨k′|+O(κ3). (5)
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FIG. 3. Phase sensitivity of spin-phonon scattering.
(a) Expansion of the spin domain from the initial state with
r0 = 2 Rydberg excitations. All the atoms are initially pre-
pared in the vibrational state |φ = π/2⟩, giving rise to the
position distribution in the trap shown in the right. The
value of the Rydberg density ⟨nj⟩ remains symmetric around
the CM of the spin domain at all times. (b)-(c) Asymmetric
domain expansion when the vibrational state of the atoms is
initially prepared in |φ = 0⟩ and |φ = π⟩ respectively. The
asymmetry, quantified by δnj = ⟨nj⟩ − ⟨n−j−1⟩, is due to
the fact that the initial state is not symmetric under the op-
eration k → N − k and ak → −aN−k, which is, instead, a
symmetry of the Hamiltonian. The simulations are carried
out with ω = 8Ω,∆ = 200Ω, κ = 4Ω and the maximum num-
ber of phonons per site is truncated to 3.

This equation shows that the phonons mediate an effec-
tive interaction between quasiparticles, with matrix el-
ements Fk,k′({Ap}). These contain terms like A†

mAn,
which have nonzero matrix elements only if Nphon >
0 [77]. Therefore, when phonon excitations are already
present in the initial state, these terms mediate addi-
tional interactions between quasiparticles that would not
be present if the atoms were initialized in their vibra-
tional ground state [68]. This is consistent with the nu-
merical results, shown in the bottom panels of Fig. 2,
that attribute the inhibition of the ballistic spin domain
expansion to the presence of vibrational excitations in
the initial state.

Phase sensitivity of spin-phonon scattering —
In the following we show that the coherence of spin-
phonon scattering can be observed macroscopically. To
this end we consider the situation in which the vibra-
tional state of all the atoms is initially prepared in a
coherent superposition of Fock states |0⟩ and |1⟩, as
|φ⟩ = 1/

√
2
(
|0⟩+ eiφ |1⟩

)
, which is specified by the phase

φ ∈ [0, 2π). Despite being initialized in a translationally
invariant state, the spin domain expands generically in
an asymmetric fashion around its initial position. This is
seen in Fig. 3. The asymmetry is controlled by the phase:
for φ = π/2 the spin domain expands symmetrically, for
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φ = 0 (φ = π) the two domain walls propagate differ-
ently, with the right (left) front showing a larger Rydberg
density. The emergence of this asymmetric expansion is
a consequence of the fact that the initial state is not in-
variant under the operation k → N−k and ak → −aN−k,
which is, however, a symmetry of the Hamiltonian.

Summary and outlook — We investigated the role
of spin-phonon interaction on the non-equilibrium dy-
namics of Rydberg excitations in a chain of trapped
atoms subject to the anti-blockade constraint. While as-
pects of our study are certainly idealized compared to
the experimental state-of-the art, e.g. we assume state-
independent trapping, we could identify coherent spin-
phonon scattering as a mechanism that qualitatively al-
ters the propagation of elementary excitations. In the
future, it would be interesting to consider the impact
of these processes in a many-body setting, by lifting
the restriction to the single spin domain sector. Here
one could ask whether the resulting complex spin-boson
system supports the formation of localized many-body
states in a disorder-free setting. Exploring this regime,
which due to the huge Hilbert space size is challenging to
treat on classical computers, could be an interesting use
case for the next generation of quantum simulators.
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U. Schollwöck, and C. Hubig, Time-evolution meth-
ods for matrix-product states, Ann. Phys. (N. Y.) 411,
167998 (2019).
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